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Abstract

Noncommutative field theories are a class of theories beyond the standard model
of elementary particle physics. Their importance may be summarized in two facts.
Firstly as field theories on noncommutative spacetimes they come with natural reg-
ularization parameters. Secondly they are related in a natural way to theories of
quantum gravity which typically give rise to noncommutative spacetimes. There-
fore noncommutative field theories can shed light on the problem of quantizing
gravity. An attractive aspect of noncommutative field theories is that they can be
formulated so as to preserve spacetime symmetries and to avoid the introduction
of irrelevant degrees freedom and so they provide models of consistent fundamental
theories.

In these notes we review the formulation of symmetry aspects of noncommu-
tative field theories on the simplest type of noncommutative spacetime, the Moyal
plane. We discuss violations of Lorentz, P, CP, PT and CPT symmetries as well as
causality. Some experimentally detectable signatures of these violations involving
Planck scale physics of the early universe and linear response finite temperature

field theory are also presented.
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Chapter 1

Introduction

Quantum theory and the theory of general relativity do not appear to be compat-
ible at very short distance scales due to the following argument. One generally
expects that at very short length scales the general relativistic theory of gravity
needs to become a quantum field theory due to the high energies that are required
to probe such short distances. However, standard quantization methods do not
suffice because the quantization of classical gravity theories results in quantum
theories lacking in renormalizability which is one of the requirements for a consis-
tent fundamental quantum field theory.

In quantum field theory (QFT) renormalization is an attempt to understand
the physical reasons for the UV or short distance divergences that occur in the nat-
urally expected contributions of energetically unrestricted intermediate processes
to the potential or probability amplitude of a given energetically restricted physical
process in spacetime. Renormalization procedures naturally start with some kind
of regulator, a set of regularizing parameters, followed by the isolation of regulator

dependent contributions into finite and purely divergent pieces. A theory is said to
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be renormalizable if the divergences can be understood with a finite regulator; one
containing a manageable number of regularizing parameters, without the need of
introducing or allowing an arbitrarily large number of extra fundamental degrees of
freedom, otherwise the theory is inconsistent and is said to be nonrenormalizable.

A physical process, an isolation of part of the course of dynamics of a physi-
cal system, is one whose potential survives any induced and intrinsic isomorphic
transformations, ie. symmetries, of both spacetime and the spaces of configura-
tions or auxiliary variables of the system in spacetime. The potential depends on
the configuration variables and on the way these variables couple in the classical
action that describes the dynamics of the system through a least action principle.
The way the variables couple is in turn determined by symmetries. Our config-
uration variables shall be fields which include matter or half integer spin fields
and gauge or integer spin fields which are thought to mediate fundamental inter-
actions between the matter fields. Symmetries may be separated into nonlocal
and local symmetries. Nonlocal symmetries are homogeneous in that the value of
the transformation parameter is the same at each point or infinitesimal region of
spacetime and/or spaces of configurations. The definition of a gauge field allows
it to have some physically irrelevant components. Gauge symmetries are special
local symmetries often used as a tool or standard for tracking the number of irrel-
evant components in a gauge field in addition to their normal use as symmetries;
to determine how gauge fields couple among themselves, and to other fields, in
the classical action. The use of gauge symmetries to determine the coupling of
gauge fields is due to the assumption that they should correspond to some global
symmetry when their transformation parameters are made homogeneous and vice
versa.

A finite regulator may or may not survive all of the symmetries of a quan-
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tum theory. Anomalies are unexpected (nonsymmetric) contributions, from the
intermediate processes, which are found to be due to the nonexistence of a finite
regulator that can survive all symmetries of the action for the underlying theory.
The anomalies can be presented as the failure of a conserved (Noether) current
of a symmetry of the classical action to remain conserved after quantization. The
underlying theory in this case is said to be anomalous. Renormalization by defini-
tion must also account for the anomalies as well. Following symmetries anomalies
may be global or local. Global anomalies do not introduce any extra degrees of
freedom and so do not spoil renormalizability. However the theory will be non-
renormalizable if the gauge anomalies from all possible intermediate processes do
not sum to zero. This is because the unphysical degrees of freedom that the gauge
symmetry represents will contribute to a supposedly physical intermediate process
implying an inconsistency. The nonrenormalizability of the quantized version of
any classically successful theory such as the theory of gravity indicates that such
a theory is only an effective theory that can be obtained in the classical limit of a
more fundamental quantum theory. Theories on noncommutative spacetime come
with a natural symmetry surviving regulator and can therefore serve as bases for
testing consistent quantum theories of gravity.

We will review quantum theory and quantization of spacetime in this chapter.
In chapter 2 mostly [119] with minor changes, we will review quantum field theory
on the Moyal plane and some of its physical implications including results of inves-
tigations on discrete spacetime symmetries and locality. Chapter [B mostly [99],
involves a theoretical model for a possible effect of noncommutativity on the CMB
power spectrum meanwhile chapter @ mostly [98], presents results on the analysis
of possible effects of noncommutativity from anisotropy in the CMB radiation. In-
vestigations on causality violating effects in finite temperature field theory appear

14



in chapter B, mostly [122]. Chapter[@is the concluding chapter and the appendices

contain indispensable information that is mostly in heuristic form.

1.1 Quantum Theory

A classical theory, in the description of a physical system, assumes that any under-
lying characteristic of the physical system can undergo only (deterministic) con-
tinuous changes. Noncontinuous changes (which can be nondeterministic) are at-
tributed to statistically averaged characteristics, of a given physical system placed,
in an ensemble (ie. a large collection) of physical systems.

Quantum theory involves extensions, of the classical theoretical description of
a physical system, in which some of the underlying characteristics of the physical
system instead undergo noncontinuous changes (which may be deterministic, non-
deterministic or partially deterministic). The classical description can be obtained
from the quantum description in the limit where the noncontinuous changes are
small enough to be approximately considered as continuous changes.

The effects of noncontinuous changes are expected to be observed when the
system is involved in high energy interactions, where dissociations are most likely

to occur.

1.1.1 Quantum mechanics

Mechanics describes the characteristic changes of a given mechanical system (any
physical system involved in mostly nondestructive interactions). Quantum me-
chanics focuses on an extension of the classical mechanical description to include

also those underlying characteristics (electrical charge, radiative energy, angular
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momentum, etc) of the mechanical system that undergo noncontinuous changes.

Quantum mechanics resulted from efforts that either predicted or explained
observed phenomena such as the energy distribution in a black body’s spectrum,
the photoelectric effect, the Compton effect, electron diffraction, atomic spectra,
etc. Early quantization ideas were presented by Planck, Einstein, Bohr, De Broglie,
Hiesenberg and Schrodinger.

Planck had to assume that the blackbody consisted of oscillators that could
emit or absorb energy only in fixed amounts ¢ that needed to depend linearly on
the frequency only. That is € = hf, where h is a constant. Similarly Einstein in
order to explain the photoelectric effect (the ejection of electrons from the light-
illuminated surface of a metal, with the kinetic energy of the electrons depending
linearly on frequency but not on the intensity of the light) assumed that the energy
of light was quantized (distributed in space as localized lumps each of which can be
produced, transported or absorbed only as a whole) so that the energy of a particle

of light may be written as £ = hf and hence deduced a corresponding momentum

with |p] = % f = % Thus the wave phase of light could then be rewritten as
2mi(ft=F-7) — (i3 (Bt=FF) in terms of its particles’ states (7, D),

7= hk = %@ = %%, or (at pt) = (ct, Z, %,ﬁ) Since the energy and momentum

of a massive free particle are related by E? = p%c? + m?c! the particle of light is
therefore a massless free particle. De Broglie postulated that the wave phase

4 in which case

relation be applied also to massive free particles E? = p?c? + m?c
these particles should also display wave-like properties with

f= %, A= %, p= 6%17. This was confirmed in electron diffraction experiments.
It was then straightforward to write down “wave” or “field” equations (eg. the
nonrelativistic Schrodinger equation (i0; + ﬁ@v —V(Z,t))Y(Z,t) = 0) for massive
particles in an external potential V' (Z,t), where a “field” (7, t) is a superposition

16



or linear sum of “waves”. Light quantization also explains the Compton effect: the
observed shift in wavelength of light when it scatters off free electrons.

On the other hand, it was realized by Bohr and others that it is not possible
to map out a clear path or orbit for the electron in an atom. In the continuum
theory, the Fourier transform of the electron’s electric dipole moment eq predicted
a continuous frequency spectrum for radiation with the Fourier coefficients of eq
giving the intensities associated with each radiated frequency. However, the ob-
served frequencies were discrete implying that the Fourier representation was not
an appropriate way to represent eq. A matrix representation was finally cho-
sen by Heisenberg and others as an appropriate representation for eq, where the
components of the matrix may be interpreted as “transition probabilities” among
the discrete frequencies in analogy to the classical Fourier coefficients which were
normally interpreted as radiation intensities associated with the continuous fre-
quencies.

Empirical results in atomic spectroscopy, eg. Rydberg’s wavelength formula
1 _ R

= % where n;,n; are integers and 2 a constant, indicate that the energy
ij i J

levels of an electron in a physical atom may be represented by the eigenvalues of a
matrix called Hamiltonian H. The Hamiltonian H is a matrix-valued “function”
of equally matrix—valuedH ObservableH quantities g, p that represent the canonical
position and momentum from classical Hamiltonian mechanics. The relations may

be expressed as follows

linstead of a Fourier sequence
2In “observable” or “measurable”, measurement of a quantity U refers to an assignment of a

number to the quantity U. An observable will randomly take on one value of its spectrum each

time it is measurement.
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H=H(p,q,t) = (Hpn), (1.1.1)
dF 7 oF

— =—(HF - FH — F=F = (F, 1.1.2
qp —pq =1ih, q=qt) = (Gmn); p=Dp(t) = (Pmn), (1.1.3)
Hv, = hv v, (Eigenvalue problem for the matrix H), (1.1.4)
H = SAS™, A = hombmm, Wi = 270, (1.1.5)

where the commutator [H, F| = HF — FH may be interpreted as a quantum
mechanical analogue of the classical Poisson bracket {h, f} = 0,h0,f — 0,h0,f.

The equations above come from an empirically deduced form for the coordinate

q given by
qmn(t) = q?rm eiwmntv Wmn = 27T(Vm - Vn)v
dGun(t) i .
= L (Ag— gA) = iy G (1), 1.1.6
o 7(Ag—qh) Wrn, Gn(t) (1.1.6)

where v,,, = v, — 1, is the frequency of a photon emitted by an electron that
“drops” from a higher energy level m to a lower energy level n (the energy of the
photon is hv). The canonical quantization conditions
(@i, pj] = ihdi;, [pispj] = (@i, ¢;] =0 are an extension (see eqn (B.1.9) of appendix
B.I) of the Bohr-Sommerfeld quantizatiorH condition

%p,-dqi = nh. (1.1.7)
c

3This model considers (planar) elliptical rather than (planar) circular orbits of Bohr’s model
for the electronic orbits of Hydrogen. This quantization condition is merely an additional con-
straint (to the usual classical equations of motion) imposed in order to obtain a discrete rather
than a continuous set of orbits, energies, angular momenta and related quantities. It may also

be written as §(p;jdg’ — qjdp’) = 2nh or as §,z;dz) = 2nhi, z; = q; + ip;.
18



The time evolution equation (LI.2)) generates a one parameter time transla-
tion group {e'#'} with the Hamiltonian H as the sole generator. The spectrum
(from the eigenvalue problem Hv, = hivip, for H) of H is preserved by this time
translation symmetry and consequently each atom has a unique emission or ab-
sorption spectrum that characterizes (or serves as a thumbprint for) the type of
chemical element the atoms of that type produce. The eigenvalue problem for
H = H(q,p) may be seen as the problem of finding the irreducible representations
of the one parameter time translation group and so each frequency represents an
irreducible or elementary attributes (a single excitation, or energy, level of an
electron of the atom) of a non-rotating atomic electron system. Naturally, the
electron system can be free to rotate around or relative to the nucleus in which
case we have invariance under the time translation plus rotation group whose ir-
reducible representations would give the elementary attributes of the system. The
canonical quantization condition for a system with several canonical degrees of
freedom is [g;, p;| = i0i;h, [qi,q;] = [pi,pj] = 0. For a system with Hamiltonian
H = H(p*,p- ¢,¢*) and angular momentum L;; = $(g;p; — ¢;p;), H commutes
with L;; and {H, L* = L;;L;;} generate the center of the algebra of the symmetry

group.
1 1
[Lij, Liy) = _5(5iijl + 65 L) + 5(51'le1@ + 8k Lir). (1.1.8)

All parts of the atomic system can also be displaced by the same amount in “free”
space without disturbing the spectrum of the atomic system. Thus one needs to
consider a Hamiltonian of the form H = ", h(D, - Poy Pu(@o — @), (Gu — b)) where
a, b label the various pieces or particles of the system. Then H also commutes

with the total momentum operator P= > o Da which is the generator of spatial
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translations. The canonical commutation relations are

g8, pl] = i690ah, [d},ql] = [P, pi] =0
(1.1.9)

and the angular momentum operator will be the sum of the individual ones:

. . 1 . . o 1 . . o
L= YL = Y P - P = S@P - P,

a

Q=> . (1.1.10)

The center of the algebra of the symmetry group of the atomic system is now gen-
erated by (H, L?, 15) At this point one realizes that the problem of quantizing the
atomic system includes the problem of finding the irreducible representations of its
symmetry group (or equivalently of the algebra of the symmetry group) generated
by H, P!, LY. To include relativistic effects, one needs to replace the (spatial rota-
tion plus spatial translation plus time translation) group with the Poincare group
(spacetime rotation plus translation group). Then relativistic quantum mechanics

involves the problem of finding the spectrum of the center of the group generated
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by the operators P, J* which have the canonical representation

P = (PY(H),P(P)), Q" = (Q°(Q"), 3(Q)).

=2

PUH)=H=H(y",7,t,Q,P), P(P)=P,
Q% =Q° 9(Q)=0q,

1
= QP = QP+ L =)+ S D R s+ 1@ S+
— JELV _'_ ng/’
1 1
[‘]/W’ Ja ] = _5(77/wcjuﬁ + UVBJ;M) + §(nuﬁ<]va + nvajuﬁ)a
(1, I =0,
[PQ =i, Q' =(Q"Q).
{7} =2 (1.1.11)

In the Schrodinger representation Q" — pizn, P, — iz (here L denotes ordi-
nary multiplication by the spacetime coordinates z*), one then has the consistency

condition
i— = H(°,9,t,%,i==) (1.1.12)
%

on the space of sections E/R! = {4 : R —+ F ~ O(CM @ CV) x (CM @ CN)}
of a vector bundle E over R%! where 1 = ¢, ® 1) is the product of the orbital
and spin angular momentum wavefunctions and O(C” @ C") is the space of linear
operators on CM @ CV.

Even though it is not possible to say precisely where the atomic electron’s or-
bit is, it is however possible to say that it is mostly around the nucleus of the
atom; that is, the electron’s orbit is localized in the rejjon around the nucleus. A

basic quantity introduced for the study of localization] was Schrodinger’s wave-

4A system is localized in a certain region D at a particular time if the total probability of
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function in wave mechanics which is any function satisfying the consistency con-
dition (LT.I2)). Schrodinger’s wave mechanics is equivalent to Heisenberg’s matrix
mechanics which was discussed earlier. In general the wave function is a complex-
valued function(al) of the quantized configuration variables such as canonical co-
ordinate in quantum mechanics or fields in quantum field theory, whose absolute
value can be interpreted as a joint probability density function for the quantized
canonical variables on which it depends.

When the quantum, ie. quantized classical, configuration variables are repre-
sented as elements of an algebra O(H) of operators on a Hilbert spaceH ‘H then
the wavefunction would be the value of a chosen linear functionaH on the quantum
configuration variable in question. Thus the time evolution equation may also be
written either in terms of the wavefunction or in terms of a corresponding vector
in the Hilbert space H. The time evolution equation in terms of the wavefunction
is known as Schrodinger’s equation. More specifically the sole irreducible repre-
sentation, up to unitary equivalence, of the relations (L.III) through (LI.5) on a

Hilbert space is known as Schrodinger’s representation.

finding it in D at that time is 1. Alternatively, the region D is dense in the support of the

probability density function of the system.
5A Hilbert space is a vector space completed into a metric space by a norm that is induced

by an inner product measure defined on the vector space.
SWavefunctions of physical systems and probability amplitudes for various physical processes

are examples of (values of) linear functionals on O(#H). The wavefunction for a physical system is
a time-dependent linear functional whose value on a given quantum configuration is the probabil-
ity amplitude for finding the system in that quantum configuration and it satisfies Schrodinger’s

equation.
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1.1.2 Quantum field theory

Quantum field theory is a relativistic quantum theory of systems with arbitrary
numbers and types of degrees of freedom. Quantum mechanics treats a system
of N (interacting) particles using a fixed number and type of N (coupled) equa-
tions. However not all interacting systems have a fixed number and species of
particles. Particle transformations and relativistic quantum effects such as parti-
cle creation and annihilation may occur. Particles of a kind are now regarded as
localizable disturbances (ie. perturbations or fluctuations) in a field of that kind.
In particular the field description treats elementary particles as (Fourier) modes of
the oscillatory part of an associated field in direct analogy to the electromagnetic
field, the modes of whose oscillatory part correspond to the various frequencies of
the electromagnetic spectrum. One has an analog of the canonical quantization

condition;

Ga(t) — a5t Zw (7, t)uy (T, 1),

Pu(t) — mo(t) = ZH“ (Z, t)u,(Z, 1),

gy (D) (1) — (= 1)23 (D (1) = i76°76,,,

D un(@ huy(g, 1) = 8% - §),

Hpa(f, )P (7. 1) — (=1)*¢% (g, )I1°(Z, ) = ihd*’5(Z — 7),

. oc
I(z,t) = 88t¢(x’t)’

= /E(x,dx,¢,d¢), (1.1.13)

where n is a discrete label for a collection of particles and the value of x needs to be

chosen in such a way as to obtain a consistent theory for the field ¢). For example
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Pauli’s exclusion principleH requires that s be a half integer for matter fields and
and integer for interaction mediation fields. p is a characteristic or typical value (an
eigenvalue for a corresponding momentum operator as a Noether charge associated
with translational invariance) for the momentum of an individual mode. This is
because ¢; and ¢, (corresponding to g\, ¢y,) denote different positions in space. a
is a “spin” index which is an extension of the spatial vector index. The differential
action or Lagrangian L(x,dx, 1, dv) is a differential form on spacetime.

Thus an individual mode is described by the triple (g, (t), 7, (), u,(Z, )), where
lu,(Z,t)|*d®x is the probability of finding the mode in an infinitesimal neighborhood
of ¥ of volume d®x at any given time t. This means that the role of the point T is
now being played by the linear functional
up : (g (1), Vo, 1)) = uy(T,t) = (g5 (1)Ya(7,1)). The field ¢ can also be directly
interpreted as the particle coordinate, where the particle is constrained to move
along a time-parametrized path ¢': [0, 1] — C of the configuration space
Cc=U,C,=U,{¢} in many particle quantum mechanics meanwhile the particle
is constrained to move along a spacetime-parametrized hypersurface
Y M~ ([0,1]*,9) = U = U,ep {9 (2)} C C of the configuration space
C = U,{g} in quantum field theory and similarly the particle is constrained to

move along a (o, 7)-parametrized two dimensional surface

"The exclusion principle associates the shell structure of atomic electron systems, space oc-
cupying/shape forming properties of matter, stability of astronomical objects such as neutron
stars, etc to the difficulty for two elementary matter systems to have exactly the same set of
fundamental quantum labels. Electromagnetic fields for example and other force fields do not
appear to exhibit these properties. The exclusion principle is connected to the idea of spin
angular momentum by the requirement that the probability amplitude of a composite physical
process must be a rotationally invariant/covariant functional of the probability amplitudes for

the individual elementary processes of which it is composed.
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X (0,12, h) = C = R in string theory.

In quantum field theory the role originally played by the Hamiltonian H alone
in quantum mechanics is now played by the 4-momentum operator
P, = (H,P) (A component T" of the Energy-momentum tensor
" = [dz T, 0, T" = 0, a Noether charge corresponding to spacetime
translation symmetry). The eigen-value problem for H, and any other quantities
that commute with H, is replaced by the problem of finding the solutions U of the
equation
U(A1,b1)U(Ag, by) = U(A1As, by + A1by) which is Wigner’s method of classifying
elementary particle states. That is, finding the irreducible representations of the
Lorentz-Poincare transformation
LP:R¥* 5 Rz Azx+b, AT =AY z = (z,) = (w0, 7), the automor-
phism or symmetry group of the spacetime R3*!. The irreducible representations
correspond to free elementary point particles that can be localized in R3*!. In
addition to reparametrization symmetry the Lorentz-Poincare transformation is a
symmetry and thus a canonical transformationH of the relativistic point particle

action

Sz, = m/ \ M dardz” (1.1.14)
r

since this Lagrangian involves only the metric ds* = 1), dz*dx” which is the defin-
ing structure of the Minkowski spacetime.

Thus given any space S, one can also consider the problem of finding the ir-
reducible representations of the automorphism group G(S) : & — S of S so as to
be able to characterize/classify all the possible elementary physical systems that
can be localized in §. Examples of spaces include topological metric spaces, man-

8Section [B1]
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ifolds (which also include Lie groups), fiber bundles, etc and other spaces derived
from these using various mathematical constructs. Here it is also important to
note that the symmetry group of a topologically nontrivia!H space (as compared
to the flat spacetime R3*1) is “enlarged” mainly due to additional discrete trans-
formation channels leading to various periodicity types and therefore one expects
additional distinct physical properties induced on the elementary systems in S by
its nontrivial topology. Conversely, if the elementary systems in S are observed
to display unexpected additional properties, say through experimentation, that do
not seem to depend on the geometry, ie. shape/size structures, on S then they
may be investigated by introducing nontrivial topology. Ways of introducing non-
trivial topology include employing nondynamical constraints (like quotienting of a
[topologically trivial] space by the actions of [discrete] transformation groups ) as
well as dynamical constraints such as postulating the presence of unknown forms
of “elementary” systems that can couple to the known elementary systems in a
way that can explain the additional properties and also gives possible explanations
as to whether the unknown forms of elementary systems could be experimentally
detectable or not.

For example, consider the variational problem for an electron (considered as the
less physically realistic case, a point particle, so that it can only trace 1-dimensional
paths) with action S|q] = fol L(t,dt,q,dq), q:[0,1] — R¥'. If there is a very
strong magnetic field confined in a thin infinitely long tube through the space

R3*L then since any electron (and hence its path) with insufficient energy cannot

9A space is topologically nontrivial if any two of its subspaces cannot always be continuously
deformed into each other. Topology is the study of invariance under continuous shape change
or deformation (ie. geometry) transformations. Physically interesting geometries would be the

fixed points of these geometry transformations.

26



penetrate this tube, it means that for such an electron the variational problem will
have more than one solution as a path on one side of the magnetic tube cannot
be continuously varied to a path on the opposite side of the tube. For the same
reason a path that wraps around the tube n times cannot be varied to a path
that wraps around it any m times in the opposite sense or m # n times in the
same sense. Hence to every path is associated an integer parameter labeling the
number of times and sense in which its path winds around the tube. Therefore
if identical electrons of insufficient energy are produced at some point and later
interact then one expects to observe the effect of the difference in the topological
charges (winding numbers) they gained during their individual journeys. This
effect may be included in the action by adding a non trivial but smooth path

deformation independent term
1 .
V[Q] :/ Bidql>
0
5vl] = 6 / Bdg) = / (6B, dg' + B,sdq’) = / (640, B; dg’ + B.d,(6¢')dq?)
0 0 0
1 1
:/ 5qi(8iBj—8jBi)dqj+/ 8i(Bj5qj)dqi
0 0
1
:/ 5¢'(0;B; — 0;B;)dq’ + [B;é¢’]|s = 0, (1.1.15)
0

where the path ¢(t) can be smoothly deformed to the path ¢(¢) 4+ dq(¢). That is,
smooth path deformation independence requires dB = 0 in the region between
between any two paths, with common end points, that can be continuously de-
formed into each other, §.B =n(I") € Z, B = Bdq'. Alternatively, let I'; (I'_)
be the path oriented fromt =0tot =1 (t =1tot=0), (I'+ "), be the varied
(with end fixed d¢(0) = 0 = dq(1)) path oriented from ¢t =1 to t = 0 and I" be the
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closed path (I' + 0I'); + I'_. Then Stokes’ theorem implies that

ovlq] = virysry, = Vrton), (] + vr_lq] = virssry, 1[4

I/FJr
— g ]{ / (1.1.16)
int(T")

Therefore, ov[g] = 0 unless the variation takes the path across the tube since
dB |R3+1\mbe = 0. B may be normalized so that any non-zero contribution from
v[q] is an integer.

One notes obviously that B (as well as the tube) can also be a dynamical field.
The configuration space of the electron is & ~ R3™\tube instead of R¥"!. This
same analysis can be carried out for the physically more realistic systems such as
strings, p-branes, and fields in general as well; which can be sensitive to several
other kinds of topologies. The additional terms v(gq) are known as Wess-Zumino
terms and their gauge non-invariance can be adapted to cancel gauge anomalies

and so they may be used to define gauge invariant functional integrals in quantum

field theor .

1.2 Quantization of spacetime

It is estimated [9] that in order to satisfy the uncertainty principle in quantum
theory and also prevent the undesirable phenomenon of blackhole formation in the
general relativistic theory of gravity during a high energy experiment, the length
scales being probed by the experiment must not be much smaller than the Planck
length [, = 107**m. Information will be lost if blackholes are allowed to form

during the experiment. It follows that one cannot, by such careful experiments,

10See for example [3] for a review of quantum field theory.
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distinguish between two local events in spacetime whose separation is much smaller
than [,.

Thus the physical spacetime is expected to be quantized with cells of size of
the order of l,. Nonrenormalizable field theories, including the theory of grav-
ity, are expected to be regularized in the physical spacetime. Here the minimum
length scale naturally provides the UV cutoff needed to regulate otherwise diver-
gent integrals encountered in the computation of probability amplitudes of certain
scattering processes.

Various methods of quantizing spacetime include the following.

1. Lattice regularization methods. Space time is given the structure of a lat-
tice with a lattice constant of the order [,. These methods preserve gauge

symmetries but break spacetime symmetries.

2. Canonical quantization methods. Here the local coordinates of spacetime
become noncommutative in such a way that their spectr are still invariant

under the original classical symmetry group of the spacetime.

3. Deformation quantization methods. The local coordinates of spacetime be-
come noncommutative and the symmetry group of spacetime is also modified
so that it can preserve the spectra of the coordinates. Because of the obser-
vation that the elementary physical systems that live in a space S are given
by the irreducible representations of the symmetry group of S, one could
rather directly quantize/deform the group algebras of the symmetry group

of § and study their consequences. Mathematically these deformed groups

See section [F24l If a describes a physically measurable quantity then its spectrum would

contain the possible values that one can obtain when the quantity is measured.

29



or quantum groups may be considered as belonging to a certain class of Hopf

algebrag'q.

. Noncommutative geometr. The noncommutative algebra of spacetime co-
ordinates is first introduced. One then constructs any possible C’*—algebra

from the universal algebra generated by the algebra of coordinates.

Noncommutative geometry involves extensions of classical geometric struc-
tures to an arbitrary x-algebra A and its dual space of linear functionals
A* ={¢: A — C}. The extensions are based on duality between a classical
space 1 X and the point-wise product algebra A = (C(X),+, pt-wise) of
complex classical functions C(X) = {f : X — C} on X. The algebra A
plays the role of a (non)commutative space of functions on the dual space
A*. The symmetry groups of noncommutative spaces are known as quan-

tum groups. Noncommutative geometry provides a unifying framework for

various methods of quantizing spacetime.

1.3 Motivation for noncommutative field theory

Apart from the fact that spacetime quantization arose historically due to the need

for regularization in quantum field theory, noncommutative spaces also arise nat-

urally in various physical and mathematical theories. This fact lends support to

2See [30, B2 53]

13[4] for example gives an informal introduction to noncommutative geometry.

14Gee equation (F2.4)

15 A classical space is a set of points (ie. imaginary objects) with one or more classical structures,

such as special mapping or transformation structures, group structures, topological or continuity

structures, differential structures and so on, defined on it.
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the construction of general spacetime quantization schemes and noncommutative
geometry. We will now list some of the noncommutative spaces that are often

encountered in physics.

1.3.1 Phase space in quantum mechanics

In quantum mechanics the canonical quantization conditions
[¢i, pj] = ihdij, [pispj] = [¢i,q;] = 0 imply that the quantum phase space is a

naturally noncommutative space.

1.3.2 Superspace in supersymmetric field theory

Geometrically, supersymmetric theories are theories on a noncommutative space

(known as superspace) with graded coordinates z; = (x,, 6,)
Trxryg = (—]_)IIIHZ‘]‘ Tjxr, |[l§'u| :O, |9a| :1,

‘SL’[LL’J‘ = |LL’[‘ + |LL’J| (131)

1.3.3 The center of motion of an electron in a magnetic

field

When an electron moves in a constant magnetic field the coordinates of the center
of its circular motion (ie. guiding center) become noncommutative when the system

is quantized canonically. The solution to

(1.3.2)
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(see appendix [A.T]) shows that the center of circular motion is

Zo(t) = Ty + % B x G+ B (B - )t — to),
(1.3.3)
which upon quantization (see appendix [A1]) satisfies the relation
[z (1), 2(t)] = 07 = i%a““ B vt. (1.3.4)
e

1.3.4 Phase space of a Landau problem with a strong mag-

netic field

Consider the problem where an electron moves in a plane ¥ = (z,y,0) subject
to a constant magnetic field B = (0,0, B) perpendicular to the plane, then the
Lagrangian is

1

L:§mz72—ez7~ff, 7= (i,9,0), A=—=FxB. (1.3.5)

l\DI}—t

When the magnetic field is strong, ie. eB > mc, we have L ~ —et - A giving

D = %y and p, = —%x so that canonical quantization yields
h
T,y ~2i—. 1.3.6

1.3.5 Fundamental strings and D-branes

Consider the open string sigma model given by
1 1 . .
=—{ [ =(gwda" Vdz"+iAB,,dx" Ndz")+ i dz"A,},  (1.3.7)
277')\ D 2 oD
where D is the string’s worldsheet and g,,, B, are constant. Then the second

term is a surface term and so the noncommutativity that arises will be on a D-
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brane at the end of the string. In string theor a D—brane is the spacetime
hypersurface on which the end of an open string can move freely (ie. the end of
the string is confined to this hypersurface) as allowed by a nontrivial choice of
boundary conditions in the variational principle that determines the dynamics of
the string. More precisely, a Dp-brane (or Dirichlet p—brane) is the hypersurface
of dimensions p (or p+ 1 when the time direction is included) defined by Dirichlet
boundary conditions
0X70(1,00) =0, 00 €{0,7}, 74, :{0,1,2,...., D} = {1,2,..., D — p}
or{1,2,...D—p—1}.
One may write the Fourier expansion
(o, 7) = Z ot (1)~ (1.3.8)
k

where the modes z}/(7) may be regarded as individual particles. Then one has a
Landau problem for each mode and noncommutativity of the coordinates % (7) of

the type (L3.0]) arises when B, is large.

1.3.6 Myers Effect

The action principle for a collection of N DO0-branes in the presence of background

fields leads to Lie algebra-type noncommutativity

(2%, 7] = fi,2F (1.3.9)

16String theory is a quantum field theory in which elementary particles states arise as dynamical
fluctuations of the trajectory of a one dimensional object, known as the fundamental string, in
superspacetime. The fundamental strings as well as the elementary particle states can interact
and/or condense to produce charged p dimensional classical or bound states, known as p-branes,
the existence of some of which is a prediction of the theory. The charged p-branes interact with

one another as well as with the elementary particle states of the fundamental string.
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for the coordinates of the system of DO-branes in space-time. This corresponds to
static configurations (#* = 0) of the DO-brane system that extremize the action as
required by the least action principle.

The coordinates ' are N x N matrices in the adjoint representation of U(N).
In the absence of the background field f one has [z’, 2] = 0 and these matrices
can be simultaneously diagonalized and the N eigen-values represent the positions

of the N DO-branes [5] [6].
Summary of Chapter

1. Noncommutativity of spacetime R%*! coordinates is implied by a noncommu-
tative spacetime function algebra Ap(R*™!) = (F(R4 1), x); with multiplica-
tion or self action p: A® A — A, (f,h) — f*g which induces left,right
multiplicative self representations pX, uf : A — O(V(A)) on A regarded as a
vector space V(A) = A. Group action needs to preserve the noncommutative

product structure p; ie.
gou=poA(g), geG (1.3.10)

(where A(g) = g® g, or A(e?T) = 22N A(T) =T ®1+1® T, in the
undeformed case) which requires a deformed group action and hence a

deformed group algebra.

2. The group action equally needs to preserve the spectrum

A ={r": A, = C, 7(ab) = 7" (a)7"(b), T (a+b)=71"(a)+77(b)}

T

(1.3.11)
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of the algebra A, of the statistics or particle interchange operators 7;. It

suffices for the action of g to commute with each 7 € A,

A(g)oT=T0A(g), Vre A,
(1.3.12)

which implies a deformed statistics operator. Here
.AT = .A{’TZ', 1€ N7 TiTi+1T; = Ti4+1TiTi+1, TiTi = ]_} (1313)

is the group algebra of the permutation group (a subalgebra of the automor-
phism algebra of any tensor product algebra just as the permutation group is
a subgroup of the automorphism group of any homogeneous tensor product
algebra, so named after a homogeneous polynomial algebra).

TiTi1Ti = TipaTiTisn = T (7)) = 77 (Tig1),

7= = Ti(n)==x7i(e)

(1.3.14)

and

e=e = 7ile)=1 = 71i(r) =+l Vi (1.3.15)

. Let A, — O(H) be a representation of A, as an algebra of operators O(H)
on a Hilbert space H = 7*(®) (the dual space of the tensor algebra T (®) of
quantum fields ® = {¢}). Since the associated spectrum of eigenfunctions
( fermion/boson or pure identical many-particle wavefunctions
{4 : T(®) — CN} ) must be preserved in the same manner, a deformed
algebra of quantum operators in the quantum fields is required in ad-
dition to the star-product deformation of the localization functions of the
fields.
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4. The above process is reversible in that a deformed algebra of quantum fields

necessarily leads to a noncummutative algebra of functions.

5. Consequences of deformed statistics of quantum fields include

1) Modification of the statistical interparticle force and hence degeneracy

pressure that determines the fate of galactic nuclei after fuel burning seizes.
2) Pauli forbidden transitions may be observable,

3) Lorentz, P, PT, CP, CPT and causality violations can occur.

6. In scattering theory the S-operator contains time ordering 7" and only in-
teraction terms. Therefore the twist factor e%gAP does not always drop out
directly as surface terms in the action S;. However it can be checked that
the twist factor drops out from all terms in the expansion of the S-operator
in abelian gauge theories with or without matter fields as well as in pure

nonabelian gauge theories.

7. In the (Schrodinger) representation of the noncommutative Moyal algebra

Ap(RP) = (F(RP), %) as an algebra of multiplication operators
m(Hg) = {y : Ho — Ho, [ € As(R"), & — pyc},

on the Schrodinger Hilbert space Hy = (Ap(RP),()), with the coordinates
T acting as multiplication operators and the momenta p acting as deriva-

tions, one encounters two possible independent multiplication representations

ph, plipl = pf, and pfopfult =l [pf, pl] =0, corresponding to

left and right multiplication

piE=f*&  pfE=¢xf, (1.3.16)
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and this is the case for any noncommutative algebra. The Moyal case is
special in that a commutative representation S, = I(puk. + pfl) can be

found for the algebra of the coordinates as one can check that

W = 1f bty 2 10g] = Bfaggup T Hgar g Vo9 € A(RP).

Thus some of the fields in physics can be associated with the commutative
sector Ag(R”) generated by the commutative coordinates {##} which are
defined by

Hsu = prze. Owing to the commutativity of momenta

(s, = %%}adiu = %9;,,1 (uk, — pk) ) and the principle of minimal coupling,

gauge fields (including Yang-Mills and Gravity fields) may be associated with

the commutative sector Aq(RP).

If gauge fields are commutative while matter fields are noncommutative then
the matter-gauge interaction terms will inherit (via the choice of covariant
derivative D,) a twist factor from the matter sector meanwhile the pure
gauge interaction terms will lack this factor leading to

S = T(e‘isfe_%gipoempim) # Sp, where P represents the anticipated total

incident momentum when the matrix elements (f|S|i) of S are finally taken.

This will lead to P, C'PT noninvariance of the S-operator.

. The direct Poincare transformation of products of deformed or twisted quan-
tum fields ¢ = gboe%gAP takes into account the use of the coproduct to trans-
form local products of fields. The S operator S = Te~*/ M1 i invariant under
this transformation even though the causality or locality condition, which is

required for Lorentz invariance in commutative theories, does not hold:
[(Hi(z), Hi(y)] #0 for (20 —10)* < (Z—#)*  (1.3.17)
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Chapter 2

Introduction to Noncommutative

geometry

We give an introductory review of quantum physics on the noncommutative space-
time called the Groenewold-Moyal plane. Basic ideas like star products, twisted
statistics, second quantized fields and discrete symmetries are discussed. We also
outline some of the recent developments in these fields and mention where one can

search for experimental signals.

2.1 Introduction

Quantum electrodynamics is not free from divergences. The calculation of Feyn-
man diagrams involves a cut-off A on the momentum variables in the integrands.
In this case, the theory will not see length scales smaller than A~!. The theory
fails to explain physics in the regions of spacetime volume less than A=

Heisenberg proposed in the 1930’s that an effective cut-off can be introduced
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in quantum field theories by introducing an effective lattice structure for the un-
derlying spacetime. A lattice structure of spacetime takes care of the divergences
in quantum field theories, but a lattice breaks Lorentz invariance.

Heisenberg’s proposal to obtain an effective lattice structure was to make the
spacetime noncommutative. The noncommutative spacetime structure is point-
less on small length scales. Noncommuting spacetime coordinates introduce a
fundamental length scale. This fundamental length can be taken to be of the
order of the Planck length. The notion of point below this length scale has no
operational meaning.

We can explain Heisenberg’s ideas by recalling the quantization of a classical
system. The point of departure from classical to quantum physics is the algebra
of functions on the phase space. The classical phase space, a symplectic manifold
M, consists of “points” forming the pure states of the system. Every observable
physical quantity on this manifold M is specified by a function f. The Hamiltonian
H is a function on M, which measures energy. The evolution of f on the manifold

is specified by H by the equation

j={f.H} (2.1.1)

where f = df /dt and {, } is the Poisson bracket.

The quantum phase space is a “noncommutative space” where the algebra of
functions is replaced by the algebra of linear operators. The algebra F(T*Q) of
functions on the classical phase space T*(), associated with a given spacetime (@),
is a commutative algebra. According to Dirac, quantization can be achieved by
replacing a function f in this algebra by an operator f and equating ¢A times the
Poisson bracket between functions to the commutator between the corresponding

operators. In classical physics, the functions f commute, so F(T*Q) is a com-

39



mutative algebra. But the corresponding quantum algebra F is not commutative.
Dynamics is on F. So quantum physics is noncommutative dynamics.

A particular aspect of this dynamics is fuzzy phase space where we cannot
localize points, and which has an attendent effective ultraviolet cutoff. A fuzzy
phase space can still admit the action of a continuous symmetry group such as
the spatial rotation group as the automorphism group [7]. For example, one can
quantize functions on a sphere S? to obtain a fuzzy sphere [8]. It admits SO(3) as
an automorphism group. The fuzzy sphere can be identified with the algebra M,
of n x n complex matrices. The volume of phase space in this case becomes finite.
Semiclassically there are a finite number of cells on the fuzzy sphere, each with a
finite area [7].

Thus in quantum physics, the commutative algebra of functions on phase space
is deformed to a noncommutative algebra, leading to a “noncommutative phase
space”. Such deformations, characteristic of quantization, are now appearing in
different approaches to fundamental physics. Examples are the following:

1.) Noncommutative geometry has made its appearance as a method for regu-
larizing quantum field theories (qft’s) and in studies of deformation quantization.

2.) It has turned up in string physics as quantized D-branes.

3.) Certain approaches to canonical gravity [64] have used noncommutative
geometry with great effectiveness.

4.) There are also plausible arguments based on the uncertainty principle [9]
that indicate a noncommutative spacetime in the presence of gravity.

5.) It has been conjuctered by ‘t Hooft [I0] that the horizon of a black hole
should have a fuzzy 2-sphere structure to give a finite entropy.

6.) A noncommutative structure emerges naturally in quantum Hall effect [11].
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2.2 Noncommutative Spacetime

2.2.1 A Little Bit of History

The idea that spacetime geometry may be noncommutative is old and goes back
as far as the 30’s. In 1947 Snyder used the noncommutative structure of spacetime
to introduce a small length scale cut-off in field theory without breaking Lorentz
invariance [I2]. In the same year, Yang [I3] also published a paper on quantized
spacetime, extending Snyder’s work. The term ‘noncommutative geometry’ was
introduced by von Neumann [7]. He used it to describe in general a geometry
in which the algebra of noncommuting linear operators replaces the algebra of
functions.

Snyder’s idea was forgotten with the successful development of the renormal-
ization program. Later, in the 1980’s Connes [14] and Woronowicz [15] revived
noncommutative geometry by introducing a differential structure in the noncom-

mutative framework.

2.2.2 Spacetime Uncertaintities

It is generally believed that the picture of spacetime as a manifold of points breaks
down at distance scales of the order of the Planck length: Spacetime events cannot
be localized with an accuracy given by Planck length.

The following argument can be found in Doplicher et al. [9]. In order to probe
physics at a fundamental length scale L close to the Planck scale, the Compton

wavelength % of the probe must fulfill

h h
— < > — ~ . 2.
e = L or M > T Planck mass (2.2.1)
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Such high mass in the small volume L? will strongly affect gravity and can cause
black holes and their horizons to form. This suggests a fundamental length limiting

spatial localization. That is, there is a space-space uncertainty,
ALL’lALL’Q + ALL’QALL’:; + ASL’gASL’l Z L2 (222)

Similar arguments can be made about time localization. Observation of very
short time scales requires very high energies. They can produce black holes and

black hole horizons will then limit spatial resolution suggesting
Axg(Ary + Axy + Axs) > L2 (2.2.3)

The above uncertainty relations suggest that spacetime ought to be described
as a noncommutative manifold just as classical phase space is replaced by noncom-
mutative phase space in quantum physics which leads to Heisenberg’s uncertainty
relations. The points on the classical commutative manifold should then be re-

placed by states on a noncommutative algebra.

2.2.3 The Groenewold-Moyal Plane

The noncommutative Groenewold-Moyal (GM) spacetime is a deformation of or-

dinary spacetime in which the spacetime coordinate functions z,, do not commute

116, 17, 18, 19]:
[zt 27 =", 0" = —0"" = constants, (2.2.4)
where the coordinate functions 7, give Cartesian coordinates z,, of (flat) spacetime:

2.(1) = 7. (2.2.5)
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The deformation matrix @ is taken to be a real and antisymmetric constant matrix
[20]. Tts elements have the dimension of (length)?, thus a scale for the smallest
patch of area in the p - v plane. They also give a measure of the strength of
noncommutativity. One cannot probe spacetime with a resolution below this scale.
That is, spacetime is “fuzzy” [2I] below this scale. In the limit 6, — 0, one

recovers ordinary spacetime.

2.3 The Star Products

In this part we will go into more details of the GM plane. The GM plane incor-
porates spacetime uncertainties. Such an introduction of spacetime noncommuta-
tivity replaces point-by-point multiplication of two fields by a type of “smeared”
product. This type of product is called a star product.

2.3.1 Deforming an Algebra

There is a general way of deforming the algebra of functions on a manifold M [22].
The GM plane, Ag(R¥*1), associated with spacetime R4*! is an example of such a
deformed algebra.

Consider a Riemannian manifold (M, g) with metric g. If the group
RN (N > 2) acts as a group of isometries on M, then it acts on the Hilbert space
L*(M,dpu,) of square integrable functions on M. The volume form du, for the
scalar product on L*(M,dy,) is induced from g.

If {A = (A, ey )\N)} denote the unitary irreducible representations (UIR’s)

of RN, then we can write

2(M, dpy) = @H (2.3.1)
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where RY acts by the UIR A on HW.
We choose A such that

Aia — e (2.3.2)

where a = (a1, as,- -+ ,ay) € RY.
Choose two smooth functions fy and fy in H® and H®). Then under the

pointwise multiplication

I® fxv = Iafv (2.3.3)
where, if p is a point on M,
(Sxf)(p) = falp) fx (p)- (2.3.4)
Also
fafr € HOHY) (2.3.5)

where we have taken the group law as addition.

Let 0" be an antisymmetric constant matrix in the space of UIR’s of RY. The
above algebra with pointwise multiplication can be deformed into a new deformed
algebra. The pointwise product becomes a 6 dependent “smeared” product g in

the deformed algebra,

Pako fo = fa fo e 30N (2.3.6)

This deformed algebra is also associative because of eqn. (23.5). The GM plane,
Ag(R41) s a special case of this algebra.
In the case of the GM plane, the group R4T! acts on
Ap(R4H1) {= C>®(R¥*1) as a set} by translations leaving the flat Euclidean metric
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invariant. The IRR’s are labelled by the “momenta” A = p = (p°,p%,...,p%). A

basis for the Hilbert space H® is formed by plane waves e, with e,(z) = e~ Pr",
= (2% 21, ... 2%) being a point of R4, The *product for the GM plane follows
from eqn. (2.3.0),

ep ko €q = €, €, e 2Put" (2.3.7)

This *-product defines the Moyal plane Ay(R4*1).
In the limit 6, — 0, the operators e, and e, become commutative functions

on RV,

2.3.2 The Voros and Moyal Star Products

This section is based on the book [§].

The algebra A of smooth functions on a manifold M under point-wise multi-
plication is a commutative algebra. In the previous section we saw that Ay can be
deformed into a new algebra Ay in which the point-wise product is deformed to a
noncommutative (but still associative) product called the %-product.

Such deformations were studied by Weyl, Wigner, Groenewold and Moyal [24],
25, 26]. The x-product has a central role in many discussions of noncommutative
geometry. It appears in other branches of physics like quantum optics.

The *-product can be obtained from the algebra of creation and annihilation

operators. It is explained below.

2.3.2.1 Coherent States

The dynamics of a quantum harmonic oscillator most closely resembles that of

a classical harmonic oscillator when the oscillator quantum state is a coherent
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state. Consider a quantum oscillator with annihilation and creation operators a,

a', aa' = a'a + 1. The coherent states |2) defined by
alz) = z|z) (2.3.8)
are given by
2) = e*'%|0) = e3P 0) | 2z e

They also have the property

(/|z) = ezl (2.3.9)
The coherent states are overcomplete, with the resolution of identity
d2
1= / —Z|z><z| . d*z = dxydry, (2.3.10)
T

where

T1 + 1T

V2
Consider an operator A. The “symbol” (or “representation”) of A is a function
A on C with values A(z,%) = (z|A|z). A central property of coherent states is
that an operator A is determined just by its diagonal matrix elements, that is, by

the symbol A of A.

2.3.2.2 The Coherent State or Voros x-product on the GM Plane

As indicated above, we can map an operator A to a function A using coherent

states as follows:

A— A, A(z,2) = (z|A2). (2.3.11)
46



This is a bijective linear map and induces a product *¢ on functions (C' indicating
“coherent state”). With this product, we get an algebra (C>°(C) , *¢) of functions.
Since the map A — A has the property (A)* — A* = A, this map is a *-morphism
from operators to (C*°(C), *¢) where % on functions is complex conjugation.

Let us get familiar with this new function algebra.

The image of a is the function o where a(z,z) = z. The image of a” has the

value z" at (z, Z), so by definition,

(axca...xca)(z,z)=2". (2.3.12)

The image of a* = a is @ where a(z, z) = z and that of (a*)" is @*ca---*ca
where
axca---*xoa(z,z)=2". (2.3.13)
Since (z|a*a|z) = Zz and (z|aa*|z) = Zz + 1, we get

axca=au, axca=aa+1, (2.3.14)

where aa = ada is the pointwise product of o and @, and 1 is the constant function
with value 1 for all z.

For general operators f , the construction proceeds as follows. Consider

ol ~ga, (2.3.15)
where the normal ordering symbol : - - - : means as usual that a'’s are to be put to
the left of a’s. Thus

caa'a’a: = alalaa,
petal Lo ptal—la
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Hence
(2] 1 80180 |2) = 782 (2.3.16)

Writing f as a Fourier transform,

) d? e s - _
f= [Set e, fedec (2:3.17)
its symbol is seen to be
d2£ z—&z F &
= [Sesfeo. (2315)
This map is invertible since f determines f . Consider also the second operator
~ d277 nat—fa . ~ _
9= — € 1 g(n,1), (2.3.19)
and its symbol
d2 Z—Nz 7, =
9= / 7"@’7 g(n, ). (2.3.20)

The task is to find the symbol f % g of fg. Let us first find

58 s P2 (2.3.21)
We have
cebal e gnal—ia . Lol —Ca gnal—ila . —En (2.3.22)
and hence
7 g TN = N glEE iz
A (2.3.23)
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— =
The bidifferential operators (8 , 0 Z)k ,(k=1,2,...) have the definition

a(

The exponential in ([2.3:23]) involving them can be defined using the power

k =\ 9k >
5 3 _9a(z,2)0°6(z,2)

0zk ozk

. 8:)"8(2,2) (2.3.24)

series.

The coherent state x-product f ¢ ¢ follows from ([2.3.23)):

9

frcg(z,2) = (fe ngg)(z,é). (2.3.25)

We can explicitly introduce a deformation parameter # > 0 in the discussion

by changing ([2.3.25) to
frcg(z,2) = (feegzgzg) (z,2). (2.3.26)

After rescaling 2’ = 7, ([2.3.26) gives [Z3.20). As 2" and 2 after quantization

become a,a’, z and Z become the scaled oscillators ag , ag
ag,ag) = [a}),a}] =0, [ag,a)) =6. (2.3.27)

Equation ([2.3.27)) is associated with the Moyal plane with Cartesian coordinate

functions T1,To. If ag = m1\—|}%:v2 ’az — x1\;§c2—a

[SL’Z' y ZL’j] = ieéij y 62‘]‘ = —éfji y €12 = 1. (2328)

The Moyal plane is the plane R?, but with its function algebra deformed in
accordance with eqn. ([2:3.28)). The deformed algebra has the product eqn. (Z3.26)
or equivalently the Moyal product derived below.
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2.3.2.3 The Moyal Product on the GM Plane

We get this by changing the map f — f from operators to functions. For a given
function f, the operator f is thus different for the coherent state and Moyal %’s.
The *-product on two functions is accordingly also different.

Let us introduce the Weyl map and the Weyl symbol. The Weyl map of the

operator

f= /—f£ £)ese ¢ (2.3.29)

to the function f is defined by
2
fe.9) = [ e e (2:3.30)

Equation (2.3.30) makes sense since f is fully determined by f as follows:

R 2
(el f12) = / TE e feistes&

f can be calculated from here by Fourier transformation.

The map is invertible since f follows from f by the Fourier transform of eqn.
[2330) and f fixes f by eqn. @329). f is called the Weyl symbol of f.

As the Weyl map is bijective, we can find a new * product, call it *xy,, between
functions by setting f xy g = Weyl symbol of f g.

For

A & at—&a ~ — af —ija
F(€,6) =75 g(n,q) =™ 7,

to find f *y g, we first rewrite f¢ according to

fg = e2(E&n=En) (Hmal —(E+ma
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Hence

frwg(z,2) = o£7—E2 o5 (En—€n) gnz—iz

13
= e (9797 o 5y (2.3.31)

Multiplying by f, § and integrating, we get eqn. (Z3.31) for arbitrary functions:

Fawg(z,2) = (fe%(gz 32‘5232)9) (z,2). (2.3.32)
Note that
9.9.:-9.0.=i(9,8,-0,01)=i2,0, 0,
Introducing also @, we can write the sy ,-product as
Fawg= fei3=a0i0ag (2.3.33)

By eqn. ([2328), f¢,; = w;; fixes the Poisson brackets, or the Poisson structure

on the Moyal plane. Eqn. (2.3.33) is customarily written as
i =
[ g = feis? g

using the Poisson structure. (But we have not cared to position the indices so as

to indicate their tensor nature and to write w®.)

2.3.3 Properties of the x-Products

A x-product without a subscript indicates that it can be either a x¢ or a *y .

2.3.3.1 Cyclic Invariance

The trace of operators, Tr : A —» i %<z|fl|2>, has the fundamental property
TrAB = TTBA, which leads to the general cyclic identities

Tr Al C An =1Tr AnAl C An—l . (2334)
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We now show that
o A d?z 3
TrAB= | — AxB(z,2%), k= %o O sy . (2.3.35)
T

(The functions on the right hand side are different for xo and sy, if A , B are

fixed). From this follows the analogue of (2.3.34):

/d (Ar* Ags---x A,) (2,2) = / @z (A x Ay s x Ayy) (2,2) (2.3.36)

m m
For *¢, eqn. ([2330) follows from eqn. (Z3I0). The coherent state image of

efa'=€a i the function with value
efFErpmatt (2.3.37)

at z, with a similar correspondence if £ — 7. So

Ty efa’—€a gnal—ia _ / d’z ( £z2—¢z —556) (eni—ﬁze—%ﬁn) e—En
s

The integral produces the d-function

§1+ & n.:n1+772
\/5 Y 3 \/5 .

H25(fi+m)a & =

We can hence substitute ¢~ (36+37m+61) by 28 and get eqn. ([Z3.35) for

Weyl # for these exponentials and so for general functions by using eqn. (2.3.29)).

2.3.3.2 A Special Identity for the Weyl Star

The above calculation also gives the identity

/—A*WB :3) = /ﬁA(z 9 B(2,7).

That is because



In eqn. (2.3.30), A and B in turn can be Weyl «-products of other functions.
Thus in integrals of Weyl x-products of functions, one %y can be replaced by the

pointwise (commutative) product:

d?z
/7(141 *WA2 *WAK) Xy (Bl *WBQ *WBL) (Z,Z)
d’z _
= 7(A1*WA2*W"'AK)(Bl*WBQ*W"'BL)(Z,Z).

This identity is frequently useful.

2.3.3.3 Equivalence of %o and *y,

For the operator

A = eto'ta (2.3.38)

the coherent state function A has the value (2.3.37) at z, and the Weyl symbol

Ay has the value
Aw(z,2) = 578
As both (C*(R?),*c) and (C*(R?),#y ) are isomorphic to the operator al-
gebra, they too are isomorphic. The isomorphism is established by the maps
Ac +—— Aw

and their extension via Fourier transform to all operators and functions A, A¢ .

Clearly
Ay = e‘%azafAc, Ap = e%azafAW,
Ac ¢ Bo +— Aw *w Bw .
The mutual isomorphism of these three algebras is a x-isomorphism since

(AB)T — BC,W *o W Ac,w
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2.3.3.4 Integration and Tracial States

This is a good point to introduce the ideas of a state and a tracial state on a
x-algebra A with unity 1.

A state w is a linear map from A to C, w(a) € C for all a € A with the following

properties:
w(a") = w(a),
w(a*a) > 0,
w(l) = 1.

If A consists of operators on a Hilbert space and p is a density matrix, it defines

a state w, via
wy(a) =Tr(pa) . (2.3.39)

If p = e PH/Tr(e”P) for a Hamiltonian H, it gives a Gibbs state via eqn.
([Z339).

Thus the concept of a state on an algebra A generalizes the notion of a density
matrix. There is a remarkable construction, the Gel'fand- Naimark-Segal (GNS)
construction, which shows how to associate any state with a rank-1 density matrix
[21].

A state is tracial if it has cyclic invariance:
w(ab) = w(ba). (2.3.40)

The Gibbs state is not tracial, but fulfills an identity generalizing eqn. (2.3.40).
It is a Kubo-Martin-Schwinger (KMS) state [27].
A positive map w’ is in general an unnormalized state: It must fulfill all the
conditions that a state fulfills, but is not obliged to fulfill the condition w'(1) = 1.
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Let us define a positive map w’ on (C*(R?), ) (¥ = *¢ or *y) using integration:

W'(A) = / @A(z,z).

T
It is easy to verfy that ' fulfills the properties of a positive map. A tracial
positive map w’ also has the cyclic invariance, eqn. (2.3.40).

The cyclic invariance (Z3.40) of w’'(A x B) means that it is a tracial positive

map.
2.3.3.5 The 6-Expansion
On introducing 6, we have [2.3.26) and

(5.9.-5.3.)

f*Wg(Z’Z):feg g(z,i).

The series expansion in 6 is thus

0 0
Frog(z.2) = fg(=.9)+09 (. 9%, 5)+ 0@,
0z 0z
e s BT 010
frwg(z.2) = f9z.2) + 5 (5252 — e ar) (2.9 + 0.
Introducing the notation
[fogle=Ffxg—gxf, x=xC or xw, (2.3.41)
we see that
B af9g  0f g _ 5
f gl = 9(55 8282)(Z’Z)+O(9)’
0f0g _0f0gy,. . 2
o0k = 0(5;52 ~ 5552) ) +O@).
We thus see that
[f .9l =i0{f g}pp + O, (2.3.42)
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where {f, g} is the Poisson bracket of f and g and the O(#?) term depends on
*c w. Thus the x-product is an associative product that to leading order in the
deformation parameter (“Planck’s constant”) € is compatible with the rules of
quantization of Dirac. We can say that with the %-product, we have deformation
quantization of the classical commutative algebra of functions.

But it should be emphasized that even to leading order in 0, fxcg and f*y g do
not agree. Still the algebras (C*(R?, x¢)) and (C*(R?,*y)) are *-isomorphic.

If a Poisson structure on a manifold M with Poisson bracket {.,.} is given,

then one can have a x-product f % g as a formal power series in # such that eqn.

(Z3322)) holds [28].

2.4 Spacetime Symmetries on Noncommutative
Plane

In this section we address how to implement spacetime symmetries on the noncom-
mutative spacetime algebra Ay(RY), where functions are multiplied by a *-product.
In section 2, we modelled the spacetime noncommutativity using the commutation
relations given by eqn. (2Z24). Those relations are clearly not invariant under
naive Lorentz transformations. That is, the noncommutative structure we have
modelled breaks Lorentz symmetry. Fortunately, there is a way to overcome this
difficulty: one can interpret these relations in a Lorentz-invariant way by imple-

menting a deformed Lorentz group action [29)].
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2.4.1 The Deformed Poincaré Group Action

The single particle states in quantum mechanics can be identified with the carrier
(or representation) space of the one-particle unitary irreducible representations
(UIRR’s) of the identity component of the Poincaré group, PI or rather its two-
fold cover pl. Let U(g), g € pl, be the UIRR for a spinless particle of mass m on
a Hilbert space H. Then # has the basis {|k)} of momentum eigenstates, where
k = (ko,k), ko = |[Vk2 +m2|. U(g) transforms |k) according to

Ulg)|k) = |gk). (2.4.1)

Then conventionally PI acts on the two-particle Hilbert space H ® H in the fol-

lowing way:

Ulg)@Ulg) |k) ©lq) = lgk) x [9q). (2.4.2)

There are similar equations for multiparticle states.

Note that we can write U(g) ® U(g) = [U ® U](g % g).

Thus while defining the group action on multi-particle states, we see that we
have made use of the isomorphism G — G x GG defined by g — ¢ x g. This map is
essential for the group action on multi-particle states. It is said to be a coproduct

on GG. We denote it by A:

A:G—GxG, (2.4.3)

A(g) =g % g. (2.4.4)

The coproduct exists in the algebra level also. Tensor products of representa-

tions of an algebra are in fact determined by A [30, BI]. It is a homomorphism
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from the group algebra (generalization of the Fourier transform, the group algebra
of the group R") G* to G* ® G*. A coproduct map need not be unique: Not all
choices of A are equivalent. In particular the Clebsch-Gordan coefficients, that
occur in the reduction of group representations, can depend upon A. Examples of

this sort occur for PI. In any case, it must fulfill

Alg1)A(g2) = Algr92), 91,92 € G (2.4.5)

Note that eqn. (2.45) implies the coproduct on the group algebra G* by
linearity. If o, 5 : G — C are smooth compactly supported functions on G, then

the group algebra G* contains the generating elements

/ dp(g)e(g)g, / du(g')e(g)d', (2.4.6)
where dp is the measure in GG. The coproduct action on G* is then

A:G = GG

/ du(g)olg)g — / du(g)a(g)A(g). (2.4.7)

The representations Uy of G* on Hi(k = 1, 7),

Uk : /du( 99 — /du (9) (2.4.8)

induced by those of G also extend to the representation U; ® U; on H; @ H;:

Ui®Uj:/du( Qg — /du DU 2 U)A®).  (2.4.9)

Thus the action of a symmetry group on the tensor product of representation

spaces carrying any two representations p; and ps is determined by A:

gr (a® ) = (p1 ® p2) A(g) (@ ® B). (2.4.10)
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If the representation space is itself an algebra A, we have a rule for taking

products of elements of A that involves the multiplication map m:

m:A®A— A (2.4.11)

a®f—mla® ) =ap, (2.4.12)

where o, 5 € A.

It is now essential that A be compatible with m. That is

m|(p® p)A(g)(@ @ B)| = plg)mla® B), (2.4.13)

where p is a representation of the group acting on the algebra.
The compatibility condition (ZZ4.I3) is encoded in the commutative diagram:

gr

a®f  — (p®p)Aglax s

m | I m (2.4.14)
m(a®B) > plg)m(a® p)
If such a A can be found, G is an automorphism of A. In the absence of such a
A, G does not act on A.
Let us consider the action of PI on the nocommutative spacetime algebra (GM
plane) Ay(R4*1). The algebra As(R**!) consists of smooth functions on R**! with

the multiplication map
me : Ag(RT) @ Ag(RT) — Ag(RT). (2.4.15)

For two functions a and [ in the algebra Ay, the multiplication map is not a

point-wise multiplication, it is the s-multiplication:

me(a® B)(x) = (a* B)(x). (2.4.16)
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Explicitly the s-product between two functions o and [ is written as

i o 0
(02 B) () = exp (50" 525

Ja@)8(y) (2.4.17)

=Y

Before implementing the Poincaré group action on Ay, we write down a useful

expression for my in terms of the commutative multiplication map my,
my = moFo, (2.4.18)
where
Fo = eXp(—%QaﬁPa ® Pg), Pa = —10, (2.4.19)

is called the “Drinfel’d twist” or simply the “twist”. The indices here are raised
or lowered with the Minkowski metric with signature (+, —, —, —).

It is easy to show from this equation that the Poincaré group action through
the coproduct A(g) on the noncommutative algebra of functions is not compatible
with the *-product. That is, P does not act on Ag(R*?) in the usual way. There
is a way to implement Poincaré symmetry on noncommuative algebra. Using
the twist element, the coproduct of the universal enveloping algebra U(P) of the
Poincaré algebra can be deformed in such a way that it is compatible with the

above x-multiplication. The deformed coproduct, denoted by Ay is:
Ay = F, ' AT (2.4.20)

We can check compatibility of the twisted coproduct Ay with the twisted mul-

tiplication my as follows

mg ((p @ p)As(g)(a® B)) = mo (Fo(Fy ' p(g) ® plg)Fo)a @ B)
= plg)(axpB), a,fc AR (24.21)
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as required. This compatibility is encoded in the commutative diagram

a®B S (p@p)As(g)a® B

me | 1 my (2.4.22)

axf T plg)(axB)

Thus G is an automorphism of Ay if the coproduct is Ay.
It is easy to see that the coproduct for the generators P, of the Lie algebra of

the translation group are not deformed,
Ag(P,) = A(P,) (2.4.23)

while the coproduct for the generators of the Lie algebra of the Lorentz group are

deformed:

1
Bo(Myw) = 18 My + My & 1-5 (P-Q)H®PV—PV®(P-9)u—(,u<—>l/)],
(P-0), = P (2.4.24)

The idea of twisting the coproduct in noncommutative spacetime algebra is
due to [29, 32, 33| 34] B35], B6], 37, B38| B9} [40], 411, 42, 43, [64]. But its origins can be
traced back to Drinfel’d [32] in mathematics. This Drinfel’d twist leads naturally to
deformed R-matrices and statistics for quantum groups, as discussed by Majid [33].
Subsequently, Fiore and Schupp [35] and Watts [38, [40] explored the significance of
the Drinfel’d twist and R-matrices while Fiore [36], 37] and Fiore and Schupp [34],
Oeckl [39] and Grosse et al. [41] studied the importance of R-matrices for statistics.
Oeckl [39] and Grosse et al. [4I] also developed quantum field theories using
different and apparently inequivalent approaches, the first on the Moyal plane and
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the second on the g-deformed fuzzy sphere. In [64] [42] the authors focused on the
difiomorphism group D and developed Riemannian geometry and gravity theories
based on Ay, while [29] focused on the Poincaré subgroup P of D and explored
the consequences of Ay for quantum field theories. Twisted conformal symmetry
was discussed by [43]. Recent work, including ours [44) [84] [85] [86], 48], 49}, 50], has

significant overlap with the earlier literature.

2.4.2 The Twisted Statistics

In the previous section, we discussed how to implement the Poincaré group ac-
tion in the noncommutative framework. We changed the ordinary coproduct to a
twisted coproduct Ay to make it compatible with the multiplication map myg. This
very process of twisting the coproduct has an impact on statistics. In this section
we discuss how the deformed Poincaré symmetry leads to a new kind of statistics
for the particles.

Consider a two-particle system in quantum mechanics for the case 0 = 0. A
two-particle wave function is a function of two sets of variables, and lives in Ag®.Aj.
It transforms according to the usual coproduct A. Similarly in the noncommutative
case, the two-particle wave function lives in Ay ® Ay and transforms according to
the twisted coproduct Ay.

In the commutative case, we require that the physical wave functions describing
identical particles are either symmetric (bosons) or antisymmetric (fermions), that

is, we work with either the symmetrized or antisymmetrized tensor product,

1
b ®s X §(¢®x+x®¢), (2.4.25)

1
X §(¢®X—X®¢)- (2.4.26)
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which satisfies

Pp®sx = +x®s o, (2.4.27)

PRaX = —X®a0. (2.4.28)

These relations have to hold in all frames of reference in a Lorentz-invariant theory.
That is, symmetrization and antisymmetrization must commute with the Lorentz
group action.

Since A(g) = g x g, we have

70(p @ p)A(g) = (p x p)A(g)T0, g € Pl (2.4.29)

where 73 is the flip operator:

To(¢ ® X) =X ® ¢ (2.4.30)

Since

1:|:7'0
2

¢ Rs,aX = ¢ R X, (2.4.31)

we see that Lorentz transformations preserve symmetrization and anti-symmetrization.
The twisted coproduct action of the Lorentz group is not compatible with the

usual symmetrization and anti-symmetrization. The origin of this fact can be

traced to the fact that the coproduct is not cocommutative except when 6** = 0.

That is,

0 Fe = F, 1o, (2.4.32)
T(p @ p)As(g) = (p®p)A_s(g)T0 (2.4.33)
One can easily construct an appropriate deformation 7y of the operator 7

using the twist operator Fy and the definition of the twisted coproduct, such that
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it commutes with Ay. Since Ay(g) = F, 'A(g)Fy, it is

19 = F, 1T (2.4.34)
It has the property,

() = 1®1. (2.4.35)

The states constructed according to

¢ Rs, X = (1 J;T") (¢ @ x), (2.4.36)
¢ ®a, X = (%) (¢ ® x) (2.4.37)

form the physical two-particle Hilbert spaces of (generalized) bosons and fermions

obeying twisted statistics.

2.4.3 Statistics of Quantum Fields

The very act of implementing Poincaré symmetry on a noncommutative spacetime
algebra leads to twisted fermions and bosons. In this section we look at the second
quantized version of the theory and we encounter another surprise on the way:.

We can connect an operator in Hilbert space and a quantum field in the follow-
ing way. A quantum field on evaluation at a spacetime point gives an operator-
valued distribution acting on a Hilbert space. A quantum field at a spacetime
point x; acting on the vacuum gives a one-particle state centered at x;. Similarly
we can construct a two-particle state in the Hilbert space. The product of two
quantum fields at spacetime points z; and xs when acting on the vacuum gen-
erates a two-particle state where one particle is centered at x; and the other at
x.
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In the commutative case, a free spin-zero quantum scalar field yo(x) of mass

m has the mode expansion

o) = [ duo) (e ep(o) + df (o) (2:438)

where

—ipx 1 dgp
ep(:c) =e P , P = Polo — P X, d,u(p) = (27{)32—])0’ Po =V p2 —|—m2 > 0.

The annihilation-creation operators cp, CL, dp, dL satisfy the standard commu-

tation relations,

cpc(tl + cilcp = 2po 8*(p —q) (2.4.39)

2po 6*(p — q). (2.4.40)

dpd!, £ did,

The remaining commutators involving these operators vanish.
If ¢, is the annihilation operator of the second-quantized field ¢g(x), an ele-

mentary calculation tells us that
(Olpo(2)chl0) = ey(x) =77

1 1+ 7

§<O|800(551)<P0(352)0110L|0> = < 5 0) (e, ® ey) (1, 22)

= (610 ®50,A0 eqxxlv x2)

= (21, 22[P, @) 50,40- (2.4.41)
where we have used the commutation relation

ool =+l (2.4.42)

From the previous section we have learned that the two-particle states in non-

commutative spacetime should be constructed in such a way that they obey twisted
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symmetry. That is,

D @) 50,40 = [P, Q) Sy, (2.4.43)

This can happen only if we modify the quantum field pg(x) in such a way that the
analogue of eqn. (2.4.41]) in the noncommutative framework gives us [p,q)s,.4,-

Let us denote the modified quantum field by 4. It has a mode expansion

oo() = [ dut) ap ey(0) + ey (@) (2.4.44)
Noncommutativity of spacetime does not change the dispersion relation for the
quantum field in our framework. It will definitely change the operator coefficients
of the plane wave basis. Here we denote the new #-deformed annihilation-creation
operators by ap, aI), bp., bI). Let us try to connect the quantum field in noncommu-
tative spacetime with its counterpart in commutative spacetime, keeping in mind
that they should coincide in the limit 6 — 0.
The two-particle state |p,q)s, 4, for bosons and fermions obeying deformed

statistics is constructed as follows:

P @ss = 10) g 10) = (Fo) () ©1a)
- % <|p> ® |q) £ e WP g) @ |p>>- (2.4.45)
Exchanging p and ¢ in the above, one finds
P, @)sp.00 = £ P q D)5, - (2.4.46)

In Fock space the above two-particle state is constructed from the modified

second-quantized field gy according to

SOlo(ene(eabah o) = (TS (e @ e0)(an,22)

= (ep ®55,4¢ 6q)($1, x2)

= (21, 73|p, 4) 55,4,- (2.4.47)
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On using eqn. ([B.3.7), this leads to the relation

Tt = pub gy T T
alal =+ P qlal. (2.4.48)
It implies
apaq = e qoa (2.4.49)

Thus we have a new type of bilinear relations reflecting the deformed quantum
symmetry.

This result shows that while constructing a quantum field theory on noncom-
mutative spacetime, we should twist the creation and annihilation operators in
addition to the *-multiplication between the fields.

In the limit 6 = 0, the twisted creation and annihilation operators should
match with their counterparts in the commutative case. There is a way to con-
nect these operators in the two cases. The transformation connecting the twisted
operators, ap, bp, and the untwisted operators, cp, dp, is called the “dressing

transformation” [51], 52]. It is defined as follows:
ap = Cp e~ Pu0" Py bp = dp e~ aPu0" Py (2.4.50)
where P, is the four-momentum operator,

d®p
P, = / T (chep + didy) py. (2.4.51)

The Grosse-Faddeev-Zamolodchikov algebra is the above twisted or dressed
algebra [51l [52]. (See also [53] in this connection.)
Note that the four-momentum operator P, can also be written in terms of the

twisted operators:

dp t
= T (ahap + bLbp) Dy (2.4.52)
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That is because p, 0" P, commutes with any of the operators for momentum p.

For example
[Bus ap] = —ppap, (2.4.53)
so that
[P0 Py, ap] = py0™'p = 0, (2.4.54)

0 being antisymmetric.

The antisymmetry of 6*” allows us to write

_i pv _a nv
cpe 2P0 Py — o= B (2.4.55)
Z 1224 i 1223
cLe?p“G Pr — gaput P"CL. (2.4.56)

Hence the ordering of factors here is immeterial.

It should also be noted that the map from the ¢- to the a-operators is invertible,
Cp = Qp 6%1’#9’“’PV7 dp = bp 6%1’#9’“’]31,’

where P, is written as in eqn. (Z4.52).

The *-product between the modified (twisted) quantum fields is

D

(0o * 09)(x) = py()e?

NG

©o(Y) o=y, (2.4.57)

GNT =9,0m7F,.

The twisted quantum field ¢y differs from the untwisted quantum field ¢q in

two ways:
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i.) ey € Ap(R)
and
i1.) ap is twisted by statistics.

The twisted statistics can be accounted by writing [S6]

[NIES

(—
o = po €3 0N, (2.4.58)

where P, is the total momentum operator. From this follows that the x-product

of an arbitrary number of fields go((f) (1=1,2,3,--+)is
(_
oy x oy e = (o) e 70T (2.4.59)

Similar deformations occur for all tensorial and spinorial quantum fields.

In [54], a noncommutative cosmic microwave background (CMB) power spec-
trum is calculated by promoting the quantum fluctuations ¢y of the scalar field
driving inflation (the inflaton) to a twisted quantum field ¢y. The power spectrum
becomes direction-dependent, breaking the statistical anisotropy of the CMB. Also,
n-point correlation functions become non-Gaussian when the fields are noncom-
mutative, assuming that they are Gaussian in their commutative limits. These
effects can be tested experimentally.

In this chapter we discuss field theory with spacetime noncommutativity. It
should also be noted that there is another approach in which noncommutativity is
encoded in the degrees of freedom of the fields while keeping spacetime commuta-
tive [55] 56]. Such noncommutativity can also be interpreted in terms of twisted
statistics. In [53] a noncommutative black body spectrum is calculated using this
approach (which is based on [55] [56]). Also, a noncommutative-gas driven inflation
is considered in [53] along this formulation.
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2.4.4 From Twisted Statistics to Noncommutative Space-
time

Noncommutative spacetime leads to twisted statistics. It is also possible to start
from a twisted statistics and end up with a noncommutative spacetime [22] [57].
Consider the commutative version ¢, of the above quantum field ¢y. The creation
and annihilation operators of this field fulfill the standard commutation relations
as given in eqn. (ZZ439).

Let us twist statistics by deforming the creation-annihilation operators ¢, and

T
cp to
_1 pv K s
ap = cp e 2P P aL:cLezp“e b (2.4.60)

Now statistics is twisted since a’s and a!’s no longer fulfill standard relations.
They obey the relations given in eqn. (2.4.48)) and eqn. (2.4.49) This twist affects

the usual symmetry of particle interchange. The n-particle wave function )y, ..k

n?

g don (@15 -y ) = Olp(z1)p(22) ... p(wn) al al .. af, 0) (2.4.61)

is no longer symmetric under the interchange of k;. It fullfils a twisted symmetry

given by

wkr--ki Eigi-kn — eXp( - Zkf elw k§1+1> ¢k1"'ki+1 ki kn (2462)

showing that statistics is twisted. We can show that this in fact leads to a non-

commutative spacetime if we require Poincaré invariance. It is explained below.
In the commutative case, the elements g of PI acts on ¥, ..k, by the repre-

sentative U(g) @ U(g) ® --- ® U(g) (n factors) compatibly with the symmetry of

Yk, -k, - Lhis action is based on the coproduct

Alg)=gxg. (2.4.63)
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But for 0" # 0, and for g # identity, already for the case n = 2,

A(Q)%M = Ygp.gq
_ e_ip“ewq”A(g)iﬁq,p
—ip O q,

= ¢ VYgq,ap

” 6—i(gp)u9’w(g‘Z)ngq7gp. (2.4.64)

Thus the usual coproduct Ag is not compatible with the statistics (2Z£62). It
has to be twisted to

Nolg) = Fy ' A(g)Fa, Alg) = (g % g) (2.4.65)

to be compatible with the new statistics. At this point Ag(g) is not compatible
with myg, the commutative (point-wise) multiplication map. So we are forced to

change the multiplication map to my,
my = mg Fp (2.4.66)
for this compatibility. Since
me(a® B) = ax 3, (2.4.67)

we end up with noncommutative spacetime. Thus twisted statistics can lead to

spacetime noncommutativity.

2.4.5 Violation of the Pauli Principle

In section 4.3, we wrote down the twisted commutation relations. In the fermionic
sector, these relations read
alal + P glal = 0 (2.4.68)
otpa(tl + e P agap = 2¢0°(p — q). (2.4.69)
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In the commutative case, above relations read

=0 (2.4.70)
clep = 2¢08%(p — q). (2.4.71)

The phase factor appearing in eqn (ZZ.68)) and eqn. (ZZ4.69) while exchanging the
operators has a nontrivial physical consequence which forces us to reconsider the
Pauli exclusion principle. A modification of Pauli principle compatible with the
twisted statistics can lead to Pauli forbidden processess and they can be subjected
to stringent experimental tests.

For example, there are results from SuperKamiokande [58] and Borexino [59]
putting limits on the violation of Pauli exclusion principle in nucleon systems.
These results are based on non-observed transition from Pauli-allowed states to
Pauli-forbidden states with 3% decays or v, p, n emission. A bound for f as strong

as 10" Gev is obtained from these results [60].

2.4.6 Statisitcal Potential

Twisting the statistics can modify the spatial correlation functions of fermions and
bosons and thus affect the statistical potential existing between any two particles.

Consider a canonical ensemble, a system of N indistinguishable, non-interacting
particles confined to a three-dimensional cubical box of volume V', characterized
by the inverse temperature 3. In the coordinate representation, we write down the

density matrix of the system [61]

. 1 _BH
<r1’. . .rN|p|r3’. . .r§V> — QN(S) <r1’. . 'rN|e BH|I'&, .. 'r§V>7 (2472)

where Q) () is the partition function of the system given by

Qn(B) = Tr(e_ﬁﬁ) = /d?’Nr(rl, . -rN|e_BH|r’1, cerly). (2.4.73)
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Since the particles are non-interacting, we may write down the eigenfunctions
and eigenvalues of the system in terms of the single-particle wave functions and
single-particle energies.

For free non-relativistic particles, we have the energy eigenvalues

h2 i ,
E=-—Y K (2.4.74)
2m —

where k; is the magnitude of the wave vector of the i-th particle. Imposing periodic

boundary conditions, we write down the normalized single-particle wave function
w(r) = V12T (2.4.75)

with k = 27V ~3n and n is a three-dimensional vector whose components take
values 0, £1,4+2, - - -.
Following the steps given in [61], we write down the diagonal elements of the

density matrix for the simplest relevant case with N = 2,
- 1 2 /\2
(ri,ro|p|r1, o) =~ W(l + exp(—27riy/A )) (2.4.76)

where the plus and the minus signs indicate bosons and fermions respectively,

r12 = |r1 — ro| and A is the mean thermal wavelength,

278 1
A=nh = 6—]{;3—T.

(2.4.77)

Note that eqn. (24.76) is obtained under the assumption that the mean in-
terparticle distance (V//N)/? in the system is much larger than the mean thermal
wavelength \. Eqn. (2.4.76]) indicates that spatial correlations are non-zero even

when the particles are non-interacting. These correlations are purely due to statis-

tics: They emerge from the symmetrization or anti-symmetrization of the wave
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functions describing the particles. Particles obeying Bose statistics give a positive
spatial correlation and particles obeying Fermi statistics give a negative spatial
correlation.

We can express spatial correlations between particles by introducing a statis-
tical potential vs(r) and thus treat the particles classically [62]. The statistical
potential corresponding to the spatial correlation given in eqn. (24.70) is

vs(r) = —kpT 111(1 + exp(—zwfz/V)) (2.4.78)

From this equation, it follows that two bosons always experience a “statistical
attraction” while two fermions always experience a “statistical repulsion”. In both
cases, the potential decays rapidly when r > \.

So far our discussion focussed on particles in commutative spacetime. We can
derive an expression for the statistical potential between two particles living in a
noncommutative spacetime. The results [63] are interesting. In a noncommutative
spacetime with 241 dimensions and for the case 6% = 0, we write down the answer

for the spatial correlation between two non-interacting particles from [63]

. 1 1 92 201, 6%
(r1,12|plr1, 12)0 ~ yE <1 + 17926 2mria/ (2 (1+A4))) (2.4.79)

X
Here A is the area of the system. This result can be generalized to higher di-
mensions by replacing 6% by an appropriate sum of (#%)% [63]. It reduces to the
standard (untwisted) result given in eqn. (ZZ.76]) in the limit # — 0. Notice that
the spatial correlation function for fermions does not vanish in the limit » — 0
(See Fig. ). That means that there is a finite probability that fermions may
come very close to each other. This probability is determined by the noncommu-
tativity parameter 6. Also notice that the assumptions made in [63] are valid for

low temperature and low density limits. At high temperature and high density
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Figure 2.1: Statistical potential v(r) measured in units of kg7'. An irrelevant ad-
ditive constant has been set zero. The upper two curves represent the fermionic
cases and the lower curves the bosonic cases. The solid line shows the noncommu-
tative result and the dashed line the commutative case. The curves are drawn for

the value % = 0.3. The separation r is measured in units of the thermal length .

[63]
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limits a much more careful analysis is required to investigate the noncommutative

effects.

2.5 Matter Fields, Gauge Fields and Interactions

In section 4, we discussed the statistics of quantum fields by taking a simple ex-
ample of a massive, spin-zero quantum field. In this section, we discuss how
matter and gauge fields are constructed in the noncommutative formulation and
their interactions. We also explain some interesting results which can be verified

experimentally.

2.5.1 Pure Matter Fields

Consider a second quantized real Hermitian field of mass m,
=0 4+ (2.5.1)

where the creation and annihilation fields are constructed from the creation and

annihilation operators:

O (z) — / du(p) €7 al, (2.5.2)
Ot(z) = /d,u(p) e " a, (2.5.3)

The deformed quantum field ® can be written in terms of the un-deformed quantum

field @,

HOuP” (2.5.4)

76



where the creation and annihilation fields of the un-deformed quantum field is

constructed from the usual creation and annihilation operators

Oy () = /d,u(p) eP” CL, (2.5.5)

vie) = [dutp) e e, (2.5.6)

When evaluating the product of ®’s at the same point, we must take x-product
of the e,’s since e, € Ag(RY). We can make use of eqn. (Z5.4) to simplify the
s-product of ®’s at the same point to a commutative (point-wise) product of ®q’s.

For the x-product of n ®’s,
B(x) % B(x) - % D(x) = (@0(:5))"@%3%1’” (2.5.7)

This is a very important result. Using this result, we can prove that there is no
UV-IR mixing in a noncommutative field theory with matter fields and no gauge
interactions [39] [85].

The interaction Hamiltonian density is built out of quantum fields. It trans-
forms like a single scalar field in the noncommutative theory also. (This is the case
only when we choose a x-product between the fields to write down the Hamilto-
nian density.) Thus a generic interaction Hamiltonian density #; involving only

®’s (for simplicity) is given by
Hi(x) = O(z) x D(x) * -+ * (1) (2.5.8)

This form of the Hamiltonian and the twisted statistics of the fields is all that
is required to show that there is no UV-IR mixing in this theory. This happens
because the S-matrix becomes independent of 0*”.

We illustrate this result for the first nontrivial term S™ in the expansion of
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the S-matrix. It is
S = /d49: H(z). (2.5.9)

Using eqn. (2.5.4]) we write down the interaction Hamiltonian density given in

eqn. (25.3) as
Hy(z) = <<I>0(:c))ne%<5“9“”w (2.5.10)

Assuming that the fields behave “nicely” at infinity, the integration over z gives

/d4:c<<1>*(:c))n - /d4x<<1>0(x)>ne%<5”9“”w - /d4x(q>0(x))". (2.5.11)

Thus S is independent of #*. By similar calculations we can show that

the S-operator is independent of 6" to all orders |84, 85 86, [48].

2.5.2 Covariant Derivatives of Quantum Fields

In this section we briefly discuss how to choose appropriate covariant derivatives
D,, of a quantum field associated with Ay(R**1).

To define the desirable properties of covariant derivatives D, let us first look
at ways of multiplying the field @y by a function ag € Ay(R?*™!). There are two
possibilities [86]:

M= Ty(ag)®, (2.5.12)

O — (Dgxgag)ez 2 = Ty(ap)® (2.5.13)

where Ty gives a representation of the commutative algebra of functions and

Ty gives that of a x-algebra.
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A D, that can qualify as the covariant derivative of a quantum field associated
with Ag(R3*™!) should preserve statistics, Poincaré and gauge invariance and must

obey the Leibnitz rule
Du(To(Oé(])(I)) = T(](Oé(])(D“(I)) -+ T(](auOé(])(I) (2514)

The requirement given in eqn. (Z5.14]) reflects the fact that D, is associated with
the commutative algebra Ay (R3T1).

There are two immediate choices for D, ®:

1. D,® = ((D,)o®g)ez ", (2.5.15)

N (2.5.16)

where (D))o = 0, + (A,)o and (A,)o is the commutative gauge field, a function
only of the commutative coordinates z..

Both the choices preserve statistics, Poincaré and gauge invariance, but the
second choice does not satisfy eqn. ([2.5.14])). Thus we identify the correct covariant

derivative in our formalism as the one given in the first choice, eqn. (Z5.15).

2.5.3 Matter fields with gauge interactions

We assume that gauge (and gravity) fields are commutative fields, which means
that they are functions only of z#. For Aschieri et al. [64], instead, they are
associated with Ap(R3™). Matter fields on Ay(R3™!) must be transported by the
connection compatibly with eqn. (2.5.4)), so from the previous section, we see that

the natural choice for covariant derivative is

D,® = (DS®y) 3 /F (2.5.17)



where
Di®g = 9,99 + A,Po , (2.5.18)
P, is the total momentum operator for all the fields and the fields A, and ®, are
multiplied point-wise,
A, Qo(z) = Au(x)Do(x). (2.5.19)
Having identified the correct covariant derivative, it is simple to write down

the Hamiltonian for gauge theories. The commutator of two covariant derivatives

gives us the curvature. On using eqn. (Z5.17),

e
[D,,D,)& = ([D;,D,ﬁ]@o)eimp (2.5.20)
iy
- (F;V%)ea AP, (2.5.21)
As Fy, is the standard 6*” = 0 curvature, our gauge field is associated with

Ao (R3T1). Thus pure gauge theories on the GM plane are identical to their coun-
terparts on commutative spacetime. (For Aschieri et al. [64] the curvature would
be the x-commutator of D,,’s.)

The gauge theory formulation we adopt here is fully explained in [86]. It differs
from the formulation of Aschieri et al. [64] (where covariant derivative is defined
using star product) and has the advantage of being able to accommodate any gauge
group and not just U(N) gauge groups and their direct products. The gauge theory
formulation we adopt here thus avoids multiplicity of fields that the expression for
covariant derivatives with x product entails.

In the single-particle sector (obtained by taking the matrix element of eqn. (2517
between vacuum and one-particle states), the P term can be dropped and we get

for a single particle wave function f of a particle associated with ®,

Duf(@) = 0, (x) + Au(2)f (a). (2.5.22)
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Note that we can also write D, ® using *-product:
e e
D,® = (D;eaf’AP> « ((I)oe?a’\P). (2.5.23)

Our choice of covariant derivative allows us to write the interaction Hamiltonian

density for pure gauge fields as follows:
iy = Hyy. (2.5.24)

For a theory with matter and gauge fields, the interaction Hamiltonian density

splits into two parts,

Hig=Hyy + Hiy, (2.5.25)
where

Hi® = M i,

Hyy = M. (2.5.26)

The matter-gauge field couplings are also included in 7-[%’6.

In quantum electrodynamics (QED), ’er = 0. Thus the S-operator for the
twisted QFE D is the same for the untwisted QED:

QED QED

R (2.5.27)

In a non-abelian gauge theory, ’H; = Hg # 0, so that in the presence of
nonsinglet matter fields [86],

S, ¢ £ 9" (2.5.28)

because of the cross-terms between Hy,~ and Hj,. In particular, this inequality
happens in QCD. One such example is the quark-gluon scattering through a gluon
exchange. The Feynman diagram for this process is given in Fig. 2.2
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p2 q2

p1 ql

Figure 2.2: A Feynman diagram in QCD with non-trivial #-dependence. The twist
of ”H%’G changes the gluon propagator. The propagator is different from the usual
one by its dependence on terms of the form 6°-P;,, where (50)1- = 0% and P,,, is the
total momentum of the incoming particles. Such a frame-dependent modification

violates Lorentz invariance.

2.5.4 Causality and Lorentz Invariance

The very process of replacing the point-wise multiplication of functions at the same
point by a x-multiplication makes the theory non-local. The %-product contains an
infinite number of space-time derivatives and this in turn affects the fundamental
causal structure on which all local, point-like quantum field theories are built upon.

Let H; be the interaction Hamiltonian density in the interaction representation.

The interaction representation S-matrix is

S=T exp( - i/d‘*x Hl(x)). (2.5.2)

In a commutative theory, the interaction Hamiltonian density H; satisfies the

Bogoliubov - Shirkov [65] causality
(Hi(x), Hi(y)] =0, =~y (2.5.30)

where x ~ y means x and y are space-like separated.

82



This causality relation plays a crucial role in maintaining the Lorentz invariance
in all the local, point-like quantum field theories. Weinberg [66], [67] has discussed
the fundamental significance of this equation in connection with the relativistic
invariance of the S-matrix. If eqn. (Z2530) fails, S cannot be relativistically
invariant.

To see why this is the case, we consider the lowest term S® of the S-matrix
containing non-trivial time ordering. It is S@ = —1 [d'zd'y T( H;(z)H(y) ),

where

T(Hi(x)Hi(y) ) =02 — y"YHi () Hi(y) + 0(y° — 2°)Hi(y)Hi ()
= H(x)Hi(y) + (02" — y°) = DH (@) M (y) + 0(y° — )My (y)Hi(2)
= H(x)Hi(y) — 0(y° — 2°)[Hi(x), Hi(y)]. (2.5.31)

If U(A) is the unitary operator on the quantum Hilbert space for implementing

the Lorentz transformation A connected to the identity, that is, A € PI, then

UNT(H(z)Hi(y)UN) ™ = Hi(Az)Hi(Ay) — 6(y° — 2°)[Hi(Ax), Hi(Ay)).

If this is equal to T(H;(Azx)H;(Ay)), that is, if

0(y" — 2°)[Hi(Ax), Hi(Ay)] = 0((Ay)® — (Az)")[(Hr(Ax), Hi(Ay)],

then S® is invariant under A € PI. It is clearly invariant under translations.
Hence the invariance of S under P! requires that either 6(y° — 2°) is invariant
or that [H;(x), H;(y)] = 0.

When  ~ y, the time step function 6(y° — 2°) is invariant under P since
Ae PI cannot reverse the direction of time.
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However, when z ~ y, A € PI can reverse the direction of time and so
0(y° — z°) is not invariant. One therefore requires that [H;(z), H;(y)] = 0 if
x ~ y. Therefore a commonly imposed condition for the invariance of S® under

PI is

[Hi(x),Hi(y)] =0 whenever x ~y. (2.5.32)

One can show by similar arguments that it is natural to impose the causality

condition (Z5.32)) to maintain the PI invariance of of the general term

S — =" /d4$1d4l’2...d4l'n T(Hi(z)Hi(w2). Hi(zn) ),

n!
in S. Here

T( Hi(wr).Hi(zn) )
= 2 0@ — Tpe)0(@he — T 0@ — @) Hrlepn))-Hil@pm)-

PESH

In a noncommutative theory, due to twisted statistics, the interaction Hamil-
tonian density might not satisfy (2.5.32]) but S can still be Lorentz-invariant. For
example, consider the interaction Hamiltonian density for the electron-photon sys-

tem
My (x) = ie (b 4P A (). (2.5.33)

For simplicity, we consider the case where % = 0 and 6% # 0. We write down

the S-matrix

S =T exp(—i/d%?—[;(x)) (2.5.34)
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where H;(x) = ie (Y7 A,0)(x). Here we have used the property of the Moyal
product to remove the * in H; while integrating over the spatial variables. The
fields 7 and v are still noncommutative as their oscillator modes contain 9.

We can write down H;(z) in the form
.
Hi(z) = HO(2)es 1P (2.5.35)

where 7—[50) gives the interaction Hamiltonian for 6*” = 0 and satisfies the causal-
ity condition (Z5.32). It follows that H; does not fulfill the causality condition
(Z532). Still, as shown in [86], S is Lorentz invariant. (For further discussion, see

86].)

2.6 Discrete Symmetries - C, P, T and CPT

So far our discussion was centered around the identity component PI of the Lorentz
group P. In this section we investigate the symmetries of our noncommutative
theory under the action of discrete symmetries - parity P, time reversal T, charge
conjugation C and their combined operation CPT. The CPT theorem [68] (9]
is very fundamental in nature and all local relativistic quantum field theories are
CPT invariant. Quantum field theories on the GM plane are non-local and so it

is important to investigate the validity of the CPT theorem in these theories.

2.6.1 Transformation of Quantum Fields Under C, P and
T
;

Under C, the Poincaré group PI, the creation and annihilation operators cy, ¢y,

dy, dL of a second quantized field transform in the same way as their counterparts
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in an untwisted theory [86]. Using the dressing transformation [51, [52], we can
then deduce the transformation laws for a, aL, by, blt, and the quantum fields.
They automatically imply the appropriate twisted coproduct in the matter sector
(and of course the untwisted coproduct for gauge fields.) It then implies the
transformation laws for the fields under the full group generated by C and P by
the group properties of that group: they are all induced from those of ¢y, CL, dy, dL
in the above fashion. (We always try to preserve such group properties.) We make
use of this observation when we discuss the transformation properties of quantum
fields under discrete symmetries.

So far we have not mentioned the transformaton property of the noncommu-
tativity parameter 6#”. The matrix 0" is a constant antisymmetric matrix. In
the approach using the twisted coproduct for the Poincaré group, 0*” is not trans-
formed by Poincaré transformations or in fact by any other symmetry: they are
truly constants. Nevertheless Poincaré invariance and other symmetries can be
certainly recovered for interactions invariant under the twisted symmetry actions
at the level of classical theory and also for Wightman functions [32] 48] [64] [70].

We discuss the transformation of quantum fields under the action of discrete

symmetries below.

2.6.1.1 Charge conjugation C

The charge conjugation operator is not a part of the Lorentz group and commutes
with P, (and in fact with the full Poincaré group). This implies that the coproduct
[29, [64] for the charge conjugation operator C in the twisted case is the same as

the coproduct for C in the untwisted case. So, we write

Ay(C) = Ay(C) = C® C, (2.6.1)
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with the understanding that C is an element of the group algebra G*, where
G = {C} x PI. (This is why we use ® and not x in (Z6.1).)

Under charge conjugation,

Ck i) dk, (5% i) bk (262)

where the twisted operators are related to the untwisted ones by the dressing
transformation [51], 52]: ax = ¢k e~ 3k P and b = dy o~ SRAP

It follows that
C e} l<5/\13 le) -1
g — 5 €2 , 5 = CpeC. (2.6.3)

while the s-product of two such fields g and yy transforms according to

1(—

woxxo = (poxo) ez
<—

£> (CQPOXOC_l) e%é)/\P

1455
= (poxg) ez (2.6.4)
2.6.1.2 Parity P

Parity is a unitary operator on Ay(R3*1). But parity transformations do not induce

automorphisms of Ag(R*™) [44] if its coproduct is
Ay(P) =P P. (2.6.5)

That is, this coproduct is not compatible with the x-product. Hence the coproduct
for parity is not the same as that for the 6** = 0 case.

But the twisted coproduct Ay, where

Ag(P) = F, 1 Ag(P) Fo, (2.6.6)
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1s compatible with the x-product. So, for P as well, compatibility with the *-
product fixes the coproduct [84].
Under parity,

P P
Cx — C_k, dk — d_k (267)
and hence
P ; 0i p.__1..9i0 P ; 0i p. __1..9i0
A — G ez(ko@ P;—k;0 P())’ bk — b—k 6Z(k09 P;—k;0 Po). (268)

By an earlier remark [86], equs. (2.6.7) and (2.6.8) imply the transformation law
for twisted scalar fields. A twisted complex scalar field g transforms under parity

as follows,

Yo = %o 6%3/\13 2, P(gpo eégAP>P_1 = ¢F 6%5/\(1307_?), (2.6.9)

where @ =PoP~ and 9 A (Ry,—P) = =08 P — 9,67, + 9.6°F,

The product of two such fields ¢y and x4 transforms according to

AP

Poxxo = (foxo) €3 NPo=P) (2.6.10)

. T a0ip. 9.0 p. -y i
Thus fields transform under P with an extra factor e~ (900" Pit8i09 P;) — o= 0,07 F;

when 0" £ 0.

2.6.1.3 Time reversal T

Time reversal T is an anti-linear operator. Due to antilinearity, T induces

automorphisms on Ag(R3™!) for the coproduct

A(T) =TT if 67 =0,

but not otherwise.
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Under time reversal,

Ck i) C_x, dk i) d_k (2611)

ax i) a_x e_i(kieijpj), bk l) b_k 6_i(ki6ijpj). (2.6.12)

When 0" # 0, compatibility with the x-product fixes the coproduct for T to
be

Ag(T) = F; ' Ag(T) Fo. (2.6.13)

This coproduct is also required in order to maintain the group properties of P,
the full Poincaré group.
A twisted complex scalar field g hence transforms under time reversal as fol-

lows,

<_
0o = @oesdhP Ty g dONR-P) (2.6.14)

where ¢l = T T, while the product of two such fields ¢y and Yy transforms
according to
— —
oxxo = (poxo) e} Iy (gfng) 2P (2615)
<— ..
Thus the time reversal operation as well induces an extra factor e~ ?:%“" in

the transformation property of fields when 6#* # 0.

2.6.1.4 CPT

When CPT is applied,

Ck CEI)‘ dk, dk CEI)‘ Ck, (2.6.16)
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CPT ' CPT '
ax — bkﬁ’l(kl\P), bk — akﬁ’l(kl\P).

The coproduct for CPT is of course
Ay(CPT) = F,; ' A¢(CPT) Fy.

A twisted complex scalar field ¢y transforms under CPT as follows,

po = oerd
%
oPY CPT(apo e%“P)(CPT)—l
= pSPT 6%<5AP

while the product of two such fields ¢y and x4 transforms according to

14
Yo*xXo = (¢0X0)628AP

CPT

CPT ., CPT %3
— (57X ) e

AP

2.6.2 CPT in Non-Abelian Gauge Theories

(2.6.17)

(2.6.18)

(2.6.19)

(2.6.20)

The standard model, a non-abelian gauge theory, is CPT invariant, but it is not

invariant under C, P, T or products of any two of them. So we focus on discussing

just CPT for its S-matrix when 6 # 0. The discussion here can be easily adapted

to any other non-abelian gauge theory.

2.6.2.1 Matter fields coupled to gauge fields

The interaction representation S-matrix is

M,G

SgI’G =T exp [—i/d% Hio (x)]
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where H%’G is the interaction Hamiltonian density for matter fields (including also

matter-gauge field couplings). Under CPT,

4
My (@) S8 345" (<) (26.22)

< ) . MG
where 0 has components 5. We write H;, as
I

M,G

-
Hyp " = Hyl ez, (2.6.23)

Thus we can write the interaction Hamiltonian density after CPT transformation

in terms of the untwisted interaction Hamiltonian density:

= e 2 e
MG LAP
= H; (—x) ez (2.6.24)
Hence under CPT,
M,G ) 4 M,G 15,.p . 4 M,G _15.p
Sy :Texp[—z d*z Hyy (z) ez }%Texp[z dz Hyy (v)e 2 }
= (55)"

But it has been shown elsewhere that S, is independent of # [85]. Hence also
ng’c is independent of 6.

Therefore a quantum field theory with no pure gauge interaction is CPT “in-
variant” on Ap(R3™!). In particular quantum electrodynamics (QED) preserves

CPT.
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2.6.2.2 Pure Gauge Fields

The interaction Hamiltonian density for pure gauge fields is independent of #*” in

the approach of [86]:
Hyy=Hyy - (2.6.25)

Hence also the S becomes 6-independent,
G G

Sy =Sy, (2.6.26)

and CPT holds as a good “symmetry” of the theory.

2.6.2.3 Matter and Gauge Fields

All interactions of matter and gauge fields can be fully discussed by writing the

S-operator as

Sg{’c =T exp [—i/d% Hfg(z)], (2.6.27)
Hig =My +Hip, (2.6.28)
where
Hio® = Hin” €207
and
er = Hfo

In QED, Hj, = 0. Thus the S-operator S;  is the same as for the " = 0.
That is,

QED QED

Se = So
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Hence C, P, T and CPT are good “symmetries” for QFED on the GM plane.
For a non-abelian gauge theory with non-singlet matter fields, Hy, = Hy # 0

so that if S," is the S-matrix of the theory,
S, #8,. (2.6.30)

The S-operator Sgl’c depends only on % in a non-abelian theory, that is,

ng,a _ SQWG gii—o. Applying C, P and T on Sgl’c we can see that C and T do

not affect ° while P changes its sign. Thus a non-zero 6% contributes to P and

CPT violation. For further analysis see [23].

2.6.3 On Feynman Graphs

This section uses the results of [86] and [71] where Feynman rules are fully devel-
oped and field theories are analyzed further.

In non-abelian gauge theories, ’er = 7—[?0 is not zero as gauge fields have self-
interactions. The preceding discussions show that the effects of 8 can show up
only in Feynman diagrams which are sensitive to products of Hyg~’s with Hjy’s.
Fig. (23] shows two such diagrams.

As an example, consider the first diagram in Fig. (23] To lowest order, it
depends on 6%,

We can substitute eqn. (Z6.23) for H,,~ and integrate over x. That gives,
1 : 5 0% p.
S — ) /d4xd4y T(’H%G(x) ez 00f" PZ'H?O(y))
<< M,G . . . . .
where 0 acts only on H,;, (x) (and not on the step functions in time entering in

the definition of T.)

Now P;, being components of spatial momentum, commutes with

/ iy Ho(y)
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(1) 2

Figure 2.3: CPT violating processes on GM plane. (1) shows quark-gluon scatter-
ing with a three-gluon vertex. (2) shows a gluon-loop contribution to quark-quark

scattering.

and hence for computing the matrix element defining the process (1) in Fig. (2.3)),
we can substitute ?in for ?, ?in being the total incident spatial momentum:

1 155 poi pin
S® =2 / d'ad'y T(H%’G(:c) e2 207 F ’Hfo(y))- (2.6.31)

Thus S® depends on 6% unless
0" P = 0. (2.6.32)

This will happen in the center-of-mass system or more generally if
97 =(0%, 0°2, 6°) is perpendicular to P,

Under P and CPT, §% — —#%. This shows clearly that in a general frame,
6% contributes to P violation and causes CPT violation.

The dependence of S® on the incident total spatial momentum shows that
the scattering matrix is not Lorentz invariant. This noninvariance is caused by the

nonlocality of the interaction Hamiltonian density: if we evaluate it at two spacelike
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separated points, the resultant operators do not commute. Such a violation of
causality can lead to Lorentz-noninvariant S-operators [86].

5 1% p0i pin . . .
INP £ 3 009 P" g yalid to all such factors in

The reasoning that reduced e3
an arbitrary order in the perturbation expansion of the S-matrix and for arbitrary
processes, ?m being the total incident spatial momentum. As 0" occur only in
such factors, this leads to an interesting conclusion: if scattering happens in the
center-of-mass frame, or any frame where 0% Pi" = (, then the -dependence goes
away from the S-matrix. That is, P and C'PT remain intact if %P = 0. The
theory becomes P and C'PT violating in all other frames.

Terms with products of H;,” and H;, are 6-dependent and they violate CPT.
Electro-weak and QC'D processes will thus acquire dependence on . This is the
case when a diagram involves products of H,;" and #7,. For example quark-gluon
and quark-quark scattering on the GM plane become 6-dependent CPT violating
processes (See Fig. (23)).

These effects can be tested experimentally.
Summary of Chapter

1. Tiny (small scale) nonuniformities (inhomogeneities and anisotropies) in the
CMB radiation suggest the existence of temperature fluctuations (ie. nonequi-
librium) in the early universe just before photon-baryon decoupling. These
are reflected in the distribution of large scale structures such as galaxy clus-

ters in the universe today.

2. There are problems in the standard model of cosmology: The theory of infla-
tion attempts to explain the high causal connectedness or correlation in the
CMB radiation (High isotropy of CMB implies that radiation from two op-
posite points in the sky must have been in causal contact before decoupling.
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Decoupling happened in the “far past”, too close to the big bang singularity,
and so such causal contact is not possible with the homogeneous and isotropic
metric of standard big bang cosmology), flatness or small curvature of the
present universe, absence of primordial or early phase transition byproducts
such as monopoles and cosmic strings and the origin of tiny nonuniformities
in the highly (large-scale) uniform CMB radiation. A scalar field (inflaton)
could have caused a fast expansion of the early universe thus neutralizing
accausal, curvature and phase transition byproduct effects and quantum cor-
rections to its dynamics would be responsible for tiny nonuniformities in the

CMB radiation.

Other cosmological problems susceptible to noncommutativity include dark
matter (associated with inconsistencies involving excesses in the observed
motion of galaxies and clusters), dark energy (associated with observed red-
shifts which suggest an accelerated expansion of the universe) and the fact
that only four spacetime dimensions are observed even though physical the-

ories predict more than four dimensions for spacetime.

. Quantum theory predicts a noncommutative structure for spacetime at small
scales. Therefore noncommutativity of spacetime will contribute to the tiny
nonuniformities of the CMB radiation through it naturally expected affects
on the quantum dynamics (taking place precisely at such small scales) of the

inflaton.

. During inflation, metric fluctuations are negligible compared to inflaton fluc-
tuations. However, at the end of inflation the quantum fluctuations of the
inflaton become a source of fluctuations in the metric of spacetime as well

as of radiation and matter. The power spectrum or Fourier transform of
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the (metric) two-point correlation amplitude or potential will depend on the
spacetime noncommutativity parameter. Using nonequilibrium dynamics one
can find the fluctuations in temperature, and corresponding temperature cor-
relations, induced by the metric fluctuations. These temperature fluctuations

will then show up in the CMB radiation.

. One gets a noncommutativity dependent power spectrum, noncommutativity-

induced causality violation and a non-Gaussian probability distribution.
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Chapter 3

CMB Power Spectrum and

Anisotropy

Modern cosmology has now emerged as a testing ground for theories beyond the
standard model of particle physics. In this paper, we consider quantum fluctua-
tions of the inflaton scalar field on certain noncommutative spacetimes and look
for noncommutative corrections in the cosmic microwave background (CMB) radi-
ation. Inhomogeneities in the distribution of large scale structure and anisotropies
in the CMB radiation can carry traces of noncommutativity of the early universe.
We show that its power spectrum becomes direction-dependent when spacetime is
noncommutative. (The effects due to noncommutativity can be observed experi-
mentally in the distribution of large scale structure of matter as well.) Furthermore,
we have shown that the probability distribution determining the temperature fluc-

tuations is not Gaussian for noncommutative spacetimes.
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3.1 INTRODUCTION

The CMB radiation shows how the universe was like when it was only 400,000
years old. If photons and baryons were in equilibrium before they decoupled from
each other, then the CMB radiation we observe today should have a black body
spectrum indicating a smooth early universe. But in 1992, the Cosmic Background
Explorer (COBE) satellite detected anisotropies in the CMB radiation, which led
to the conclusion that the early universe was not smooth: There were small per-
turbations in the photon-baryon fluid.

The theory of inflation was introduced [72], [73] [74] to resolve the fine tuning
problems associated with the standard Big Bang cosmology. An important prop-
erty of inflation is that it can generate irregularities in the universe, which may lead
to the formation of structure. Inflation is assumed to be driven by a classical scalar
field that accelerates the observed universe towards a perfect homogeneous state.
But we live in a quantum world where perfect homogeneity is never attained. The
classical scalar field has quantum fluctuations around it and these fluctuations act
as seeds for the primordial perturbations over the smooth universe. Thus according
to these ideas, the early universe had inhomogeneities and we observe them today
in the distribution of large scale structure and anisotropies in the CMB radiation.

Physics at Planck scale could be radically different. It is the regime of string
theory and quantum gravity. Inflation stretches a region of Planck size into cos-
mological scales. So, at the end of inflation, physics at Planck region should leave
its signature on the cosmological scales too.

There are indications both from quantum gravity and string theory that space-
time is noncommutative with a length scale of the order of Planck length. In this

paper we explore the consequences of such noncommutativity for CMB radiation
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in the light of recent developments in the field of noncommutative quantum field
theories relating to deformed Poincaré symmetry.

The early universe and CMB in the noncommutative framework have been
addressed in many places [75] [76] [77, [78, [79, (53], B0, 8I]. In [75], the noncommu-
tative parameter ¢, = —60,, = constants with 6y; = 0, (u,v = 0,1,2,3, with 0
denoting time direction), characterizing the Moyal plane is scale dependent, while
[77, [79, [78] have considered noncommutativity based on stringy space-time uncer-
tainty relations. Our approach differs from these authors since our quantum fields
obey twisted statistics, as implied by the deformed Poincaré symmetry in quantum
theories.

We organize the paper as follows: In section II, we discuss how noncommu-
tativity breaks the usual Lorentz invariance and indicate how this breaking can
be interpreted as invariance under a deformed Poincaré symmetry. In section III,
we write down an expression for a scalar quantum field in the noncommutative
framework and show how its two-point function is modified. We review the the-
ory of cosmological perturbations and (direction-independent) power spectrum for
0,,, = 0 in section IV. In section V, we derive the power spectrum for the non-
commutative Groenewold-Moyal plane Ay and show that it is direction-dependent
and breaks statistical isotropy. In section VI, we compute the angular correlations
using this power spectrum and show that there are nontrivial O(6?) corrections
to the CMB temperature fluctuations. Next, in section VII, we discuss the mod-
ifications of the n-point functions for any n brought about by a non-zero 0" and
show in particular that the underlying probability distribution is not Gaussian.

The paper concludes with section VIII.
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3.2 Noncommutative Spacetime and Deformed
Poincaré Symmetry

At energy scales close to the Planck scale, the quantum nature of spacetime is
expected to become important. Arguments based on Heisenberg’s uncertainty
principle and Einstein’s theory of classical gravity suggest that spacetime has a
noncommutative structure at such length scales [9]. We can model such spacetime

noncommutativity by the commutation relations [16], (17, 18, 19

(@, @] = 16, (3.2.1)
where 6, = —0,,, are constants and z,, are the coordinate functions of the chosen
coordinate system:

Tu(x) =z, (3.2.2)

The above relations depend on choice of coordinates. The commutation rela-
tions given in eqn. (B.2]) only hold in special coordinate systems and will look
quite complicated in other coordinate systems. Therefore, it is important to know
in which coordinate system the above simple form for the commutation relations
holds. For cosmological applications, it is natural to assume that eqn. ([B21])
holds in a comoving frame, the coordinates in which galaxies are freely falling.
Not only does it make the analysis and comparison with the observation easier,
but also make the time coordinate the proper time for us (neglecting the small
local accelerations).

The relations (B2 are not invariant under naive Lorentz transformations
either. But they are invariant under a deformed Lorentz Symmetry [29], in which
the coproduct on the Lorentz group is deformed while the group structure is kept
intact, as we briefly explain below.
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The Lie algebra P of the Poincaré group has generators (basis) M,g and P,.
The subalgebra of infinitesimal generators P, is abelian and we can make use of
this fact to construct a twist element Fy of the underlying quantum group theory
[32, 82 [83]. Using this twist element, the coproduct of the universal enveloping
algebra U(P) of the Poincaré algebra can be deformed in such a way that it is
compatible with the above commutation relations.

The coproduct A, appropriate for 6, = 0 is a symmetric map from U(P) to
U(P) @U(P). It defines the action of P on the tensor product of representations.

In the case of the generators X of P, this standard coproduct is
AN X) =1 X+X®1. (3.2.3)
The twist element is
Fy = exp(—%eaﬁpa ® Pg), Pn = —i0,. (3.2.4)

(The Minkowski metric with signature (—, 4+, +, +) is used to raise and lower the
indices.)

In the presence of the twist, the coproduct Aq is modified to Ay where
Ay = F, ' NoFo. (3.2.5)
It is easy to see that the coproduct for translation generators are not deformed,
Ay(P,) = Ao(P,) (3.2.6)
while the coproduct for Lorentz generators are deformed:

1
Bo(Mu) = 18 My + My & 1- 5 (P-@)u@)P,,—PV@(P-@)M—(u<—>u)],
(P-0), = P (3.2.7)
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The algebra Ay of functions on the Minkowski space M* is commutative with

the commutative multiplication my:

mo(f @ g)(x) = f(x)g(x). (3.2.8)

The Poincaré algebra acts on Ay in a well-known way

Puf(a) = —i0uf(2), My f(2) = —ie,d, — 2,0, (x). (3.2.9)

It acts on tensor products f ® g using the coproduct Agy(X).
This commutative multiplication is changed in the Groenewold-Moyal algebra

Ay to myg:
ma(f ® g)(x) = mo|e 2P f @ gl () = (f % g)(x). (3.2.10)
Equation (3.2.1]) is a consequence of this x-multiplication:
T, T = mp (2, @7, =7, ®ZT,) = ib,,. (3.2.11)

The Poincaré algebra acts on functions f € Ay in the usual way while it acts
on tensor products f ® g € Ay ® Ay using the coproduct Ay(X) [29, [64].

Quantum field theories can be constructed on the noncommutative spacetime
Ay by replacing ordinary multiplication between the fields by *-multiplication and
deforming statistics as we discuss below [84] [85] 87, 86]. These theories are invariant
under the deformed Poincaré action [29, [64, [87, [86] under which 6,,, is invariant.
It is thus possible to observe 6, without violating deformed Poincaré symmetry.
But of course they are not invariant under the standard undeformed action of the

Poincaré group as shown for example by the observability of 0,,.
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3.3 Quantum Fields in Noncommutative Space-
time

It can be shown immediately that the action of the deformed coproduct is not
compatible with standard statistics [87]. Thus for 0¥ = 0, we have the axiom in

quantum theory that the statistics operator 7y defined by

T (PRX)=Xx® ¢ (3.3.1)

is superselected. In particular, the Lorentz group action must and does commute

with the statistics operator,
T(]Ao(A> = Ao(A)T(], (332)

where A € 771, the connected component of the Poincaré group.
Also all the states in a given superselection sector are eigenstates of 7y with
the same eigenvalue. Given an element ¢ ® x of the tensor product, the physical

Hilbert spaces can be constructed from the elements

(1:*:7_0

5 )(¢ ® X)- (3.3.3)

Now since 79Fy = F, L7, we have that
ToAg(A) # Ag(A)To (3.3.4)

showing that the use of the usual statistics operator is not compatible with the
deformed coproduct.

But the new statistics operator

To=Fy 'moFe, To=1®1 (3.3.5)
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does commute with the deformed coproduct.
The two-particle state |p,q)s, 4, for bosons and fermions obeying deformed

statistics is constructed as follows:

1+ To
P Dsias = 1)@, 100 = (=50 ) (10) @ 1))
]_ i v
= (W el £ vig o). (3.3.6)
Exchanging p and ¢ in the above, one finds
P, @) 55,0 = £ €7 |q, p) 5y - (3.3.7)

In Fock space, the above two-particle state is constructed from a second-

quantized field ¢y according to

5 Oles(epote)alatlo) = (F572)(ep® eg)(en,22)

= (ep ® 5,44 eq)(ajla 1’2)

= <$1>I2|p7 q)S@,Ag (338)

where g is a boson(fermion) field associated with |p, ¢)s, (|p, @) a,)-

On using eqn. ([B.3.7), this leads to the commutation relation
= 4 e gl ol | (3.3.9)

Let P, be the Fock space momentum operator. (It is the representation of the
translation generator introduced previously. We use the same symbol for both.)

Then the operators ay, , CLL can be written as follows:
ap = Cp e 2Pul" Py aI) = cl, e2Pud" Py , (3.3.10)

cp’s being 0" = 0 annihilation operators.
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The map from ¢;, ¢l to ap, af, in eqn. B3I0) is known as the “dressing trans-

formation” [511 [52].

In the noncommutative case, a free spin-zero quantum scalar field of mass m

has the mode expansion

vo(z) = / (d—’g (ap ep(x) + al e_(x)) (3.3.11)

where

ep(x) =e"PT pex=pozg—p- X, po=/p>+m?>0.

The deformed quantum field ¢y differs form the undeformed quantum field g
in two ways: i.) e, belongs to the noncommutative algebra of M* and #i.) a, is

deformed by statistics. The deformed statistics can be accounted for by writing

B3]

(—
0o = @y 02 9P (3.3.12)
where
%
9 AP=0,6"P, (3.3.13)

It is easy to write down the n-point correlation function for the deformed quan-

tum field pp(z) in terms of the undeformed field ¢q(x):
(Olpa(x1)@o(22) - - - @o(n)[0)

s =
J-1 5

= (Olpo(z1)0(x2) -+ po(a) 0} o3 STt Turl

o)

On using

oo(o) = oac ) = [ % Dok, 1) ¢, (3.3.14)

106



we find for the vacuum expectation values, in momentum space

(0|®g(Ky, t1)Po (K, t2) - - - Po(Kn, £,)]0) = ez Zosrkinks) o
P ko + 0 ky+--+0° Kk, 0k + 600 k3 + -+ 60K,

(0@ (ki, 1 + 5 )Po(ka, ta + 5 )
00k — 0 kg —--— 0K,
gk, b + ! 5 5)]0)
(3.3.15)
where
00 = (6°,6°,6%). (3.3.16)

Since the underlying Friedmann-Lemaitre-Robertson-Walker (FLRW) space-

time has spatial translational invariance,

ki +ke+---+k, =0,
the n-point correlation function in momentum space becomes

<O|<I>9(k1,t1)‘1>9(k2, t2) e ®9(knvtn)|0>
0 -k 0 - ko

:e(%z‘]>1k1/\k‘])<0|¢0(k1,t1 — 2 1)‘1)0(k2,t2 —éb-kl — 2 )
70 70 70 Pk,
o Dokt — 0" kg — 00 kg — o — 00 Ky — )[0). (3.3.17)
In particular, the two-point correlation function is
0 -k 0 -k
(0] Py (i, t1)Po(ka, 2)|0) = (O[Po (i, t1 — =)@ (Ko, ty — -)[0),

(3.3.18)

since it vanishes unless k; + ko = 0 and hence ols Xysr kinks) = 1,
We emphasize that eqns. (27), (29) and (30) come from eqn. (20) which implies
eqns. (21), (23) and (25). They are exclusively due to deformed statistics. The
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x-product is still mandatory when taking products of ¢y evaluated at the same
point.

In standard Hopf algebra theory, the exchange operation is to be performed
using the R-matrix times the flip operator o [30, BI]. It is easy to check that Ro
acts as identity on any pair of factors in eqns. (27) and (29).

One can also explicitly show that the n-point functions are invariant under the
twisted Poincaré group while those of the conventional theory are not. Hence the
requirement of twisted Poincaré invariance fixes the structure of n-point functions.
These points are discussed further in [87].

It is interesting to note that the two-point correlation function is nonlocal in
time in the noncommutative frame work. Also note the following: Assuming that

0" is non-degenerate, we can write it as

0" = v eqp €l ef + B eay [ 1Y

aaﬁ#oa €ab = —€ba, aab:1a2

where e,, €, f,, f, are orthonormal real vectors. Thus 0" defines two distinguished
two-planes in M*, namely those spanned by e, and by f,. For simplicity we have
assumed that one of these planes contains the time direction, say e; : e} = 0f. The
0% part then can be regarded as defining a spatial direction 0 as given by eqn.
(E3TH).

We will make use of the modified two-point correlation functions given by eqn.
(B3I8) when we define the power spectrum for inflaton field perturbations in the

noncommutative frame work.
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3.4 Cosmological Perturbations and (Direction-
Independent) Power Spectrum for 0" = ()

In this section we briefly review how fluctuations in the inflaton field cause inho-
mogeneities in the distribution of matter and radiation following [89].
The scalar field ¢ driving inflation can be split into a zeroth order homogeneous

part and a first order perturbation:

o(x,t) = o0 (1) + do(x, 1) (3.4.1)

The energy-momentum tensor for ¢ is

roym g 2808 o L 00 0
8= 9 oz 0xP 9 s 2g oxt Oxv

+V(9)] (3.4.2)

We assume a spatially flat, homogeneous and isotropic (FLRW) background

with the metric
ds* = dt? — a*(t)dx? (3.4.3)
where a is the cosmological scale factor, and nonvanishing 1"’s
%, =6;a°H and I', =T", =6H

where H is the Hubble parameter.

In conformal time n where dn = %, —o0 < 1 < 0, the metric becomes
ds® = a*(n)(dn® — dx?), (3.4.4)

where a is the cosmological scale factor now regarded as a function of conformal

time. Using this metric we write the equation for the zeroth order part of ¢ [89],

O +2aHHO + a?V'p© =0, (3.4.5)
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where overdots denote derivatives with respect to conformal time 1 and V' is the

derivative of V' with respect to the field ¢(®). Notice that in conformal time 1 we

have d’;—(:) = a*(n)H while in cosmic time ¢ we have d‘;sf) =aH.

The equation for d¢ can be obtained from the first order perturbation of the

energy-momentum tensor conservation equation:

oTH,
o _ 4 o a o
T vy 825‘“ + I auT v I 14

o= . (3.4.6)

i

The perturbed part of the energy-momentum tensor 67", satisfies the following

conservation equation in momentum space [89):

90T , ,
pn O 4 ik;0T" , + 3HOT, — HST" , = 0, (3.4.7)
where
T (k,t) = /dgz TH (x,t) e ™, (3.4.8)

Let ¢(x,t) = [ L&

ony3 (k, t) e’>. Writing down the perturbations to the energy-

momentum tensor in terms of q;(k, t),

. ik; © ~
or" 0o - ?(b((])éqj)v

0054 S
o0 = —200_vigoyes,
, NOPY o
T, = 5i»(¢a2¢—V’(¢(°))5¢),

the conservation equation becomes
36+ 2aHdb + k266 = 0. (3.4.9)

Eliminating the middle Hubble damping term by a change of variable
C(k,n) = a(n)dp(k, n), the above equation becomes

) +R)Clem) = 0, ) = (K~ D), (3.4.10)
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The mode functions u associated with the quantum operator f satisfy

N a(n)

iu(k,n +(k‘2——>u k,n)=0 3.4.11

(o) + (12 = 20 utken) (34.11)

with the initial conditions u(k,n;) = ﬁ and u(k in/wi(n;). Notice that
wie (n

these initial conditions have meaning only when wk(n,) > 0.
We can immediately write down the quantum operator associated with the

variable (,

C(k,n) = u(k,n)ay + u*(k,n)af, (3.4.12)

with the bosonic commutation relations [y, dw] = [al, al,] = 0 and
laxe, @l ] = (27)20% (k — k).
During inflation we have scale factor a(n) ~ —(nH)™'. Thus eqn. (BZ4II)
takes the form [89]
5 2
+ (k; - ?>u —0. (3.4.13)
When the perturbation modes are well within the horizon, k|n| > 1, one can

obtain a properly normalized solution u(k,n) from the conditions imposed on it at

very early times during inflation. Such a solution is [89, [O0]

_ LN ke
u(k,n)_m@ kn)e . (3.4.14)

The variances involving ¢ and ¢ are

(0¢(k, mC(K,m)]0) = 0,

(0[¢" (e, )T (K, m)]0) = 0,

(OI¢T e, MK, m[0) = (27)°|u(k, n)[*6*(k — k')

(27)*P:(k, )&% (k — k') (3.4.15)
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where P is the power spectrum of . Eqn. B41I5) can be treated as a general
definition of power spectrum.

In the case when spacetime is commutative (6 = 0), the power spectrum in

eqn. (BZI0) is
(O[T (k, m)C(K, 1)|0) = (27)* Pe(k, 1)6° (k — K). (3.4.16)

The Dirac delta function in eqns. ([3.4.15)) and ([B.4.16]) shows that perturbations
with different wave numbers are uncoupled as a consequence of the translational
invariance of the underlying spacetime. Rotational invariance of the underlying
(commutative) spacetime constraints the power spectrum P (k,n) to depend only
on the magnitude of k.

Towards the end of inflation, k|n| (—oo < 1 < 0) becomes very small. In that
case the small argument limit of eqn. (3414,

1 —
Iim wulk,n)=— —c¢
k|n|—0 () V2k kn

gives the power spectrum Pr(k,n) = |u(k,n)|?>. On using ¢(k,7n) = a(n)do(k,n),

—tk(n=ma) (3.4.17)

we write the power spectrum Py for the scalar field perturbations [89]:

k) 11

Psg(k,n) = Tt = 2B aln)iE (3.4.18)

In terms of the Hubble parameter H during inflation (H =~ _a(?17)n)’ the power
spectrum becomes

Pyy(k,n) = %H? (3.4.19)

We are interested in the post-inflation power spectrum for the scalar metric
perturbations since they couple to matter and radiation and give rise to inhomo-
geneities and anisotropies in their respective distributions which we observe. This

112



spectrum comes from the inflaton field since the inflaton field perturbations get
transferred to the scalar part of the metric.

We write the perturbed metric in the longitudinal gauge [91],
ds* = a’(n) [(1 +2x(x, m))dn® — (1 —2¥(x, 7)) (x, n)dxidffj]7 (3.4.20)

where y and W are two physical metric degrees of freedom describing the scalar
metric perturbations and «* is the metric of the unperturbed spatial hypersurfaces.

In our model, as in the case of most simple cosmological models, in the absence
of anisotropic stress (67" ij =0 for i # j), the two scalar metric degrees of freedom

x and W coincide upto a sign:
U= —y. (3.4.21)
The remaining metric perturbation U can be expressed in terms of the inflaton
field fluctuation d¢ at horizon crossing [89],

7 _ gaﬂﬁ (3.4.22)

QE(O) horizon crossing

post inflation

where U is the Fourier coefficient of 0.

On using the general definition of power spectrum as in eqn. ([B.4.10]), the power
spectra for Py and Pz can be connected when a mode % crosses the horizon, i.e.
when a(n)H = k, say for n = nq:

4 H\2
Py (k,n) = §<a% ) Ps;

From eqn. (34.19), eqn. (3:4.2])) and using

(3.4.23)

a(no)H=k

aH /O = \/InGJe (3.4.24)
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at horizon crossing, where GG is Newton’s gravitational constant and € is the slow-
roll parameter in the single field inflation model [89], we have the power spectrum
(defined as in eqn. ([B4.I6) for the scalar metric perturbation at horizon crossing,

167G H?
Py (k,n(t)) = Pa,(k,n(t)) = 06 2 |ty i (3.4.25)

Here we wrote & for x.
Note that the Hubble parameter H is (nearly) constant during inflation and also
it is the same in conformal time 7 and cosmic time ¢. Since the time dependence

of the power spectrum is through the Hubble parameter in eqn. (3.4.23]), we have
Py, (k,n(t)) = Pp,(k,t) = Pg,(k) = constant in time. (3.4.26)

The power spectrum in eqn. (B.4.25) is for commutative spacetime and it
depends on the magnitude of k and not on its direction. In the next section, we
will show that the power spectrum becomes direction-dependent when we make

spacetime noncommutative.

3.5 Direction-Dependent Power Spectrum

The two-point function in noncommutative spacetime, using eqn. (B.3.I8]), takes
the form

(012 (k, ) Do (k', )|0) = (0]Po(k, 7™ )Po(K', n7)[0) , (3.5.1)
where n~ = n(t — (;()Tk)
In the commutative case, the reality of the two-point correlation function (since

the density fields @, are real) is obtained by imposing the condition

(Po(k, m)Po(K’, )" = (Po(—k, 7)o (K, 7). (3.5.2)
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But this condition is not correct when the fields are deformed. That is be-
cause even if @y is self-adjoint, $y(x,1)Py(x', 1) # Pp(x',t")Py(x,t) for space-like
separations. A simple and natural modification (denoted by subscript M) of the
correlation function that ensures reality involves “symmetrization” of the product
of py’s or keeping its self-adjoint part. That involves replacing the product of ¢y’s

by half its anti-commutator,

1 1

§[we(x> ), 2o(y,n)]+ = §(we(x> ne(y,n) + ©o(y,n)pe(x, n))- (3.5.3)

(We emphasize that this procedure for ensuring reality is a matter of choice)

For the Fourier modes ®y, this procedure gives :

1

<(I)€(k7 U)(I)e(k,aﬁ»M = §<<(I)9(k7 W)(I)e(kla 77)) + <(I)9(_k7 n)q)G(_klv 77)>*> (354)

After the modification of the correlation function, the power spectrum for scalar

metric perturbation takes the form
(o(k, ) @o(K', 1)) ar = (27)° Py, (I, )6 (ke + k). (3.5.5)

Using eqns. (B4I8), B223), B.51) and (35.4) we write down the modified

power spectrum:

ot = 5[5 (“27) o (e ) 50

where n* = n(t & éDTk) Notice that here the argument of the scale factor a(n) is
not shifted, since it is not deformed by noncommutativity.

It is easy to show that

ullk, ) — e:;;"; (1- k;i) (3.5.7)

are also solutions of eqn. (B4.13).
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Thus on using eqn. ([B.424) and the limit kn* — 0 of eqn. (5.7, the modified

power spectrum is found to be

P<I>9 (k> 77) -

1 [167TG 1
2L 9¢ a(n)?
1rl6nG 1 1 1

5[ 9¢ a(n)? <2/€3(7}—)2 * 2k3(n+)2>}
8rG 1 1 1

T 0 2k3a(n)? <(77_)2 + (n+)2)' (3.5.8)

(Jutie,n )2 + Ju(—k, 7)) |

Assuming that the Hubble parameter H is nearly a constant during inflation,

the conformal time [89]

-1
o~ ZL gt 3.5.9
O p— (359
gives an expression for n*:
gt = n(t) T2k, (3.5.10)

On using eqn. (B5I0) in eqn. (B.5.8) we can easily write down an analytic

expression for the modified primordial power spectrum at horizon crossing,
Py, (k) = Pp, (k) cosh(HO - k) (3.5.11)

where Ps, (k) is given by eqn. ([B42H). Note that the modified power spectrum
also respects the k — —k parity symmetry.

This power spectrum depends on both the magnitude and direction of k and
clearly breaks rotational invariance. In the next section we will connect this power
spectrum to the two-point temperature correlations in the sky and obtain an ex-
pression for the amount of deviation from statistical isotropy due to noncommu-

tativity.
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3.6 Signature of Noncommutativity in the CMB

Radiation

We are interested in quantifying the effects of noncommutative scalar perturbations
on the cosmic microwave background fluctuations. We assume homogeneity of
temperature fluctuations observed in the sky. Hence it is a function of a unit

vector giving the direction in the sky and can be expanded in spherical harmonics:

AT () X
= %ale}m(n), (3.6.1)

Here n is the direction of incoming photons.

The coefficients of spherical harmonics contain all the information encoded in
the temperature fluctuations. For #** = 0, they can be connected to the primordial
scalar metric perturbations @,

3k ~
i = (=) [ G5 ARl )V (), (362)
where A;(k) are called transfer functions. They describe the evolutions of scalar
metric perturbations ®( from horizon crossing epoch to a time well into the radi-
ation dominated epoch.
The two-point temperature correlation function can be expanded in spherical

harmonics:

() = D ) Yoo (2) Yo (7). (3.6.3)

Iml'm/

The variance of a;,,’s is nonzero. For 0* = 0, we have

<alma7’m’> = C'léll’(smm’- (364)
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Using eqn. (B:416) and eqn. ([B.6.2)), we can derive the expression for Cj’s for
o = 0:

<alma7’m’ >

3 3 1./ N ~
— 1672(—i) / (jﬂ’;% A (k) A () (o (e, m) @5 (K, 1)) Vi () Vi (K1)

— 16x%(—i) " / (ji’; A1(k) Arr () Pary () Yy () Yirg ()
2

== / dk k? (A(k))? Pay (k) 81 Omm: = C 811 (3.6.5)

where Pg, (k) is given by eqn. (3.4.23]).
When the fields are noncommutative, the two-point temperature correlation
function clearly depends on ##”. We can still write the two-point temperature

correlation as in eqn. ([B.6.3)):

AT (n) AT (n/ . o
{ T( ) T( ) = S (i) Yion )i (). (3.6.6)
Iml'm’
This gives
<almazk’m’>9
2 v [ Pk K / T (1! * (] 7
= 167 (_1) / (27‘(‘)3 (27‘()3 Al(lﬁ)Al/(l{} )(@g(k,ﬂ)q)e(k 777)>MY2m(k)Y2’m’(k )

(3.6.7)

The two-point correlation function in eqn. (B.6.7) is calculated during the
horizon crossing of the mode k. Once a mode crosses the horizon, it becomes

independent of time, so that we can rewrite the two-point function as
(@g(k, ) DK, 7)) 1 = (27)° Py, (K)6° (k — K') (3.6.8)

where Py, (k) is given by eqn. (B3.5.11]).
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Thus we write the noncommutative angular correlation function as follows:
. , d3k
(@), = 167 [

(27m)°

(k) A (k) Pay (k) Yo, (k) Yirg (k).
(3.6.9)

The regime in which the transfer functions act is well above the noncommu-
tative length scale, so that it is perfectly legitimate to assume that the transfer
functions are the same as in the commutative case.

Assuming that the 60 is along the z-axis, we have the expansion

7 Z A (21 + 1)5i(Fi0k H) Yo (cosd) (3.6.10)

where 69 - k = 0k cost and Ji is the spherical Bessel function.

On using eqn. (B6I0) and the identities j;(—z) = (—1)5;(z) and

gi(iz) = i iy(2), where i; is the modified spherical Bessel function, we can write

eqn. ([B5II) as
Py, (k) = Py, (k Z VAT (2L + 1) iy (0kH) Yip(cos?). (3.6.11)

l 0 lCVCn
Using eqns. ([B:6.9) and [B6.1T]), we rewrite eqn. (B69) as,
(Um )y = / dk Z (@) (=1)™(20" + 1) K2Aq(k) Ay (k) P, (k)iv (OkH)
1""=0, " :even

l l/ l// l l/ l//
QI+ Dl +1) , (3.6.12)
0 0 O -m m 0

the Wigner’s 3-j symbols in eqn. ([£24]) being related to the integrals of spherical

119



harmonics:

/ 0% Vi) Vi () Yino ()

l/ l// l l/ l//
00 O -m m 0
(3.6.13)

= /(21 + 1)(21 + 1)(21" + 1) /47

We can also get a simplified form of eqn. (@24 by expanding the modified
power spectrum in eqn. (B5TIT) in powers of 6 up to the leading order:

Pa, (k) ~ Py, (k)] 1+ H;(éb : k)2]. (3.6.14)

A modified power spectrum of this form has been considered in [92], where the
rotational invariance is broken by introducing a (small) nonzero vector. In our case,
the vector that breaks rotational invariance is 0 and it emerges naturally in the
framework of field theories on the noncommutative Groenewold-Moyal spacetime.
We have also an exact expression for Ps,(k) in eqn. (35.1T]).

Work is in progress to find a best fit for the data available and thereby to
determine the length scale of noncommutativity.

The direction-dependent primordial power spectrum discussed in [92] is consid-
ered in a model independent way in [93] to compute minimum-variance estimators
for the coefficients of direction-dependence. A test for the existence of a preferred
direction in the primordial perturbations using full-sky CMB maps is performed
in a model independent way in [94]. Imprints of cosmic microwave background
anisotropies from a non-standard spinor field driven inflation is considered in [95].
Anisotropic dark energy equation of state can also give rise to a preferred direction

in the universe [96].
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3.7 Non-causality and Noncommutative Fluctu-
ations

In the noncommutative frame work, the expression for the two-point correlation
function for the field ¢y contains real and imaginary parts. We identified the real
part with the observed temperature correlations which are real. This gave us the

modified power spectrum
Py, (k) = P, (k) cosh(HO° - k). (3.7.1)

In this section we discuss the imaginary part of the two-point correlation func-
tion for the field ¢y. In position space, the imaginary part of the two-point cor-
relation function is obtained from the “anti-symmetrization” of the fields for a

space-like separation:

1

5[309(& n), ey, n)]- = %(we(xa m)ea(y,n) — wo(y,n)we(X, n))- (3.7.2)

The commutator of deformed fields, in general, is nonvanishing for space-like
separations. This type of non-causality is an inherent property of noncommutative
field theories constructed on the Groenewold-Moyal spacetime [97].

To study this non-causality, we consider two smeared fields localized at x; and
x3. (The expression for non-causality diverges for conventional choices for Ps, if
we do not smear the fields. See after eqn. (£3.10).) We write down smeared fields

at x; and Xs.



where o determines the amount of smearing of the fields. We have

3/2
lim (E) /d3x @o(x) e~ X" — o (xy). (3.7.5)

a—oo \ 7T
The scale « can be thought of as the width of a wave packet which is a measure
of the size of the spacetime region over which an experiment is performed.
We can now write down the uncertainty relation for the fields ¢(a,x;) and

o(a, X9) coming from eqn. ([E33):

Ap(a, x1)Ap(a, x3) = S1(0][p(e, 1), p(e, %2)]]0) (3.7.6)

N —

This equation is an expression for the violation of causality due to noncommu-
tativity.
Notice that, in momentum space, we can rewrite the commutator in terms of

the primordial power spectrum Pg,(k) at horizon crossing using the discussion
following eqn. (B.5.4):

£ (0[[o 0, ), Bo(K, )] [0 — (27)* Py (k) sinh(HE - k) 6 (k + k)

horizon crossing

(3.7.7)

We can calculate the right hand side of eqn. ([L.3.71)
(Ollp(a, x1), p(er, x2)][0)

[y o) paly)]j0) et ey

(a

34 2 2
( / d%y ’ k3 (;l 5 (0l[®o(k), o (a)][0) e~ ikex—iary g—ol(x-31)’ +(y—x2)’]
(g) /d3xd3y d*kd3q Py, (k) sinh(HéO k) 8k + q)

™

)
3l

~ @np

e ikx—iqy  —al(x—x1)*+(y—x2)’]

2 « 3 : —ik-(x— —al(x—x1)2 —x5)2
:(%)3(;) /d3xd3yd3k Py, (k) sinh(HE - k) e~ O¥) gmaltemx) +(y—x2)7]

2 3 .
- W(g) / d*k Py, (k) sinh(HE" - k) / dxdye ™ (=¥) = ol(—x1)* +(y—x2)7]
™ e
2 _
= @y /d3k Py, (k) sinh(HE" - k) e~ 55—k Ga—x2), (3.7.8)
™
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This gives for eqn. ([@3.7),

2
Ap(a,x1)Ap(a,x5) > ‘ /d3k Py, (k) sinh(H6 - k) e~ e~k (1)

(2m)3
(3.7.9)

The right hand side of eqn. (£3.10) is divergent for conventional asymptotic
behaviours of Pg, (such as Pp, vanishing for large k no faster than some inverse
power of k) when o — oo and thus the Gaussian width becomes zero. This is the
reason for introducing smeared fields.

Notice that the amount of causality violation given in eqn. (L.3.10) is direction-
dependent.

The uncertainty relation given in eqn. (L3I0) is purely due to spacetime
noncommutativity as it vanishes for the case #*” = 0. It is an expression of

causality violation.

3.8 Non-Gaussianity from noncommutativity

In this section, we briefly explain how n-point correlation functions become non-
Gaussian when the fields are noncommutative, assuming that they are Gaussian
in their commutative limits.

Consider a noncommutative field py(x,t). Its first moment is obviously zero:

(po(x,t)) = (po(x,t)) = 0.

The information about noncommutativity is contained in the higher moments
of wg. We show that the n-point functions cannot be written as sums of products
of two-point functions. That proves that the underlying probability distribution is
non-Gaussian.
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The n-point correlation function is

Cp(xy, oy -+ 1) = (po(x1,t1) -+ - 0o (Xpy ) (3.8.1)

Since ¢ is assumed to be Gaussian and @y is given in terms of ¢y by eqn.
(33132), all the odd moments of ¢y vanish.
But the even moments of ¢y need not vanish and do not split into sums of

products of its two-point functions in a familiar way.
Non-Gaussianity cannot be seen at the level of two-point functions. Consider

the two-point function Cy. We write this in momentum space in terms of ®q:

, 0 k 0k
Cy = <(I)9(k1,t1)(1)9(k2,t2)> = eii(kz/\kl)<q>0(k1,t1 + 5 2)(1)0(k2,t2 - 5 ! )>
(3.8.2)
where k; A k; = k;07k;.
Making use of the translation invariance k; + ks = 0, the above equation
becomes
0 -k 0 k
(Po(k1,t1)Po(ko,t2)) = <‘1>0(k1,t1— 5 1)‘1’0(k2,f2—9_0'k1— 5 2)>
(3.8.3)

Non-Gaussianity can be seen in all the n-point functions for n > 4 and even n.
Still they can all be written in terms of correlation functions of ®,. For example,

let us consider the four-point function Cy:

Cy = (Po(ky,t1)Po(ka, t2)Po(ka, t3)Py(ky, ts))
00 -k,
2

0 -k,
) X
2
O .k,
)

Here we have used translational invariance, which implies that k; +ks+ks+k, = 0.

— e_%(k?’/\k?""k?’/\kl"‘k?/\kl)<<I>0(k1,tl _ )(I)O(kg, to — 9_0 -k —

00 . ky

Do(ks, ts — 00 kg — 60 - ky — YPo(Ka,tgy — 0 kg — 6 - kg — 6 - ks —

Using this equation once more to eliminate k4, we find
0 -k 00 - ky
) x
2 2

ok 00 ki +60° ko + 60k
3)<I>0(k4,t4— 1 ; 2 3)>
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Assuming Gaussianity for the field & and denoting ®q(k;, ;) by CI)(()i), we have,

o oPa o) = (e Pa) @B o)
+ permutations (for n even) (3.8.4)

and
(@Ml ... oWl ..My =0 (for n odd). (3.8.5)

Therefore Cy is

(Po(ki,t1)Pp(ka, t2)Po(ks, t3)Pp(ky,t4))

— o5 (ksAkatksAki+kaAky) (<‘I)O(k1 t, —
)

0 .k, 0 - ky
; )

.k 00 ki +60° ko +6° -k
3)<I>0(k4,t4— 1 5 2 3)>><

)Po (Ko, by — 6 - ky —

<<1>0(k3,t3—9'°-k1 U
0k,

A° -k
)(I)O(k&ts—éo'kl—éo'kz— B 3)>><

.k 0k +6° ko +60° -k
<‘I’0(k2,t2—éb'k1— 2V (ka, ty — ! 5 2 3)>

0k Pk +60 ks + 0k
1)<I>0(k4,t4— 1 5 2 3)>><

+ <‘1>0(k1,t1 -

+ <<I>o(k1,t1 _

0 -k 0 -k
<<1>0(k2,t2—9'°-k1— )0 (ks ty = 0 ke — 0" key — — 3)>). (3.8.6)

Using spatial translational invariance for each two-point function, we have

(P (ky,t1)Po(ka, t2)Py(ks, t3)Po(ky, ta))

0 -k 0 -k
l)q’o(k%fz - :

)><@0(k3,t3—§0.k3 _é’o-k3)>}

-k .k
L) (ks, t3 — 00 - ko — 5 1)>

- [<<I>0(k1,t1 _

1o tkanks [<q)0(k1,t1 _
(Bolkasta = -1 — LKy 10— 2]
+ [<¢0(k17t1 - s .kl)q’o(k4,t4 - §O.k1)> X

0 -k 0 -k
<<I>0(k2,t2—§b-k1— )0 (ks ty — 0 ket — 2)>] (3.8.7)
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Notice that the second term has a non-trivial phase which depends on the spa-
tial momenta k; and ko and the noncommutative parameter #. As C, cannot be
written as sums of products of C5’s in a standard way, we see that the noncommu-
tative probability distribution is non-Gaussian. Also it should be noted that we
still cannot achieve Gaussianity of n-point functions even if we modify them by
imposing the reality condition as we did for the two-point case.

Non-Gaussianity affects the CMB distribution and also the large scale structure

(the large scale distribution of matter in the universe). We have not considered
the latter. An upper bound to the amount of non-Gaussianity coming from non-

commutativity can be set by extracting the four-point function from the data.

3.9 Conclusions: Chapter [3

In this chapter, we have shown that the introduction of spacetime noncommuta-
tivity gives rise to nontrivial contributions to the CMB temperature fluctuations.
The two-point correlation function in momentum space, called the power spec-
trum, becomes direction-dependent. Thus spacetime noncommutativity breaks
the rotational invariance of the CMB spectrum. That is, CMB radiation becomes
statistically anisotropic. This can be measured experimentally to set bounds on
the noncommutative parameter. The next chapter (see [08]) presents numerical
fits to the available CMB data to put bounds on 6.

We have also shown that the probability distribution governing correlations
of fields on the Groenewold-Moyal algebra Ay are non-Gaussian. This affects
the correlation functions of temperature fluctuations. By measuring the amount
of non-Gaussianity from the four-point correlation function data for temperature

fluctuations, we can thus set further limits on 6.
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We have also discussed the signals of non-causality of non-commutative field
theories in the temperature fluctuations of the CMB spectrum. It will be very

interesting to test the data for such signals.

Summary of Chapter [

e The noncommutativity parameter is not constrained by WMAP data, how-
ever ACBAR and CBI data restrict the lower bound of its energy scale to be
around 10 TeV

e Upper bound for the noncommutativity parameter: V6 < 1.36 x 10~"m.

This corresponds to a 10 TeV lower bound for the energy scale.

e Amount of non-causality coming from spacetime noncommutativity for the

fields of primordial scalar perturbations that are space-like separated

1
(27)?

2 .
Ap(a,x1)Ap(a,x2) > \ / &Pk Py, (k) sinh(HO® - k) e~ 2a—*Ca—x)|
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Chapter 4

Constraint from the CMB,

Causality

We try to constrain the noncommutativity length scale of the theoretical model
given in [99] using the observational data from ACBAR, CBI and five year WMAP.
The noncommutativity parameter is not constrained by WMAP data, however
ACBAR and CBI data restrict the lower bound of its energy scale to be around
10 TeV. We also derive an expression for the amount of non-causality coming
from spacetime noncommutativity for the fields of primordial scalar perturbations
that are space-like separated. The amount of causality violation for these field

fluctuations are direction dependent.

4.1 Introduction

In 1992, the Cosmic Background Explorer (COBE) satellite detected anisotropies

in the CMB radiation, which led to the conclusion that the early universe was not
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smooth: there were small density perturbations in the photon-baryon fluid before
they decoupled from each other. Quantum corrections to the inflaton field generate
perturbations in the metric and these perturbations could have been carried over
to the photon-baryon fluid as density perturbations. We then observe them today
in the distribution of large scale structure and anisotropies in the CMB radiation.

Inflation [100] 101l [72) 73, [74] stretches a region of Planck size into cosmo-
logical scales. So, at the end of inflation, physics at the Planck scale can leave
its signature on cosmological scales too. Physics at the Planck scale is better de-
scribed by models of quantum gravity or string theory. There are indications from
considerations of either quantum gravity or string theory that spacetime is non-
commutative with a length scale of the order of Planck length. CMB radiation,
which consists of photons from the last scattering surface of the early universe can
carry the signature of spacetime noncommutativity. With these ideas in mind, in
this paper, we look for a constraint on the noncommutativity length scale from the
WMAP5 [102, 103} [104], ACBAR [105] 106 107] and CBI [108, 109} 110} 11T} 112]
observational data.

In a noncommutative spacetime, the commutator of quantum fields at space-
like separations does not in general vanish, leading to violation of causality. This
type of violation of causality in the context of the fields for the primordial scalar
perturbations is also discussed in this paper. It is shown that the expression for
the amount of causality violation is direction-dependent.

In [113], it was shown that causality violation coming from noncommutative
spacetimes leads to violation of Lorentz invariance in certain scattering amplitudes.
Measurements of these violations would be another way to put limits on the amount
of spacetime noncommutativity.

This paper is a sequel to an earlier work [99]. The latter explains the the-
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oretical basis of the formulae used in this paper. In [53] another approach of

noncommutative inflation is considered based on target space noncommutativity

of fields [53].

4.2 Likelihood Analysis for Noncomm. CMB

The CMBEasy [114] program calculates CMB power spectra based on a set of pa-
rameters and a cosmological model. It works by calculating the transfer functions

A for multipole [ for scalar perturbations at the present conformal time 7, as [115]

Ak = o) = / " dn Sk, )ik — ), (4.2.1)

where S is a known “source” term and j; is the spherical Bessel function. (Here
“scalar perturbations” mean the scalar part of the primordial metric fluctuations.
Primordial metric fluctuations can be decomposed into scalar, vector and second
rank tensor fluctuations according to their transformation properties under spatial
rotations [116]. They evolve independently in a linear theory. Scalar perturbations
are most important as they couple to matter inhomogeneities. Vector perturbations
are not important as they decay away in an expanding background cosmology.
Tensor perturbations are less important than scalar ones, they do not couple to
matter inhomogeneities at linear order. In the following discussion we denote the
amplitudes of scalar and tensor perturbations by Ag and Ar respectively.) The
lower limit of the time integral in eq. (@2Z1T) is taken as a time well into the
radiation dominance epoch. Eq. (@21]) shows that for each mode k, the source
term should be integrated over time 7.

The transfer functions for scalar perturbations are then integrated over k to
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obtain the power spectrum for multipole moment [,
C — (4n?) / dk 12 Py (k)| Au(k, 1 = o) (42.2)

where Pg, is the initial power spectrum of scalar perturbations (cf. Ref. [99].),
taken to be Py (k) = Ak~ with a spectral index n,.
The coordinate functions z,, on the noncommutative Moyal plane obey the

commutation relations

Z,,%,] =i0,,, 0, = —0,, = const. (4.2.3)

~

We set 80 = (%,6°2,6%) to be in the third direction. In that case, 80 = 6 §°
where the unit vector 8 is (0,0, 1).

We now write down eq. (79) of [99],

2 = ,
(Um@rt)y = - / die > i1+ DEPA(R) Ay (k) Po, (k)i (0kH)
l”ZO, 1" :even
l l/ ll/ l l/ l/l
x /(20 + 1)(20 + 1) , (4.2.4)
0 0 O -m m 0

where 7; is the modified spherical Bessel function and H is the Hubble parameter

during inflation. In the limit when 6 = 0 eq. ([£24) leads to the usual C;’s [89)]:

1

Cl - 20+ 1 ;(alma?m>0 - (47T2) /dl{? ]{72P¢0(l{7)‘Al(l{Z,’r] = 7]0)|2, (425)

Our goal is to compare theory with the observational data from WMAPS5,
ACBAR and CBI. These data sets are only available for the diagonal terms [ = [’
of eq. (24, and for the average over m for each [, so we consider only this case.
Taking the average over m of eq. (L2.4), for Im = I'm’ the sum collapses to

1

0(0) = —
! 20+ 1

S amag,)o = / dk K2 Py, (k)| Ag(kon = o) Pio (OKH),  (4.2.6)
cl” = a. (4.2.7)
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The CMBEasy integrator was modified to include the additional 7y code and
the Monte Carlo Markov-chain (MCMC) facility of the program was used to find
best-fit values for #H along with the other parameters of the standard ACDM
cosmology.

In the first run the parameters were fit using a joint likelihood derived from the
WMAPS5, ACBAR and CBI data. The outcome of this analysis was inconclusive,
as the resulting value was unphysically large. This result can be understood by

examining the WMAPS5 data alone and considering a x? goodness-of-fit test, using

2
0(9) — O data
x> = Z (%) ; (4.2.8)

l

where C ja1q is the power spectrum and oy is the standard deviation for each [ as
reported by WMAP observation.

We expect noncommutativity to have a negligible effect on most of the pa-
rameters of the standard ACDM cosmology. We therefore consider the effect on
the CMB power spectrum of varying only the new parameter Hf. To determine
its effect, we consider the shape of the transfer functions A;(k) as calculated by
CMBEasy. The graphs of two such functions are shown in Figs. [L.1] and [£.2 As
can be seen, these functions drop off rapidly with k, but extend to higher k£ with
increasing . (For example, in Fig. [ the transfer function for [ = 10, A;g, peaks
around & = 0.001 Mpc~! while in Fig. B2 the transfer function for I = 800, Aggo,
peaks around k& = 0.06 Mpc—t.) As 4o is a monotonically increasing function of k
starting at i3(0) = 1, this means that transfer functions of higher multipoles will
feel the effect of noncommutivity first.

The spectrum from the WMAP observation is shown in Fig. [43 Note in
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Figure 4.1: Transfer function 4A; for [ = 10 as a function of k. It peaks around

k = 0.001 Mpc'.
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Figure 4.2: Transfer function A; for [ = 800 as a function of k. It peaks around

k = 0.06 Mpc~ 1.
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Figure 4.3: CMB power spectrum of ACDM model (solid curve) compared to the
WMAP data (points with error bars).

particular that the last data point, corresponding to [ = 839 falls significantly
above the theoretical curve. This means that y? can be lowered by a significant
amount by using an unphysical value of H6 to fit this last point, so long as doing
so does not also raise adjacent points too far outside their error bars. Performing
the calculation shows that is indeed what happens. We therefore conclude that
the WMAP data do not constrain H6.

Fig. 1.4 shows the values of k£ which maximize A;(k), as a function of [, which
in turn gives a rough estimate of the region over which the transfer functions
contribute the most to the integral in eq. (4), and hence the region over which

changes in ig(H60k) will most change the corresponding C;. Thus to improve the
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Figure 4.4: The values of k which maximize A;(k), as a function of [

bound on HO, we need data at higher { (I > 839). In addition, tighter error bars
at these higher [ will, of course, also help constrain the new parameter.

Based on this analysis we performed a second run of CMBEasy excluding the
WMAP data. This run resulted in a smaller, but still unphysically large, value of
HO. To see why this happens, we again consider the effect of varying only the new
parameter H6 and examine the behavior of y2.

ACBAR and CBI are CMB data on small-scales (ACBAR and CBI give CMB
power spectrum for multipoles up to [ = 2985 and | = 3500 respectively) and
hence may be better suited to determination of Hf. A plot of x? versus Hf for
ACBAR+CBI data is shown in Fig. I The plateau between Hf = 0 Mpc

and Hf = 0.01 Mpc is not physical, it results from limited numerical precision.
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Figure 4.5: x? versus H6 for ACBAR data
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Therefore, likelihoods calculated in this range only restrict H < 0.01 Mpc and
hence cannot indicate whether the best fit is at H8 = 0 Mpc or some small non-zero
value.

However, it is possible to put a constrant on the energy scale of spacetime
noncommutativity from H6 < 0.01 Mpc. We discuss this below.

We can use the ACBAR+WMAP3 constraint on the amplitude of scalar power
spectrum A, ~ 2.15 x 1072 and the slow-roll parameter ¢ < 0.043 [105] to find the
Hubble parameter during inflation. The expression for the amplitude of the scalar
power spectrum

A, = %(%)2 (4.2.9)

where M, is the Planck mass, gives an upper limit on Hubble parameter:
H < 1.704 x 107°M,,. (4.2.10)

On using this upper limit for H in the relation Hf# < 0.01 Mpc, we have
0 < 1.84 x 107°m?.

We are interested to know the noncommutativity parameter at the end of in-
flation. That is, we should know the value of the cosmological scale factor a when
inflation ended. Most of the single field slow-roll inflation models work at an en-
ergy scale of 10'> GeV or larger [89]. Assuming that the reheating temperature
of the universe was close to the GUT energy scale (10 GeV), we have for the
scale factor at the end of inflation the value a ~ 1072 [89]. Thus we have for
the noncommutativity parameter, v < (1.84 a x 107)"/2 = 1.36 x 10~m. This

corresponds to a lower bound for the energy scale of 10 TeV.
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4.3 Non-causality from Noncommutative Fluc-
tuations

In the noncommutative frame work, the expression for the two-point correlation
function for the field g for the scalar metric perturbations contains hermitian and
anti-hermitian parts [09]. Taking the hermitian part, we obtained the modified

power spectrum
Py, (k) = P, (k) cosh(H - k), (4.3.1)

where Py, (k) is the power spectrum for the scalar metric perturbations in the com-
mutative case (as discussed in [99]), H is the Hubble parameter during inflation.
The constant spatial vector 0° is a measure of noncommutativity. The parameter
0 is related to 8° by 60 = 02 if we choose the z-axis in the direction of 6°, 2 being

a unit vector. Also,
By (k. 1) — / B oo, 1) X, (4.3.2)

This modified power spectrum was used to calculate the CMB angular power
spectrum for the two-point temperature correlations.

In this section EI, we discuss the imaginary part of the two-point correlation
function for the field y. In position space, the imaginary part of the two-point
correlation function is obtained from the “anti-symmetrization” (taking the anti-

hermitian part) of the product of fields for a space-like separation:

1 1

5[309(& n), ey, n)]- = 5(%(& m)ea(y,n) — wo(y,n)we(X, n))- (4.3.3)

IThis section is based on the work of four of us with Sang Jo. It has been described in [99],

but not published.
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The commutator of deformed fields, in general, is nonvanishing for space-like sep-
arations. This type of non-causality is an inherent property of noncommutative
field theories constructed on the Groenewold-Moyal spacetime [I13].

To study this non-causality, we consider two smeared fields localized at x; and
x5. (The expression for non-causality diverges for conventional choices for Pg, if
we do not smear the fields. See after eq. (£310).) We write down smeared fields

at x; and Xs.

(¥ 3/2 3 —a(x—x1)?

ol x) = (2) / Bz pp(x) ¢ | (4.3.4)
[0 3/2 2

plax) = (2)"7 [ e gutg e’ (439

where « determines the amount of smearing of the fields. We have

o

3/2 5
lim (—) / B pg(x) e X = g(x)), (4.3.6)

a—o00 \TT

The scale 1/y/a can be thought of as the width of a wave packet which is a measure
of the size of the spacetime region over which an experiment is performed.

We can now write down the uncertainty relation for the fields ¢(a,x;) and

©(a, X9) coming from eq. [E33):

Ap(a, x1)Ap(a, x3) = S1(0][p(a, 1), p(e, %2)]]0) (4.3.7)

N[ —

This equation is an expression for the violation of causality due to noncommu-
tativity.

We can connect the power spectrum for the field &y at horizon crossing with
the commutator of the fields given in eq. ([E3.3):

<0|[(I)0 (k7 77)7 @y (klv 77)]— |0> = (27T)3P<I>0 (k) Slnh(He_D ’ k) 63 (k + k/)

horizon crossing

|~

(4.3.8)
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Here we followed the same derivation given in [99], using a commutator for the
fields to start with, instead of an anticommutator of the fields, to obtain the above

result.

The right hand side of eq. (£3.7) can be calculated as follows:

(01[ (v, x1), (v, x2)][0) = (%)3 / dPxd®y (0|[ipe(x), o (y)]|0) e~ emaly—x2)"

(N [ s s &Pk d’q exiqry . —al(x—x1) +(y—x)?]
B (;) /d wd y(gﬂ-)BW (0][@q(k), Po(q)]]0) e e

2 3 ,

= )3(9) / dBrdPyd®k Pa, (k) sinh(HE - k) e~ (x=¥)gmal(x—x1)*+(y—x2)’]
™ ™
2 |

= Gy /d3k Py, (k) sinh(HQ" - k) e~ 55— (=), (4.3.9)
™

This gives for eq. ([E3.7),

1
(2m)?

2 .
Ap(a,x1)Ap(a,xz) > \ / &Pk Py, (k) sinh(HO® - k) e ek ix)|

(4.3.10)

The right hand side of eq. (A3J0) is divergent for conventional asymptotic be-
haviours of Pp, (such as Py, vanishing for large k£ no faster than some inverse
power of k) when o — oo and thus the Gaussian width becomes zero. This is the
reason for introducing smeared fields.

Notice that the amount of causality violation given in eq. ([L3I0) is direction-
dependent.

The uncertainty relation given in eq. (A3.10) is purely due to spacetime non-
commutativity as it vanishes for the case 8 = (. It is an expression of causality
violation.

This amount of causality violation may be expressed in terms of the CMB

temperature fluctuation AT/T. We have the relation connecting the temperature
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Figure 4.6: The amount of causality violation with respect to the relative orien-
tation between the vectors #° and r = X; — Xg. It is maximum when the angle
between the two vectors is zero. Notice that the minima do not occur when the

two vectors are orthogonal to each other. This plot is generated using the Cuba

integrator [117].
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fluctuation we observe today and the primordial scalar perturbation ®,

AT(n, .
SEE = e w)Yin(i)

) = (i) [ G A ®0¥i (), (4311)

where 1 is the direction of incoming photons and the transfer functions A; take the
primordial field perturbations to the present time 7y. We can rewrite the commu-
tator of the fields in terms of temperature fluctuations AT/T using eq. (A311)),
but the corresponding correlator differs from the one for the CMB temperature
anisotropy. It is not encoded in the two-point temperature correlation functions
which as we have seen are given by the correlators of the anti-commutator of the
fields.

In Fig. [L6] we show the dependence of the amount of non-causality on the
relative orientation of the vectors 0 and r = X; — X9. The amount of causality

violation is maximum when the two vectors are aligned.

4.4 Conclusions: Chapter (4]

The power spectrum becomes direction dependent in the presence of spacetime
noncommutativity, indicating a preferred direction in the universe. We tried a best-
fit of the theoretical model in [99] with the WMAP data and saw that to improve
the bound on H6, we need data at higher [. (The last data point for WMAP is
at [ = 839.) We therefore conclude that the WMAP data do not constrain H6.
We also see that tighter error bars at these higher [ will also help constrain the
noncommutativity parameter. The small-scale CMB data like ACBAR and CBI

give the CMB power spectrum for larger multipoles and hence may be better suited
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for the determination of Hf. ACBAR+CBI data only restrict H0 to Hf < 0.01
Mpc and do not indicate whether the best fit is at H6 = 0 Mpc or some small
non-zero value. However, this restriction corresponds to a lower bound for the
energy of # of around 10 TeV.

Further work is needed before rejecting the initial hypothesis that the other
parameters of the ACDM cosmology are unaffected by noncommutivity. It requires
performing a full MCMC study of all seven parameters.

Also, we have shown the existence and direction-dependence of non-causality
coming from spacetime noncommutativity for the fields describing the primordial
scalar perturbations when they are space-like separated. We see that the amount
of causality violation is maximum when the two vectors, 0 and r = X — Xg, are
aligned. Here r is the relative spatial coordinate of the fields at spatial locations

x; and Xs.

Summary of Chapter

e Deformed Lorentz invariance leads to noncausal correlations which “corre-

spond” to corrections dyy to susceptibility x in linear response theory.

e Linear response theory involves determination of the linear dependence
(0q) =~ xf of the expectation value (dq) of the change d¢g in a dynamical
variable or coordinate ¢ of a physical system when the Hamiltonian H of the
system is perturbed H — H + qf by applying a weak external force f to
the system.

e There are acausal corrections dyy to susceptibility x due to spacetime non-
commutativity. For input with a single frequency wy the momentum depen-
dence 5;(/9(1_5 ,w) of the corrections dxy to the output due to noncommutativity
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display zeroes and oscillations which are potential experimental signals for

noncommutativity.
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Chapter 5

Finite Temperature Field Theory

In this paper, we initiate the study of finite temperature quantum field theories
(QFT’s) on the Moyal plane. Such theories violate causality which influences the
properties of these theories. In particular, causality influences the fluctuation-
dissipation theorem: as we show, a disturbance in a spacetime region M; creates
a response in a spacetime region M, spacelike with respect to M; (M; x Ms).
The relativistic Kubo formula with and without noncommutativity is discussed in
detail, and the modified properties of relaxation time and the dependence of mean
square fluctuations on time are derived. In particular, the Sinha-Sorkin result [118]
on the logarithmic time dependence of the mean square fluctuations is discussed
in our context.

We derive an exact formula for the noncommutative susceptibility in terms
of the susceptibility for the corresponding commutative case. It shows that non-
commutative corrections in the four-momentum space have remarkable periodicity
properties as a function of the four-momentum k. They have direction depen-

dence as well and vanish for certain directions of the spatial momentum. These
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are striking observable signals for noncommutativity.
The Lehmann representation is also generalized to any value of the noncom-

mutativity parameter #*” and finite temperatures.

5.1 INTRODUCTION

The Moyal plane is the algebra Ay(RY) of functions on R? with the *-product given
by
i i
(f £ 9)(@) = F(@)es " Prgla) = F@)et TN g(a), f,9 € Ap(RY),
0, = —0,, = constant. (5.1.1)

If 2, are coordinate functions, #,(x) = z,, then (511l implies that
[, 2] = 6, (5.1.2)

Thus Ag(R?) is a deformation of Ay(R%) [119].

There is an action of a Poincaré-Hopf algebra with a ”twisted” coproduct on
Ap(R?). Its physical implication is that QFT’s can be formulated on Ag(R?)
compatibly with the Poincaré invariance of Wightman functions [32] 119]. There
is also a map of untwisted to twisted fields corresponding to 6, = 0 and 6, # 0

(“the dressing transformation” [51],[52]). For matter fields, if these are ¢y and ¢y,

155 g 14
wo(z) = po(x)e2 919" P = pg(z)e2 21F, (5.1.3)
P, = Total momentum operator. (5.1.4)

<—
While there is no twist factor ez 2P for gauge fields, the gauge field interactions

of a matter current with a gauge field are twisted as well:

1455
Hi(x) = HO(x)ez 2P, (5.1.5)
147



where HY can be the standard interaction J%A, of an untwisted matter current
to the untwisted gauge field A,,.
The twisted fields g and HY are not causal (local). Thus even if ¢y and HY

are causal fields,

[po(x), po(y)] = 0, (5.1.6)
[H7 (), Hj(y)] = 0, (5.1.7)
[H7(2), 0(y)] =0, xy (5.1.8)

(x x y means that x and y are relatively spacelike), that is not the case for the

corresponding twisted fields. For example,

_i _9_ _i_0 puv_0_
[po(z), Hi(y)] = e 277" a7 oo (2) HE(y) — e 237 ™ 37 U (y) oo () # 0,

T X y. (5.1.9)

Thus acausality leads to correlation between events in spacelike regions. The
study of these correlations at finite temperatures at the level of linear response
theory (Kubo formula) is the central focus of this paper. We will also formulate
the Lehmann representation for relativistic fields at finite temperature for 6, # 0.
It is possible that some of our results for 6, = 0 and 6, # 0 are known [120].

In section 3, we review the standard linear response theory [120] and the striking
work of Sinha and Sorkin [II§]. We also discuss the linear response theory for
relativistic QF'T’s at finite temperature for 6,, = 0. It leads to a natural lower
bound on relaxation time, a modification of the result “(Ar)? ~ constant x At”

4

of Einstein and its generalization “(Ar)? ~ constant x log At” to the “ quantum

regime” by Sinha and Sorkin [118].
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Section 4 contains the linear response theory for the twisted QFT’s for 0, # 0.
A striking result we find is the existence of correlations between spacelike events:
A disturbance in a spacetime region Ms evokes a fluctuation in a spacetime region
M, spacelike with respect to My (M7 x Ms). Noncommutative corrections in four-
momentum space also have striking periodicity properties and zeros as a function
of the four-momentum k. They are also direction-dependent and vanish in certain
directions of the spatial momentum k. All these results are discussed in this section.

The results of this section have a bearing on the homogeneity problem in cos-
mology. It is a problem in causal theories [I121I]. The noncommutative theories are
not causal and hence can contribute to its resolution.

In section 5, we derive the finite temperature Lehmann representation for
0, = 0 and generalize it to 6, # 0. The Lehmann representation is known to be

useful for the investigation of QFT’s. The concluding remarks are in section 6.

5.2 Review of standard theory: Sinha-Sorkin re-

sults

Let Hy be the Hamiltonian of a system in equilibrium at temperature 7'. It is
described by the Gibbs state wg which gives for the mean value wg(A) of an ob-

servable A,

_Tr e BHo A

wal(A) = =5 (5.2.1)

We assume that Hy has no explicit time dependence, otherwise it is arbitrary
and can describe an interacting system.

We now perturb the system by an interaction H'(¢) so that the Hamiltonian
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becomes
H(t) = Hy + H'(1). (5.2.2)

When H' is treated as a perturbation, the change ws(dA(¢)) in the expectation

value of an observable A(t) in the Heisenberg picture at time ¢ is

ws(0A(t)) = we(Ur (A Ur(t)) — ws(A), (5.2.3)

where
Up(t) = Te i J oo drHi(r) (5.2.4)
Hi(7) = entom H'(7)e=nHor, (5.2.5)

Hence to leading order,

wa(GA() = —% /_ dr wy([A, Hi(7)]) (5.2.6)
_ —%/: dr 0(t — T)ws([A, Hi(7)]). (5.2.7)

The linear response theory is based on this formula. It is completely general and
applies equally well to quantum mechanics and QFT’s. But in the latter case, the
spatial dependence of the observable should also be specified.

For illustration of known results, we now specialize to quantum mechanics
with one degree of freedom and to a dynamical variable A(t) = z(t) = z(¢)" and
H'(t) = z(t)f(t) where f is a weak external force. Then,

aalbalt) = —3 [ dr o~ s x() £7) (5:28)

o0

= /_00 x(t—71) f(1), (5.2.9)

[e.e]
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where y is the susceptibility:

(1) =~ 0t ([o(0), 2(0))) (5.2.10)

We have the following expressions:

W(1) = wala(t)o(0)) = S() +iA(0), (5.2.11)
S(8) = Se({a (0. 20D, A = —Lws((alt),2(0))
() = % B(H)A(#). (5.2.12)

The significant properties of these correlation functions are as follows:
1. Unitarity:

Hl = Hy, z(t)' =z(t) = S(t)=5(t), At)=At).

2. Time translation invariance:

from time independence of H,.

3. The KMS condition: (with & = 1.)

W(—t —if) = W(2). (5.2.13)

Denoting the Fourier transform of these functions, including x, by a tilde ~, as

for instance

W (w) = / dt ST (1), (5.2.14)
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one finds

W(w) = PW(~w), (5.2.15)
Iy (w) = —%(1 e (), (5.2.16)
S(w) = — coth %“’Imy(w). (5.2.17)

The important aspect of these relations is that the dissipative part Imx of the

(Fourier transform of) susceptibility x completely determines all the two point

correlations, and hence also the real part Rex of .

Rex can also be determined from Imy by the Kramers-Kronig relation [120].

Following an argument, presented in [I18], which exploits the properties of the

Heaviside function 6, we can write

where

I (w) = — 27 (W),

Therefore, (5.2.17) becomes

The Fourier transform of (5.2.20) gives

2
(5.2.18)
X' (t) := sgn(t) x(|t]),
sen(t) = 0(t) — 0(—1). (5.2.19)
~ 7 Bw _,
S(w) = 5 coth - X (w). (5.2.20)
S(t) = %P/_w dt' sen(t’' — 1) (|’ —#]) coth %t/, (5.2.21)

where P denotes the principal value of coth. Rey does not contribute to

G.2.21).
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This equation has important physics. In time At, the operator changes by
Az(t) = x(t + At) — x(t). With ¢t = 0, the square displacement due to equilibrium

fluctuations is thus

ws(Az(0) ?) = 2[S(0) — S(At)] (5.2.22)

so that we obtain the Sinha-Sorkin formula

Sws(Aa(0)?)

™

= %P/o dt'x(t")[2 coth() — coth(Q(t' + At)) — coth(Q(t' — At))], Q= 5

(5.2.23)

Sinha and Sorkin [I18] have analyzed this equation for the (realistic) ansatz
X(t) = p[l —e710(t) =5 ot —1), (5.2.24)

where 7 is the relaxation time.

In that case,

1 oo ph [sinh(Q|AE — 7|)sinh(QAt + 7])]2
5ws(Ax(0) ) = —In NG : (5.2.25)

where we have restored 7.
Sinha and Sorkin [IT8] observed that (5.2.20]) gives Einstein’s relation in the

classical regime:

1
Bh<T <At Sws(Aa(0)?) ~ %At. (5.2.26)

But in addition they found a logarithmic dependence of At in the ”quantum”
regime:
ph At
=—1In—.
™ T

r< At < Bh: %WB(AQ;(O) 2) (5.2.27)

They have emphasized that this behavior can be tested experimentally.
They also discuss a regime between the classical and quantum extremes which

interpolates (5.2.26]) and (5.2.27).
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5.3 Quantum Fields on Commutative Spacetime

Hereafter, we set h = ¢ = 1.

We now specialize to QFT’s for 6, = 0. For simplicity, we take

H'(t) = e / &y No(y)oo(y). (5.3.1)

where Ny(y) is the number density of a charged spinor field )y,

No(y) = d(y)to(y). (5.3.2)

o is the externally imposed scalar potential and the subscript denotes that 6, = 0
for these fields. Again for simplicity, we choose A as well to be the number density

at a spacetime point . Then

e

ws(6No(w)) =

/ 0y 6(zo — yo)ws([No(x), No(w))eo(y).  (5.3.3)

The natural definition of susceptibility in this case is

X(w,y) = —iz0(z0 = yo)ws([No(2), No(y)): (5:3.4)

With this definition,
a(6No()) = [ ' X )ulo). (535
We will now analyze this formula.
The Kubo formulae

The susceptibility xg is related to the Wightman function

Wi (2,1) = 23 (Vo) No(y)) (53
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and the autocorrelation and commutator functions

Wy (x,y) = Sp (2, y) + 45 (z,y),
5 e,) = 5rn(No() Nofy) + No(y) No(a),
s[Nol), Nofy)

A (r,y) = =
Xs(2,y) = 2e8(x0 — yo) Ag (2, y). (5.3.7)

2h

There are more nontrivial conditions coming from the KMS condition which
we now discuss.

By assumption, Hy commutes with spacetime translations and rotations as
dictated by the Poincaré algebra. So wg enjoys these symmetries and
Woﬁ(x, Y), Sg(at, Y), Ag(x, y) depend only on xg — yo and (7 — ). Hence they are

even in ¥ — i
Woﬁ(ifo, Lo 5 Yo, §) = WOB(IOa Yo 5 Yo T) ete. (5.3.8)
= Wylao w05 (#0—3)°). (5:3.9)
As WP (xo—yo ; (Zo—1)%) can contain terms with 6(zo— o), we cannot always
claim that it is even in 2y — o as well. The same goes for S5 and A}
5.3.0.1 Spacelike Disturbances

If  and y are relatively spacelike, [Ny(x), No(y)] =0 because of causality (local-
ity).
So if ¢y = 0 outside the spacetime region Dy and we observe the fluctuation in

a spacetime region D; spacelike with respect to Ds, then the fluctuation vanishes:
(A}g((SN(](I)) =0 if z € Dy, Suppapo =Dy, D1 X Ds. (5310)
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Here Supp denotes the support of the function ¢q (it is zero in the complement of
the support).
Thus we easily recover the prediction of causality for 6, = 0 [120].

5.3.0.2 Timelike Disturbances

In this case, the point of observation x is causally linked to the spacetime region
Ds. Hence [Ny(z), No(y)] need not vanish if z € Dy.

We can model the analysis of this case to the one in Section 2 if Hy is the time
translation generator of the Poincaré group for ¢pg = 0. We assume that to be the
case.

Following section 2, we now introduce the correlator
Wy (2, y) = ws(No(x)No(y))- (5.3.11)

By relativistic invariance, W) depends only on (Z—7)2. Since 6(zo — o) is Lorentz
invariant when x —y is timelike, it can also depend on 0(xg—1g). Thus WOB depends

on (7 — )% and x¢ — yo and we can rewrite (5.3.11]) as
Wy (7 — )2 w0 — o) = ws(No(2) No(y))- (5.3.12)

We can thus focus on

Wo (22, 20) = ws(No(z)No(y)). (5.3.13)

It is important that it is even in ©. We cannot say that about zy because of
the potential presence of 0(x).

Now

Wh(2, 20) = ws(No(0)No(z)) = Wi (22, —a0). (5.3.14)
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The presence of & thus does not affect the symmetry properties in xy. That is
the case also with regard to the KMS condition. We write all these conditions

explicitly now: write

W2, x0) = SH(T2, o) + 1AL (F2, x0), (5.3.15)
where
SR, m0) = S (No(2) No(0) + No(0) (),
A3, w0) = — us([Nof), No(0)). (5.3.16)
Then
Xa(2?, m0) = 2e0(z0) AJ (72, 7o), (5.3.17)

where we have written the susceptibility as a function of #2 and xy. Then as before

1. S5 and A] are real functions:

S0(#2,w0) = SE (22, w0), Ab (72, 30) = AL(#2, o). (5.3.18)

2. Sy is even in o and A} is odd in zq:

SO, —x0) = SV(F2,10), AT, —1mg) = —AD(Z,20).  (5.3.19)

3. We have the KMS condition
WP, —xg —iB) = W (22, x0), (5.3.20)

where we have set the speed of light ¢ equal to 1.
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[We will rewrite xs, Xp as Xg , 5{5 to emphasize that they correspond to 6, = 0.]

Thus from the Fourier transforms distinguished by tildes, as in

Wf(fz,w) = /dxo e W (72 1), (5.3.21)
we get
WA, w) = W (2, —w), (5.3.22)
Y. (22, w) = —2(1 — PNWE (2, —w), (5.3.23)
eSP (72, w) = — coth 6—Im~ﬁ (22, w) (5.3.24)

Now following an argument analogous to the one that yielded (2.2:20), we are able

to write
B, i g,
Imy5 (%, w) = —ix'g(atz,w),
(5.3.25)
where
X/g(f2al’o) = sgn(zo, 7) Xg(f2a‘l’o‘)a
sgn(ro, T) = O(zo — |7]) — O(—x0 — |7]).
(5.3.26)
Therefore, (5.3.24) becomes
eSP (72, w) = — coth %Imxo (%, w) = %cothﬁ—WN’B(x ,w). (5.3.27)
The Fourier transform of (5.3.27)) gives
B N B2 (o LE
eSy (72, 1) dxy sen(zg — xo, T) X, (77, |2 — xo|) coth 5 (5.3.28)
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The expression for the mean square equilibrium fluctuation wg(ANZ)(#2,0)

follows as before:

S AND)((E ~ §)7,0) = 5s((No(, 70 + Aro) — No(F, 70))°)

L 1 > ~ Tz
— e S{(E,0) - S{((7 - 7%, Ao) ) = o 2/6| daiy x§ (@, la)) coth 0

)}
(5.3.29)

o ( 0~
[T el x (@ - 77 et coth LRI o T B0)
|Z—g]

So nothing much has changed until this point except for the additional dependence
of correlations on 2.
An ansatz like (52.24) for susceptibility is no longer appropriate now. That is

because if
:cg < 2, (5.3.30)

then as we saw xo (2, o) is zero by causality.

Thus the relaxation time 7 in units of ¢ has the lower bound |Z]:

> |, (5.3.31)

7 is a function of 7%, and we write 7(7?). Then the generalization of the ansatz

(B224) is

20— xo—|Z[>T

Xo (22, 20) = pll — e 7@ |0(zo — |T|) w 0(xo — |7 — 7(72)). (5.3.32)

This lets us evaluate the mean square fluctuation of number density

=

1 e 2 oy MR [sinh Q|Azg — 7((Z — )?)| sinh Q|Axg + 7((Z — 7)?)|]
2w5(ANO)((I y) 50) - T hl SlnhQT(O) 9

(5.3.33)

where ) = %
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Following Sinha and Sorkin [I1§], we assume that
Az > 7(72) > |7, (5.3.34)
There are thus four time scales:
Bh, |Z|, 7(F*), A, (5.3.35)

where we have restored h. With the assumption (5.3.34]), we have four possibilities

to consider:
1. Bh < |Z| < 7(7?) < Az,
2. |7] < ph < 7(7?) < Ay,
3. |7] < 7(7?) < Bh < Ay,
4. |7 < 7(7?) < Azy < S

Case 1: The classical Regime

Case 1 is the "classical” limit. We get back Einstein’s result in this case:

Sws(ANB)((7 — 7%,0)
_ %(AIO — 7(0)) = pkT(Azo — 7(0)). (5.3.36)

Cases 2 and 3 interpolate the classical regime and the extreme quantum regime
of case 4. So let us first consider Case 4.

Case 4: The Extreme Quantum Regime

This is the new regime where Sinha and Sorkin [II8] found a logarithmic de-

pendence on time At of mean square fluctuations. It is now changed significantly.
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((Z - §)%)

Y A 22). (5.3.37)

7 7(0)

Lws (AN~ 77°,0) =

As for the cases 2 and 3, our results are as follows:

Case 2: The same as Case 1.

S AN 7%,0) = 5(Aao - 7(0)), (5.3.38)
Case 3:
%WB(ANg)(({f —4)2,0) = %Amo + % In 2735(0). (5.3.39)

5.4 Quantum Fields on the Moyal Plane

For the Moyal plane, we must use the twisted fields and interactions as explained

in the Introduction. That leads to the following expression for o Ny:

No(w) = =i [ dy O — ) [No(o), HIa), (5.4.1)
where
1% 1%
Ny = Noe22"F . Hj(zg) = e/d?’:v HI(z)e2 21 (5.4.2)

H? being the interaction Hamiltonian density in the interaction representation.
Note that eég/\P reduces to eégoeoip " on integration over d*x. But we will not
use this simplification yet.
We shall first discuss the dependence on 6 of two-point correlators.

Let us first examine the twisted Wightman function:



We can write this as an integral (and sum) over states with total momentum p

such as
_i(_9_ l 2%
(p, ...|e PP Ny (z) N (y)e~ 2 Gam Tagm Prypy -y (5.4.4)

where the dots indicate that there will in general be many states contributing to

a state of given total momentum p. We can write (5.4.4)) as

(D, ...|e~PPO Ny () No(y)e~ 5000 Pepy 3 (5.4.5)
where adP,A = [P,, A]. for any operator A. But
p,..[[Pu,Allp,...) =0 (5.4.6)
for any A. Consequently (5.4.4) is
WP (x,y) = e_%awi“ewﬁwoﬁ(x,y). (5.4.7)
But now we can write WOB (z,y) as we wrote it earlier:
W (. y) = W5 (7 = 9)*, 20 — o). (5.4.8)
It depends on x — y. Hence in the exponential,
0 0 0 0

55 5 = " 5 = (5.4.9)

Similarly,
55 (e.) = gn(No(x)Noly) + No(w)Nol)) = ST — 77,0 — 10),
Ajw ) = —2wo(Now), No)]) = A3(@ w0 —wo)  (5.4.00)

and they have the properties listed earlier.
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But we cannot conclude that 6 Ny is independent of 6 as well. Specializing to

My = Nowo, (5.4.11)

we find
S Np(x )—6N91(x — SNy (), (5.4.12)
0Ny ( @/d‘*a:’ O(zo — )™ 200" 5w g (No(2)HO(2' )e 2 (aam + om0 Py
(5.4.13)

with a similar expression for Nz (x). The last exponential can be replaced by 1

. . — _ i 0 puv_0 _0 gi0 a
as before. Also, integration over 7 reduces e 28:7"" @7 to e~ 3507 8270

8 _i_ 0 _gi0_d
T — e 26#9 9270 | (5414)

*
€ 20z

2z
w0

Thus

ONj = — / d'z’ (g — ah)e” 295" 5 ws(No(2) No('))po(2')  (5.4.15)

and similarly

i0_ 0

500 wa(No(2' ) No(x))po (). (5.4.16)

SN; = —i/d4x’ 0(xo — xo)e%
We now discuss the two cases where x is space- and time-like with respect to

Supp ¢o-
x spacelike with respect to Supp po:

This is the case where we anticipate qualitatively new results.

While calculating d N, (z') — dNZ(2'), we cannot set

No(z)No(2') = No(2')No(z)  (from causality) (5.4.17)
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because the exponentials in the integrand translate the arguments x and z’, and

can bring them to timelike separations. With this in mind, we can write

No(w) = =i [ 14’ 6y — ) cosl -0 ((NoCa), (e ()
— /d4at' 0(xo — ) sin[% aii 6% ai/]cuB(No(z)No(x’) + No(z")No())po ().

(5.4.18)

We can replace cos(35:560°5%) by cos(3:2:60055;) — 1 = 2sin®(1:%:6°:%;) as

the extra term contributes 0 by causality. This shows that this term is O((6)?).
Finally,

0Ny (z) = —/d4x’ 0(zo — () sin[%aii 6% ajm]wﬁ(NO(‘r)No(‘r/) + No(2")No(2))po(z")
+ 2i/d4:17/ 0(zo — () siHQ[i 6(?Ei 6™ 8;30/]01[5([]\70(:17),No(x’)])<p0(x’). (5.4.19)

This shows clearly that there is an acausal fluctuation in § Ny(z) when ¢q (the
“chemical potential”) is fluctuated in a region Dy spacelike with respect to .

But it occurs only when time-space noncommutativity (#%) is non-zero.

We will come back to this term after also briefly looking at the case where x is

not spacelike with respect to D.
x s not spacelike with respect to Supp o

The only change as compared to the spacelike case is that we must restore the

extra term, which contributed 0 in the spacelike case, but does not do that now.

We can simplify notation by defining ANy(z) for any = as follows:

ANy(x) = —/d4x/ 0(xo — () sin[% 6(?Ei HiO%]wﬁ(No(x)No(x/) + No(z")No(2)) o (')
+2i / e’ O — ) sinQ[i 8‘; 610 83‘?0,]%([%(;5), No(2)])go('). (5.4.20)
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Then
a) If = x Supp ¢y,

ONy(x) = ANy(x). (5.4.21)
b) If x is not spacelike with respect to Supp ¢y,

6M@%ﬂ/¢£W%—%MNMM%%WW%®%HMM@ (5.4.22)

5.4.1 An exact expression for susceptibility

We want to write

5%@:/&5M@wwwx (5.4.23)

where Yy is the deformed susceptibility.
We will succeed in doing that by deriving an exact expression for the Fourier

transform
Xo(k) = /d4:c e xo(x), kx = koxo—k - T, (5.4.24)

in terms of xo(k). The corrections to Xo(k) have remarkable zeros and direction
dependence which we will soon point out.

We can write
ONg(x) = 0No(x) + ANy(z), (5.4.25)
where

INy(z) = /d43:' Xo(x — 2")po (') (5.4.26)
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and

ANg(x) = AN, (z) — ANy (2),

AN () = =2 [ d'a’ O(xo — ) sin(%%eio 8(3:6 ) (2 = 2)po (")
= /d4x’ Xél)(x —2')po(x'), (5-4.27)
AN @) =~ [t 0oy — ey 00 L) A — )
40z Ox
= [ at A e - e (54.28)

(5.4.29)

In (B427) and (5.4.28)), 326 = (aiz(g)l - (a%(,))g, where the first differentiates just
SP and the second differentiates just ¢q.
On partially integrating the second derivative, it cancels the first derivative

acting on S) leaving a derivative % acting on 0(x¢ — x). So finally
0

19 ., 3
(1) _9ab N Ry
Xy () =25, (2) Sm(28:pi9 8:50)9(%) (5.4.30)
and similarly,
%
D (2) = —445(2) sin2(2 9_pio 7 )0(x0). (5.4.31)

4021 O

Let us Fourier transform these expressions setting

W) = [ o), (5.4.32)
YW (k) = / d*z ¢\ (z) (5.4.33)
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and similarly for S(k), A(k). Then

00 _ ~ 5
Rk = / dzo O(ao)| / dgo - i S0 Z ) g oy

2
~ 2 kO (ke — o) ~ -
X?(k‘) = /da:o 6’(3:0)[/ dgo e'Fo=10)w0 gjpy?2 # A(k, qo)].
(5.4.34)
Here we can write S and A in terms of Imp:
3 B Bk . _ -
(k, ko) = — coth 53 Imyxo(k, ko), (5.4.35)
A(k, ko) = ilmyo(k, ko). (5.4.36)
Finally for the twisted susceptibility xj,
xo = xo+ x5 + x5, (5.4.37)

)

where we have ezract expressions for Xéj in terms of Imyy.

5.4.2 Zeros and Oscillations in Zéj )

A generic Imyy is the superposition of terms with -function supports at frequencies

w, that is, of terms
8 (ko — w)ImyE(k, w) (5.4.38)

(R standing for “reduced”).

We now focus on a single frequency w, that is, the case where ImS{O(E, ko) equals

(.4.38). Then
Xo(k) = 7Tcoth R sin 5 Imyg (k,w) (5.4.39)
- 2 1 ki (ko —w) . .-
207y _ 2 2 R 0 R
Xo(k) = e — sin 1 Imyy (k, w). (5.4.40)
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These corrections have striking zeros and oscillations which would be charac-
teristic signals for noncommutativity. Thus,

a)
ki0° (ko — w)

%o (k) =X (k) =0 if .

=2nm, n€Z. (5.4.41)

S{(Sl) actually vanishes at all nr.

b) Regarding the oscillations, they are from the sin and sin? terms. The sine

repeats if its argument is changed by

2nm (5.4.42)
while the sin? term does so if its argument is changed by

nm (5.4.43)

(n € Z). These are multiplying backgrounds with no particular oscillatory behav-
ior.

Both a) and b) are characteristic features of the Moyal Plane and in principle
accessible to experiments. We emphasize that that both these effects are direction-
dependent.

These features may have applications to the homogeneity problem in cosmology

21

5.5 Finite temperature Lehmann representation

The Lehmann representation in QFT expresses the two-point vacuum correlation
functions of a fully interacting theory in terms of their free field values. It is
exact and captures the properties emerging from the spectrum of P, and Poincaré

invariance in a useful manner.
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We have seen in Section 4 that all the two-point correlations at finite temper-
ature for 0" # 0 can be expressed in terms of the corresponding expressions for
0" = 0. In this section, we treat the #*¥ = 0 case in detail which then also covers
the 6" £ 0 case.

First we state some notation. The single particle states are normalized accord-

ing to
(K |k) = 2|ko|6*(K — k), ko= (K +m?)z, (5.5.1)

where m is the particle mass. The scalar product of n-particle states such as
|k1, ..., k,) then follows, (with appropriate symmetrization factors which we will
not display here or below). We will also not display degeneracy indices such as
those from color: their treatment is easy. For a similar reason, we consider spin 0
fields.

For the normalization (5.5.]), the volume form dV,, for the n-particle state is a

product of factors

3k,
2|kjol

- &k, ~
Vo =TT drs doss = gt Tkl = B 4 (5.5.2)

J=1

Now consider

Wy () = wa(po()po(a')), (5.5.3)

where g is a scalar field for 6#¥ = 0 and H is the total time-translation generator

of the Poincaré group. Its spacetime translation invariance implies that
wg(po(z)po(a")) = ws(po(z — 2")po(0)). (5.5.4)
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We assume as usual that
(0]epo()[0) = 0. (5.5.5)

We can write

(0le™ oo (x)0(0)]0) + ws(20(x)|0) {0]£0(0))
Z(B)
Z(B) := Tre PH, (5.5.6)

Wy (z) = + WY (),

We shall see that the vacuum contributions are separated out in the first two
terms and that vacuum intermediate states do not contribute to /WOB .

We now consider the three terms separately.

L e_BH X :L L
Uz e T nlon Ol = 7 Z(9)

Here W (x) is the zero-temperature Wightman function with its standard spectral

Wi(z) = W (x). (5.5.7)

representation:

W(z) = /dM2 p(M*) Ay (2, M?), Ay (x, M?) = /d4p (p* — M?*)B(po)e™™.
(5.5.8)

2) walo()0)01e0(0) = 57 3 [ Vi ha,eeale™ 0 @) 0) Ol O b1, e i)

n=1

(5.5.9)

where the n = 0 term has been omitted in the sum as it contributes 0 by (B.5.15).

Using

po(x) = ()™, (5.5.10)
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where P, generates translations (P = H), we find

ws(po() 0 (0]0(0)) = % / 0 Bk )Pt (12, (5.5.11)
) = 32 [ TT 6083 =m0l ' (3 ks = ) (ks o Rl 00}

(5.5.12)

p being the zero-temperature spectral function.
Thus
1
a0 00) = s [ AN pOF)AL (A B), (5513
A (z, M2 ) = / AU O(ko) (K — M2)ePhotike. (5.5.14)

For 8 =0, Ay (z, M?;0) is the free field zero-temperature Wightman function. It

vanishes when [ — oo.

)WO :—B Z /dV dV kla" k |€ pH ($)|Q177Q1n> <Q177Q7l|§00(0)|k177km>

n,m=1

The vacuum contributions (n and /or m = 0) have already been considered
and need not be included here.

Elementary manipulations like those above show that

Wi (x) = % / 'K d'Q 0(Ky)0(Qg)e #Rotitki-Qe
{ > /Hd‘*k@ kjo)d(k? —m? Hd4q9 qj0)d(q2 —m?) x
'O ki = K5O a5 — Q) [(k, ooy Kl 20(0) g1, ooy )}

(5.5.15)
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The term in braces, by relativistic invariance, depends only on K2, Q2 and
(K + Q)% As K,, Q, are timelike with Ky, Qo > 0, we have, as in scattering
theory,

(K +Q)* > (VK2 + Q2> (5.5.16)
Call the terms in braces as p(K?, Q? (K + Q)?). Then

— 1
Wl (z) = 70 / dM?dN?dR? p(M?,N?, R?) x
{ /d4K 0(Ko)o(K? — M2)/d4Q 0(Q0)8(Q% — N2) §((K + M)? — R)e PKoti(K—Q)z 1

(5.5.17)

The term in braces here is the elementary function appropriate for ﬁ/\f .
The full spectral representation for Wf is obtained by adding those of its terms

given above.

5.6 Conclusions: Chapter [5]

A major result of this chapter is the derivation of acausal and noncommutative
effects in finite temperature QFT’s. They are new and are expected to have ap-
plications for instance in the homogeneity problem in cosmology.

We have also treated the finite temperature Lehmann representation on the
commutative and Moyal planes in detail. This representation succinctly expresses
the spectral and positivity properties of the underlying QFT’s in a transparent

manner and are thus expected to be useful.
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Chapter 6

Conclusions

We have given a brief review of quantum theory as well as an introduction to
quantum field theory in noncommutative spacetime. The concept of deformed
Lorentz invariance in noncommutative spacetime led to the following effects which

may be susceptible to experimental tests.

1. Deformed statistics of quantum fields whose consequences include

1) modification of the statistical interparticle force and hence degeneracy

pressure which determines the fate of galactic nuclei after fuel burning seizes,
2) the possibility of observing Pauli forbidden transitions,
3) observation of Lorentz, P, PT, CP, CPT and causality violations.

2. The presence of noncommutativity dependent temperature fluctuations in
the CMB radiation, through a noncomutativity dependent post inflation

power spectrum; giving an estimated upper bound for the noncommutativity

parameter and a corresponding lower bound for the energy scale.
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3. Encounter with noncommutativity-induced causality violation and a non-

Gaussian probability distribution during cosmological inflation.

4. Noncommutativity induces noncausal, and potentially periodic, corrections

to the susceptibility in linear response theory.

To summarize we have investigated, in the context of quantum field theory, the
scope of applicability of a new concept of Lorentz invariance. This new concept is
a deformation of the usual concept of Lorentz invariance motivated by the form of
invariance in Moyal’s treatment of quantum mechanics. The investigations were
based on certain available theoretical models and experimental data. Results of
these investigations can point to alternative and hopefully simpler solutions to
both expected and observed physical phenomena whose experimental energies fall

within the range of validity of the noncommutativity models.

174



Appendix A

Some physical concepts

A.1 Motion of an electron in constant magnetic

field

When an electron moves in a constant magnetic field the coordinates of the center

of its circular motion (ie. guiding center) become noncommutative when the system

is quantized canonically. The Lagrangian and equations of motion

—2
— — 1 —
L:%—@A, A= -3 7xB,
7 . dz
md—Z:eﬁ'xB, U:d—f

have the solution

f(t)::?oJr%§x60+§(§-60)(t—t0)

5 t—1t ~ % 1 t—t
— B x ,(—]*0 cos(w( 0)) _ B x (B « —»0) Sln<w( 0))7
w w
e|B|] eB
w=-—=—.
m m
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The position of the center of circular motion is

IL’C(T,) = T9+ E B x Vo + B (B "(J())(t — to)
and the canonical momentum is
oL -
p=— =miu— eA.
ov

One gets the canonical commutation relations

@i (0), 27 (1)) = 0 = [p'(0), P (1)] V.
[21(0), 9 (1)) = [ (1), mo? () — A a(1))] = [ (1), mo? ()] = —ihs' e,

from which one can verify that

. . B .. .
(1), v (£)] = i—ez MRk i,
= Lol w0)] = 0 = i (AL1)
e

Here % = %5“‘” B is not invertible as a 3x 3 matrix as detsy3 # = 0. However if we
arrange the system such that BTy = 0, say with B¥ = B&**, of = vZ6* + vf vk,

h

then the motion stays in the z — y plane and 6“9 = Z.c7 is now invertible as a

2 X 2 matrix.

A.2 Symmetries and the least action principle

A.2.1 Use of symmetries

A major reason for the use of symmetries to analyze physical systems stems from
the fact that the kinematics and/or dynamics of a physical system can be cast
in terms of nonanalytic and/or analytic (differential or integral) constraints or
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equations which may also be derivable from a least action principle. The sym-
metry group of the action or Lagrangian is a subgroup of the symmetry group
of the equations. The key observation that the solution space of the equations is
invariant under the symmetry group of the equations implies that the complete
space of solutions can be generated from only a few simple solutions. Moreover,
most of the physically relevant information about the solution space of the equa-
tions is contained in their symmetry group. In particular, one expects that each
independent solution of the equations has a simple correspondence with an irre-
ducible representation of the symmetry group. Therefore instead of trying to solve
the equations directly, one could rather consider the problem of finding the irre-
ducible representations of the symmetry group. The group theoretic analysis is
most useful for interacting physical systems where the interactions lead to coupled
nonlinear equations for which even the simplest solution can be difficult to find.
One may postulate that whenever two separate systems couple, one or more of
the variables involved should be modified or extended such that their individual
symmetry groups become either 1) independent symmetry groups of the coupled
system or 2) subgroups of a larger symmetry group of the coupled system or 3)
identified; that is, merged together into a larger unifying symmetry group. Another
major reason for the use of symmetries is that they identify physically observable
quantities, such as interaction amplitudes or potentials, as those that can survive
the symmetry transformation. Together with an action principle, the symmetries
also provide conservation laws and conserved quantities (Noether’s theorem) which

help simplify the analysis of interactions.
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A.2.2 Analogy and least action principle

Biological systems, their developments and the interactions among them may be
characterized by the way they respond to the variety of (certain) natural changes
in their supporting environments (“external” changes) and also to a variety of
changes in their most basic or defining configurations (“internal” changes) in these
environments. Similarly, mathematical structures, operations on them and the re-
lations between them can be characterized by the way they respond to a variety
of special maps or transformations among their supporting spaces which are the
spaces on which they are defined or configured and also to a variety of special
maps or transformations among the spaces consisting of the structures and classes
of structures themselves. Many mathematical models for (elementary) physical sys-
tems (their configurations and interactions in space and time or simply spacetime)
can be based on a least action principle for a composite or derived mathematical
structure on spacetime called the action functional. The action functional is a
configuration-dependent variable that is written as a sum total of a Lagrangian
over the domain (the region of spacetime in which the system can be variously
configured) of the physical system. The Lagrangian is a quantity written in terms
of spacetime variables and spacetime-dependent configuration variables for the
physical system. A classical physical system is then characterized by its symme-
tries; those transformations or changes in spacetime variables and /or configuration
variables and Lagrangian that do not alter the outcome of (or the equations of mo-
tion resulting from) the least action principle. The least action principle asserts
that within a given spacetime domain, supporting all possible configurations of
the physical system, the actual configuration of the physical system is the one for

which the action functional is minimum. The domain of the system in spacetime
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may either be a collection of points (eg. the system is a set of "events”), a one
dimensional path (eg. the system is a mechanical "particle”) or a hypersurface
in general (eg. the system is either an extended classical object or a quantum
event). In quantum theory, it turns out that one needs to average quantities over
the configuration space domain of the physical system with a probability density
function given by the exponential of the classical action. The exponential form
of the probability distribution is due to the correspondence between the additive
nature of the classical action and the multiplicative nature of the joint probability

distribution for a collection of noninteracting systems.

A.3 Renormalizability

NB: Here the term “classical” is synonymous to “low energies” meanwhile the term
“quantum” is synonymous to “all possible energies”.

In quantum theory, the probability amplitude for the evolution of a physical
system from an initial quantum configuration (or a set of possible initial quan-
tum configurations) to a final quantum configuration (or a set of possible final
quantum configurations) may be defined or postulated in terms of certain func-
tionals known as Green’s functions. For a noninteracting theory these probability
amplitudes are finite. The introduction of interactions leads to initial/final quan-
tum configuration-dependent quantum corrections to the probability amplitudes.
Some of these corrections contain purely divergent parts. The finite parts of the
divergent corrections can be isolated with the help of a regularization procedure.
In some cases the remaining purely divergent parts can be eliminated by simple
redefinitions of the parameters in the classical action and hence a few additional

parameters to be determined experimentally.
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This observation therefore suggests that whenever there are interactions one
has corresponding initial /final state dependent quantum corrections to the exper-
imentally measured values of the parameters found in the classical action as well.
The elimination of the purely divergent parts of the corrections is known as renor-
malization and theories in which the simple parameter redefinitions are sufficient to
eliminate all possible divergences are said to be renormalizable. Nonrenormalizable
theories are known as effective (as opposed to fundamental) theories since due to
divergences they can be valid only for a restricted range of initial/final quantum
configurations. Effective theories are expected to arise as consequences of fun-
damental theories. There are several possible regularization procedures resulting
in different renormalized values for the same quantity. A theory may have more
than one symmetry and when none of the possible regularization procedures can
preserve all the symmetries then anomalies, which may be presented as a failure
of the conservation law of Noether currents, arise rendering the theory nonrenor-
malizable in some cases. Anomalies signal a possibility of incompleteness of the
theory that may be for example due to a failure to take into account extra degrees
of freedom (ie. a missing piece of the configuration space of the system) posing as
topological nontriviality of spacetime and/or configuration space, or considering
too many degrees of freedom such as the case where a reducible space rather than
an irreducible one is used.

A consequence of renormalization is that requiring nondependence of the Green’s
functions and the measurable or measured coupling constant and/or mass on the
regularization parameter implies a first order differential relationship between the
Green’s functions and the measured coupling constant and/or mass. The solution
to this differential relationship indicates a scaling behavior for the Greens’s func-
tion as the measured coupling constant and /or mass is varied through a single real
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parameter that may be thought of as a parameter for the group of all possible
renormalization schemes. The fixed points of this variation may indicate possible
phase transitions which are marked changes in the behavior of the Green’s func-
tions as the initial /final quantum configurations of the system are varied. This is
because a change in renormalization scheme causes a change in the renormalized
or measured coupling constant and/or mass (which in turn depend only on the ini-
tial/final quantum configurations of the system) and so may be regarded as being
equivalent to a change in the initial/final quantum configurations of the system.
The scaling behavior together with symmetry properties of the Greens function
give a qualitative description of the Green’s function, and hence of the quantum

configurations of the system, especially near the critical or fixed points.

A.4 Rules for writing probability amplitudes of
physical processes

A sample Lagrangian is that of QED
L= i(@HA,, — B, A (OMAY — 87 AR) + i (D, — ig A ). (A4.1)

1. Sketch all possible connected Feynman diagram(s) of the process and indicate

momenta.

2. Each external (initial/final) line (“half of a propagator”) represents the nor-
malized Fourier coefficient of the classical field; which includes polariza-

tion/spin “vectors” or directions.

3. Each internal line represent a full time-ordered (ie. Feynman) propagator.
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. Each vertex represents one or more of the following: coupling constants,
momentum vectors, spin matrices, representation matrices/tensors, etc, as
they appear in the (Fourier transformed) Lagrangian. When written out, a
vertex with external lines has the form of the Fourier transform of a current

from the Lagrangian.

. Conserve overall momentum, conserve momentum at each vertex. This may

be done either directly or by including delta functions.

. For each loop, integrate over the residual momentum that remains after
momentum conservation has been applied to all vertices surrounding the

loop.
. Trace over v-matrices in a purely fermion loop.

. Divide the amplitude of each diagram by its “symmetry factor” which repre-
sents how many times the given diagram has been over counted as compared

to those other diagrams that lack the symmetries of the given diagram.

. Add together the contributions from each diagram to get the total amplitude

of the process.
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Appendix B

Quantization

B.1 Canonical quantization, deformation quan-
tization and noncommutative geometry

The form of the classical action in the Lagrangian and Hamiltonian pictures is

. i oL

L(\.q,q) = Zﬁkq, , H(\q,p) = Z’Hqu (B.1.1)
One can identify the canonical 1-form

Ar(\ z)dz" = pdg’ + da(X, q,p), o' = (), 2}) = (¢:(N), pi(N)),
Oa Oa

A()\,.T) = (A?(CL‘, )‘)7/411(1‘7 )‘)) = (8—qlapz()‘> + 8])2) (B12>

from the Legendre transformation H (X, d, q,p) = pidq’ — L(A, dX, q,dq)| ;i_ or_
ad

A canonical transformation is any symmetry of the Lagrangian L (L changes
by at most a total derivative) which is also a symmetry of the Hamiltonian L
(H changes by at most a total derivative) and since H = A — L it means that a
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canonical transformation is any symmetry of L for which A changes by at most a

total differential (0A = df or equivalently 0Q = ddA = ddA = 0).

Therefore a canonical transformation is a transformation on phase space
T*(M) ~{q,p}, M ~{q} that preserves the exterior differential
Q=dA, AeT*(T*(M))/M. The relationship between the canonical 2-form
QO =dA = 0;A;dx" Ndx’ and A = A;dx’ is analogous to the relationship between
the electromagnetic 2-form and its 1-form. The infinitesimal transformation of any
2-form €2

60 = §(Qrydx’ A da’) = 6Qrpda’ Adx? 4+ Qryéda’ A da? + Qpydat A Sda”
= 02580k O ydat A de? + Q01625 da’ A de? + Qrreda’ 05625 A dx?
= (6KQU + 050k + a]QJK)&L‘Kdl'I Adz’ — [a](QJKé,TK) — aJ(Q]K(SLL'K)] X

dz! A dx?
can be written in the general form

00 = L5 = 15,dQY + d(igmﬂ). (B.1.3)
Similarly the infinitesimal transformation of any 1-form A is given by
0A = £5mA = ZMdA + d(Z(;xA) — i5mQ + d(ZMA) (B14)

Therefore a canonical transformation dA = df is given by

i5.Q2 = —df (ie. 0z’ = Q"Foxf = {2, f}), (B.1.5)

where Q7 Q%7 = §7 and the Poisson bracket {f, g} = Q/70;f0;g can be infered.

This produces the desired symmetry conditions
0A = i5, Q0 + d(isz A) = d(—f + is: A),

00 = i5,d2 + d(Z&CQ) =0. (B16)
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The vector field
§r = 5}81 =02'0; = —QIJﬁjfaJ (B.1.7)

associated with the canonical transformations is known as a Hamiltonian vector
field. The following relations hold following the Jacobi identity for the Poisson
bracket:

[£§f’ £§g]w - £[£f7§g},l7b = "Ef{f,g}wa (B18)

where 1) € % = F(T*(M)).

Remarks:

e One has the Liouville measure dp = Q" = QAQNP~Y = \/det Q d*Pz on
T*(M).

e Canonical transformations (or canonical invariants rather) provide a way
to derive quantization conditions. If only canonical path deformations are

allowed then

57{/1:%5/1:0 = %A:const.EK vC,
c c c

[ Also verify using % A= / dA :/ 0], (B.1.9)
c o o

which reproduces the Bohr-Sommerfeld quantization condition (LI7) when
K takes on integer values. However K € R in general and therefore one
can have continuous as well as discrete values for the spectra of quantum
mechanical observables. A generalization of the canonical invariant f(} Atoa
situation where A is noncommutative (eg. an A that contains the nonabelian
gauge potential) is the path ordered loop integral (known as Wilson loop)

oK

Tr Pefot = X = =0 (B.1.10)
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which is a gaugelzl invariant and P denotes path ordering.

e One learns that a canonical transformation is generated by a function on

T*(M) ~{(q,p)}, where M ~{q} & T'(M) ~ {(q,dq)}, through a Poison

bracket constructed from €. Note that A € T(TT QeI (M))/(\AT* (M)
In particular, the generator or generating function associated to time trans-
lations dz! = 5tdd—:”tl is the Hamiltonian H. Conversly, to every function is

associated a canonical transformation whose generator is the function.

e Canonical quantization is a parallel or correspondence where canonical trans-
formations are mapped to unitary linear operators (or unitary transforma-
tions) of the set of operators O(H) on a Hilbert space H; the classical ob-
servables or the generating functions of the canonical transformations are
mapped to hermitian or antihermitian linear operators which are generators
of the unitary transformations on A and the Poisson bracket {, } is mapped
to the commutator [,] in O(#H). Thus canonical transformations are to the
symplectic 2-form € as unitary transformations are to the inner product ( | )

of the Hilbert space.

One can construct a quantum Hilbert space Hg = (F(M),(])) from the
pointwise product algebra (F (M), pt-wise) of the space of complex functions
F(M) on M ~ {q} with an inner product given by (f|g) = [ du(q) f(q) 9(q)-
On Hg the commutation relation [g, p| = i¢h implies that

q = g, D = —th0, = —iha% which is known as Schrodinger representation

where the position operators ¢ act as multiplication operators

fg : Hs = Hs, 148(q) = 4€(q). (B.1.11)

LGauge transformations are examples of canonical transformations.
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The quantum operators Q(7*(M)) C O(Hg) are then given by

QT (M)) ={Q(f), f e F(T*(M))},
Q : F(T*(M)) = O(Hs), f(a,p) — Q(f)(a,p) = f(q, —ihd,).

Since the points 2! = (¢%, p’) of T*(M) on which the commutative algebra
of (generating) functions F(7%(M)) is defined act like linear functionals
0 o f = 0.(f) = fT*(M) dy 6(y — z) f(y) = f(x) on the space of functions
F(T*(M)), the role of these points may be played by linear functionals
O (H) ={x:0(H) = C, x(a+0b)=x(a)+ x(b)} on the algebra of linear
operators O(H) on the Hilbert space H.

Deformation quantization is an alternative method of quantization that arises
because the algebra of operators O(H) on the quantum mechanical Hilbert
space ‘H can be shown to be equivalent to a noncommutative x-product
function algebra (F(T*(M)), *-wise), the commutator in which reduces to
the Poisson bracket of the classical function algebra

(F(T*(M)), pt-wise) in a certain limit. That is, the Poisson algebra can
be obtained from a noncommutative deformation (F(7*(M)), *-wise) of the

commutative function algebra (F(T*(M)), pt-wise):

(F(T*(M)), pt-wise) — (F(T*(M)), x-wise),

(f9)(a,p) = f(a,p)g(q,p) = (f*g)(q,p) = f(q,p)eg’wg"g(q,p)-

(B.1.12)

Here one may again construct a quantum Hilbert space Hy; = (F(T*(M)), {]))

from the *-product product algebra (F(7*(M)), x-wise) of the space of com-

plex functions F(T*(M)) on T*(M) =~ {(¢,p)} with an inner product given
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by (flg) = [du(g,p) f(q,p) * g(q,p). On Hys the commutation relation
[¢, p] = ih implies that both § = p,, p = p, act (reducibly) as multiplication

operators

gy tp = Har = Har, pg€(q,p) = ¢ *&(q,p) = (¢ + %3p)£(q,p),
1€ (q,p) =px&(q,p) = (p — %&;)5(@1,19),

VEr) _ (ra g fo i) (B.113)

which is however only left multiplication but we however have both Left and
right independent multiplication operators uﬁvR, uﬁvR. Due to the simple
nature of the algebra p¢ = %(uﬁ]’p) + ug’p)) gives a commutative coordinate

representation (¢ = fi(g,p.) that is insensitive to the x-product.

Deformation quantization provides an example of noncommutative geometry
since any C*-algebra can be realized as an algebra of operators O(H) on a
Hilbert space ‘H and noncommutative geometry involves the representation

of an arbitrary x-algebra A as a noncommutative algebra of functions on its

dual A* = {x: A— C", x(a+b)=x(a)+ x(b)}. That is
R:A— RA) ={a: A" —=C", a(x) = x(a), (a*b)(x) = x(ab)}.

(B.1.14)

e Thus quantizing a given classical system involves the representation theory

of the algebra(s) and symmetry group(s) of the classical system.

B.1.1 Star products and regularization

The star product construction is a trick one may use, whenever convenient, to find

characteristic representations
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7 A= m(A) = F(X)|gopeg ={a: {n} ~X = C", 7 a(r) = m(a)} of a
given algebra A by modifying the product on the algebra of functions
F(X) =CN/X on some topological space X ~ {r}. The characteristic represen-

tation of the algebra product on the function space is known as a star product:
m(ab) = (@ * b)(m). (B.1.15)
An example is given by the group algebra G* of a group G.

G*=Span{f =L(f) =Y fl9) 9, fE€F(@)} F(G)={f:G—C},

geG

L(f)L(h) = L(f * h),
(f=h)(g) =D flu) h(u="g) =Y flgu™) h(u) # (h* f)(g).

ueG ueG

As another example let A be the Moyal-Weyl algebra;

A={W(f)=f},
Z Fren(@ Z f(2)) ep(@—x) = f(x)d,
by —Zéx— )0, = W (4, )p x,pERde (B.1.16)
generated by the linear operators {#};
&9, 2] = i (B.1.17)

The major point here is to be able to invert (in an unambiguous way) the series

expansion
=Y flx)o,. (B.1.18)

This is possible if a unique linear functional ¢ = ). (an analog of the integral) can
be found such that gb(éxgy) ~ 0gy. To find this functional, consider the generators
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of real translations {9"} on this algebra given by

[iu>éu] — _5#]/’ [éméu] - 0,

( compare with 7, = —if,,3% = —i~ V3%, (s U] = 16,

[i,uvgu] = =0y ) (Bll9)

v

That such (i’s exist may be seen by representing the algebra as an algebra of
differential operators on a function space F(R*!) = F({z}), &* = a*+ 160"0,.
More simply, éu = —if~""adz = —ib,,ads = ady, where the algebra (B.LIT)
implies that

A

[adsn, 2] f = adzu (27 f) — &¥adsu (f) = i6" f (B.1.20)

and one easily sees that [adgu, adzv] = adpu 3+ = adgm = 0.

Then

0, = Z ep(T —x) = Z eiP(E—e) — o=ind Z ep() ei®d
p p p
0,,0,) = 0,0, = 0, Trd, =0 as Tr(AB)=Tr(BA) (B.1.21)
which means that Trd, = ¢ = const. and the normalization Trd, = 1 gives
Tr(d,0,) = 0(z —y) (B.1.22)

since

5w(§y — E i (PP 5PN —ipr—ip'y

/

pp

(B.1.23)
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62(150 — E 6(0: . a ZOCZ' § E ez(a a z ZOCZ' § Z(IZ E ZO!SC 1o %1

« e

= Z Szeiaz = Tr e = Z Tréz e = Z e = §(a
z z

(B.1.25)

Thus the trace Tr =Y. provides a means to invert the series (B.LIS).
We can therefore define the linear functionals A* ~ {§,, = € RP} ~ R” by

0s 0 A= C, 6,(f) = Te(fd,) = (Trd, o W)(f) = f(a).
(B.1.26)

2Moreover one can simplify further to obtain

A A - AP K2 s —am!
520, = E et (p+p")E 5D —ipr—ip'y _

/

pp z

— e—im(%)’ly Z 5% —ik(z—y) = Fwyzgm Zl—\wuz _ 5(1: _ y)7
k z
Y z 1 —ix T z—iy(2)~ 1z
Tr(3u,0:) = Doy’ = oy © (§) y—ia(§) " =iy (3)
2
1 i gy=1t 1 ; 6y—1
— —i(z—2)(3)" (y+2) = —i(z—2)(3)" (y+2)
= € 2 = Cycl e 2 ,
BB o Gy )

Tr(gmgygzéw) =TT =Ty " de+y—2z—w) =Ty, " dz+y—2z—w),

N N N N _ z21 22 z3 2k k41
T‘r((swléIQ"'émnfl(Swn) - 1—‘1112 1—‘2113 I‘ZQI;AL "']"—‘Zkflmk+1 szwk+2

...anfsxnfgZ"*“an741n72ansrznfgxnflZ"*Qrzn72znZ7‘*1T1“(5zn71)

= FI1I221F21$322FZ214Z3"'F2k711k+1z sz1k+2 e

---an,sxn,gz" 4FZn74zn72Z"*3an73xn71x"

= T0(0, OO 40 50wt 1—n2) Dontan 1—mn ) 2n " (B.1.24)

The appearance of delta functions indicates that Moyal noncommutativity is not strong
enough to be able to regularize all possible n-point correlations. (2k+ 1)-point corre-

lations are fully regularized but 2k-point correlations are only partially regularized..
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Since W (f1))W (f2).. W (fn) = W(f1 * fo* ... x f,) one has

5x(f1f2fn) = Tr(gxfle-“fn) = TT(S:cW(fl)W(ﬁ)---W(fn))
= (Trgm oW (f1* foxox fr) = (f1 % fax...x fr)(x),
(f % 9)(@) = f@)er D9 Fog@), [0, W()] = W@,f). (B.127)

For noncommutativity of the form

[##,27] = iC" 2%, Cyclic,,,( C",C* ) = 0, for the purpose of inverting the
series (B.1.I8) one may define a conjugate
=>,AD) e iB(p)a—ipr g b — = >, """ such that Tr (0, 55) =d(x —y). Again

one assumes that @L can be found such that
[##,8,] = =", [0,,8,] = 0. (B.1.28)

That such (i’s exist may be seen by representing the algebra as an algebra of

differential operators on a function space F(R1) = F({x}).

i — 2V B",(i0), 0= %,

E°,(i0) 0" E” ,(i0) — E”,(i0) 0" E*,(i0) = C*P,, E” ,(i0), (B.1.29)

o B0) = (0= ([ ), o) = 0, 0,
as well as E”,(i0) = F",(i0) (due to the Jacobi id), (B.1.30)

where the interchange i0 <» = in any given representation = — f(x,i0) produces
another representation f(i0,x). In this case ad;u’s are derivations but they rotate
the coordinates rather than translate them as was the case with [##,2"] = i0".

The 8 s may be representedH by operators 8 = Q,(0) such that

1
dQ,(0) = E7",(i0) dd, = ( / dt e @y, o),
0

3The action of generators can be seen by making an infinitesimal variation and using the

192



and their action is as follows:

9 IXK 9 i
Qu(9) Ty(z,0) = %TJ(I,a) = D {M—KTJ(x’a) + Ty (0) Tp(x,0)},
ut = xyEuu(ia)u XI = (.C(Z“,a“),
L Ouw 90Xt ouw 9 oX Pur  OXT

Pk = xR ox7 9ur ~ X7 OXE owr ~  OXKOXT dur

where we only need its restriction on z-functions, T (z,9) — f.(z).

If gia®eift — ¢ik(ah)T then Tr(éxcgf) = d(x —y) requires the functions A, B to

Hausdorf-Campbell formula:

<

. 1 =
£lo+02) ~ (@) + 63' [ as e 0T oif(a),
0
.\ _0fy)
O0if(s ads + ) = By |yj:S S a0
a,di = (a'dil) = (adﬂ,adiz, ...,ade),
ad,.

ada(b) = [avb] = _[bva] = _(b)

610 = dit JJ = di' JJ (&), dit — 0, (B.1.31)
where its is assumed that f = f(2) can be expanded in the specific form

@) =" 1) Llp-i), p-i=p i (B.1.32)

peCP

Rotations and translations are isometries of g;; = d;; and are given by

OiJmj(2) + 0 Jmi(x) = 0,
Jij(x) = 6;; for translations &

Imi(x) = (Cmij — cmji):zrj for rotations,

where the ¢’s are constants.
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satisfy H

K(p, B(—p)) =0, A(p) = det 0 /K(p,B(p'))|p/:_ . (B.1.33)
( Therefore gf = Z A(p) eiBp)2—ipr _ Z pipi—iB~

p
= 0. Y e (B.1.34)
z p

That is to say that p 4+ p’ = 0 is a solution of K (p, B(p')) = 0 and the factor
det 0y K(p, B(p'))|p=—p coming from §(K(p, B(p'))) at p + p' = 0 needs to be
canceled by the amplitude A(p). The uniqueness of the inversion here depends

upon the solutions @ and B of the relations

~

[##,9,] = =", [0,,0,] =0, K(p, B(—p)) = 0. (B.1.35)
Finally, with W (fi)W (f2).. W (fn) = W(f1 % fa* ... * f,) one defines

5m(f1f2fn) = Tr(gff1f2---fn> = Tr(ng(fl)W(fg)W(fn))
= (Tr(i](:3 oW (f1* fox.ox fr) = (f1* fox...x fn)(x),
[0 W ()] = W (8, f). (B.1.36)

4 Note that

:ZA() iK(p,B(p'))E ,—ipr— zpy_zz(g Alp K (0. B()z —ipz—ipy

pp’ pp’  z
_ FzyZ(B) - ZA zK(p B(p'))z 7ipzfip’y7
Trd, = 1 requires the existence of [#",,] = —&",, [9,,8,] = 0.

Lie algebra type noncommutativity may be strong enough to regularize all possible

n-point correlations unlike Moyal noncommutativity.
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Note that one now also has the equivalent mirror algebra
= {W8(f) Z f(2)o7},
Z Fx)of = Z f(p Bz, (B.1.37)

The corresponding set of linear functionals is

Ay~ {6 =Trop;, v e R’} ~R” VB (B.1.38)

B.2 The quantum field

A point particle’s instance-wise trajectory I' : ]0,1[C R — R 7 4#(7) in
spacetime R may be regarded as a field or collection
{e; = (9(7), p-(R¥1): 7 €]0,1] } of point-like spacetime distributions, with each
instance 7(7) represented by its localization or density or support function
p-(y) = 0(y — v(7)) in spacetime R4*T!. For the value of any property P (eg.
position, velocity, energy, momentum, etc) of the point particle that depends only
on instances y(7) of its trajectory I' one then has the decomposition
P=PH(r)= Y P dy—~() =) p0(r)  (B21)
y€ERd+1 Y

where (y — (7)) represents the density or support of the particle at the instant
v(7) meanwhile p, (v(7)) = P(y)6(y—(7)) = P(y(7))0(y—(7)) is the (probability
of) presence/influence, at the instance 7, of the property P at/on a generic point
y € R,

Now consider a wave packet (generically a field) 1 : D C R¥* — C, x> (x)
which describes the energy ( presence or existence ) distribution or concentration
of a large collection of particles. Just as the instance-wise trajectory I' of the point
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particle was decomposed into point-like (or spacetime 4-) distributions according
to its instances {v(7); 7 €]0,1] } one can also decompose the wave packet into

spacetime modes, which are spacetime J-distributions, (d-modes) as

=Y w) sy —a) =Y (@) by —a) =3 Wy, 6(2) = Yy 6, (x

where 1, is the amplitude of the space-time mode that is d-localized at z.
The ¢ decomposition is done in analogy (and should be interpreted similarly)

to the plane-wave (ie. Fourier) or exponential (e) decomposition

Zwk ex(x Zw (B.2.2)

where Jk is the amplitude of the energy-momentum mode that is e-localized at x.
In principle one has an arbitrarily large number of possible types of decomposi-
tions (or transforms). The basic idea is to describe the interaction of two systems
(wave packet, point particles, fields, etc) in terms of the interactions/correlations
of their individual modes.
Of course one also has an e-decomposition of the instance-wise property P of

the point-like particle:

Z Py ex(y Z B, ), (B.2.3)

The quantum field ¥ : D Cc R4t — U(C), 2 — ®(x) is an operator-valued

wave packet

v) =Y Upep(n) =Y W, ,(x) = .. (B.2.4)

In a noncommutative spacetime Rg”l with coordinates &#, [2# 2¥] # 0 these
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decompositions may be written analogously as

e = e* Ze”” v) (B.2.5)

When z is commutative, we have the two-point correlation duality

A A Ak Ask A A Ak Ak /
(Chy -l Chy--Ely ) NC = E Ehy - -Chp € -y = 0( E k— E k'),
&

n—1
OBy e = Y Oy-nby Oy 03, = Ha —yir) [0 —v540)
T j=1

where the former is an expression of momentum conservation. The purpose of
noncommutativity(NC) is to spread out all the delta functions in the latter ex-
pression, ie. to make the spacetime 0-distribution nonsingular ( although this does
not happen for 2n + 1-point functions in the case of Moyal noncommutativity
[[z#,2"],2%] = 0. Moyal NC also maintains translational invariance/momentum
conservation expressed by the former correlation expression but breaks rotational
invariance and hence any angular momentum conservation). In Lie algebra type
NC [##,2"] = C" 2 full smearing may be achieved (Here both rotational and
translational invariance, and hence angular momentum and momentum conserva-

tion, are broken).
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B.3 The algebra of quantum fields

Consider the algebra of free causal/accausal real (or hermitian) quantum fields

A= {¢}

e ol)] = i) = —i f 22

d4 —ikx
[¢$7¢y] Iy7 @my % ( ¢ (B?)l)

2m) k? — k2 —m?’
where the integral in kg is an integral along any closed contour C' in the complex
ko plane that encloses all two poles of the integrand that are located at
ko = £V k2 +m?2. Regarding 6" as a 2-point correlation function in the direc-
tions of spacetime, then one can employ the star product technique to calculate

correlation functions of quantum fields:

g, po, ) = Te(@ 872 5,) = o % 22 «

W (21,22, ...) = Tr(Gay Py 0p) = Tro(Gay Prer) = Py ¥4 Pay ¥4 ooy

54,0 — /DH eizyny(‘i’y—@y)_

G(71,12,..) = TI(T(¢w1¢w2")T5gD) = T(Tr(¢w1¢w2"$go)) = T(Pu, *a Pz *a ),
T(io — /DH Tet Xy Mu(Gu=¢u)

A(xy, 23, ...) = Te(T (2@, ,,...0,), (amplitude of a dynamical process),
3

—
_i S 9, 9
*A_e ZZJCy(SLpz C”y&py7

G(2,y) = paipy + sign(zo — Yo) Oy
= ©upy + sign(zo — yo) 0((x0 — %0)? — (Z — §)*) Oy,
T(600,) = 1 (606, + by62) + (o — o) [0 0.
0((z0 — y0)* — (T = §)?) Ouy = Ouy,
(B.3.2)
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where T denotes time ordering. With this analogy, 0¥ may be interpreted as
the probability amplitude or potential that a straight line trajectory into the pu
direction will spontaneously turn in the v direction.

If the spacetime on which the quantum field is defined is also noncommutative

as the Moyal plane then the algebra of the free quantum fields
[z, &y] =0, whenever ©,, =0 (B.3.3)
becomes

buby = P BT H b whenever ©,, = 0
Py — yPx, zy — Y

<_ v
Op = ¢2 e2 0" P [ 2,¢2] =0 whenever O,, = 0. (B.3.4)

Thus the * to be used in the Green’s functions and process amplitudes is a com-

position of two x’s

k= kp O xg = e 7 0 %9“51 e LU s D %6“51_%?“(%”?”7
G(l’l, T, ) = (Trgo o Tl"e)(T¢:e1¢:f;2) = Tr¢(Tr9(T¢il¢i2...))
=T(pz, * Py * ...). (B.3.5)

The two *’s commute (ie. *a 0%y = % 0 %) since they act on different spaces
(spacetime and the internal space of the quantum fields). Therefore to consider

the #’s dynamical one may simply add a suitable term I'[X(Z)] to the action S|[¢]
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(S[¢] — S[¢] + I'[X]) which describes the dynamicsH of ¢

5 Time evolution in terms of the Hamiltonian is given by

Zaoébm - [H7 ¢z] = 13005; = [H/ - HO; d);]v aOHO = 07
Hl _ €7ion0H€im0H0, ¢/ _ efiono(bweiono ( ¢m _ 1on0¢/ —ixzogHo ),
= (solution) ¢/, = Cz +T oS0 dt (Hl*HO)gﬁfTei ST (H'—Ho) _ Cz + 64!,

aocf = 07 [H/ - H07 Cf] = 07 60@5 = 07 [Hl - H07 @f] # 07

:> ¢z — ZH():E()O 671H010 _|_ T —Zf H HU) ZH[):EO@ —e ’LHomoTe—iffgo(H—H())
=Cp+T e /o5 dt H=Ho)p et [P (H=Ho) — 0 4 565,
=C, + ST T(S¢,), (B.3.6)
T (620, )= (T efzf (H—- Ho) N Teiffo (H—Ho)7,, —i [Y0_ (HfHo)sbyTeiff(;o(HfHo)m)
A s oL —-L
=S T(Spapy-..), H — Hy /dD z 9000 0)80¢ — (£~ Ly))- (B.3.7)
Here
Tez'f:f H _ gidiaH(t2) _gidtiH(t) (Tez 2 H) — it H(t) —idt2H(ts) _ Tp—i ) 2 H

T e—z‘ffgo Hp _ —idt_ocHy(—00)  —idwoH(wo)

e*idtfcoHI(foo) 7’L‘dI0HI(I[)) e*idIoH}(Io) 7’L‘dtooHI(00) eidtooHI(OO) eid:EoHI(:Eo)

... .€

=i %50 dtHy p i o dtHr _ gt i35 dtH (B.3.8)
If C, = Cz, ie. all commuting, and £; contains no time derivatives then
H1:H—H0:—/dD_1x Lr,

Sil6] = / dt Hy = Si[C+U-0U] = Si[C+ @] as Si[g] is local,

(B.3.9)

where (if it exists) ¢ may be chosen such that [¢;, ¢,] commutes with all quantum operators, a

property that does not hold for ¢ in general.
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For example one can consider
% 5 v ?
[ (0), 3y (V)] = 00 (1, 0), g = 2 D s O ) 50
Tla] = opu(u) v (u, 2(u), 0ud(u), ...),

(B.3.10)

The Moyal coordinate & is seen to have been evolved from a general dynamical
noncommutative coordinate X to the form
2, (u), &, (v)] = 0, (u,v) by T[X] = T[c+U~'2U] in the same way that ¢ is evolved
into ¢ by S[¢] = S[C + U~1pU]. Therefore the dynamical quantum theory of an
“interacting” membrane embedded in spacetime is a theory of noncommutative
spacetime.

Here one may say that the field ¢ propagates in a dynamical (ie. curved)

spacetime (whose metric is induced by the classical path &(u) defined by

orfE]
0k (u) 0)

B @&Lb By a0t 8:5”)_1
I = Nab gy G~ Ou® Jub” ’

(B.3.11)

where for the special case of two parameters (ie. “string”) one can set hyy = 7a
and one would then say that the field ¢ is propagating in a “stringy spacetime”.

Si6) = [ Da Lla.olil,0uo. .. = [([[a*a(w) £ls.ola),u0. .

u

where any sum ) has been replaced by >° >, . One may also combine the ¢

and z spaces thus combining the two products:

0, 0
wi = (py, zu(u)), Oy =
0 Ou(u,v)
o ohlp), & '
5o = oo g T L) (B.3.12)
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B.3.1 Operator product ordering and physical correlations

e Linear transforms, such as the Fourier transform of functions, enable infor-
mation to be processed (encoded/stored/transported/decoded) deterministi-
cally. In general, functions of the noncommuting variable ¢ may be analyzed
by defining Fourier transforms (now however depending on the order in the
operator products) in analogy to commutative variables. In particular for the
description of natural processes or phenomena one can define a time-ordered
Fourier transform required by their transitive past-future time direction; re-
call that ¢ can be expressed as a time ordered function of 1& =C+p. Any
natural process or phenomenon may be regarded as a sequence of localized
spacetime “events” that is well ordered in time (non-relativistic sense) or
proper time (relativistic sense) or any other suitable parameter. This nat-
ural time ordering is trivial in a commutative theory but nontrivial in a
noncommutative theory; it provides a starting point for defining kinematic

variables by eliminating the inherent operator ordering ambiguity in the non-
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commutative theory.

T(e ZJM/’x szwy) 2 _ 9(1,0 . yO) e—szwxe—szwy + 9(y0 . l,o) 6—2Jy1/1ye—7,wax
6—2'(]11211—2}]@,121?! e—%stign(mo—yo)z@zny — 6—2'(]112116—@']“2)@/ e%Jz(l—sign(mo—yo))iGIny

_ e—iJ,J;ze—inzZ;y o200 —0)iOy Jy _ e—inz/Zye—iJzzZ;, e—JZO(mo—yo)z@zny’

T(A1As. . Ay) = [[ Ty (A1As. A,), T(aA) =aT(A) Yo eC.

1<j

= fT /DJ f —izx Jz’lz}z e—%zw Jz%sign(mo—yo)iQIny

22:% 251gn(xo yo)l@zyaw M,y fW['QZ)] (B313)

where O denotes general ordering, 1" is time ordering and W is symmetric

(Weyl) ordering.
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B.3.2 From Weyl or symmetric ordering to normal or

classical ordering

One can further write Weyl ordering in terms of Normal ordering by the

decomposition
e =+ [* z&ﬂ =0, {4y =
= DJ e—szlﬁx D.J _ZZ Juthe
Jwl flJ 7
= /Djfm 6—2’296 To(d +47)
:/D]f[]] o1 g i —i S, Tyty
= /DJf[,]] e% ny Jsz[1zI77vZ’;] e_izx sz;;e—izy JydA);j
:/Djfm e Ty e WAy ] N (o180 Jate)

—, 2 ny 1/160 wy 51!11 51!1y /DJf —i > Jxlﬁx)

-3 Zzy[wm wy](wz 5@/17; f [ ]

frli] = e T BN 1)

_ ot Deyaienleow)iOn WL BT o
_ o7 Zstenleouo)be 0TS DT 0 oy

_ QZzy AF(x y)(sw 51Py f [A]

Ar(z.) = gsign(eo —y0)[be, ) — 2 (195951 + 05 5]
= Ssien(ao — yo) (93, 95] — 97 951) — 5 (92, 951+ (45 =)
= 0(z0 — yo) [V, ;] + 0(yo — o) [y, U]
T(frldlorld]) = (fo)r[d] (B314)

204



Therefore in the coherent (ie. classical) state defined by

i) = i) = [)el,
(Wl (D)) = (le? = A V55 ] )

)

= (pl) e Zor DRI fly)

1 1 ’ -1 /
— D / ! - QZzy(wx_wx)AF (xvy)(wy_wy)
o) [ Do 1) e

~ (wlv) [ Dv! ww]ﬁazwm;@,yw;, (B.3.15)

where 1) = 0 corresponds to a possible vacuum state ( ground state or local
minimum energy configuration:
61_?5[1sz¢} =0, 6E[$ - 0, E[Y,¢] = [dP o (2580 — £) ) and ¢ may be

identified with (¢) = C' + (¢). In the case of more than one independent

aaw

vacua {1;} the vacuum amplitude has a matrix structure

(il Frl)[is) = (uile? Zon ArEOTE T £ [ ]y)
= (ilupy) 3 T SrEVTERGT fY]| e (BB16)

One notes that the eigenfunctionals (which describe stationary or “elemen-

tary” processes) of the operator ny Ap(z,y)<2 are individually “un-

o 5
0y 6ty
affected” by the quantization. One may also consider expanding any given

process in terms of these stationary processes.

Since S[C' + U~'¢U] = S[¢] describes the background (as opposed to “par-

ticles” or excitations) dynamics %{f} = 0 of the quantum field ¢, one can
define a corresponding action I'[¢)] that describes the background dynamics

%FT[;M = 0 of ¥ (ie. the same dynamics in the classical picture) by

o= — o2 oy AF@W) 500 55, ) (B.3.17)
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which is given by the choice
flv] = e~ that is 1y, = 1y, = ... = b, = const.

Thus n-point scattering amplitudes correspond to the choice

flv] = €_iSI[w]wx1¢x2---¢xn,
G(x1, ooy Ty ) = Jersl¥]

o) )
Loy BavFiz iy o—iSrY]

6_iS’[w]¢m1¢mz---¢xn )

x
1 ) [
02 Loy Bovsig 50y o—iSiY]

[N

e

B

1 )
65 ny Azyw_z o

<

Yy

In the presence of spacetime noncommmutativity an appropriate choice would

be

Fl] = et Wa wahy, kb, (B.3.18)
In momentum space one can choose

f[¢] = e_iSI[w]lzkldkz"'dkn 5(2 kl>7
Z (B.3.19)

where iy, = [d*z ¢, ¢** and in the presence of Moyal noncommutativity

one can choose
) = e S0y oy, €2 T KOk 5(2 ki)

(@)q - Z g+ + a0 —q) JQI“‘JQn' (B.3.20)

q1,92,---,4n

Remarks:

The definition of the functional includes the definition of pointwise prod-

ucts and therefore the use of alternative ordering to break Weyl symmetric
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ordering in functionals generalizes the implementation/or detection of non-

commutativity.

To involve fermions one may directly extend the field ¢ to become a super-

field; ie. ¢, — @5, sy = (2, V) = (Iu,eg,ég), V0 = —0;9;.

D, = dy + Vo0 4+ 10,0 + 0AD + FO* + FO? + x,00% + x,00> + D662,
1
M= Oa ]-7 aD - ]-7 Z - ]-72a '-'>2ga o= 1a2> L) 52% - 1>2a "'72€_1'

A superspace extension of gV ,V,¢, = 0 would be

gV Ve, = 0. (B.3.21)

If the semiclassical quantization procedure is applied to Moyal spacetime

[:i'/m :i'l/] = ie;u/ - —'6.9,/;“ (B322)

one would obtain

3=l )AL )

vdet A ’

(2] fo(@)|z) = (w|z) 2 T Buru f(z) = /de/ f@)
Ay = 10y + iNow, Opy = =0y Ny = Ny = Ny (6),

where O, N are yet to be determined physical constants. If Lorentz invari-

ance is required then A, = A p"".

By analogy we may write ¥, = 27 + 2, [2},27] =0, [,,%,]=0; then
ieﬂl’ = [ju7ju] = [juvj;] + [i;,i’i_] = [i‘;,i’;’_] - [i;vj:]v
1. . 1. . .
ONV = §Slgn(,u - V)? ZNMV = 5([1'”,1'3_] + [ZEV?:E:])a
Ay = 0 — ) [, 25] + 60— ) 25, 25]. (B.3.23)
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However, for a particle moving in spacetime (or equivalently a particle-like
spacetime), the coordinates X, (1) = ¢, + U~'2,(7)U already possess the

natural ordering wrt the parameter 7,

[Z,(7), 2 (7")] = 10, (1, T'),

[i’M,i’N] == i@MN, M = (’7‘, ,u), N = (7'/, l/).

Xy = c, + U inU.

dr? = n,dat(T)dx" (7). (B.3.24)
Recall that Any natural process or phenomenon may be regarded as a sequence

of localized spacetime “events” that is well ordered in time (non-relativistic

sense) or proper time (relativistic sense) or any other suitable parameter.

One can therefore write
Ay =0(1 =7 [Ty, :i"j(,] +0(r" = 71) |2y, el (B.3.25)
Similarly for a string-like space-time

[Z,(T,0),8,(7",0")] =il (T,0,7",0"),
[L%M,L%N] = iHMN, M = (T,O’,,U,), N = (T/,O'/,I/),

dr? = Znu,,d:)sg(T)de(T), (B.3.26)
one can write
Ayn =0(r —7) [Z3, 2% +0(7" — 1) [&y, 23] (B.3.27)
and for a brane-like spacetime one has

[Zar, @) = 0N, M = (uq, 1), N = (uy,v),
Apn = 0(ug —uy) 2, 28] + 0(uy — o) [y, 24, (B.3.28)
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B.4 Hamilton-Jacobi theory

Here is an example of how solutions of differential equations may be found using
knowledge of their symmetries.

Consider the configurations or canonical “flow” parameter A of (B.1.2) and
replace ¢ by # € R then the simplectic potential and M-flow (with generating
function J) equations are given by

A(z,p) = puda” = p'dt — pda’, T = T (,p)
det 0J dp*  0J dJ

N o AN o ax

where the Poisson bracket is given by {f, g} = ;}T{L% — %%.

(B.4.1)

Choosing the flow parameter A to be timelike (7 — H), ie. % =1 = g—g),

implies that J = H = p° + h(t, 2, p*) = p°(¢t) + h(t, 2%(t), p(t)) and the equations
of motion become
de  9OH 0h dp  OH  0Oh dp’ OH  0h

dt — 9pi  opi’ At 9xt 9xi At ot ot
Thus for any given F' = F(z,p) = F(t,z'(t), p'(t)),

d_F_{HF}_8H8F_8F8H_8_F+8_F8h_8_h@17
dt VTN T gprgar oprdze Ot | Opidxi Opf Oxi
_OF _0f 99 _ 09 Of

Note that H = p° + h defines a hypersurface since H is a constant of motion.

Recall that a canonical transformation (¢, 2%, p’, p°) — (£, 3%, p, p°) is one where

A(,p) = p°di — pidi’ = A(w,p) + dW = p’dt — pida’ + dWV,
H=3"+h=p®@ +hdEi0),5d),

dF OF - o

—= = = h F F: F t Tt t N t

di 8§+{’ i ] (¢, 7'(t), p' (1)),

dit _oh dpt _ Ok _0f 0g  0g Of

0o @ o YT gyow  opor
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That is, the transformation preserves the symplectic form (and hence the Poisson
bracket) while changing the symplectic potential by a total differential.

It may be possible to choose the function W such that
t =t (synchronization), H=0 (p°=—h), §°—p"= —h in which case &, '

become (arbitrary) constants of motion given by

Lo oW oW 9w
T P T e T o
ow . OW
~0 0 _ i 2
W =W(t,a", ). (B.4.4)

If =0 (ie. h(t,z,p)=h(z,p)) then we may write

Wi(t,a', &) = S(«", 3" 1') — a(@',p)t, @, p') = (@, %S)
o 0S('(), 7 p) | da(d, ')
r= 0w ow "
where the constants depend on initial conditions thus
a=ao(i',p') = h(z'(0),p'(0)) = ho,
¥ = F (@ (0),p(0),  # =5 (0),5(0)). (B.4.5)

The choice of how the Z* and p* depend on z*(0) and p*(0) is a matter of convenience
and one can for example choose 7' = z°(0), p' = p’(0). In this case

W(t, 2%, z%) = S(z', 2°(0), p*(0)) — h(z*(0), p'(0))t where we need to remember that

OW(ta', &) _0S@ &, §) _ da(@p),
op op op
oW (t,x',2'(0))  9S(a",2'(0),p'(0))  9h(x"(0),p'(0))
)

9p'(0) B 9p'(0) Ipi(
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For the case h = p? + V(Z), one has

o(#, ) = bz (0),/(0)) = (22 + V(@)
1

oS 1.0S, 1 9 9
r2 sin? 6’p0 * ﬁz%

oS oS 1

9 _ (U2 (O 00y 1 0oy

=) =G e Tl T

(B.4.7)
so that

= aSu ZL'Z,ZZ'Z, Dt = Y . . = s

p = % =u(z', ', p )\/a(zl,p’) — V(@), W =1,

S5 = A7) = V) + (0,57

x*(0
(B.4.8)

where a convenient choice of integration path depends on the choice of @ whose
set is as large as SO(d) for ¢ € R?. Similarly for the case h = \/p2 + m?2 + V(&)

one obtains

Sut i 7) = | o 05V 7 = VP~ + 8.0 7. 7).
x*(0

)= / . >dﬁ iy’ @ 5V [e(@, 5h) — V]2 — m? + Su(2'(0), 7, 5')
x*(0

T~

W (t, 2, &
— a3, pht.
If we set p =ty = —%—IZ then we obtain

dij - i(y’, &', p') — =
/xi<o> Vi@, p') = V()2 — m?

For bounded motion in a central potential where

12
h:\/ﬁQ+m2+V(r):\/p3+r—2+m2+V(r):5,

g 1 o o dLV g
LZ]: 1 _ j 7 — h LZ] :O
—ﬂ(xp’ a’p), o {h,LV} =0,

L2 = LijLij = fzﬁg - (5@2 = T2(]§Q —p$)7 DPr
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the solutions to

pr = —% = —\/[E —V(r)]? —m? — f—j = 0 give the extreme bounds r_,r, ...
of the orbit and thus with tq = —%—V:
r(t) — V('
/ dr’ c ) =t—1o
r(to) \/[5 — V()2 —m?— TL%

"+ dr e—V(r)
- VE-VEOr-m -4

r2

=T (B.4.11)

gives a measure of the period(s) T of the motion.
For the simple time dependent case h = p? + xt, one can write
W(t,x) = a(t)+xb(t) +x*c(t) and then solve for the t dependent coefficients using

W — —p(t, 2, 2%

B.5 (Orbital) angular momentum and spherical
functions

Consider the angular momentum operator given by L;; = %(mlﬁj — x;0;), then

—.

L? =720 —(D—2)%-9 — (Z-0)?
o

2
=29 — (D - 2)r— — rgrg = 29> — (D — 1)7“2 - r2a—

or or Or or or?

9 D-10 L* 1 0 p 0  L?

O TR SR e MU S
1 90 5,0 L? 1 0> L[*>-(1-D)(3-D)/4,, b

i e - )
1d .d 1 d? -1 — Ly 1N 1 d? f/2—2ff” 1
?%f%¢——%{@+f (fOfF2)) }(f ¢)_f_%{?+47f2}(f V)
1 a? 5 1
= f_%{ gz T (f) (2,
1d d,  [f 1d,d g
5%9%7/) = a { ?%f% +B(g9) — B(f) } ( ? P). (B.5.1)



Therefore, a function satisfying

PG(r)=6P(7) is G(r) =r", a=3-D, L?=—ala+D) =—-3(3—-D), D #2.

B.5.1 §? in a minimally coupled system?

In arbitrary orthogonal coordinates ¥ = Z(u®), the divergence operator is given by

1 1. Vh, 1. Vh
Vi = —=0,(VhV) = —=0,(~=€. V') = —=0,(~5V5),

RV = G V) = g v
h_gha, ha = |al, € =eo=7—. (B.5.2)

For a U(1) gauge covariant divergence (9; + A;)V* one may simply make the re-

placement

Vh — U+v'h so that

- 1 UVh
0 + AV = ——0,(——
( ) UVh ( hZ

where 8ZU = AZU WI'ltIIlg Pz = 82 + Ai, Jij = ZL’Z'Pj - LE‘jF)Z‘

V), (B.5.3)

[P, x;] = 6, [P P}l = 0iA; — 0; A, [2*,Jy3] =0, [P? Jy] #0

= D—2 - 1 - J?
2 = = 2
Pe TS5 P (@ PR+
2 N D—-1+2r4, 0 N (D —2)rA, +r0.(rA,) + r*A% + J?
B 8T2 T 8T 7‘2
1 0 0 D —2)rA, +70,(rA,) + 1A%+ J?
= maf(r)a L ) 7‘(2 ) 7
£(r) = efrderJ*;r- AT/’ rd, =7-A@), 0, = (‘% (B.5.4)

The condition [2?, J;;] = 0 is essential for the independence of the angular part
from the radial parts. Notice that for the case where ¥ - A= const, such as

Al = a2 + 1BIN(F) 27 = —ady() + 1BWN(F) 27, the expression for P? simplifies
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drastically and is almost equivalent to 9 except that the angular momentum .J;;

(and hence J?) is slightly modified.

In the case A; = %Bijxj, B;; = —Bj; = const one also has §;A" = 0 and so
expanding P? implies that 9? can be written as
1 d d J? 1 |
0* = — P — 4 = _B,.JY + —By,; Bz B.5.5
rP=1dr dr 2 27Y 4R ( )
B.5.2 Spherical eigenfunctions
In spherical coordinates (with 6, = 0)
xg =y = 7 cos g sin 01 sin O3 sin O3 sin 04 sin O5...sinp_1, (B.5.6)
T =T = 7 c0s A1 sin @ sin A3 sin 4 sin f5...sin0p_1 (B.5.7)
Ty =2z = 7 €08 05 sin 03 sin 04 sin f5... sin 0p_1 (B.5.8)
T3 = rcosfs3sinfysinfs...sinfp_1 (B.5.9)
Ty = rcosfysinbs...sinfp_q (B.5.10)
(B.5.11)
TE = 7 o8Ok sin O ... sin0p_1 (B.5.12)
(B.5.13)
Tp_9 = rcosfp_ssinfp_1 (B.5.14)
Tp_1 = rcosfp_1 (B.5.15)
the Laplacian is given by
o 1 0 p 0 1 RA 1 1 & 41, @
o= rD-1 ET or + r2 kzz:l sin? 041 sin? O 1 o...sin2 6p_1 sink—1 6 @ s ek@
1 9 p.y 9 1{ 1 32+ 1 Lo e
T pD-1 ET ar | 12 ‘sin2 05...sin2 0p_1 B_Gf sin2 03...sin2 Op_ 1 sinfy @ s 2@
1 L0, 0 1 IO
+sin2 04...8in2 0p_ 1 sin? 03 8793 s 38793 + sin? 05...sin2 O _ 1 sin3 Oy 8794 s 4@
ot
1 1 o s, 5 1 o o, 8
sin20p_ 1 sinP—30p 5 96p o D=2y Y anb 26, 005 1 " 1 o0p 1
(B.5.16)
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Now any operator () that has a complete set of eigenfunctions

Q= {Y, QY = \p, X € C} on a space X (ie. every element in F(X) can
be expressed as a linear combination of the elements of Q, F(X) = SpanQ)
can be defined in X and/or F(X) only up to similarity transformations since the
spectrum of PQP~! is isomorphic to the spectrum of Q). The Laplacian 0? is such

an operator. One can make the identification

D—-1
L =03 = .y
Q s sin2 O SinZ Oy g... SN2 0p_; sin* 1 0, 90, sin k—aek
(B.5.17)

The solution in a spherically symmetric potential f(r) may be separated as

follows

(0% + f(n)w(7) =0,

@) = D pai OT(01) O (6) . O (0) . O (0p-1) X
ml...mD,2I~‘
RE) = Yy mpar Y2 (01, 0p 1) RE(r),
ml...mD72Z/
0? 9
—@ml (91) =m ®m1 (91),
ae% 1 1Y1
2
my : 8 mim 20omim
_ - 0o — 1m2 0.} — 1mz (g
(sin2 0 + sin 0y 005 s 2692)62 (82) = m3©57"(02),
2
my_q 1 0 . k—1 7] M —1M 20 Mk—1M
— 0,—)O 0r) = C) 0
Sin2 ok Sink*l 9/€ 891@ S kaek) k ( k) my k ( k)’
2 _
mp_o 1 9 . poo 9 mp_oL
0p_1—)O Op_
sin2 0p_1 sinP—2 051 90, sin D 159D—1) D-2 ( D 1)

= L2®7£312L(9D—1)7

—— b2 ; + f(r)RE(r) =0. (B.5.18)

Writing s = cos 6, the kth equation is
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! d sod o omiy = (L= s )mi
T U A (e AR
- 9k
! & +4k_k2+m2—1_(1—8k2)(2k—k2+m%)}><
(1= 5,2)% ds)? (1= 5:2)?
[(1- se2)ep ™) = 0. (B.5.19)

The Legendre equation
2
2 m _
(1= ) + U+ 1) - T2y =0,
1 d?  A—-m?+I(1+1)(1—2?)

(1 _ 1'2) (dl’2 + (1 _ 262)2 )((1 o $2)§y) =0
(B.5.20)
has solutions
—_1)m1 2y A 1)} 1<m<l B.5.21
ple) = (1 —a)F @ =), —l<m<l (B521)

To get the solution to (B.5.19) one should replace m? with (2—k)? —m?_, and
replace [(I+1) with —(2k — k* +mj3).

The eigenvalue equation with f(r) = g may be written as
g 1 90 p,,0 L* B
(9” +— MR = (rDlﬁrr §+—+— MR
1 0% L[*°-(1-D)(3-D)/4 D1
_TD?(WjL 2 +;—)\)(r R)
1 8 L2 B D1
_T%(aTQ_‘_ﬁ_‘_;_)\)(r R)—O,

(B.5.22)

As 7 — 0 the term in L2 dominates and as r — oo the term in )\ dominates.

These suggest the change of variables
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F(r) = T%R(T) = pltle=rVA u(r), — L* = I(I+ 1) that may simplify the

equation.
[- T " [_'_1 u, /
(r e u(r)" = [(— —)F]
T u
l+1 o, I4+1 u u?
A= D
I(l+1 20+ 1)V A 20+ 1) o/ "
= A+ (J; )— 20+ )\F+(—2ﬁ+ (L ))3+U—]F
T T T u u
@ 20+1),d B-2(0+1)VX,
{W—F(—Q\/X—FT)%—F ” }U—O

2

{7’%—1—( 2rﬁ+2(i+1))%+5—2(i+1)\/§}uzo

(B.5.23)

Let the solution be in the form u = ;7 \ ayr¥, then

k(k — Dagr*t —2v/A Z koy,r”

1)Zk0zkrk_1+( 2(1+ 1)VA Zakr =0
k(k = Dagr*t —2v/A Z koyr®

NE

>~
Il
2

NE

k=N
2(0+1) Z kogr® =t + (B —2(I + 1)VA Z apr® =0
k=N
> (k(k — 1)+ 2k([ + D)™ + ) (B - 2\/X(k: + 14 1)apr* =0,
k=N k=N

(N(N = 1)+ 2N( +1))ayrV
+ Y (k4 D)k + 200+ D)akpar™ + > (8= 2VA(k+ 1+ 1)arr* =0,

k=N-1 k=N

(B.5.24)
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With N = 0,

CM+r=—(i;?ng:;;if%akE[Mﬁvak:ﬁkbﬂlam (B.5.25)

and the series terminates (eg. when bound states, |R(r)| < oo Vr, r = |T] — 24/,

are desired) at

52 W 2mims | q1G2 s 1
h2(m1 + m2) dmeg 4(]{312 + l1o + 1)2.

— T
 2VA(k+I+1) -8
%M”_(k+1xk+2@+1)’ (B:5.26)

~—

where

~ -~ D—-1)(D-3
I’=1*~(1-D)3-D)/4 = W+D=W+D—( Z )
Thus (B.5.26) implies that radial and angular motion decouple and motion becomes
free from any interactions. Therefore systems that can travel in extra dimensions

can avoid interactions with those confined to fewer dimensions.

In spectroscopic notation

2m, qq 5 1

-2 et n=k+Il4+1 = 0<i<n-1. (B.5.27)
TE n

n:

If a constant weak B;;-field, B? < B | is included, then A — A+ %jBB where ;2

is the angular momentum quantum number satisfying

Bij Jij¢jB = ijjB-
(B.5.28)
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Therefore

h_2§‘3 2m( qq )21 _ehB 4 2m( qq 5 1
2m 271‘7 B2 ‘wey’ 4n2 4Am J h? “dmey” 4n?
n=k+j+1 = 0<j<n—1. (B.5.29)

EnjB —

In spectroscopic notation, quantum orbits (known as orbitals) are label are given

as

n? i, Jl—s|<j<l+s, n=k+j+1.
1=0,1,2,3,4,5,6 ...

= S (sharp), P (principal), D (diffused), F' (fundamental), G, H, ...

(B.5.30)
where the possible total angular momentum quantum numbers
J2 = (L+5)2=j(j+1) follow from the vector inequality
(IZ] = 1S < (L + 8)* < (IL] +|S))? (B.5.31)
and
L2=1(1+1), S?=s(s+1). (B.5.32)

One observes that to label representations

R:S0O(n) — GL(N) — O(F([R")), g |mu,....mp_o,l >

!/ !/ ! !/ !/
= E |my, e, my o L ><mi, comy o Ulglmy, .oy my o, 1 >

— R(g) > Ymmal

(B.5.33)
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for SO(n), one can consider the sequence SO(n) C SO(n—1)... C SO(3) C SO(2)

with their respective quadratics Casimirs L?n), L?

(n—1)~-L%3)> Lé) all commuting and

therefore can serve as labels. These Casimirs may be identified with the numbers
My, Ma, e, My, L given in the spherically symmetric equation above.

Since L%k) < L?k 1) numbers may be assigned such that

|| <l < floal, k=2,3,...n, where L3y = L3, (Iy) = lg(lx +1). States may

be labeled as |lols...L,10,) = |ma, ..., my_2, 1 >.
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Appendix C

Variation principle and classic

symmetries

C.1 Division of spaces

If A, B are two spaces, then their quotient is given by the set of isomorphic maps

A/B=Af; f:B—=A, [fla)=[(b) < a=0b}.

If one wishes the maps to be parallel then the following condition may be included:
fla)=gla) & f=g VfgeAlB.

If A~ F x B then one says that A is a bundle of fibers {F'} (or fiber bundle
m: A — B) over B and A/B is the space of sections of A by B. The partial

equality ~ means “similar to” and its actual meaning depends on the context.
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C.1.1 Spectrum of a group algebra

In the case of groups, if A = G a group and subgroup F' = H C G, with an action
p:GxH—H, (9,h) = p(g,h) =gh; eg. G=S50(n~+1), H=S50(n),then
B=G/H ~{gH, g€ G} ~{Hg, g € G}. Thus one has a fiber bundle structure
G~HxG/H.

If a subgroup H is not normal; ie. gH = Hg does not hold for at least one

g € G, then a normal subgroup Hg may be constructed from it as
Hg={ghg™', Ge€G, he H} (C.1.1)

since § gHg ' = ggH(gg)™" g. One can also define a commuting element Sp(s)
for any element s € G, Sy(s) being an element of the group algebra
Ao {a=al) = [ dulg)alg)g. a:G-CY,
geG

a(a)a(p) = a(a* B),
(a% B)(g) = / () afga)B(a) = / _dp(e) a(e)3(ag),

where p is the left-translation invariant measur on G.

So(s) = {ho = /

du(g) gsg~', s € H}, / du(g’g)=/ du(g) Vg' € G.
geG geqG g

geG
(C.1.2)

The number of unique such elements is equal to the number of conjugacy classes
of G since Sy(g) = So(hgh™"). That is, the center Z(Ag) of Ag is as large as the
set of conjugacy classes {[g], g € G}.

Z(Ag) = {5(lg]), g€ G} ={lg], g€ G}
Z(G) = G N Z(Ag) (C.1.3)

ISection [E.15.11
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and the irreducible representations of GG or of Ag are parametrized by the spec-

trurrH o(Z(Ag))-

C.2 Gauge symmetry and Noether’s theorem

A U(1) gauge transformation is a continuous local transformation of the electro-
magnetic potential A(z) — A(x)— ﬁdg(x) that preserves the Maxwell Lagrangian
for electromagnetism. Gauge symmetry may also be defined for an interacting the-
ory, in which case, it may be associated to the conservation of electric charge by
Noether’s theorem which associates, along the classical path 05 = 0, a “complete”
set of conservation laws and hence a “complete” set of conserved charges to any
continuous global symmetry of a classical theory. A continuous symmetry of a clas-
sical theory is a transformation that changes the differential action or Lagrangian
only by an exact form 6L = dK (a canonical transformation) and hence does not
change the equations of motion §S = § [ £ = 0. The Noether charges {Q"} for a
given symmetry give a canonical representation for the generators of the symmetry
group. The characteristic values or spectra, which may be referred to as possible
physical realizations of the Noether charges {Q®}, correspond to the irreducible

representations of the symmetry group.

C.3 Symmetry breaking/violation

Certain internal (non spacetime) symmetries are broken by the observation that
“elementary” particles come with different masses. A natural way to characterize
this symmetry breaking is through a procedure known as dynamical or “sponta-

2Section [F.4]
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neous” (implicit in general) symmetry breaking. In this procedure the physical
system around it’s ground configuration (lowest energy configuration) is seen to
have evolved from a more symmetric system at high energy/temperature configu-
rations (ie. high kinetic energy, referring to a situation where the kinetic terms are
dominating in the Lagrangian). As the system evolves to lower energy configura-
tions (a situation where the interaction or potential energy terms are dominating) it
has more than one local minimum energy configuration to randomly /spontaneously
choose from. The space of all configurations with a given local minimum of energy

is known as a vacuum or a vacuum manifold. The local extrema may be obtained

by solving
OH _o, OH _o,
{0} Ny}
oL
_ By |3 _
H_/d:):”;'-l—/da: Gy (e} = £ (C.3.1)

where {p} is the collection of all fields involved.

In one case all fields take zero values in the vacuum and in this case the field
theory around this vacuum retains the original symmetry and the vacuum is said
to be invariant under the symmetry. In the other case, one or more of the fields
assume non-zero values in the vacuum and consequently the field theory around
the vacuum cannot retain all of the original symmetry and the symmetry is said to
have been spontaneously broken by this supposedly spontaneous or random choice
of the vacuum.

There is also empirical (explicit in general) symmetry breaking which involves
the introduction of noninvariant terms into the Lagrangian in order that theoretical
results (eg. calculated interaction amplitudes) agree with experimental results of

certain processes observed to violate the symmetry.
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C.4 Action/on-shell symmetries

At the level of the action, any two theories with the same number of degrees of
freedom (dofs) are equivalent in that they can be related by an invertible transfor-

mation

{e1} = {2} = g12({1}), Sil{ei}] = Sa2l{w2}] = fizler, Siler], 0y, Silen], -]
Sil{gn}] = / d(@) L1z, {91}, 0401} ),
Sol{ga)] = / du(2) Lo, {0}, oo} ). (Ca1)

However the equations of motion

0Silted] _ o 0%allead] _ (C.4.2)

{1 }(z) {2} ()
may not be invariant under the transformation (that is the two solution spaces are
not isomorphic). Thus the space of all action equivalent theories T = {S;[{®i}]}
for a given number of degrees of freedom has an action intertheory symmetry group
G that interconnects the different theories in 7. The usual symmetry groups of

physics are “fixed points” of T

{1} = {w2} = g2({e1}),

Sil{ei}] = Sal{w2}] = aSila{pi} + 0] + 8
0Sa[{p2}] — 0y Mo ty)  dSi[a{pr} + b] _
Z et bgeen@) ety G

where «, 3, a,b are constants. That is, they map an action to one that is similar

to itself and for these special cases, the equations of motion are interelated even
though the symmetry group of the equations of motion can be larger than that
of the action. The duality symmetries of string theory arise as special cases of
a,a# 1 and 3,b0=0.
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C.5 Noether’s theorem and Ward-Takahashi iden-
tities

For simplicity we consider an action with at most first derivatives but the discussion

can be extended to the case with any number of higher derivatives.

Consider a physical system described by a particular configuration (trajectory
or path)
¢pe{f:DCRM - &C M=CV}. Assume that the dynamics of the system is
determined by a least action principle with an action S[f] = [ du L(z, f(z),0f(x)).
That is, among all the possible configurations f marked by any given bound
0 = f(0D) (ie. 6 f|fecoe = 0 f(x)|zecop = 0), the classical physical configurations(s)
is (are) the one(s) for which the action is extremized 6S[f]|f=y = 0. Therefore
physically the Euler-Lagrange equations describe the only classically possible de-
pendence(s) of ¢ on x € D for any given boundary € = ¢(9D).

5S[f]=/Dd":c{6M(6f %)4_5]0 (%_(% %)}
oL . oc oc
= [ 150000 85D g+ [ ' 51w (7@~ g o)

v1 VD1
dS,(u) Mdf)_lu. (C.5.1)

= Swvpa A(ul,...,uP-1)
Therefore S[f]| = = 0, 0f(x)|zseap = 0 implies that

oL oL

or simply
oL oL
a5~ O 355 0. (C.5.3)

Now different physical observers describe the behavior of the system with differ-
ent points of view, which range from the use of different coordinates (labels or pa-
rameters) x — y and/or different integration domains D — D’ to reordering and /or
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rescaling/translating of the components of the field variable ¢ ( ¢(x) — ¢'(2') )
and of the Lagrangian £. According to the theory (or principle) of relativity,
these observers should still use the same least action principle and hence the same
equations of motion, among other things, to describe the behavior of ¢. That is,

05"[f]f=¢ = 0 implies that

85, / / a‘cl / o / /
aqb/(:c,..)—au 88;@@’") =0 Va' e D,
0
(0uf) (@) = 55 @) = G, 1) (C.5.4)

One can check that for smooth transformations (ie. smoothly related ob-

servers), the difference between D and D’ can be fully specified through a change
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in the integration measure of the action.

St = [ d'a £(e.0(a).00(),
z— 12 =x+ 0,
p(x) = ¢'(2) = M(z, d(x), 06(x),...) = ¢'(¢') — d(a") + (') = dp(a") + (')
= 0p(x) = ¢'(x) — d(x) = M(x — 0z, ¢(x — 0x),0¢(x — 6x),...) — (),
0@ +08) s _ qet(I 4+ 067) d"z ~ (1 + Te(962)) d"z = (1 + 0 Oat)d" x,

X
5L =3L+ 0at L+ 36 §+5au¢ oc = 5L + 02" 9,L + 3¢ £+a 5¢aa£¢

00 Mo 0
_ oL oL
= 5L — 0,02 L+ 0,(0" L+ 8¢ 555+ qs( ¢ %553
5S[¢a D] = SI[(b/vDI] - S[¢a D]
- / L9, 06 () - /D &e Lz, o(x), 06(x))
_ / (6d" £+ d"x 5L) ~ / (1 +8,00")d"x £ + d"z 6L}
D D

oL oL oL
86M¢)+5¢( 39 — Oy W) }

d"x — det

:/d"a:{gﬁ—l—a#(&zr“ﬁ—i-&b

D

:/d"ac (5C+0, J“+5¢E}:/d":c (5L+8, a")=0 VD,
D

at =6zt L+ 6¢

oL
Sog It at aut =0, [ as.p-o,
o
(C.5.5)

In particular, for domains that can be continuously shrunk to a point, one has
that 6L + d,a" = 0 at every point. Here, ¢ is the functional variation
SF(u) = (F' — F)(u) = F'(u) — F(u); ie. it is the part of the variation that is not
due to the “visible” arguments for the function involved.
09(x) = ¢'(x) — d(2),
0L(w, ¢(x), 0¢(x)) = L' (x, ¢(), 0¢(2)) — L(w, ¢(x), Ip(x)). (C.5.6)

For any system of observers whose functional forms of the Lagrangian £ can differ
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only by a total divergence 0,8" there is a conserved current J* = a* 4 B#;
0L =0,8" = 5= /0MJ” = /au(a” + ") =0. (C.5.7)

In the case that involves a system with a dynamic domain D such as a smoothly
expanding universe, the dynamics of D can be accounted for by introducing a dy-
namical metric field g,,, whose dynamics is also determined by the Euler-Lagrange
equations. In a more convenient form for other purposes, one may express the

general variation of the action as
55 — / AP {SL +0,(50"L)} =0 = L+ 0,(52"L) =0, (C.5.8)

where dz = 20, 60 = 6.

In D=1+0 dimensions for example,

[ 75 £l 6. 00(2) > [ X LG40, 8, - 1,
B 0L dg
a =0\ L+ () 8—42" q_d)\'
o d
o= = plath =0 (€59)

Analogously in quantum field theory where we have the quantum measure dj,
involving a sum over all possible ¢ configurations (or ”paths”) in D, an amplitude G
for a physical process is given by the expectation value (F({¢})), wrt the quantum

measure, of a homogeneous polynomial F'({¢}) of the fields. The invariance of G
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may be expressed as follows:

— (F({6})) = / D) = / D

$5'1¢ D

F({p})eiseP)

— D' F'({¢'}) e
peM/D
/]

D ;
= / Dy det( Dgp ) (F({g}) + 0F({p})) enSlePl+aske.DD
peM/D 1%

53¢ ;
”/ Dy &5 (F({}) + 6F({p})) eh(SteDisle]),
peM/D

D [0F({e}) + FUH( & a5lp. D] + 202 )| cistorl —
()

/a I+ tr 5((55)))» 0. (C.5.10)

The relation (C5.10) is the quantum analog of the classical Noether’s theorem

0G ~
peM/D

(OF({o})) + (F({o1)(

and is known as Ward-Takahashi identity.

An expression for the trace tr is

55¢ £). od(y) 5 — ).

S22 fl So()
25 = 5"( y), Z " (2)€(x) = dgre.
= 253 dc &() (C.5.11)
For the case of global spacetime translations where d¢ = —9,¢
(C.5.12)

Z/ d"z V" €5 (2)0,6(x),  Elop = 0.

This vanishes if the domain D is symmetric as we have an odd integrand
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In general,

(¢) (@) % (¢(y))
P(z.y) =Y @) W), 6% =ge. geo =Y (@) ().
334 x
where P is a projection that may be constructed from a complete set of functions
which can span the solution space of the classical trajectory given by g‘g—f} =0.

In order to obtain an analogous situation to the classical case, we need to define
Zlc] = / Dy €SP, (C.5.13)
v€C(D)

where C(D) = {f; f:D CR™ = M, f1(0D) = fo(0D) Vfi, fa} C M/D is

the configurations space.

C.5.1 Dynamics using differential forms

In terms of differntial forms the terms of matter and fermion actions are

z/ dPx (0, — ieA, ) = z/ Py * (dp —ieAy), v = v,dat,
D D

1 1

_/w%a@ww:—/dw*m,

2 ) 2 )

1/ Fl P = 1/ F+F, F=dA, A= A.dz" (C.5.14)
1) 1)

Infinitesimal transformations are given by
Of = iszdf +d(isef) Y f = fu. p,dattFr,
where

5] = iy a1
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and the x and d operations are

— H1---Hp Hp+1--UD — f* Hp+1---D
*-f - fﬂl---ﬂpg Np+1---MDdI - f,U«erl-nlLDdx )

df = O fr. ) AT fry oy = S ().

Example of transformation:

S(F«F)=2(6F) « F =2 d(is,F)  F
=2 d((is, F) % F) — 2 (is, F)(d * F).
(C.5.15)

The Lagrangian in general is given by

L=L(~f,«f,df,«df,dx f,*d * f,...). (C.5.16)

C.6 Faddeev-Popov gauge gixing method

The definition of gauge fields in the classical or low energy action involves irrele-
vant degrees of freedom (in the form of invariance under gauge transformations)
that must be eliminated (through gauge fixing: ie. by imposing any constraint that
breaks the gauge symmetry completely) when attempting to obtain physical solu-
tions to the equations of motion resulting from the least action principle. Similarly
this elimination has to be done when attempting to quantize (ie. extend to all pos-
sible energies) the classical gauge theory since quantization involves summing over
contributions from relevant degrees of freedom only. The Faddeev-Popov gauge
fixing method is one method of implementing gauge fixing in quantum theory.

The convenient (i.e. Euclidean) measure du(A) and action S[A], in the parti-
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tion function
Z[J] = /DA o~ SIATA — /du(A) e SHAI+IA
JA = /de Tr(J,(x) A" (2)) = /dDat Ju(x) A% (),
are invariant under the gauge transformation
A=A =g 'Ag+g'dg=A+g 'Dg, Dg=dg+[A,g]. (C6.1)

Here A is the G-bundle A = {A} ~ A/G x G of all gauge equivalent potentials
[A]. This means that

du(A) = du(A/G) du(G),
AJG={[Al, Ac A}, [Al={g""Ag+g 'dg, g €G}.

Therefore there is over counting in the partition function (C.G.T)) as it includes
integration over the group ¢ under which the integrand is invariant at J = 0
which is the most important point in the definition and applications of the partition
function to averaging of quantities

(Q(A)) = ﬁ@(‘g?—yu Jj—0) as well as in evaluating effective actions. One simply

needs to divide Z[0] by the volume of the group [du(G) in order to remove the

redundant factor and so the corrected partition function is
Z[0] = / du(A/G) 514 (C.6.2)

now having the less convenient measure du(A/G). The Faddeev-Popov method
involves rewriting Z[0] in terms of the more convenient measure dyu(.A) by choosing
, 9% = 0) other than
g = const through the bundle {[A]} x G ~ {([4], ¢)}. The path should cut through

a path (a section or gauge fixing condition G[A] —h =0
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any given fiber [A] only once : ie G[AY] # G[AY] unless g = ¢’. We insert the
identity

SG[A]

- /g DALY S(GLA7) ) = /g du(G) | det

€g

| 9(G[A%] = h)
into the integral expression for Z0].

(0] = / dp(A/G) &S

du(A/G) DG[AY] 6(G[AY] — h) o514

§(G[A+ g 'Dg] — h)
og

- fdu(A/g) dp(G) | det 5615[;49] | S(GIAY] - h) -5

= / du(A) | det 562[;49]| S5(G[AY] — h) =Sl

- / du(A) |det C) 5(G1a0) — py o510

= / dp(A) | det 56;[;49] ot 5(G[A] — h) =SHA

— [ duta) et %ﬁ_h)\gzl S(GIA] — ) o1
/

dpu(A) | det o1 8(G[A] — ) e,

But

6(97'D,g) 0G[A]
3g JA,

G[A+ g 'Dg]l—h=G[A] —h+
16(97'Dug g7 'D,g) 0°G[A]

2! dg 0A6A, T
0(g 'Dug) 0G[A]  _, d(g 'D,g) *G[A]
D
59 oA, 9 PmITS Sasa, T

(C.6.3)

= G[A] - h+

and so only the first derivative term in the expansion can survive in the presence
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of 0(G[A] —h) and upon setting g = 1.

(9" Dyug) 6G[A]

Z[0] = /du(A) | det 59 SA, lg=1 0(G[A] — h) e~

SG[A]
MA,

c [A]
— /d,U(A)DCDE 5(G[A] _ h) 6_S[A]—Tr(0D#(%)C)

| 6(G[A] = h) e

- /du(A) | det D

—S[A]—ea D, (351l b
i,

_ / dpu(A)DeDe §(GLA] — h) e

Cacb — _Cbca7 CaEb — _Ebca’ Eazb — _Ebza

where integration over spacetime is understood.

Since h is arbitrary we can use equivalently

—S[A]—¢a D, (25 AL) b
HA Al

Z[0] = / du(A)DeDeDh FIh] §(GJA] — h) e

— o Trh? S hoh®

In particular F[h] = ™ 2a — e gives
_STAl— L qaralqarAl—ee D, (SGLIALY Wb
Z[O]:/dM(A)DCDE(; (A= G 1AIG7A] u 6AZ) ’
—S[A]- L G[A]G [A]—e@ D, (3SUAL by Ay
Z[J] :/du(A)DcDEe [A] =25 G [AIG Al =" D (S5 ) e+
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Appendix D

Geometry and Symmetries

D.1 Manifold structure

A real D-dimensional manifold M p is a collection of differentiable invertible maps
from an arbitrarily given space M onto R”. That is Mp ~ 2% C {¢ : R? — M}.
One may ignore the dimension label D when it is understood and write simply

~ &% The function space over M is F(M) = CV /M and the tangent vector
bundle T'(M) and dual tangent vector bundle 7*(M) are given by

TM) ={t: FIM) = FM), to(fg)=tofg+ftoy,
to(f+g)=tof+tog},
T*(M)={t" : T(M) = CN, t*o(t,+ty) =t oty +t*oty}.
(D.1.1)

and their fields (or sections) are T'(M)/M and T*(M)/M respectively. One can

equally construct tensor fields and dual tensor fields which are sections
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T(M)/M, T*(M)/M of the tensor and dual tensor algebras
TM) =C" & PT(M)®* =C" & T(M) o P T (M),
k=1 k=0

T"M)=C" o éT*W)@’“ =CVNoT" M) éT*(M)@k.

(D.1.2)

D.2 Relativity or Observer Symmetry

According to a universal observer, the dynamics of a physical system may be
described by a “path”EI I'' X > Ejie. e E/X ={¢: X — E}, in the universal
(experimental, operational or investigational) space £ = {f : A/X — A/X} of
space and time (spacetime) X ~ RY  where A is any suitable algebra. However
a local or limited observer (sees the path as ¢ : D C X — E, (D) = I'(X))
can only access an observer domain D of spacetime that serves as a parameter
space and is different for different local observers although the physical system
(ie. its “path” in the universal space), and of course the universal space, look
the same according to the different observers. We assume that the local observers
are careful observers, where a careful observer is one that is aware that he needs
to make several observations using as many different frames of reference D as
possible before attempting to make any general conclusions about the behavior of
the physical system.

According to the universal observer, it is therefore natural to regard each local
observer O € G as merely a member of the set of structure preserving transfor-

mations G = {g : E/X — E/X, (goT)(X)=T(X)} C E on spacetime based

LA “path in the universal space E” is a “configuration in spacetime X”.

237



systems or paths, where the structure to be preserved is the “path” I' of the phys-
ical system in the universal space E of X.

Therefore ' e C={c=Go f=[f], fe€ E}C E/G since

goG :={gh; he€ G} =G Vg € G, where C is the space of all symmetric path
configurations.

For simplicity, we will make the restriction £ ~ CNt x C2 x ... x CN¥. Now two
local observers O, O’ define the path ' as ¢ : D C X — E, (D) =T(X) and
VD CX — E, /(D) =T(X) respectively.

Which means that ¢/(D’) = ¢(D). From experimenting with local observer re-
labeling properties of a function, components of a vector field, components of a
spinor field, components of a tensor field (infinitesimal polygons), ... in ordinary

spaces one finds that respectively,

W) =au), a: X =R,

o (u) = ew(“’“,’%_zf:"“)a(u), a: X —C, Ou,, 88_1;/’ ..) ER,
9% =

() = 2 o),

o' (u) = S (u, aa—j)ab(u),

(D.2.1)

Therefore “pointwise”, /(D) = (D) may be written as

ou’ ou’ ou’
w(’lla2~~.an (u/) = Ralbl (uv ulv %7 ")Ra2b2 (uvu/v %7 ")"'Ranbn (uvu/v %7 ) wb1b2~~~bn (u)
Vu €D, uecD,

(D.2.2)
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a more general form of which being

ou’ ou’
wz,nag...an (u,) = Ralaz---anblbzmbn(ua u,a %7 ) 77Db1b2---bn(u) + balaz---an(ua u,a %a )
Vu €D, ueD.
(D.2.3)

and yet a more general form being

Varas...an (W) = Rayas.an(u, 0, 00, . h(u), 0(u), ..).
Vu €D, ueD.
' (u') = R(u, v, 00, .., p(u), 00 (u), ..). (D.2.4)

In general ¥ may be expanded as a sum of products of elementary functions {e}:

Y(u) =Y Wiy, ()€ (u)...e™ (u). (D.2.5)

Internal symmetries are those for which v = v/ VYu € D, v/ € D'. One

notes here that the observer domains D, D’ may be specified through differentiable-
invertible maps ¢ : U C M — X, m—uand ¢’ : U C M — X, m' — u (with
p:UNU - DCX, ¢:UNU — D C X) so that v/ and u correspond
to the same point m = ¢ '(u) = ¢'~'(v/) in the intersection U N U’ on some
abstract space M, in which case any given complete collection {U,}, U, U, 2
M of pre-observer domains is said to define a differentiable manifold M over X
meanwhile any corresponding appropriate choices {E(M) = {f : A/M — A/
M}} for the universal space E are fiber bundles {7 : £ — M} over M. The
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(internal) transition relation among the various observers may be expressed thus

Ug = pa(m) = pq 0@, ' 0 pp(m) = @q 0 @, " ()

= <Pab(ub) = SOab(SObc(Uc)) = Pab © SObc(Uc) = SOac(Uc)-

Pac © Peb = Pab- (D26)
wa(Da) = ¢b(Db) — wa o (pa(Ua N Ub) = 'be o (pb(Ua N Ub)
— % = ¢b O Yba, Pab = Pa © Sob_l (D27)

The form of the representation function R in (D.2.4)) is determined by consis-
tency with observational facts. For example, in quantum theory £ is a noncommu-
tative space [as decided by observations] meanwhile X can also be noncommutative
las decided by observations]; then for the noncommutativity to be physical or ob-
servable, the underlying algebraic (eg. commutation) relations, or their functional
form equivalently, need to be the same (just as the path I'(X) is) for each lo-
cal observer and consequently the (local) observer relabeling or reparametrization
tensor R needs to take on a form that can support this preservation of the al-
gebraic relations on relabeling. The following section [D.3] is an attempt at such
transformations.

If the path I' is defined by a least action principle
S16.D] = [ du(®) Lla v(u), d0(w)...).
— = =0, §(u)|ueop =0, (D2.8)
then ¢/(D') = (D) requires that

S, D] = / du(D') £/, (), 0 (), ),

05"\ D' _ o _
W = O, (5¢ (u )‘u’eaD’ =0 (D29)
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as well.

In the case where X is an algebra X = {2} specified by commutation relations,
one may first determine the spectra
o(@) = {M € C; (" — M1)~' $} Vu. Then the “functional” form of the
relativistic path ¢ : D C X — F, Q/AJ’(ZA)/) = @E(f)) may be expressed as

=i =§ woo [I555 D210

P

where one now has (index) reordering or permutation or braiding symmetry due

to the noncommutativity and again this reordering must be consistent with the

relation ¢/(D') = (D).
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D.3 Hopf symmetry transformations

The permutation group §,, and braid group B,, may be defined as follows:

Tn = {17t127t237 "'7tn—1 n} = {17t17t27 "'7tn—1}7
tr = ti k41 - V®N — V®N, MX...QUN — 11X ...R t(Uk & Uk+1) & ... d vy,
t: VoW ->WeV,
Bn = {b, € Tn X b,bj == 5”622 + bjbibjbi_l(siil j + bjb,(]. — (5, - 5,5:1 ])}
- {bl c Tn , [bl, bj] — bjbl(bjbz_l - 1)5i:|:1 j - blb](l - bib;1>5jil z}

_ _ oni ong
B, = {9 =Up " OUy

o..ou ny+..+n; =1, n, €Z;
(U1, ...,un) € By" = B, x B," '}
Sn = {Si € Tn; 82'8]' = (Sij —+ (sjsi)zéiil j -+ SjSi(l — 5@ — 52':|:1 j)}

ong

Sp={gi=u"ouyo..ou ni+..+n; =1 n,€{01}

n

(U1, ..., tp) € S, = Sy, x S, 1)

(D.3.1)

One may summarize the defining properties of a Hopf algebra
H = (A= {a,b,..},F,u,An,e, S 1) = (Vector space, Field, product, coprod-

uct, unit, counit, antipode, braiding) as follows.
e Unit:

Mo : F— A, A= da. Va € A.
ni=m,: F—A A— Ay,
(D.3.2)
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e Product:

p: AR A— A
(D.3.3)

e Coproduct

A=A A- AR A ar Ala) =) Cap o(a) ® B(a) = ag) ® ag
= a, ®a“, v
Ala®b) = ap) @ bay ® ap) @ bz (an alternative).
Aop=(p@p)o(idor®id)o(A®A), Alab) = Aa)AD).
Al =id.
A= (id® A)o A= (A®id)o A,
A%(9) = 90) @ 9@)1) © g2 = I @ Ime) @ @) = 90) @ 9e) @ ge)-
AF A A®F = A ® AP
AM = (((d@) T A(@id)* ) o Ak, i =1,2,.. k.
A*(g) = ga) ® - ® gim1) @ Joyn) @ Y1y @ Ji+2) @ - © Gy
=901) ¥ ge) @ ... @ gk)-
(D.3.4)
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e Counit:

e A= F, arre(a), e(la) = 1p,
copg=pro(e®e), elab) =c(a)e(b).
(id®e)oA=(e®id) oA =id,
9e(9e) = £(901))92) = 9-
((id®)le(@id)") o AF = AF1 =12 .. k.
e(96)) 90) @ - @ Gii—1) ® J(ir1) @ - B Gky = 9(1) @ -+ @ Gr—1)-

(D.3.5)
e Antipode:

S:A— A,
po(id®S)oA=po(S®id)oA=noce,
9yS(9(2)) = S(901))9¢2) = n(e(9)) = e(9)1c,
= S(gh) = S(h)S(g9), S(lg) =1q, (S®S)ocA=70A0S, c0S =c.
((id®)18(®id)F ) o A¥ L poe AR,

91) ® - ® gi—1) ® S(91))9(i11) ® G(iv2) © - ® g

2

£(9) le ® gn1) ® 92) ® .- @ g(r—2)-
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e Boundary:

pF AP 5 A 4 ®ay @ ... ® ap — a1as...ax.
Oi = i modyy (i41) = (1d®) T P (@id)F "0 A®F — ASETD =12 .
n, n<N
mody(n) = § min({n}), n=N
mody(n—N), n>N
=n 6(N —n)+min({n}) d,n + mody(n — N) 6(n — N),

k
0=> (-1)"'a, & =0 (D.3.6)
=1

D.3.0.1 Example

H=A={a,bc,..},pu=psA1,en,5), u,A,7,e,n,5 linear. Z(A) = ANA'.
“First” define A such that (ie. check that) (id ® A) o A = (A ®id) o A. For
example, if 7 : H — O(B), B = (B,pup) then A will be defined such that

m(a) o pp = pp o A(m(a)) = pp o A(m) o Ala).

Aa) = a, ® a®, A(ab) = (ab), ® (ab)®,

A(a)A(b) = agbg @ a®b”,

(ab)q = a,byA"", (ab)® = X%, ,a"V’, NP Ay = 67,07y
= A(ab) = A(a)A(D).

S(aa) = n(e(a) (a,0”) " aq, S(a®) = a®(a,a”)""n(e(a)),

£(aa) = daay, £(a%) = dgao,

e(ab) = e(a)e(b), S(ab) = S(b)S(a). (D.3.7)
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D.3.1 Quasi-tringular Hopf algebras and R-matrix

If TfoA=@QoA, then one may write T = Q o7, where 7 o A = A.

727;—1—17; = 7;—1—17;7;-1-1

= Qi i+1Qi i12Qit1 iv2 = Qiy1 i+2Qi i+2Qi i1 (D.3.8)
For example, if Q@ = adg; ie. 70 A(h) = Ro A(h) o R~! then we also have

Ri iRy ivoRivy ivo = Rig1 it o Ry ita. (D.3.9)

D.3.2 Action

H = {h,g,...} acts on a product algebra A = A4; ® Ay ® ... ® Ay = {a,b,c,...}

through an action p.

p:H®RA— A (hya)— plh,a)=p(h)a = ppa =h>a,
pna = Alpp) (a1 @ as ® ... @ ay) = Phiy01 & Phy G2 & .. @ Phy, Q-
pr(abe...) = pp @ pryb pugc .., aboc.. € A
e.g. left action (left “translation”) ppa = Lpa = A(h)(a1 ® as ® ... ® ay,)
= hayay ®@ hpyas @ ... @ hyay.
adjoint action pna = adna := hayaS(he)) = adp a1 ® adp, az @ ... @ adp,, ax
= ady(ab) = hayabS(he)) = hayaS(he))h@bS(hay) = ady,a adp,b.
(D.3.10)
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More simply for the adjoint action, one can write

ga = g)aS(ge)) gy = adg,,a ge),

gab = adg(l)a g(g)b =ad,.  a ad b 9go2)2) = ad

= ady,,, (ab) ge

g1a.. by = ady,, (Vrihe..Pr) 9oy = adg, Y1 adg, s ... ady, Vi gy,
(D.3.11)

a adg(z) b g(3)

91) 9(2)(1) 9(1)

where each of 1;’s may be a tensor product as well; ie.

VETA=FOAQA® 9 A® @ ...0 A®™ Vi. (D.3.12)

D.3.3 Duality and integration

The set of linear functionals H* = A* = {f, f: H — F, a — f(a) = (f,a)} is
the dual of H. That is, (,) : H*® H — F. For purposes of (co)homology indicated
by the maps 9; = [ mody,, (i+1) : AZF — APE=D A0 A®E 5 ASGFD 5 and A

are dual to each other. Similarly, € and 7 are duals.
(ff'a) = ((f®f).a)=(f® [, Al)).
(A(f),a®b) = (f, ula®b)) = (f,ab).
(f,nN) =((f). ) = (fila) =<(f), A#0.
(n(@),a) = (a,e(a)) <= (lar,a) =¢(a), a#0.
(

S(f),a) = (f,S(a)), S is self dual. (D.3.13)

A left integral [¢ € H* of an element ¢ € H* is a left-invariant linear
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functional [¢: H— F, [L;¢p=c(h) [ ¢ Vh € H, where

(Lna, ¢) = (a, Lj0),
ie. Lyp(a) = ¢(Lna) = ¢(ha) = ¢(u(h @ a)) = pr o A(¢) (h® a)
= ¢ (h) d)(a).
¢ oy = pur o AP). (D.3.14)

Therefore a left integral [ on H is given by

/L}:(¢) = 5(h)/¢ V(he H, ¢ € H) (D.3.15)
and similarly, a left integral in H is any Z € H such that

LI =hI=c(h)I VheH. (D.3.16)
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Appendix E

Some math concepts

E.1 Groups, Rings (Algebras), Fields, Vector
spaces, Modules

A group G is aset S with an identity e, closed under an associative binary operation
SxS — S, (a,b) — ab and in which every element has an inverse. That is,

VYa,b,c €S Je,a ! €S such that

ae = a, a(bc) = (ab)e, a 'a=e.

G=(SSxS—S9). (E.1.1)

G is an Abelian group Gy if ab = ba Va,b € G. The binary operation of the
Abelian group is written as + and the identity is written as 0 and the inverse a~*
of a € Gy is written as —a. That is Gy = (S,+: S x S — 9).

A ring (or an algebra) R is an Abelian group Gy that is closed under an ad-

ditional associative binary operation - : Go X Gog — Go, (a,b) — ab that is
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distributive over +. That is

alb+c¢) =ab+ac, (b+c)a=ba+ ca, a(bc)= (ab)c Ya,b,c € Gy.
R:(GQ,'ZGOXGQ%GQ):(S,—F,'ZSXS—)S)E(GO,-)E(S,—F,').

A field F' is a ring (Sp,+,-) such that (Sp\{0},-) is an Abelian group. That
is I = (S0, 4+,)|(so\fo},)e¢ Where G = {G} is the family of groups. A field F is
ordered iff there is P C F' such that

4+, :PxP—P, PN-P={}, PU{OJU-P=F, (E1.2)

where A~ = {a™!, a€ A}, AB={ab, a € A, be B}, A? = AA.

If I C Ry is an ideal (ie. I+ 1 =1, Ryl = IRy = I) of an Abelian ring
Ry = (So,+,-) then F; = R\l = {a+ 1, a € Ry} is a field.

With notation understood, one defines a vector space Vr over a field F' and a
module My over aring Ras Vp = (V,+, F xV = V),
M = (M, +, R x M — M), Mp#" = (M, +, M x R — M) respectively.

E.2 Set commutant algebra
Let the commutator of two subsets A, B of an algebra A := (A, +, ) be
[A, B] = {[a,b], a€ A, be B}. (E.2.1)

Let S C A, then the commutant S” C A of S in A is defined to be the subset of
A, with the highest possible number of elements that each commute with every
element of S.

S"= max U UCA, 0+g=gVgecA. E.2.2
o g=gVYyg ( )
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If A BCAand A C B, then
B C A (E.2.3)

since some of the elements of A’ may fail to commute with B\A = B\AN B and
hence fail to commute with B.
Also, since both S and S” (the commutant of ') commute with S” and S” is

supposed to be the maximum of all sets that commute with S’, it follows that
S c s (E.2.4)
One can then deduce using (E2.3) and (E.2.4]) that

SCS"=8"=..=8% n>2
S =8" = =80 pn>1.

(E.2.5)

Asacheck SCS" = (9" CY. Also S’ C (5)" and so S’ = 5" follows by
the identification (S”) = (S")” = S™. Therefore

A=5"US5". (E.2.6)
Furthermore
(AUB)Y C A'nB (E.2.7)
since ACAUB, BCAUB = (AUB) CA, (AUB) C B'. Similaly

ANBCA, AnNBCB = AC(AnB), B C(AnB).
Hence A'UB C (AN B)'. (E.2.8)
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If A, B are Von Neumann algebras A = A” B = B” then it follows from (E.2.7)
and (E.2.8)) that

(AuB)=A'nB', (AnB)=A"UB". (E.2.9)

Also one observes that the center Z(S) := SN S’ of S is always a commuting
set and so S is a commuting set iff S C S’.

Remarks:

e Although S is merely an arbitrary subset, the derived sequence of subsets
SO 4 =1,2..,n is a sequence of subalgebras (that is, these subsets are

closed under 4+ & x) if S is self adjoint; ie. both a,a* € S.

e Consequently S” is seen as the closure of S since it is the smallest closed set
that contains S in this sense of closure. Thus S is closed (ie. a subalgebra)
iff S” C S and hence iff S” = S since we also know that S C S”. S is open

iff its complement S¢ = A\S is closed (ie. a subalgebra).

e In particular if S is a single element set with element a then @’ is the symmetry
algebra of a and o’ N a” is the largest commutative set that contains a.

o(a) Co(a Na").

e A representation R : S — B(H), where B(H) is the set of bounded linear
operators on a Hilbert space H, of a subalgebra S is irreducible iff R(S) =
C 1p(3) meaning that the commutant R(S)" of R(S) is proportional to the
identity (ie. trivial) in B(H).
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E.3 Projector algebra
Let pe A, p>=p, D,=pDp={pap; a € D}, D C A. Then in
N,(D) = {D," n e N},
one has that
o D,"D," = D,"*".
® Upen D" €9/ ={c € A; pc=cp}.
o If pec D then m<n = D,/ C D).

epeD, DD=D = peD,CD, D,D,=D,. Therefore for D = A one

sees that projectors correspond to “closed” subspaces of A.

An Abelian group Z,(D) = {g™; n € Z} may also be defined with elements

g" = {(me>me+n)? m € N},

g ={D," D) m N}, (z,y)(2,w) = (22, yw).
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E.4 Matrix-valued functions and BCH formula

E.4.1 Limits

For complex numbers «, £... and matrices

A=e*, B=2¢", ..,
llm nin(1+7) limn o0 1“(1;rﬁ) e : X\n
lim (1 + ) nree =e n == lim (en)".
n—oo n—o0
. . o3
ie lim (1 + ) = lim (en)" = e*.
n—o0 n—oo

lim ( (1+ %)"(1 +

n—oo

RRT %n
= g len)” Jimfe

, a Bym o a+p  aB, ., .. a+pB .,
Jim (14 )1+ =))" = lim ((1+——+—7) )" = lim ((1+——)
= lim ()" = ¢*8 = lim (enen )", =

n—oo n— o0

. a B . o &

m (((1+=)"(14+5)") = lim ( (14 =)(1+=) )™ E.A4.1

Jim ( (14 )" (1 +2)") = lim ((1+ )1+ ) (E.4.1)
Similarly,

At >:z£&@ﬂ =

. n . n b ET a\n 1. b\n
B (L 2000+ 200 = i (1 5 Jim (1 "=l (657" i (o)

1 \n % _ab
= lim ((en)"(en)" ) = e"¢".

) by n o a+b ab, ., a+b., .
Yim (420042007 = Jim (14 =72+ 0) )" = Jim (14 =25 = e
:lim(e%e%)” =

n—oo ’

a b a b
m (14 =)"(1+—=)")# lim ( (1+=)(1+—))™ E.4.2
Jim ((1+2)"(L+ )" ) # lim (1+—)(1+—)) (E.4.2)
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E.4.2 Matrix functions

Let t =real parameter.

d d a d a t
Eeﬁbt y7 glgo(ene?f) —nlggo_t(enei)n
- wen )k men) (emen )k
—Jl_}I{)lOZee (ee)(ee)
= lim Z ezeﬁf n—h-l i(e%e%) (e%e%)k
_1 12”: Eblkb a bt k—l 1n_1 a _kb abtk
= lim - (emen)F b (emen) _ngl;lOEZ(enen) (emen)
k=1 k=0
(E.4.3)
n n n—1 n
Zak:aZak_lza ak:a(Zak+1—a"), =
k=1 k=1 k=0 k=1
zn:ak _ a(l —a")
— 1l—-a
ol —a) (1—am)
= 1- 1—a"= E.4.4
I . =
Therefore,
d 1 ¢ - 1~ (o
k=1 k=1
1el® (] — pla ] 1
ST Chnl i) O T JNG Q R B
n—oo M, I_ e[ } n—oo i e[;y}
1 o] — 1
= — (I—e[‘”’])be“—6 be”,
[a’ ] [aa ]
1 n—1 1 n—1 1 n—1
ol 230 h) g et = LN koot o i 1§72 ]
TP LT e ) DU LR S L S BE
1 _[— av] I_ _[av}
L Ty S (E.4.5)
n—o0 ’n,I —_ 6_[57 } [a7 ]



For a general matrix function f(t) =37, %(t —a),

(r) r " (a e
ief(t lim H ef H(a) (t—a)” a) T H€f w( ) (t—a)” )
dt dt n—00 n—oo dt

0 00 e’}
: MM n—k—1 f(T)(a) (t—a)” a)’ f(T)(a) (t—a)" a)r
= lim E (”e ) —(”e . He i
r=0

k=0 r=0
(E.4.6)
Therefore,
d f(a) L d f |t _ ef(a) _[ — 6_[f(a)7] df(a>
da” T [fla), ] da
b adf(t) d
= TN (o) @)
F0) = 100+ [ a0 £
That is,
I—e_[fv] 6[.]“7}_]
def =e/ ——— df = df ef, =
1f, ] Ify ]
_ [f> ] fa.f hl e[f’ J —f .
df = T _ o] (e7'de’) = I — o lf] (e7'de’),  in other words
¢S et L= —aadf ~af gfpof
(d) =ede! = W(df) i da e df = da e~ *dfe

! 1
= Df = df — d(/o dov e—aadf) f — [d— d(/o do e—aadf)] f

1 1 1
de! = / do €'~ df el = / do ef e 2 df = / do ef = 247 df.
0 0 0
(E.4.7)
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Similarly, the commutator of any operator, a, with the exponential, e’, of

another operator b can be written as

n—1
b _ . Lyny s Lyn—k-1 L Lk
a.¢'] = fo, Jim (9)"] = lim 3 (e8)" 7" fo,e] ()
n—1

: _kp b by ok
= ¢ lim E e nb e [a,en] en®
n—o0
k=0

n—1
: “Eagp b b
= ¢ lim E e ndb emw [a, en]
n—o0
k=0

n—1
_ b g —Eadp L é
=e nh_):rIOloZe e [a,]—i—n]
k=0
n—1 . .
= ¢ nh_)noloz e w8 e [a, b]
k=0
I — e—adb
a,€"] = " ——— [a,b]
. y o I —e® b —adb
ie. ade’ =¢e —a adb = e’(1 — e %) (E.4.8)
a

More generally,

[a, f(b)] = /0 dt f'(b—t adb) [a,b] = 9,f(b) /O dt ¢~ Ovt adv [a, D]
a”' f(b) = f(a™ba) a™' = [a7", f(B)] + f(D) a7
(E.4.9)

[F(a). g(b)] = / do / 48 ¢'(b— o adb) f'(a— f ada) [0,
(E.4.10)
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E.4.3 Symmetric ordered extension

With the help of the Fourier transform, a general function of a matrix might be

written as

D= T =S anr = [au) gty
n=0 ’ n=0

f =matrix, «a,€C, g:C— C, (E.4.11)

has differential

dgt) = [ o et g = de 9 D" )

df afrtt  (n+1)!
L N PP 0
do(p) [ da GHr—aadn 2= (it [fadf] = [fradf) =0).
(E.4.12)
Note that given any ¢,
9 J
a—flszl(szv
0 0 0
[8fz yadfile = 8f2(adf]( ®)) — adfj(@fl( p)) = 8fz[fj’ ol — [f]’afl ]

= [.fj> 8—f,(p] - [fj> 0_]2%0] = O>

Lfi, adfj]‘? = fiadfj(SO) - adf]‘(fi@) = fi[fjv ©] — [fja fiel = [fi, fj]%o-

That is,
0
[8f adfj] 7 [fiaadfj] - [fw-fj] (E413)
Therefore, [ f,ad f] = 0 always. However, if we have only one variable f, then

|f, f] =0, but with more than one f’s, [f;, f;] # 0. Therefore one needs to write

the general case with care:

dg(f) = / do g—f(f —a adfly) df (E.4.14)
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where adf|; ( a "partial” adjoint, just like the partial derivative, whose target

independent variables are f and df ) is the adjoint action that leaves the f, which

is in the same function argument as itself, ”constant”. In the case where one defines

= [du(k) g(k) e=™" then because of the complete contraction, the chain

rule formula,

1
do(p)= [ da GG —aadf) dh F= () = (o foroes )

holds without any restriction such as adf|; since

(ki fi, ad(k; f3)] = [kifi, k;f3] = 0.

E.4.4 Baker-Campbell-Hausdorff (BCH) formula

If one defines f(t) by ef() = eAeBt (e F) = (/W) = (eAeBt) =1 = ¢7Be=4) | then

f(1) = In(e”e?)

1 ] — (eadAeadBt>— . 1 1
+/0 dt | In(eadAeadBt) )7 (B) +/0 dt fol do e—ot adBg—a adA( )

1 ln(eadA adBt)
= A+ / dt I — (endAcadBr)-1 7 (B)

1 ln(eadAeadBt)

adA a
. /0 it e 1 (B)
— A+ /1 dt ¢2dAgadBt i (_1)n+1 (eadAeadBt . J’)’n—l(B)
0 n=1 n
—A+B+1[A B] + 1[A [A B]]—L[B [A B]]—L[B (A, [A, B]]]
- 2 12 ) ) 12 ) ) 48 ) ) 9
1
: @[A B[4 B]) +
1 1 1
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Similarly,

1I1(€adA€adB eadCt)

1
In(ete”e”) = In(ee”) + /0 dt T _ e—adCte—adBe—adA(C)

1 1 adA ad Bt 1 1 adA jadB adC't
:A+/ gp e e (B)+/ gp e e )
o 1 o 1

— e—adBtp—adA _ e—adCte—adBe—adA( >’
1 ad(In adAt
In(ed(nf)gadAt)
Ay
In(fe®) =1Inf +/0 dt T omadAtp=ad(n ) (A),
ln(ead(ln A)ead(lnB)t)
— e—ad(In B)tp—ad(ln 4) (

1
In(AB) zlnA—l—/ dt 7 In B)
0

(E.4.16)

E.5 Complex analytic transforms

Given a complex function

f(z,2%) = fi(xy, wo)+ifo(xy, 22), 2 =x1+ixe, 2* = 21 —i75 and a closed contour
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C C C\oo, 00 = lim,_ e{re?’, 0<6 < 2r}, Stokes’s theorem implies
$ d fe) = dofi— doaf + idonfo+ dnafy)
oD c

= % (dl’lfl + dl’g(—fg) + ’L(dl’l + dl’gfl)
oD

= % (dl’lfl + dl’g(—fg) + ’L(dLL’lfQ + d:(fgfl)
oD

- / Pr{(0(~f2) = Do fy + (D1 fr — Oafa))
D

:/Dd%{_(alfﬁagfl)ﬂ(alfl—82f2)}
_oi [ g2 =)
_22/Dd x

0z*
= —/ dz A dz* LC(Z’ )
D 0z*
% = %{81f1 — Oz fa + (01 fo + 02 f1)}
f dz f(z,2") +/ dz N\ dz" M’*Z*) =0 (E.5.1)
oD D 0z

if f has no singularities in D.

Therefore if f is nonsingular (has no singularities) inside

C' = 0D then 0f(z,2*) =0 iff

f dz f(z) =0 or / dzdg_l(z)f 0g ' (2) =0 (E.5.2)
c

I'=g(C) dz

for any invertible analytic function g.

However in C = C U {oo} ~ 52, the formula must also hold for the “exterior”
of the closed contour C' for any continuation (which can of course be singular) of
the function f into the exterior of C'. Therefore it may be more correct to say: if
a closed contour contains either 1) none or 2) all of the singularities of f in C then

0f(z,2*) =0 iff

%dz f(z)=0. (E.5.3)
c
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We also have that

2
/ e"df =0, Vn e Z. (E.5.4)
0
Therefore if f = f(z) is analytic (ie. can be expanded as a power series in z) then
1 2w )
f(z) = 2—/ df f(re" +2) Vr = const. (E.5.5)
T Jo
Thus if w is a point on a circle of constant radius C, centered at z; ie. w — 2z = re'
then
1 27 ] 1 27 d 10 )
f(z):—/ do f(re’e%—z):—,/ (rg ) fre? + 2)
27 Jo 21t Jo  re?
1 d(w — 2) 1 dw
—z—mjif_z f(w_ZjLZ)_Q—m'%Crw—z /()
1
N O RACIN (E.5.6)
2w Jo, w—2Z
Let f(w) be nonsingular inside C' and be analytic about w = z then g(w) = ﬁ f)(fz

is nonsingular in the region between C and some circle C,. lying in C' and centered

at z. We will write C'(z) to mean that the point z lies inside the closed contour

C'. Therefore
1 1
]{ dz g(z) = 0 = PRRACIS —7{ w5
C(z)—Chr(2) Cr(z)

T 2omi cz wW—z 2m w—2z

That is, if a complex function f = f(z) has none of its poles inside any given

closed contour C then

1) =5 § ad

_% C(2) W_Z.

(E.5.8)

This easily extends to a nonsingular function in D as
1 * 1 1 0 , w*
f(z,z*):—,j{ dw f(w’w)+—_/ dw A dw* flw,w)
2mi Jap(x) w—z 21 Jp(x) w—2z Ow*
1 w, w* 1
fww)

- d —
211 Jap(z) “ w—z 2m

(E.5.9)

Ww—Zz

/ dw A df (w,w")
D(z)
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E.5.1 Laurent series

If f is known to be singular at a € C then for any two inner/outer curves Cy, Cy

each containing a, f in the region between C, C5 that excludes a is given by

2mi f(z) = —j{ duw, flwn) +j§ dwsy f(wn)
Ci(a) S Ca(a,z) Wz — 2

— 1
= —7{ dwlf(wl) S
Ci(a) w—a—(z—a)z—a
We — a 1
+j§ dws f (w2) 2
Ca(a,2) wy—a—(z—a)wy—a
1 1 1 1
= —f dwlf(wl) o1—a + % dw2f(w2> z—a_
C1(a) z—a lz—a Ca(a,2) 1—- wa2—a W2 —a

= W —a 1 . z— a 1
= dwi f(wi) ) ( )" +% dws f (wy
fiﬁ(a) Z_: c-a 2= a C2(a,2) nZ:

CUQ—CL Wy — a
w1 —a zZ—a
{|1 | <1 VY, | <1 ng}
z Wy — a

—a
—7{ dwf(w)i(wl_a)nJrf dws f (ws) i (z=a)”
= 1/ (w1 — 2 (We o
C1(a) —~ (2 —a)"t! Ca(a,z) — (wp — a)"*!
_ f dw f(w )i (wl - a)n_l _‘_\% dw f w i z = a)
= 1/ (w1 — 2 f (W2) 1’
C1(a) —~ (z—a)" Ca(a,2) — (wy — a)"*!
— (z—a)" = (z—a)"
= dwlf(wl) e % dw2f Wa S ————
72(@ nzz_oo (w1 = @)™ Jeya nz (wy —a)r+t
o= @) (- o, (E.5.10)
f(w) _
ag(a) _ 27 fCl(a dw(w (3?:‘;17 n< -1
27rz fC’Q(a z) w(w—a)"+1 , n=0
1 f(w)

_ dw—
27 J ey (@)0(-1-n)+Ca(a,)om) (W — @)

1

z—,f de)l, acC)cI’cCy, nez,
21 Jr@y (W —a)t

ie. 0<|w —a]<|w—al<|wy—a|] YweTl.

0 < wi—al < |z —a| < |ws —a| VoreCruws e Ch. (E.5.11)



The condition |wy —a| < |z —a] < |wy — a|] Yw; € C1,wy € Cy is satisfied for the
case where (7, Cy are circular so that the domain D of convergence of the series is

any strip
D =D(ri,m)={z, 0<r;<|z—al<r} (E.5.12)

where r; is the radius of C'; about a and ry is the radius of Cy about a.

If all £ poles of f lie in a region of finite size L and f has no poles at oo then Cy
may be taken to co and '} can be chosen to consist of a chain of “small” circles,
each of raduis r; — 0 and encircling one pole, covering all poles {a;, i = 1,...,k}
of f.

For the nonholomorphic case

fz.2) = ) af(a,a") (z—a)"
1 * 1 1 *
al(a,a*) = —j{ dw me)rl + — dw A dw” — 0f(w,*w )
2mi Jr@y (W —a) 2 Jrog) (w—a) Ow

E.5.2 Fourier series and other derived transforms

The Laurent series f(z) = .- ___af(a) (z — a)" may also be rewritten as

fla+q¢°) = Z ol(a) ¢"*, VqeC (E.5.13)

[e.e]
n=—0oo

since it is true in general that f(g(2)) = > af(a) (g(z) — a)" for any func-

tion ¢g:C — A(C) and ¢g(z) = a + ¢° is an example. On the other hand, letting
f— fog™', we have

f) =D ol (a) (9(z) —a)",

n=—oo

al* (a) = L dww

A = 3mi P Pt acCycI’cCy, nez,

ie. 0<|w—a|]<|w—al<|wy—a|] YweT,
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for any invertible g : C — C, where we must now restrict the function f to a

1

domain where g7 is single-valued. For example, in the case

g(z) =a+e*, g7 (z) € {g;'(2) = 2rki +In(z — a), k € Z} we must choose only

one from the following infinite sequence of regions
Dp={z=x+iy, v eR, 2rk <y <2n(k+1)}, keZ. (E.5.14)

The same trick applied to Cauchy’s integral formula implies that

_ 1 ’ dg(u)  f(u)
- 2m F':g*(r(z))d du g(u) —g(2) v

whenever f o g~! has no singularities in D = I'° UT and ¢!

OD =T (ie. g(u1) = g(us) = u1 = uy Yuy,up € "' =g 1(T)).

is single-valued on

Thus if f o g™" is singular (ie. undetermined) at 0 (ie. f is singular at g=*(0))
[and ¢! is single-valued on 9D = T'] then T U T must be chosen to avoid this

singularity and thus in a strip about ¢g7'(0) f will have the Laurent expansion

fE) =D o (g2) = Y foln) (9()"

1 B
a£'0971 — L% dwf oy 1((4)) — L/ du dg(U) f(U)+1 = g(n)>
21 I'(0) wnt 271 ["=g—1(T(0)) du (g(u))”

0€C)cTCCy neZ, w=gu),
ie. 0 < |wi| < |w| < ws| Vw eT. 0 < |wi| <|g(2)] < |wa| Vwy € C1, wy € Cy,

(E.5.15)

where I' = I'(0) means that I" is a closed curve in a strip S about 0 [ note that the
expansion of f is about ¢g~!(0) and the corresponding image curve is
I"=g }T) ~T'(¢g*(0)), a curve in or on g~*(S) that may approach but may not

reach ¢g7!(0) ]. One notes that In0 = oo (ie. in the case of
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g(2) = €# = €% = e"cos(y) + iesin(y), ¢ '(z) = Inz = In|z| + iArg(z)). If
I'(0) = {w} is chosen to be any circle of radius r, ¢ = |wy| <7 = |w| < p = |wy|

centered at 0, then the resulting series is

o ~ 1 loremi 1 lnreem
f(z) = n;m o€ Ia=gm | dufe™ =g | duflw) ™,
e=lwi|<Slwl=le"] < p=lwzl, e=lon| <ef] =M =€ < p=|wa,

= Ine <z =Re(z) <Inp (convergence requirement). (E.5.16)

Therefore if e = 0, p — oo then —oco < z = Re(z) < 0o and so

f(z2) = f4(2) = Z fu €™,

n=—oo

_ 1 Y+ 1 Y+2mi
Fom o [ du sty e = du f(u) e,
Y

21 Jo 2mi ),

—0 <y <oo, —oo<z=Re(z)< o0,
ie. VzeC & Vf st. fis may be undetermined only at oco.

sin(n—m)m

. ) _
The integral = [" du e™e ™ =
2mi J—mi (n—m)m

= 0pm (the analog of

fp(a) dz % = Opm) is useful for motivating the series from an alternative
point of view where {e,(z) = ¢"*, n € Z} may be regarded as a complete set of
orthonormal functions in terms of which f(z) can be expanded. One can similarly

define a continuous series with the help of the function:

lim i/ dg €"e " = lim M = Oyo-

a—00 2(1, _a a—»00 (u — 'U)CL

1 [ in(u—
lim — dg e"e” " = lim sinfu — vja =6(u—v). (E.5.17)
a—00 2 u a—00 (u — U)

In this case, if one considers only periodic functions of the form y = y + 27
then the choice of T'(0) is no longer restricted to the region where g=!(2) = In z is
single-valued but is only restricted by the singular/non-singular requirement for f
as usual.
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Notice that in the integral formula with transformed contour C'

£(2) 1/ gy d90) _J() (E.5.18)
C=g1(N(=)

" 2mi du g(u) —g(2)’

setting ﬁ — d%f)

implies that

1 1 d
- S — (E.5.19)

W 2w Joogeey 9(w) = 9(2)

1

where ¢’og~! has no singularities in D = I'’UI" and g~ is single-valued on 0D = T.

In the case g(z) = gjj:g, g7 (z) = =22 for example one has
1 d
=gk [
210 Jomg-1(r(2)) du g(u) — g(z)
1 g & +d f(u)

2m Jo—_L(z1d=b cu+d u—2z
I'(z)c—a

where f o g7'(w) = f(—222) has no singularities in D(z) = I'°(z) UT(z) and
g (w) = —24=b is single-valued on 9D(z) = ['(z).

E.5.3 Groups of invertible functions and related transforms

To summerize the properties of the contour integral, let I' be a closed contour with

interior I'Y and

1, ze D=T°UT
or(2) = , (E.5.20)
0, 2¢D=T°0UT

then

f e e p i

w—g(z) (g(z)) W — 9(2)

f{ dw :/ dow) _du___ _y  (g5o1)
) W —9(2)  Joe=gireey  du g(u) —g(z)
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If g1 exists and fog~!is non-singular in D = T°UT, T3 g(2); ie. I' = I'(g(2)),
then

2) = fog(g()) = Wl o9 @) _ o) f(u)
&= Tes =) é(g(z»d w—g(z /C<z>—gl<r<g<z>>>d du g(u) —g(2)
(E.5.22)

That is Vf, g, C such that g(C) =T is a closed contour, fog~! is non-singular in
D =TUT?and g~ is single-valued in D = I' UTY we have

d
,2o)  flu)

du g(u) —g(2)
(E.5.23)

fe=ros e =[
z)=g~ g(z

It may also be possible to restrict f and/or g to a class of functions where C' would
also be a closed contour.

If G={g€ F(C), g~ 3} is a group of complex invertible functions (maps in
general) with function composition as the group product, then any given function
f has a G-representation fg for all possible G’s and may be decomposed, for each
G, through the insertion of an identity as follows

fole) = 15 2 Foa™al2) = / dutg) fog™ ol

geG

= N A )" = F9 (g(2))"
/geGdu(g) S ol (0) (g(2) g;g)mdu(m 9 (9(2))",

n=—oo

f=o 0. [ duto) i =1 Y1) =161 (E5.24)

gead
Such decompositions may be used to represent solutions, of differential equations,
which typically determine f. Boundary /initial conditions can then be used to
determine the actual form or “shape” of G. Note that G may also be chosen to
contain the space of inverses of g if one wishes to extend to domains where ¢g~! is

not unique.
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If one takes the example G = {g: z — g(2) = e*%, du(g) = ¥

wel=0(0)=09D, 0€ DCC}, as f, 4 =1, then

w—a

dw > 1 dw > —1
o o0y = f ot 0
o= f S e f S

n=—oo n=—oo

:f dw fa(w) e,
I'(a)
foute)=f(tmz), fog'z)=f("me)

ool fogt(v) f(2In(v))
fogn — d n — d w
al%9(0) %C(o) v~ %C(o) v—L

Un—l—l Un—l—l

:/ dudgn(U) f(u)nH :/ du & e f(u).
c—gitc)y  du (gn(u)) C=mmc@) N

_ (N 1 — f(ZIn(v))
falw) = — > afe (O)ZW_CL?{C(O)dU > e

n=—0oo

LSS / du fu)
w—a = Jo=21m(C(0) n

w (o]
= du e”* f(nu).
w—a /C’:% In(C(0)) Z

lo1] < Jo| < |ug|, 0 < |vq] < |€°] < |vg]. (E.5.17)

u

This Fourier-like transform verifies the existence of the Fourier transform.

E.5.4 Several variables

We may also consider n complex variables Z = (zi,...,2,) for which case the
integral formula applied to each argument, of the holomorphic function, separately

becomes

B N L) e
2)= (2ma)™ %G(Z)d QH?:l(Zi_Wi)’ = (w1, -y on)

S(Z) 01(2’1) 02(22) n(zn)
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One may write Z; = (21,0,...,0), Zs = (0, 25,0, ...,0), ..., Z,, = (0, ..., 0, 2,), then
for each ¢ contour C;(z;) can be replaced by a (2n — 1)-dimensional (hollow)
cylinder-like hypersurface C;(Z;) in C" and thus S(Z) =), Ci(Z;) is the (2n — 1)-
dimensional hypersurface in C" formed by the intersection (), C;(Z;) of the (2n—1)-
dimensional (hollow) cylinder-like hypersurfaces.

Similarly one can define a Fourier-like transform

m“@:f Wﬁﬁméwff 0 F4(Q) 7,
S(A) N, Ci(A;)

ﬂc = (a1,0,..,0), Ay = (0,a5,0,..,0),.., A; = (0,..,0,ay).

E.6 Some inequalities

E.6.1 Young’s inequality

Let ¢ :RT - R, »(0) =0, lim,_ p(z) = 400 be increasing
(ie. dso( ) = /(2) >0 Va >0). Then ¢! is also increasing as

s@‘l(s@(fv)) =z = ¢ "(p(x)) = 7 = 0. We also have

c o(c)
fle) = /0 dx p(z) —I—/O dz ¢ ' (x) = cp(c) Ve >0 (E.6.1)

since f'(c) = @(c) +¢'(c) 7 (p(0)) = ¢(c) + ep/(c) = (cp(c))"

Therefore the continuous function

g RY SR, avs ga) = o — h(a,b), beR"

f dr p(x +fodx90_1( )
is stationary at a = ¢~'(b) ( by ¢'(a) = 0,h(a,b) =0).

Furthermore one can check that

gl (b)) =1, limg(a)=0= lim g(a), (E.6.1)

a—0 a——+00
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hence g(a) <1 Va since g is continuous. That is, we have the inequality

a b
ab §/ dx p(x) +/ dx Va,b (E.6.2)
0 0

where equality holds when b = p(a).
Setting p(z) = 277!, p € RT, the conditions ¢(0) =0, lim, ., p(x) = oo are

satisfied if p > 1 and one obtains

P phpT a? b 1
ab< —+ —F— = —+ —, +—==1
T p P pp
(E.6.2)
Equality holds iff a? = b¥'".
E.6.2 Holder’s inequality
With p > 1 define || f|l, = ([ du(z)|f(2)[P) )i = ([ dulfl?) )7 and set
e o)
o= b=Hr Then
[f@)l]g(x)] _ 1 |f(x) L g ()"
£l gl = 2 (Ufl)P 2 (lglly)?
[f(@)g(z)| _ 1 |f(x)P L1 lg(z)|P
1 £llpllgllyr = 2 ()P 2" (gl )
1 / Lfdulfl? 1 [dplg” 1 1
[ dp|fg| < - T el U] S )
el J 9= 5y v Gl =5
[ aulsol < 151l (£:6.0)

Equality holds iff [f(z)|? = a |g(z)]P, « € R*, a #0.
For 0 <p <1, q:%>1, writing f:u_p:u_%,

g =uivs = (uv)%, u(z) >0, v(x) >0 Yz one obtains
/du uv > (/d,u vp)% (/du up)l’. (E.6.1)
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E.6.3 Minkowski’s inequality

Forp >1

mf+mmp=/QMf+mP=/QMf+gW*u+ghs/de+m%%uwwm>
:/EMf+mWWﬂ+/QMf+mWHm
swmp/wa+mW”ﬂﬁ+wwp/EMf+mwﬂﬂﬁ

= (171> + llgll») /(dulf + ") = (Ifllp + llgllp) (I +g1l,)?

(If + allp)”™ 7 = I + gllp < 11l + llgll,- (E.6.-2)

s

For 0 < p < 1 the same argument and Holder’s inequality for 0 < p < 1 gives

1f + gl = 171l + llglly- (E6-1)

E.7 Map continuity

A map f: A — B between two linear metric spaces A = (A,||), B = (B,]||) is

continuous iff any of the following is true
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(1) (uniformly) z -y = f(zx) = f(y).
(2) (uniformly) |z —y| =+ 0 = |f(x) = f(y)| = 0.
(3) (uniformly) |z —y| <e — 0F

= 36=06(c) 7% 07 st |f(z) ~ f(y)l < ().
(4) VB.(z), £ = 0%, 3 Bso(f())

st f(Bu(2)) C Byo(f(2)), 8(c) % 0
where  B.(z) ={y, |z —y|<c¢e}.
(5) if f7' 3] VB.(z), e =0T, 3 By (f(x))

st Bu(z) C f7 (Baw (f(2)), 8() =% 0%,

(E.7.-8)
It follows that a composition f o g of two continuous maps f, ¢ is continuous since

lzr—yl<e = J|g(x) —g(y)| <dle) =g,
= |fog(xz)— fogly) <iley).
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The same is true for sums and products of continuous maps by the triangle in-

equality:

z—yl<e =
|f(2) +g9(x) = (f(y) + 9] < [f (@) = fFW)] + |g(z) — g(y)]
< dy(e) +dy(e) = 0(e),
|f(2)g(@) = f()g() = |f(@)g(z) = f(y)g(z) + f(y)g(x) — f(y)g ()|
< |f(@) = FW)llg(@) + 1fW)llg(x) — g(y)]
< 05(e)lg(@)| + dg(e)| f ()| = (e)-
(B.7.-15)

A set S is open iff for any z € S one can find B.(z) C S. Notice that in the
definition of map continuity if B is open then Bs(f(x)) C B for sufﬁmently small
e. But if f~! 3 then By (f(x)) € B = [ HBse(f(z))) C f71(B) = A and
hence B.(xz) C f~Y(Bse)(f(x))) guarantees that A must also be open since one
has B.(xz) C f~*(Bs)(f(z))) € A and this is true for any = € A. Therefore the
map continuity condition implies that the inverse image of any open set is open.
For the converse, if the inverse image of every open set is open under f then for
any z € A f~'(Bs(f(z))) is open for all § > 0 since Bs(f(x)) is open. Now since
r € fY(Bs(f(x))) one can find ¢ > 0 such that B.(z) C f~'(Bs(f(z))) and in
particular, since 0 > 0 was arbitrary, one can choose § = d(¢) 207 0", which is the
condition for continuity. Hence a map f is continuous iff the inverse image of every
open set is open. One observes here that map continuity can also be stated as: for

any nbd B;(f(x)) one can find € = £(6) such that f(B.(x)) € Bs(f(z)) OR for
any nbd Bs(u) of u € B one can find € = £(d) such that f(B.s)(f(u))) € Bs(u)
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A map f: D C A — Bis said to be (uniformly) bounded if
Ve,ye D, |f(x)— fly)| <M, 0< M < oo. (E.7.-14)
A map f: D C A— Bis (uniformly) differentially bounded iff
Ve,ye D, |f(x) — fly)| < Mz —vy|, 0<M<oo. (E.T7.-13)

It is clear that a differentially bounded map is continues as one may simply set
d(e) = Me. The composition or sum of two differentially bounded maps is differ-
entially bounded.

In a general metric space (S,d) rather than a linear metric space (H,| |) one

needs to replace |a — b| by d(a,b).

E.7.1 Uniform continuity in terms of sets

Uniform continuity means

Be(x) N B:(y) #{} = Bse)(f(x)) N Bse)(f(y) # {}- (E.7-12)

On the other hand continuity requires

f(Be(x)) € Bse)(f(x)), f(B:(y)) € Bse)(f()) (E.7-11)

which implies

J(Be(2)) N f(B:(y)) € Bse)(f(2)) N Bse) (f(y))- (E.7-10)

Since f(B:(z)NB:(y)) C f(B:(x))N f(B:(y)) we identify the condition for uniform

continuity as

f(B:(x) N B=(y)) € Bso) (f (%)) N Bsey (f () (E.7-9)
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which reflects the fact that a uniformly continuous maps is continuous but the
converse may not be true. Let a set A be uniformly open iff Vz,y € A one can
find € > 0 such that B.(z)NB-(y) C A. Then a uniformly open set is open but the
converse may not be true. Uniform continuity/openness and continuity /openness
are equivalent in a separable space ( one in which every pair (z,y; x # y) of distinct
points have disjoint neighborhoods B.,(x), Be.,(y), B, (z)NB.,(y) ={} ) since
an open set would be automatically uniformly open if one decides that {} C A for
any set A, but not necessarily in a nonseparable space.

One can check as in the case of continuity that a map f is uniformly continuous
iff the inverse image f _1((5) of every uniformly open set O is uniformly open.

The fact that the intersection A N B of two open sets is open follows because

fora e AN B, dey,e9 > 0 such that

B.,(a) C A, B.(a)CB (E.7.-8)
which implies that

B. (a)N B.,(a) C AN B. (E.7.-7)

But this means that By, )(a) € B, (a) N B.,(a) € AN B and hence AN B
is open. One can similarly check that Biax(, ) (a) € B: (a) U B.,(a) € AU B
and hence AU B is open. With the same steps one can show that the unions and

intersections of uniformly open sets are uniformly open.

E.8 Sequences and series

A sequence s in a set S is an ordered selection of objects in S; ie. a map from the

natural numbers N to a set of objects S.

s:N—=S§, n—s,. (E.8.1)
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The sequence s is bounded iff one can find M € R such that
d(Sp, Sm) < M Vn,m € N. (E.8.2)
Define the e neighborhood N_(A) of a set A C S by

N.(A) ={y €S, day) <e, VacA}=|]N(a). (E.8.3)
acA
A sequence in a metric space S is convergent (ie. converges to a point L € S)
iff
1) Ye >0, IN =N(e) < oo s.t. d(s,, L) <e VYn> N(e).
)

2) VN.(L) 3N(e) < < s.t. s, € N.(L) Yn > N(e).

(3) VN <00, 30<e=¢e(N) =20 st. Vn> N, d(sn, L) < e(N).
(3) VN <oo, 30<e=¢(N)"=20 st. n>N = d(s, L) <e(N).

(4) VN <00, 0 <e=c(N)"Z20 st. n>N = s, € New(L).

A sequence in a metric space is (uniformly) converging or Cauchy iff

1) Ve >0, dN =N(e) < oo s.t. d(Sm,sn) <e Vm,n > N(e).
2)

Ve >0 AN = N(e) s.t. No(sm) NN(s,) #{} ¥V m,n> N(e).
(3) VN <00, 30<e=¢c(N) =20 st. Yn,m >N, d(sn,sm) < £(N).

N—oo

(3) VN <oo, 30<e=¢(N) — 0 st. nym>N = d(s,,sm) <e(N).
N—oo

(4) VN <00, I0<e=¢(N) — 0 s.t

m,n >N = Newy(sm) N Newy(sn) # {}-
Every convergent sequence, lim,,_,, s, = L, is (uniformly) converging since

A(Sm, sn) < d(Sm, L) +d(L,s,) <e+e=2 VYn,m > N(e). (E.8.-7)
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Every Cauchy sequence is bounded; one simply needs to set M = maxyen (V).
One can also check that sums and products of Cauchy sequences are Cauchy se-
quences.

A metric space S is complete if every Cauchy sequence in S converges to a
point in §. The Cauchy completion of a space S is the union of the space S and
the set consisting of the limit points of all Cauchy sequences in §. That is, a space
S is complete iff any (uniformly) converging sequence in S converges to a point in
S.

A series S = S(s) is the sum of the terms of a sequence s,
S(s) = Z Sk (E.8.-6)
k=1

A series S(s) is convergent iff the sequence of partial sums
Sp = Su(s) = p_, sk is convergent.
One can check that a set S is open iff only a finite number of points
of any sequence that converges to a point L. € S can lie outside of S.
A Cauchy sequence in a closed set C' must converge to a point in C for if it
converges to a point in the complement C which is open (ie. C'P is closed) then
that sequence lies in C instead as it would then have only a finite number of points
in C'. Thus a closed set is complete. Also the complement CP of a complete
set C'P is open for if CP were not open then one can find a point b € CP such
that N.(b) NCP # {} Ve > 0 meaning that one can construct a Cauchy sequence
in C'P that converges to b ¢ C'P in contradiction to the completeness of C'P. Thus
a complete set is closed and hence a set is closed iff it is complete.

The closure A of a set A is its Cauchy completion.
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E.9 Connectedness and convexity

A space S is connected iff for any two points z,y € S one can find a continuous
path I' : [0,1] — S, t +— I'(t) such that I'(0) = =z, I'(t) = y. The points z,y
are said to be connected by the path I'. The space § is topologically trivial iff its
power set P(S) = {A4; A C S} is connected.

A metric space (S, d) is convez iff any two points z,y € S can be connected by

a unique continuous path

Lo leyl={7: 0.1 =8, tesy(), W0) =2, 7(1) =y} (E9.1)
such that
min 1] = L] = d(z.), ] = / Ayt +dr).  (B92)

E.10 Some topology

A set is a collection of objects where each object individually satisfies a certain
basic condition.

The inverse or complement A of aset A is given by
B=ANB U ANB VB. (E.10.1)

A set O is (uniformly) open (or [uniformly] continuous) iff its complement O is
(uniformly) complete. The union or intersection of an arbitrary number
of open sets is also an open set.

A set A is said to be closed, A € C = {C}, iff its is complete (or iff its
inverse is open, Ae O). The union or intersection of any finite number
of closed sets is also a closed set.
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A neighborhood (nbd) N(A) of a set A is any open superset of A. That is
ACN(A) € 0. (E.10.2)

Equality is possible only when A is open. The closure A of a set A is the in-
tersection of all closed supersets of A and is thus the smallest closed superset of

A,

A (E.10.3)

|
Q
|
NE
=X
Q

and the interior A° of A is the union of all open subsets of A and is thus the

largest open subset of A,

A = O = max O (E.10.4)
ADO€O
AD0OeO
The boundary 0A of A is given by
0A = A" A. (E.10.5)

A point z € Ais a limit point of A iff N(x)NA#{} VN (z). A set A is closed
iff A= A iff A contains all its limit points. A set A is open iff A = A°.
A collection ¥ = {0} of (open) sets such that

AC Ua

is called a cover ¥X(A) of A.
A set A is compact, A € K = {K}, if every cover ¥(A) contains a finite
subcover O, (A),

S(A) 2 04(A) ={0r €0, k=1,..,n, AC|]JO4}. (E.10.6)
k=1

281



Since any cover (A U B) for AU B is also a cover of A and of B, it follows that
the union of a finite number of compact sets is also a compact set.

A space is a structured collection of one or more sets whose elements are
known as points; the elements or points of the space are obtained through well
defined interactions between the elements of the defining sets. A topology 7 (S)
for a space S is any subfamily (ie. is closed under union and intersection) of the
family of open subsets of S that covers S and which contains both S and {}. ie.
T(S)COS)={0CS; OO}, UN:T(S)xT(S)—=T(S),

S CUTS) = Uoers) Os S.{} € T(S). A topological space is any given
pair X = (§,7(S)). {},S are both open and closed as they are members of
T(S) and S={}, {}=35.

A topological space X = (S,7(S)) is separable (or Hausdorff) iff for any
A, B C X such that AN B = {} one can find nbds N7(A), N2(B) such that

Ni(A) O No(B) = {}. (E.10.7)

A space S is uniformly open iff for any A, B C S one can find nbds N1 (A), N5(B)

whose intersection lies in S,
N(A)NNy(B)CS. (E.10.8)

A space S is locally compact iff every point 2z € S has a nbd NV (x) whose closure
W is compact.

A subset D C Sis dense in S iff D = S. A set S is countable iff its is
isomorphic to N; ie. 4 7:S — N.

A map m between two topological spaces m : S — T is continuous iff the
inverse image m~'(O) of every open set O C T is open, ie. m~*(O) belongs to
O(S).
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A sequence s : N — S, n+— s, in a topological space S converges to a point

L iff
VN(L) 3N = N(N (L)) < 0o s.t. s, € N(L) Vn> N. (E.10.9)

That is, every nbd of L contains an infinite number of points of the sequence since
there is an infinite number of terms between co and any N < oco.

A sequence on a topological space S is Cauchy iff
VO eO(S) AN =N(O) < oo s.t. No(sm)NNo(s,) #{} Vm,n> N(O)

where N : O(S) — O(S), O — Np is a map that assigns O as a nbd Ny of a point
or set. That is, each point s, of the sequence becomes increasingly nonseparable
from its neighbors as n increases. If the set of all nbds of A C S is N[A] then

NIA] 3 No(A) = U, 420 (E.10.9)

0, AcCO.

Every convergent sequence, lim,,_,, s, = L, is a Cauchy sequence since
No(sm) ﬁNo(Sn) 2 No(sm) ﬁNo(L) U No(L) mNo<8n) 75 {} (ElOlO)

A topological space S is complete iff every Cauchy sequence in S converges to a
point in S. The Cauchy completion of a space S is the union of the space S
and the set consisting of the limit points of all Cauchy sequences in S.

A map m is a P-map iff the image m(A) has the property P whenever
A has the property P; ie. m preserves the property P. For example one has
singular /nonsingular maps, open/closed maps, measurable/nonmeasurable maps,
bounded /unbounded maps, compact /noncompact maps, connected /nonconnected,

convex/nonconvex, etc.
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Since the identity map (or linear map in general) is both invertible and open
it follows that continuity of a space and its open topology are equivalent concepts.
That is, a continuous or topological space is one that has an open topology and
continuity of a map m measures how much of the continuity or topology of a space

1

is preserved by the inverse map m™". Thus reassigning continuity to sets means

1

that a map m is said to be continuous iff m™" is a continuous map.

E.11 More on compactness and separability

We work in a Hausdorff space where any two disjoint sets have disjoint nbds. For

simplicity we will denote AN B as AB and AU B as A+ B.

e Let K be compact and C' be closed. Then C' is open. If S(KC) is any cover
for KC' ie.
KCc |J o

ceXN(KQC)

then

K=KC+KCc |J o+KCC |J o+C
cES(KC) ceX(KC)

and so {S(KC),C} is a cover for K and therefore has a finite subcover
O,(K) = {0y, ...,0,,C} as K is compact. That is K C (Jr_, Ok + C,
which implies that KC' C |J;_, Oy which means that {Oy,...,O,} is a finite
subcover for KC and hence KC' is also compact. That is, if K is compact
and C'is closed then KC' is compact. It follows that every closed subset

of a compact set is also compact.

e Let K be compact and O, O’ be open and K C O + O’. Then
KCO+40 = K200 = KK2KOKO = {}2KO KO
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= KOKO = {}. Therefore K O and KO’ are disjoint compact sets, since
6, O’ are closed and K is compact, and since we are in a Hausdorff space we

can find disjoint open sets O, Oy such that KO C O; and KO C Os.

KOCO, = O0,CK+0 = K =KO;CO,
(E.11.-1)

Therefore we have found compact sets K, Ky such that K; C O, Ky C O’
and K, + Ky = KO, + KOy = K(O) + O3) = K 0,0, = K {} = K.

e Let A C B in a Hausdorff space. Since AC B = AB = {}, one can find
disjoint open sets O, Oy such that A C Oy, B C Oy where

But 010, ={} = 0O;C b; and therefore one has the sandwich relations
ACO,CO,CB (E.11.0)

which can also be iterated to obtain sequences of inclusions. Thus given any

two sets A, B in a Hausdorff space one can connect them with sequences

through A N B and/or AU B since

ANBCACAUB, ANBCBC AUB. (E.11.1)

E.12 On the realization of compact spaces

Here ”cover” will mean ”open cover”.
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Let a minimal or essential cover for a set S be one that contains no proper

subcovers. That is ¥y(S) is minimal iff
X(S) CEp(S) = X(S) =2(S). (E.12.1)

It follows that any cover of & can be generated from one or more minimal covers.
That is the set of all minimal covers of S is basic and generates the rest of the
nonminimal covers.

Then compactness of S implies that every minimal cover of S is a finite cover
since every cover contains a finite subcover and this also implies that any subcover
of the finite cover must in turn contain a finite subcover. Conversely, suppose that
every minimal cover of a space S is finite. Then S must be compact since (by
the generating property of the set of minimal covers) every cover of S contains at
least one minimal cover, which is finite (a finite subcover) by the supposition. This
means that a set S is compact iff every minimal cover of S is finite. In
other words a compact set is one that is essentially finite in the topological sense.

A nonempty open set O # {} in a (separable) metric space cannot be compact
since
lim. ,o{N:(a), a € O} is a minimal cover of O that is not finite. Partially open sets
cannot be compact either since an open set, which is not compact, can be obtained
through the union of a finite number of partially open sets. Also unbounded sets
are isomorphs of open and partially open sets and so cannot be compact. Hence
a compact set in a metric space must be closed and bounded.

One also notes that the image m(S) of a compact space S under an isomorphic
map m : S — m(S) is also compact. It follows therefore that a (free) compact space
is actually an equivalence class of all such spaces under all possible isomorphisms.
In particular a space is compact iff it is compact as a subspace. To see
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this, one notes that a compact space S is a compact subspace of itself. Conversely
if § is a compact subspace of some space then the equivalence class
[S] = {i(S), i : S = i(S), i € I} of its images under all possible isomorphisms
I = {i} generates the (free) compact space.

[ To verify that the image of a compact set S under an isomorphism ¢ is
compact, one notes that in general
f(AUB) C f(A) U f(B), f(AnB) C f(A)N f(B) since either of AU B and
AN B has less points to transform than has A and B separately. But under an

isomorphism (i(a) = i(b) iff a = b) one has
i(AUB)=1i(A)Ui(B), i(ANB)=1i(A)Ni(B) VA,B (E.12.2)

and so all the structures and/or statements that characterize compactness are
preserved implying that if S is compact then so is i(S). It may also be worth
recalling that A C B iff ANB =D iff AU B = B. Also the direct product
of a finite number of compact spaces is also a compact space. ]

Thus whenever possible one can check noncompactness of a space S by em-
bedding it into a (separable) metric space (H,d), i:S — S C (H,d) and using
the fact that a compact subspace S of a (separable) metric space (H,d) must be
closed (S is open in (H,d : H x H — R*)) and bounded (max, ,es d(z,y) < 00).

The arguments concerning compactness may be adapted to other properties
such as openness (or continuity), closedness (or completeness), connectedness, con-

vexity, measurability and so on.
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E.13 Metric topology of R

In R the finite interval Iy(a,b) = {c¢, a < ¢ < b} is the basic open sub-
set and every open set can be written as a union and/or intersection of finite
open intervals. The finite interval I(a,b) = {¢, a < ¢ < b} is the basic closed
subset which is also the closure Iy(a,b). The finite closed interval is compact
since the only possible noncompact sets are open and half open intervals and
their isomorphs. R is open in that every point has a finite open interval as a
neighborhood, and since the closure of any finite open interval is the compact
interval it means that R is a locally compact space. The direct product space
R" = {x = (2}, 2?%,...,2"), z',22 ..,2" € R}, n € NT inherits the topological

properties of R alongside additional ones. One has as possible metrics

dy(z,y) = max |z' — y'|, dy(z,y) = (E.13.1)

1ENp,

A subset of R" is compact iff it is closed (complete) and bounded.
Consider the real maps F(R,R™) = {f : R® — R}. Then a subspace S of R"
may be specified through implicit relations imposed pointwise (ie. simultaneously)

on a sequence of functions
S={zxeR", fi(x)~0, fieFRR"), iecN}. (E.13.2)

where ~ includes relations such as =, <, <, >, >, etc.
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E.14 On Measures I

A content X is a finite, positive, subadditive, additive, and monotone function on

the set of compact sets K = {K'}.

At K — R7\{oo},

Ki CKy, = M) < AMK,).

MK, U Ky) < AMK;) + M(K2) (subadditivity).

KiNKy,={} = MKiUK,;) =\K;)+ MNK;y) (additivity).

Additivity implies that A({}) = 0.

An inner content A, induced by A;

A(A) = sup AE), () =A{}) =0, (E.14-3)

is the content of the biggest compact subset of A.
If O = {0} is the set of open sets, the outer measure p,;

fo(A) = inf A (0),  no({}) = A({}) =0, (E.14.-2)

AcO
is the inner content of the smallest open superset of A.

Remarks

e The content (measure) of a set is unique if the inner and outer contents

(measures) coincide.

e Let AC B then

M (A) = sup A(K), A(B) = sup A(K) > sup A(K) = \.(A)

KCA KCB KCA

= A(4) < \(B). (E.14.-2)
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Similarly,

11o(A) = inf A\ (0),

ACO
#o(B) = If A.(0) = inf \(0) = p1o(A)
= o(A) < po(B). (E.14.-3)

e From these inequalities one sees that

M(K) = sup M(K') < \NK) VK ek (E.14.-2)
K'CK

and

to(A) = ,aixrglfo A(0) > N (A) VA (E.14.-1)
In particular

ME) < M(K) < po(K) VK eK. (E.14.0)

e Also
to(O) = Oiggl M(O) < M\(0) YOeO (E.14.1)

since O C O. But from (EI4.-1) p,(O) > A\(O). Therefore

1o(O) = A(0) VO € O. (E.14.2)
Similarly
M(K) = sup M(K') > \(K) VK ek (E.14.3)
K'CK

since K C K. But from (E.I4-2) A\.(K) < A(K). Therefore

M(K) = MNK) VK €K. (E.14.4)
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e One also deduces that

1o (intK) = A, (intK) < A (K) = ME) < po(K).  (BE.14.5)

e For open sets O1, 0y, A (O1+ O3) < A(O7) + A (O2). This follows because
for any compact K C O; + O, one can find compacts

K, C 0O, Ky C Oy such that K C K; + K,. Therefore

KCK +Ky, =
= sup AK) < sup A(Kj)+ sup A(K3)

KCO1402 K1CO1 K2CO2

Furthermore if O;05 = {} then since by construction K; = K 61, Ky,=K 52

one sees that

KKy = KO\KOy = K 010, = K(O + 05) = {},

K+ Ky = KOy + KOy = K(0,0,) = K{}* =K. (E.14.3)
Therefore

K=K +Ky, =
AMK) = MKy + K) = A(Kp) + A(K>)
= sup  A(K) = sup A(Ky)+ sup A(Ks),
KCO14+02 K1CO K2CO2
— (01 +05) = A(01) + M\ (0n). (E.14.1)
That iS, 0102 = {} = )\*(01 -+ 02) = )\*(01) + )\*(Og)

These results are automatically valid for u, since p,(O) = \.(O).
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Given any A, B then for any open supersets O; O A, Oy O B one can find

e > 0 such that
€ €
1o(01) < p1oA) + 5 10(O2) < po(B) + 5
= Ho(A+ B) < 11,(O1+ O2) < 15(O1) + 116(02)
€1+ &9

< po(A) + po(B) + S

Due to separability one can continue to generate smaller and smaller interme-
diate subsets O; D 512- D04 2A 032 5% D 09 O B until €1, — 0.
Thus po(A + B) < po(A) + po(B) VA, B.

These results can be iterated and verified through induction.

E.14.1 Measurability
The set A is p,-measurable iff
11o(B) = 11o(AB) + p1(AB) (E.14.-1)

for any set B. ie. measurability is defined by requiring that the additivity property
holds for u, as A€ is defined by

B=BA+ BA VB, AA={}. (E.14.0)

E.15 On Measures 11

A measure ;i on sets is defined as

uA) =0, ACB = u)<p(B),

n(A+ B) < u(A) + u(B),

AB={} = u(A+ B)=u(A)+uB). (E.15.-1)
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Upon making the replacements A — AB, B — AB in
WA+ B) < u(A) 4+ p(B) one obtains

u(B) < n(AB) + p(AB) (E.15.0)
using the assumptions that
B=DB{}=B(AA) = B(A+ A) = AB + AB.

A set A is u-measurable iff equality holds in (E.I5.0) for all sets B. That is, A

is p-measurable iff
1(B) = u(AB) + u(AB)  VB. (E.15.0)

Any collection ¥y = {o} of nonintersecting sets o109 = {} Voy,00 € ¥y isa
partition and the partition X is a pu-measuring scale (or simply p-measurable)

iff

u(B)=> u(oB) VB (E.15.1)

oEX

Thus a set A is y-measurable iff the partition {4, A} is y-measurable.
Measurability can also be expressed entirely in terms of open sets: a set M is

lo-measurable iff

1o(O) > 11o(OM) + 11,(OM) VO € O. (E.15.2)

This is because one has that

16(0) 2 p1o(OM) + p1o(OM) =

po(A) = Inf A.(O) = inf 41,(0) 2 inf {11o(OM) + p1(OM)}

> pio(AM) + po(AM)}, (E.15.1)
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and p,(A) < po(AM) + uO(A]\/Z ) by subadditivity and so
to(A) = po(AM) + ,uO(AJT/f ) VA. Conversely, if M is p,-measurable, ie.
fo(A) = j1o(AM) + po(AM) VA then for any open set O in particular we have
1o(O) = o(OM) + MO(OM) which satisfies p,(O) > puo,(OM) + uO(OM).
The product X.¥Xp = {4;B;; A; € ¥4, Bj € ¥} of two pu-measurable
partitions o4 = {A;}, Xp = {B;} is p-measurable:
p(M) =" p(AM) =Y p(BjAM) =Y u(B;AM) VB.
i i ij
(E.15.1)
If 04 is a measurable partition and ¥4 < ¥ (meaning that each A; € ¥4 is a
subset of some B; € ¥) then X is also measurable:
D ouBM) =Y w(ABM) =Y > w(ABM) =" Y p(A;M)
i i (] J

i, A;CB;

= ZM(AJ-M) = p(M). (E.15.1)

A partition ¥ = {A;; Vi} is measurable iff each of A; is measurable: A; is

measurable Vi iff ¥; = {A4;, ﬁ,} is measurable Vi and so is their product;

H{Aiagi} = (A1,A2,...,An,HZi) measurable =

i i=1
p(M) =" p(AM) + ([T A M) > p(AM). (E.15.1)
i=1 i=1 i=1
But we also have pu(M) < >°"  u(A;M) and so p(M) = > u(A;M) and
thus Y is measurable. Conversely if 3 is measurable then ¥; = {Ai’gi} is also
measurable for each i since for any given i, ¥ < ¥3;.
If A, B are measurable then so are A, AB, A + B since
A=A, ABe {A A{B,B} ={AB,AB, AB, AB},
A+ B = AB. (E.15.1)
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If the sets Ay, As, ..., A,, Vn € N are measurable, then so is
A=3" A Vne N by induction. One notes that one can write A in terms of
disjoint sets:

A=) A=A+ A A+ A AyAs + .+ Ay Ay A, A,

1=1

:zn:Ai IT 4. (E.15.1)

1<j<i—1

For any two sets A, B where one of them, say A, is measurable

(ie. pu(M) = p(MA) + p(MA) ¥M), the we have

pu(B) = n(BA) + p(BA),

WA+ B) = u((A+ B)A) + p(A+ B)A) = p(A + BA) + u(BA)

= 1(A) + u(BA) = p(A) + p(A) — u(BA).

w(A+ B) = pu(A) + u(A) — p(BA). (E.15.-1)

One notes that the second line could have simply been expressed as
1A+ B) = u(A+ AB) = u(A) + u(AB) (E.15.0)

without using measurability of A.

Every open set is p,-measurable: Given O, 0y € O consider K7, Ky € K such
that K, C 0,0, (ie. Oy + Oy C K1 or 0105 C K,05),
Ky C K, 0 (ie. Ky C [?102) then K 1Ky = {} (as Ky C l?l) and

K1, K3 C Oy = K1+ Ky C Oy,
to(O2) = A\i(O2) = sup A(K) > sup  A(K; + K)y)

KCO2 K=K1+K>CO>

= sup A(K1)+ sup A(K3) > \(010s) + A\ (K,0)

K1CO9 K2CO2

= 1o(0102) + Mo(k102> > 1o(0102) + No(5102)-

= 11o(02) > 115(0103) + 11,(0105) YOy, 04 € O. (E.15.-3)
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E.15.1 Haar measure: existence and uniqueness

Let S be a measurable space and A\, Ay be two contents defined on compact subsets
K(S) of S. If h: S — S is a self homeomorphism of S such that Ay = A; o h then
the induced measures 1, s of A\j, Ay are also related as puo = py o h, where o
denotes map composition.

Let G be a locally compact topological group (Topological in that

()-():GxG— G, orequivalently L, :G — G, g+ ug,

R,:G— G, g—gu YueG, and ()7': G — G, g g' are continuous
maps). Thus in G the existence of a left-invariant content A will imply the existence
of a left-invariant measure p since left translation L, : G — G, g — L,(g) = ug by
u € GG is a homeomorphism. One simply needs to set
M=\ h=L,, M=\, =XoL, then \y =X\ oL, = jpuo=polL, Thus
Al =Xy = = g or, equivalently, that A\ =Ao L, = pu=pol,.

Let K € K(G) be a compact subset of G and 0 € O(G), o # {} be a small
nonempty open subset of G. It is possible to form a cover
Y2 (K) ={gio; i =1,2,...,n} for K (this is possible for any A C ) made up of
a number of translated copies g;0 of o by some elements {g; € G; i = 1,2,...,n}.

That is
K C|Jgio=|]Jzo(K). (E.15.-2)
i=1
Consider the map

ne: K(G) = Ry, A n,(K)= chn%rol(K)n. (E.15.-1)

That is n,(K) is the smallest number of copies of o needed to just cover

K. Since only the number n of copies of o, and not the elements {g;}, is important
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we may simply write the inclusion (EI5.-2)) as
K Cny(K) o (E.15.0)
and use heuristics to deduce the following properties. Let A C G, A° # {}. Then

K Cna(K)A, ACn,(A)o = K Cnu(K)ACna(K)n,(A)o

S ng(K) < na(K)ng(A) = Z(([j)) < na(K). (E.15.0)
KCK, = no(K)<n,(K). :
K1+ Ky Cn,(Ki + K») 0, Ki Cny(K;) o, Ky Cny(Ks) o
= K+ Ky C (n,(Ky) +no(K3)) 0 = no(Ki+ Ks) < ng(Ky) + no(Ks).
(no 0 Lu)(K) = nolu- K) = u-KQSlXig(u-K) " Kgbngg(m "

= n,(K) YueG. (E.15.-3)

If K1Ky = {} then it is possible to find nbds N(K;),N(K;) such that
N(K)N (K;) = {}. Consequently, o can be chosen arbitrarily small so that

K Ky = {} = nO(Kl + Kg) = nO(Kl) + no(Kg). (E15—2)

Thus we have additivity. However the number n,(K) can clearly diverge and so

we now define a reqularized version (see [EI5.0)

A(K) = < na(K). (E.15.-1)

Then A, clearly inherits all the essential properties of n, and is bounded by

na(K) Vo. One can define the desired content A\ as

ME) = min A(K). (E.15.0)
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To check uniqueness, let u, v be two left invariant measures on GG and consider

two continuous functions «, f : K € K(G) — C. Then

| dnte) ata) / ar(y) ) = [ duta)avly) a()B)
= [ du(z ') B(y)

e Bt ) = [ dute)ivy) atyBe)

Z/KdV(y) aly” )/Kdu(x)ﬁ(xy)-

One can left translate S to obtain

[ vty ate) [ avt) us) = [ avtw) as) [ duta)stans)

T B

Now integrate over g to obtain

/K du(r) a(z) /K dv(y) /K dp(9)B(yg)
— /K dv(y) aly™) /K dp(x) /K dp(g)B(ryg)
where p can be either 1z or v. Thus
[ dut@) @) [ avtw) [ doto)p)
~ [t o) [ duta) [ aniasta)

= K], /K du() a(z) = K], /K dvly) oly™), 1Kl = /K dy(z).

In particular for any function « such that a(y=!) = a(y), eg

aly) =)+t or aly) =~(y)y(y~'), one has that

/Kdu(g) alg) = %/ch(g) a(g) Ya: K —=C, a(g) =a(g™).
_ _ K,
Uw=cv, =Kl (E.15.-10)
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Also since
/Kdu(x) a(za) = /Kdu(:ma_l) a(za) = /Kd,u(xa_l) a(z),
[ o) atura) = [ auta) awn) = [ dutzaa) atea) = [ dutaa™) ato)

one sees that if y is a left invariant measure, ie o Lg = u then
la = o R, Ya € G, where R, denotes right translation, is another left invariant

measure. This means that p and p,, by uniqueness, differ only by a constant.
fo =po R, =cla) p VaeQG.

pap = c(D)pta = c(b) cla) p=clab) p = c(ab) = c(a)e(b).

E.15.2 Invariant linear maps

Let A, B be two algebras and
L(B/A) c A/B={r: A — B, w(a;+ az) = m(ay) + m(az)} be the set of all
linear maps from A to B.

Also let J = J(L(B/A)): A— B be the addition/composition (+,0) algebra
of these linear maps, which is a B-module as BJ, JB C J.

One notes that each 7w : A — B is equivalent to a bilinear pairing
P..AxB— A®B.
The induced relative central set Aj of A is the “kernel” of J given by

Ay={selJ s: A= Z(B)=BnB} (E.15.-13)

where B’ is the commutant of B. That is, 7 € Aj if 7(a) € Z(B) = BNB' Va € A.

Let another algebra C = {c} act on A through a linear representation p, ie.
p:C—0O(A), c—=p.: A— A,

PcPci = Peeys pc(a + al) = ,OC(CL) + pC(al)' (E'15"13)
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Then a linear map f ,

/ c AL — Ag, s—>/s, /(8+81)=/s+/s’ (E.15.-12)

is a p-integral if there is some sy, € Aj such that
/s 0P = so(c)/s V(celC, se Ap). (E.15.-11)
That is,
/s o p.(a) = /s(pc(a)) = so(c)/s(a) V(ae A, ceC, se€ Ay).

More generally, [ : L(8/A) — L(B/A) is a p-integral if there is some my € Ay
such that

/7r o p. = mo(c) /7T V(iceC, me L(B/A)). (E.15.-11)

On the other hand, a € A is a p-integral element under the map = if there is

some s € Ay such that
7o pe(a) = m(p.(a)) = so(c) m(a) Ve e C. (E.15.-10)

Even more generally, if there is an equivalence relation ~ among the elements
of L(B/A) which separate into equivalence classes {[r]} then
[ : L(B/A) = L(B/A) is a p-integral if there is some 7y € Aj such that

[/w o o] = [/ A Vel e L(B/A)). (F.15.-9)

300



Appendix F

(C*-algebras

F.1 Cauchy-Schwarz inequality

Let us define a x-algebra A to be an associative algebra over the field of complex
numbers C that is closed under an operation * (that is, a* € A Va € A) with the

following properties.

a*=a VabeA aecC, (F.1.0)

where @ denotes the complex conjugate of a.
Let A be a x-algebra. Consider any A € A, a collection
{Bie A, i=1,2,...p} and ¢ € A%, the set of positive linear functionals on A.

Pla+b) =¢(a) +¢(b), d(a”) = ¢(a),
d(Aa) = A\p(a), ¢(a*a) >0 Va,be A, N e C. (F.1.0)

Also define the function f:CP — R*, A f(\N),
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FOLN) = d((A+ NB)* (A+ NBy))

= ¢(A"A) + Nip(A"By) + \p(BF A) + N\i)jo(B; By)

= ¢(A*A) + M N; + NiN; + N\ M > 0, (F.1.-1)
N; = ¢(BFA), My;; = ¢(B;B;), My = M. (F.1.0)

The value of f at its extreme point gives the Cauchy-Schwarz inequality. That is,

8(; FNX)=0 «— XN= —M;;'N;, detM;; >0, (F.1.1)
!/

= SN, X) = ¢(A*A) — N, M, 'N; > 0. (F.1.2)

If we write By = (A, B;) = (Bo, B;), M;; =¢(B;By), I,J=0,1,...,p then
the inequality (E.1.2)) becomes

-~/

. detMU

FN,N) = Tt T, >0 = detM;;>0. (F.1.3)
In the case p = 1 one has
O(A'B)p(B*A) = ¢(A'B)p(A*B) < (A" A)p(B"B). (F.1.4)

F.2 Hilbert space and operator norm

Define the operator norm ||a|| for a bounded operator a € B(H) = {b: H — H}
on a Hilbert space H ( inner product vector space (V, (] ) : V x V — C) which is
complete with respect to the inner product norm || || : £ — ||€]| = +/(£|€) ) as

lall = sup 1280 ey = 7T, (F2.1)

cer €117
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It follows from the definition (E.2.1]) that
lagll < llallll€l V€ € H (F.2.2)

and since bH = H Vb € H we then have that

[ab& || < [lal[|6<] < [lal[[|b €] (F.2.3)
and therefore
|| abg|| lallliolll€ll
|abl| = < sup ————— sup [al[[|b]] = [lalll|o]l.
con €l e €l
ie. ||ab|| < ||all|D]. (F.2.3)

This in turn implies that one could also define the norm

lallp = sup < [all (F.2.4)
beB(H HbH
If one defines a* by (a*n|§) = (n|a&) then
(ab)* = b*a*, a™* =a, (Ma)* =Aa* Va,be B(H) & X € C,
=g bt _ ViRl Ea]
een NEl  een &l cen D€l
||a|| Sup H g” \/ ag‘aé- = su \/ £|a aé- ) (F23)
ech €] cen Il e Il

Thus the mean-center inequality (.22 [F.2.3) and the norm inequality (E.2.3)

give
lal* < lla*all < [la*[[llall, = [all < [la”]- (F.2.4)
And a** = a therefore gives
lall < lla*|| < lla™[| = llall = lla*[| = llall, [la*all = [lal*. ~ (F.2.5)

Remarks
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Each vector £ € ‘H corresponds to an operator &, = |€) (¢] whose norm

1
VA9

with respect to a positive linear functional ¢¢, defined below in terms of the

operator pg = @\f)(ﬂ € B(H), gives the norm of &. That is

{€lalé)
(€1e)

¢e(a) = Tr(pea) = 7= <€|€> Tr([§)(Ela) =

lalle =/ ¢¢(a*a), ||allzsup||a||s,

Eolle = 1/ de(€52) = \/oe(1€)(€D) = |/ Trpelé) e

= VTr[6)(€] = V(€l€) = e, = [l¢].

One has the Cauchy-Schwarz inequality
Pe(a’b)de(a*b) = |de(a D) < ¢e(a”a)de(b*D). (F.2.2)

Setting b = 1 in (F.2.2)) gives

Pe(a”)pe(a)(2 — ¢(1)) < ge(a”a),
or ¢e((a = ¢e(a))*(a — ¢ge(a))) = 0, (F.2.2)

which in turn gives
Pe(ab)pe(arb)(2 — ¢(1)) < de((a™h)"a’b) = ¢¢(b*aa™D), (F.2.3)
as well as

de(a*b)de(a*b) < de(a”a)ge(b"D) < ¢e(a”abd). (F.2.4)

<
(2—-0(1))
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e The triangular inequality also follows thus:

Pe((a+b)"(a+0b)) = ¢e(aa) + de(a™d) + (b a) + de(b™D)
— Gela*a) + 2Roe(a"d) + de(b°a") < de(a*a) + 24/ Ge(a b Be(@D) + 0 (5°D)
< 6e('a) + 2y [e(aa)ge(b7b) + 6e(b°8) = (Be(a"a) + Ge(bB))?,

la+blle < lalle +[[blle V€ € #,

= la+0ll < lafl + ol (F.2.1)
Using [lall¢ < supgeqy [|alle = [|a]| one can also check that

allellblle < sup([lallellblle) < sup([lall¢l[oll) = [lalll[o]l.  (F.2.2)
§EH EEH

e Since aH = H, ||a|| is the same for all elements in the conjugacy class

la] ={b, Jc € H, b= c*ac}.

e For the finite dimensional case, a*a may be diagonalized: ie. a*a = PAP™!

and if one chooses a basis {|i)} for H then

§= )&, a" = (a*a)yl)(gl, A= Xi i)l (il7) = 0y,

Jafl = sup Y22 _ oy
EEH /Zj |§j‘2 EeH
0 1
—|lalle = [&]-——1{N\; — ||a]|?} =0 Vi. F.2.1
8|€i||| le = | |||Cl||§{ lall¢} ( )

(E2.1) may have several different solutions but one should take the one on
which [|a|| is biggest. In particular one can choose £ to be in the direction

= max; \;. That is

& =18 it = llall = fmax A;. (F.2.2)
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The eigenvalue character may be defined more generally as

Ae(a) = Extryen %"g, (F.2.3)
where Extr,cy refers to extremization in H.
e A (*-algebra given abstractly as
A=(B={abe.}, B-S B Bl R (F.2.4)
has the following defining properties
(ab)* = b*a*, (a+b)* =a* +b*, (\a)* = Aa*, a** =a, (F.2.5)

(involutive algebra),

lall >0, flabl] < flal bl (F2.5)
also with |[|a”|| = ||a|| (normed involutive algebra),
also ||| — complete (normed involutive Banach algebra),

|a*al| = ||a]|* (C*-algebra) (F.2.4)

(F2.5) and ([E.2.4]) give

laall = [lall* < lla*[[llall = lla] < [la"]. (F.2.5)

(E.2.5) and (E.2.5]) then give
la*[| < lla™ || = llall. ie [la*|| < [la] (F.2.6)

and therefore ||a*|| = ||a||. Therefore the algebra of bounded operators B(H)
is a C*-algebra with the operator norm. In certain cases it may also be
possible that one can obtain the norm inequality (E22.5]) when given only the
C*-condition (F.2.4)) and the Cauchy-Schwarz inequality.
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e Examples of C*-algebras are given by pointwise product (denoted % ) algebras

B(H) = Fu(X) = {ns : F(X) = F(X), g = (fxg)(x), [ e F(X)}of
complex functions H = F(X) = {{ : X — C} over a topological space X

under a suitably defined operator norm.

lel =[S Ie@e gl = sup”“ff”
2 el

= gl < llurllliEll vE € H. (F.2.6)

For case of a separable (ie. local) pointwise product any f € H = F(X)
corresponds to an operator py € F,(X) that acts on H = F(X) linearly as

() = (f *€)() = F()é(),
lpegll =\ fimas T = ma | (2)| (F2.6)

where in the norm we have used the fact that for each x € X, f(x) is

regarded as an eigenvalue of py. Also the last step is due to the fact that
5\f(x > _ = 2| f(x )‘8|f

One also has the pointwise convolution product algebra F,(X)

v(e) =Y fle—y)ly) =Y ™ f(R)ER)

yeX keX

el = /> I,

Ve [FR)PIE
Jall = sup " —max[f(R), (F25)
YO 3

where fis the Fourier transform of f.
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One notes that if the product is noncommutative, then there are two possible
and independent representations p”, pft of the product corresponding to left

and right multiplication respectively

pié(x) = (f*&)(@),  pfé(e) = (Ex f)(x),
Wity = Pfegs MfHG = lgups 151y = Hg [1f- (F.2.5)

Therefore the derived multiplication p* = au? + Bu®, where A\ = (a, 3) are

commuting or central numbers, has the commutation relation

[,U/?,,U/;\] = 042 :uf‘/*g—g*f + B2 :u’izf*g—l—g*f‘ (F26)

For a subset of elements A = {a} C F(X) where a xb — b * a is central for
alla,b€ Aonehaspul, , = —u}ff*g +gwy and so p* will give a commutative

representation i, = p Va € A of A on H = F(X) with a? = 5%

e For a self adjoint operator a* = a, the C* condition ||a*a| = ||a||* becomes

|a?|| = ||a||*. Thus if one defines y/a then

lall = |va’|| = [[Val* = (sup '“'@ﬁmf = (sup %V

. (F.2.6)

o (Elad)
" een (€9

e The following names are used:

a*a=1 (ais an isometry),
(a*a)*> = a*a  (a is a partial isometry),
a*a =aa” (ais a normal element),

a*a =aa” =1 (ais a normal isometry or a unitary element).
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F.3 Convex subspaces

In a Hilbert space one has the basic expansion identity

g +nll* = llell* + (€lm) + (nl€) + Il (F.3.1)

C CHisconvex if Ve, € Oy ac+ (1 —a)d € C, V0 < a < 1. Alternatively

C C H is convex if

d(&, C) = min [|€ — cf| = [|€ — & (F.3.2)

is unique for any ¢ € ‘H. Consider the collection 0C' = {{c, & € H} of extreme
points of C'. Then one deduces from the primary definition that any point n € C'

can be expanded as
n=>_mb Y m=1 0<n <1, (F.3.3)
bedC bedC
The points of 9C = {b} are pure in that any element b defines a unique equivalence
class of elements of H given by [b] = {{ € H, d({,C) = d(&,b) > 0}. The impure
elements of C' are those that do not belong to 9C.
From the definition (F.3.2)) it follows that

1€ = el < IE —¢f VeeC. (F.3.4)
In particular & + <£ﬁf“%‘c>c = ¢, € C because of the fact that both
c & 7@—502\@0 € C' assuming that C'is a closed linear subspace (Here <§_€Cz‘c>c is
llll llll

the projection of £ — £ in the direction of an arbitrary ¢ € C, ¢ # 0).
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Therefore

1€ = &cll? < I — o2
(£ —&cle)

= [ = (& + WC)W
— ¢ - g0 - £k
e g2 K&l
= (£—&cle) =0 Veel, ¢ #0. (F.3.1)

That is d(&,C) = ||€ —&c|| implies that £ — & is orthogonal or normal to C' and
therefore if P € B(H) is the orthogonal projection unto C' then

d(&,C) = |I€ = &cll = [I€ = Pkl = d(&, Pcf), (F.3.2)
PoH =0, Pt=P.=Fo, ||Pof=1.

In particular

(E—&clee) =0, = (Elée) = (Eclée) = el (F.3.2)

and therefore

€017 = 1€ — &ell” + (€lée) + (€cl€) — lIgcll®.
1017 = ll&cll? + 11€ — &l (F.3.2)

F.3.1 States of a x-algebra

A linear functional ¢ : A — C, ¢ € A’ on an algebra A = {a} is said to be
positive it maps positive elements P(A) = {p = a*a, a € A} to positive numbers.

Consider the possibility of introducing a basis {¢;} for the set of positive linear
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functionals (plfs). Then a general plf may be expanded as

Then ¢(p) = . Nigi(p) >0 Vp € P(A) implies that \; > 0 Vi. Therefore for
the set S(A) ={pe AL, p(1) =1} of normalized plfs one has

p=>Npi, \i >0 and p(1)=1 gives > N\ =1, 0< X\, <1if ¢;(1) =1 Vi
Therefore S(A) is a convex set generated by the basis elements {¢;} which are

known as pure states due to their role as the extreme points in the convexity of

S(A).

F.4 Spectral theory

Spectrum o(a)/spectral radius p(a)

oa@) ={AeC, A—a) =) A" F in A}
n=0

(F.4.0)

The spectral radius or radius of convergenceH of Y227 J AT Hhgn s

. 1 - In la™] - Inflaf™

pla) = lim [[a"||» = emnee T < elimnoee 7
n—oo
= elimnoeolnflal — )| (F.4.1)
I This utilizes L’Hospital’s rule: if f, g are differentiable functions and
lim,_, f(z) = f(a) =0 =limy_,, g(z) = g(a) then

1)~ f(a) lim,_,. £®)=I(0) ,

im 2E) i fim e g e S@ gy

z~a g(@)  eaboe 0 9@ " oma iy 9@ ama g/(z)’

and similarly for lim, ., f(z) = co = lim,_,, g(z).
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The series is convergent ( ie. A —a is invertible or A € o.4(a) ) if
Jim e = N T o = (A ple) <1, (FA2)
and similarly the series is not convergent (ie. A € o4(a) ) if
pla) < | (F.4.3)

Therefore as p4(a) is finite, 0 4(a) cannot be empty in C.
That is Va € A, o4(a) # {}.

Corresponding to any single variable function f, one can define an A-valued
function f : A — A, a — f(a). In particular one can make use of holomorphic

functions

_ b f(2)
fla) = 5 o dz ==, (F.4.4)

where I'(04(a)) is any closed curve in C' that encloses o 4(a).

e aa* =a*a = p(a*a) = |al* since

1

n

* N

w = lim ||(a")*a
n—oo

pla*a) = lim [[(a"a)"
n—oo

~ tim [la[2 = [lal?
= lim [la"[|* = [a][". (F.4.4)

e a=a" = p(a)=]a|| since by the C* condition (F.2.4)

n L
177 = [lall. (F.4.5)

p(a) = lim [a"]|7 = lim ||a®
n— o0 n—o0

e One may also verify that o(ab) = o(ba) Va,b € A due to the following
identity:
(1 —ab)™" =14 ab+ (ab)? + (ab)® + ...
=1+ a(l+ba+ (ba)® + (ba)® + ...)b
=1+ a(l —ba)"'b. (F.4.4)
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F.4.1 Gelfand-Mazur theorem

If A has unit then A —a € A VA € C, Va € A. Therefore if every element a € A
is invertible except when a = 0 then so does (a — A)™! 3 except when a — X\ = 0.

But o(a) = {)\, (a — )~ A} # {} and therefore for each a € A, 3 X\ € C such
that a — A = 0. That is if A has a unit and if every element a € A is invertible
except when ¢ = 0 then A ~ C.

It follows that if .4 has unit and I C A is a maximal (having no proper subs)
two-sided ideal, IA = Al = I, I + [ = I, then the quotient A/l ~ C where
A/l ={a+1; a € A}.

F.4.2 Gelfand-Naimark theorem

A character of an abelian algebra A is defined by

X Ao = C\{0}, x(ab) = x(a)x(b), x(a+0b) =x(a) + x(b). (F.4.5)

If Ay is unitary with identity 1 the x(1) = x(1)* = x(1) = 1.
Thus y(aa) = ax(a) Yo € C. This coincides with the definition of the eigenvalue
and generalizes the fact that any two commuting operators can be simultaneously
diagonalized (ie. have a common set of eigenvectors).

Recall that the spectrum o(a) is given by o(a) = {\a) € C, (Aa) —a)"'$}
and satisfies A(a*) = Aa), A(f(a)) = f(Aa)), |Ma)| < pla) < ||la||, etc. Thus
A Ay — C is a character on Ap\{0} and by uniqueness of A\, A & x coincide on

f(a) Vf and hence x(a) € o(a) which means that

Ix(a)| < lall Va € Ao, Vx € 0(Ag) ={& : Ag — C\{0}}.

pla) = sup [x(a)l. (F.4.5)

x€o(Ao)
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Define the spectrum o(Ay) = {x : Ao — C\{0}} of As. Then the map
a—a:o(Ay) — C, a(x)=x(a)
isomorphically an isometrically identifies abelian C*-algebra A, with the commu-

tative product algebra F,(o(Ap)) of complex functions F(co(Ap)) since

That is,

Ay =~ /Io ~ F(U(AO)) = fu(U(Ao)),
Ay ={a, ae Ay} (F.4.5)
and also the spectrum o(y;) = o(a) since if (A —a)~' # then
x(A—a)7'h) P Vx € 0(Ap), 0# b€ A where
X((A = a)7'0) = (x(A) = x(a)""x(b) = (A — a(x))~"b(x)
= (A= 1a)7'B)(x) B ¥x, 0

and vice versa.

Thus p(pa) = pla).

x(a®) = x(a) = a(x) = a*(x)- (F.4.4)

For the function multiplication algebra F,(X) the spectrum of the multiplica-

tion operator is

olpr) = {f(z), € X} = f(X),
sl = ilel)lglf(fc)h lregpgll < Npag gl

lispsll = Neg 1. (F.4.3)
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Similarly,

o(pa) = {alx), x € o(Ao)} = {x(a), x € 0(Ag)} = a(c(Ag)) =~ o(Ao),
= o(a) =o(puz) ~ (Ao,

lpall = sup |a(x)| = sup |x(a)l, llpamgl < llpallllsl,
x€o(Ao) x€a(Ao)
lzpall = Npall®, w5 = par- (F.4.1)

To check that the map a — p; is an isometry

I

lpall® = llpanall = p(pipa)

= p(para) = pliige,) = pla*a) = llal?,
= |ual = llal*. (F.4.0)

F.5 Ideals and Identities

Given an algebra A, the concept of its ideals (or its invariant subalgebras in general)
is a generalization of the zero element meanwhile the concept of its identities
(or its symmetry groups in general) is a generalization of the unit element. Let
P(A) ={S C A} (P(A)={S C A} = P(A)\A ) be the set of all subsets (proper
subsets) of A.

Definition: Consider A, B € P(A) and define AB = {ab, a € A, b € B}.

It follows that Ab,aB C AB VYa€ A, be B. Also A+ B={a+b, a€ A, b€
B} from which it follows that A+b,a+ B C A+ B Ya€ A, b€ B.

Definition: A is a left (right) ideal, denote it [; (I,) € P(A), if

LA=1, L+15, =1 (Al =1, I, +1, =1,). (F.5.1)
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It follows that
LSCI vSeP(A), (SI,CI., ¥VSeP(A)). (F.5.2)

That is I;(I,) is a left(right) A-invariant abelian (ie. additive) proper subgroup
(a proper subset that is closed under addition).

Definition: An ideal is two-sided if it is both a left and a right ideal.

Definition: A subset of A is said to be nonideal if it is not a subset of any ideal.

Definition: Similarly A is a left (right) identity, denote it E; (E,) € P(A), if
EA=A, EE =E (AE, = A, E,E, = E,). (F.5.3)

That is E;(E,) is a multiplicative proper subgroup (a proper subset that is closed
under multiplication) under which A is left(right)-invariant.

Definition: An identity is two-sided if it is both a left and a right identity.

Definition: A subset of A is said to be nonidentity if it is not a subset of any
identity.

Observe that by definitions (EL5.0)) and ([E.5.3])

L(A)NE(A) = {} = [.(A) N E.(A) (F.5.4)

where (A) is the set of all ideals in P(A) and E(.A) is the set of all identities in
P(A).

Definition: A multiplicative left(right) inverse S! € P(A) (S € P(A)) of a
subset S € P(A) is any subset such that S'S (SS7) is a left (right) identity; ie.
S!S € Ei(A) (SS™ € E,.(A), where Ei(A) (E,(A)) is the set of left(right) identities
of A.

Observe(1)  that Z may # Vz € P(I), VI, € I,(A) ( ZZ may § Vz, €
P(I,), VI, € I.(A)) by ([E5.2) and (E.5.4). This is because 2,5 C I; VS C A by
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definition and if it has a left inverse Z! then one can find a left identity E7 such that
E? = Z!%. That is, one has the two conditions z'z A = A and S C I, VS C A
but 24 C I, = Z'2AC 21 and so for z! (Z7) to exist we must have

A=A (I,zZr = A). In particular 7! (") cannot exist if [; (I,) is also a left ideal
ie. if I; (I,) is a two-sided ideal].

Observe(2) that z/ may 3 Vz € P(I;), VI, € (A) ( 2. may # Vz, €
P(I,), VI. € I.(A)) by (E52) and (E54). This is because 25 C I; VS C A
by definition and if it has a right inverse Z] then one can find a right identity
E? such that Ef = zz]. That is, one has the two conditions Az 2z = A and

25 C I; VS C A which together imply that Al = A (I,,A = A). Thus for zI' (z!)

T

to exist [; () must also be a right ideal and thus a two-sided ideal. Thus zI' (z!)

cannot exist unless I; (I,) is a two-sided ideal. It follows that if z7 (z!) can exist
then 2! (Z7) cannot exist. Putting results together and removing labels one finds
that a subset z of a two-sided ideal I cannot have an inverse.
Definition: An ideal I is maximal if it is not a subset of any other ideal; ie. if
I ¢P(') VI'e I(A).
Definition: Also an ideal is simple if it contains no proper subideal(s).

The spectrum of an element is defined as
ola)={\eC, (a—A1)"" A} (F.5.5)

Thus obviously, if 0 € o(a) then (a — 0)~'# = o' A. That is, inversion of an
element a (even if a # 0, which is all that is required for the elements of C) is
not possible whenever the spectrum o(a) contains 0. For the abelian, ie. A, case

where the spectrum of an element is

o(a) ~o(pz) = alo(Ag)) ~ o(Ap), (F.5.6)
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one can quotient 4, for one chosen character y, by (ie. remove) those elements
I, (Ap) = Kera,(x) ={a € Ay, a(x) = 0} that can take on zero values at . One
can check that I, is a maximal ideal in Ay for any x € o0(Ag). The quotienting is

consistent only if [, is an ideal and this is the case for abelian algebras. The space
Ao/I, ={c=a+1,, ac A}, (F.5.7)

in which every nonideal (ie. non-I,) element I, # ¢ € Ay/I, is now invertible, is
by the Gelfand-Mazur theorem equivalent to C. ie. Ay/I, ~ C Vx € o(Ay).
One needs to check that every element I, # a+ I, € Ay/1, is invertible. That
is
0 & ala+ 1) = a(a(A)) + L(o(A)). (F.5.8)

Assume on the contrary that Jy € o(Ap), y # x such that
a(y) + L(y) =0, a(x) # 0. Since I, is a “large” set and this must hold for all
its elements the only possibility is a(y) =0, I,(y) = 0 which in turn means that
{a,I,;} C I, in contradiction to the fact that I, is a maximal ideal. Therefore each
character x is uniquely specified in 0(Ap) by the maximal ideal I,.

Therefore given A, all one needs is knowledge of (a means to construct) the
space Z(Ag) = {I} of its (maximal) ideals, from which characters can then be

defined as projections
A
o(Ag) = {xr: Ao — 70\{0}, [ €T(A)}. (F.5.9)

Thus the maximal ideals of an arbitrary C*-algebra A may be used to define
its (noncommutative) point-like topology/geometry. The space of maximal ideals

Z(A) may be written as
I(A) ={I,C A; Al,=1,=II,=I,+ 1, | JI.=A I, ¢ I, VuveS}

where S is a parameter space (S ~ o(Ap) in the commutative algebra Ay case).
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F.6 GNS construction

A state on A is a (normalized) positive linear functional

¢(a*a) >0, (1) =1 (F.6.1)
It follows that

|6(a"b)[* < ¢(a”a)p(b7D). (F.6.2)

Any null element n € A, ¢(n*n) = 0 is completely orthogonal to 4 with respect
to A since (E.6.2)) implies that

|p(n*b)|> < d(n*n)p(b*b) =0 Vb € A. (F.6.3)
That is, ¢(n*a) = 0= ¢(a*n) VYa € A or simply ¢(An) =0 or
d(ANy) =0, Ny = Ny(A)={ne A ¢(An) = 0}. (F.6.4)

Thus N, is a left ideal (AN, = N;) in A and
Hi = A/Ny(A) = {{ =a+ Ny(A), a € A} is a prehilbert space (to be completed
to a hilbert space Hy) with inner product

¢(En) = (€lm) = (a + No(A)|b + Ny(A)) = ¢(a’h). (F.6.5)

This induces the norm

1€l = V(EIE) = V/o(bD), & =b+ N,.
(IO < [Inlll<] (F.6.5)

which gives the operator norm

Imofa)] = sup Lo\ DEN,
25Nl
= lre(@l < Ims(@lllel) Ve € H (F6.5)
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can be witten.

Thus one can define a representation
T : A — B(%¢), 7T¢(A)§¢ ~ H¢, f(z, = lA + N¢(A) (F66)

such as that provided by the left action
mg(a) = Lo o b+ Ny(A) = Ly(b+ Ny(A)) = a(b+ Ny(A)) = ab+ Ny(A),

(Colmo(a)és) = ¢(a),
(F.6.6)

where the boundedness of L, needs to be checked. From the definition of the

operator norm

[ Lan]*
IZanl® =< lla|*[nll* = [ILall = sup .
nerty 1]l

<lal.  (F.6.7)

The system (7, Hg, &), up to unitary isomorphisms, is unique due to cyclicity
of the vector &;. The unitary isomorphism with any new system (7, H, &) may be

written as

U:Hy—H, m(a)=Un(a)U*, &=U(&),
7 A— B(H). (F.6.7)

F.7 Algebra Homomorphisms (Representations)

Letm: A— A, w(ab) = m(a)m(b), 7*(a) = m(a*). The expansion o(m(a)) C o(a)
since (A1’ — m(a))™" A = Or(1) —7(a))™' 3 = 7((AM —a)™') A shows that if
A € o(m(a)) then A € o(a) also.
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Therefore

I7(a)|* = 7" (@)m(a)|| = |7 (a*)7(a)l| = |7 (a"a)|| = p(x(a"a

< pla’a) < [la*a]| = [|a]|*.

ie. [lm(a)]| < lall.

F.8 Geometry/algebra dictionary

GEOMETRY

ALGEBRA

points X = {z} of a topological space

characters X = {\ : F(X) — C\{0}}

group X = (G,0), 0: G X G — G = {z}

characters (X,0), X = {\: F(G) — C\{0}}

complex functions F(G) = {f: G — C},
flxoa') = (flzoa’) = (flo(z,2")) = (A(f)|(z,2"))
=Yafa@) @) = pc o (fo ® F*) (@ @ 2')

(F(G), A, pt-wise-conv), A : F(G) - F(G) ® F(G)
up BB —= B VB,
(fglzoa') = (A(fg)l(z,a")) = (A(S)A(g)|(=, z"))

complex functions F(X) = {f: X — C}

function x-algebra (F(X), pt-wise)

map m: X — Y

*-homomorphism h : F(X) — F(Y)

symmetry of S : X — X

s-automorphism U : F(X) — F(X)

direct product X x Y

tensor product A ® B, A= (F(X), pt-wise),
B = (F(Y), pt-wise)

probability measures

normalized positive linear functionals

sections '(E) ={s: X - E~ X x V}

of a vector bundle E over X.

projective module M (A) over A = (F(X), pt-wise),
A X M(A) — M(A)

directed (Lie) differential L¢ : I'(E) — I'(E)
along a smooth vector field £ : X — V

Le = lsoe 08 = 8lsuse, bs(x) = sz + 52) — s(x)

Liebnitz differential D : M(A) — M(A),
D(mm') = D(m)m’ + mD(m')

differential forms Q"™ (X) = {wn :
L(V/X) ={Le¢, £: X — V}

L(V/X)" — F(X).

Q" (A) = {wn : Der(A)" — A, A= (F(X),pt-wise)},
Der(A) ={D : M(A) - M(A)}

exterior differentials d,d* : Q" (X) — Q"il(X)

graded differentials. dg,d} : Q" (A) — Q" F1(4)
dg(mm’) = dg(m) m’ + mg(m) dg(m’),

m: G X M —= M, (g,m) — n(g,m) = mg(m),
G=5n, Ad)=d®id+7®d
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Appendix G

Sets and Physical Logic

G.1 Exclusive sets

A (an exclusive) set S is a selection or conditional collection of objects
S=5X)={re X; Cs(x)} (G.1.1)

where Cg : X — {True, False, Unsure} C X, z — Cg(z) is a condition that
x € X needs to satisfy in order to be a member of the set S. That is, = € S iff
Cs(z) = True and x ¢ S iff Cg(x) = False. The collection X can be arbitrary or
not. We will simply write “F” for “False”, “T” for “True” and “U” for “Unsure”.
The result “Unsure” is obtained whenever Cg(x) neither evaluates to 7" nor to F
due to whatever reasons all of which we will refer to as Uncertainty.

The complement or negation S~ of the set S is given by
SY=57X)={r e X; C~s(x)}. (G.1.2)

where C™g is the statement that evaluates to F' whenever C'g evaluates to T and
vice versa. That is we write F~ =T, T~ =F, U~ =U.
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In anticipation of situations where it can be much more difficult to determine
when two sets are equal than to determine when one includes the other, one could
introduce inclusion € where A C B iff € A = =z € B. In terms of

intersection and sum/union

AB ={x € A; Cp(x)} ={r € B; Ca(x)}
={z € X; Cp(x)Ca(2)},
A+ B={xe€ X; Cp(x)+ Cy(x)},
ANB=AB,
AUB=A+ B+ AB={z € X; Cp(z) + Cy(z) + Cp(x)Cy(x)},

where we have introduced point-wise multiplication/addition of conditions; ie.
(C1Ca) () = Ci(2)Ca(z), (C1+ Co)(x) = Ci() + Ca(z).

We have the following conditions

ACB iff AB=A iff A+ B=2B
iff C,+Cg=Cp iff CyCp=0C4.
A=B iff (ACA)(BC A). (G.1-4)

When the condition of a set evaluates to either F' or U for all z € X for example
in S~S ={z € X; C5(x)Cs(x)} we leave the set blank and call it the empty set
denoted {}.

STS={reX; C5(x)Cs(x)} ={r e X; C(x) =U} = {},
ST+ S={reX; C5(x)+Cs(2)} ={x € X; C(x) # U},
SYNS=57S, STuUS=S5"+S. (G.1.-5)
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G.1.1 Conditional algebra

All statements are (composite) conditions involving émplication Cy = Cy and
equality C; < (5, negations and so on. The operations such as implication,
equality, negation and so on, may be written in terms of an algebra system on the
set of conditions C.

In order to compare, compose, decompose, ..., sets one needs to have a means

to do similar manipulations on the set of conditions. Let
C={CeX; C:X—>{T F,U}}

be the set of conditions. Then the value set {1, F, U} behaves as follows:

Boolean system:
Tr=T, FT=F, FF=F,
T+T=T F+T=T, F+F=F.
(G.1.-6)

Now if C(x) is True but Cy(z) is Unsure then intersection is Unsure meanwhile

sum or union is True; ie.
TU=U, TH+U=T. (G.1.-5)

If Cy(x) is False but Cy(x) is Unsure then intersection is False meanwhile sum or

union is Unsure; ie.
FU=F F+4+U=U. (G.1.-4)

Finally if both C}(z), Cy(z) are Unsure then both intersection and sum/union are

Unsure; ie.

UU=U, U+U=U. (G.1.-3)
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Thus the summary of the operations is as follows:

TT =T, FT=F, FF=F,

T+T=T, F+T=T, F+F=F

TU =U, T+U-=T.

FU=F, F+U=U.

UU=U, U+U=U.

F*=T, T =F, U~ =U. (G.1.-7)

One may write the algebra system as A = ({7, F,U}, +, -, ~) where multiplication
- may be thought of as the ~-conjugate +~ of addition + since

(a+0b)~=a~b~, (ab)™ =a~ +b> Va,b € A. This special property will be lost
when an arbitrary ~-algebra system is considered. One also has the “exclusive or”

operation &
a®b=ab”+a"b, (adb)”=ab+a"b”, abeA (G.1.-6)

Thus tmplication C; = Cs is equivalent to C1Cy = Cy or
(C1Cs)(z) = Cy(x) VY and equality C; <= (5 is equivalent to C; = Cj
or Cy(z) = Cy(x) Va.

The algebra of sets has now been reduced to the algebra of the cor-

responding set generation conditions.

G.1.2 Maps and bundling

Given two sets A, B one can form another set C' = A x B by pairing elements thus

C={c c=(a,b), ac A, be B} =Ax B={(a,b); a€ A, be B}.
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This operations can be iterated to form A; x Ay x A3z x ... given Ay, Ay, Az, ...

In general one can form
AxB={r e X; C(x,C4,Cp)}, (G.1.-6)

where C,(z,Cy4,Cp) can for example consist of the sequence of conditions
r=(a,b),ac A, be B or x=(a,b), Cs(a)Cp(b) corresponding to the direct
product A x B. That is, we have the conditions
Co(x,C4,Cp) — x = (a,b), Cx(a)Cp(b) iff A% B+ AB. We can also have the
conditions Cy(z,Cy, Cp) — Cy(x)Cp(x) iff Ax B +— AB and similarly for the
sum we have Cy(z,C4,Cp) = Ca(x) + Cp(z) iff A% B+~ A+ B. This general
product can be iterated as well.

If M(A) ={m e X; m: A— X} is the space of maps on A and
P(A) ={A € X; AC A} is the set of subsets of A then one can define a bundle

twisting map
[]: Ax M(A) — P(A), (a,m)— [a], ={b€ A; m(a) =m(b)}
which makes a twisted bundle

[JA X M(A) = [Alsa) = A X [ua = [A] x M(A),

[Taray = A = (PAYML = [a] ),

[|m: A= P(A), a [a],, YVm e M(A),

(A - M(A) = (PA)YAL s (Al

a] : M(A) = (P(A)), m s [a] VaeA (G.1-10)

from the trivial bundle A x M (A).
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In general,

m:Ax B —C, (a,b) — m(a,b) =c,
Ax B - C, (a,b) = m(a,b) =c,
m: A X B|(a,b) — C|c:m(a,b),

A x B|(a,b) i) C1|c:m(a,b)
may be written as

m:A— M(B), a— m(a, ): B— C, b— m(a, )(b) =m(a,b) =c,
m:B— M(A), b—m(,b): A—C, ar— m(,b)(a) =m(a,b) =c,
Ala = M(B)lnta, ) 2 Clezmias)
Bly = M(A)lu ) = Clemmion:

Ala B
M(A X B>|m=m( ,) T M(B)|m(a7 ) — C|C=m(a7b)‘

In bundle form
m(A x B) ~ Axm®? =my x B,
m? C M(B— C)=C/B=M(B,C)c M(B),
maCM(A—C)=C/A=M(A,C)C M(A),
mP:A—CPB myu:B— Al
m’: A— C, as m(a,b) Vbe B,

mg: B — C, b— m(a,b) Va€ A,

where |A|, |B| are the number of elements in A, B respectively.
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G.1.3 Counting isomorphisms ?

If |A| denotes the number of elements in the set A then the number |I(A, B)| of
isomorphic maps (A, B) C F(A,B) ={m; m: A— D C B, |D|=|A|} is

) o)
1A B = spes —1ap AP = waa = jany
T(n) = nT'(n—1), T(1)=1,
(A, D)| = | (A, A)| = |(D.D)| = (| A]). (G.1.-26)

G.2 Nonexclusive sets: Generalizations

The sets we have defined so far have absolute or rigid rules for choosing their mem-
bers and thus we can only have members and nonmembers. However in practice
there can be intermediate situations with different levels or steps of membership.
Therefore we will consider sets for which the set generation conditions (sgc’s) can
take values in an arbitrary x-algebra syste A.

The operations of multiplication and addition will simply parallel those of the
x-algebra system A. Note that the x-algebra system A may neither be com-
mutative nor associative in general and the sets will directly inherit these
properties as well. However we will assume associativity, but not commutativity,

for simplicity.

LOther examples of algebra systems include natural numbers N (which arose due to the need to
count things), fractional numbers Q (which arose due to the need to compare countings) and real
or continuous numbers R (which arose due to the need to compare uncountable characteristics
such as lengths). Various products of these number systems (or number sets) also arose due to

the need to compare (geometric) shapes and sizes of things.
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A set S is a selection or conditional collection of objects
S=5X)={re X; Cs(x)} (G.2.1)

where Cg: X — AC X, x+— Cs(x) is a condition that determines the degree

(or probability amplitude) of membership in S of each and every x € X.

G.2.1 G1

In one means of generalization we suppose that = € S with degree or amplitude of
membership (aom) a € A iff Cg(r) =a and = ¢ S with degree or amplitude of
nonmembership (aon) a™~ € A iff Cg(z) = a™. The collection X can be arbitrary.

Each a € A corresponds to a selection of elements [a]® = {z € X; Cg(z) = a}
so that S = [J,c4a]®. Whether A is represented as an algebra of operators on a
Hilbert space, ie. A — O(#H), or not one may use the characters X'(A) = {\ €
A" A A — C\{0}} to measure the degrees or amplitude of membership (aom)
or nonmembership (aon) carried by each a € A. The uncertain elements which
are those with the property a™ = a have a degree of uncertainty or unsureness of
membership and their values may be conveniently measured with the help of real
linear functionals A} = {¢ € A*; a™ =a = ¢(a) € R}. [Note that in the
Boolean algebra system A = {7, F'} the elements a = T, F' obey a?> = a and so
the characters are given by A(a?) = Aa)?> = AMa) = A(a) = 0,1 and one
usually chooses A\ (T") = 1, A\ (F) = 0 although the only other alternative choice
Xa(T) =0, Aa(F) =1 is equally valid.]

Observe that for a real algebra system where a™~ = a Va € A membership of
a set is completely determined by the degree or amplitude of unsureness (aou) of

membership.
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The complement or negation S~ of the set S is given by
SY=57X)={r e X; Cs(x)}. (G.2.2)

where C™g is the statement that evaluates to a™ whenever Cg evaluates to a and
vice versa. That is we have ™ = a. One should not confuse the logic operation

~ with the % operation with properties

a* =a, (ab)" =b'a*, (a+b)"=a"+10". (G.2.3)
[A ~-algebra system A with the properties
(a+b)~=a™b", (ab)” =a~+b~ Va,be A

such as the commutant operation in set commutant algebra, and similar types of analysis,
is closer to that of exclusive set theory. A set S = {A} consisting of Von Neumann algebras for

example has such properties:

A=A, (AnB)Y=AUB', (AuB) =ANHB. | (G.2.4)

The set operations are as before given by

AB ={z € A; Cp(x)} ={z € B; Cu(x)}
={z € X; Cp(x)Cx(x)},

A+ B={r € X; Cp(x) +Cu(x)},

ANB=AB,

AUB=A+ B+ AB = {z € X; Cp(x) + Ca(x) + Cp(x)Ca(x)},

where the point-wise multiplication/addition of conditions,
(C1Cy)(x) = Ci(x)Cs(x), (Cy + Cy)(x) = Cy(x) + Co(x), is used but this time
(C105)(x) # (CyCh)(x) in general.
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G.2.2 G2

Here we maintain that in S = {z € X; Cs(z)} each and every x € X is a
member of S with degree or amplitude of membership (dom or aom) Cg(z) and
degree or amplitude of nonmembership (don or aon) C§ (z). That is, there is no
“sharp” distinction between “members” and “nonmembers”. There will
be uncertainty, with degree or amplitude of uncertainty (dou or aou) Cs(z), in the
membership of z if C5(z) = Cs(z) even when C~ # C' on all of X.

To illustrate, let Cs € A where A is an arbitrary *-algebra and
X = Aj, C A% C A" be the set of normalized positive linear functionals (nplf’s)
of A. Then every element a € A represents a set generation condition (sgc) for
an associated set S, = {¢ € Aj,; ¢(a)} and each ¢ € Aj, is a member of S,
with aom ¢(a) and aon ¢(a™). To any such ¢ satisfying ¢(a™) = ¢(a) even when
a™ # a we rather associate an aou ¢(a).

It is important to mention that the set .S, actually corresponds to an equivalence
class [a] = {b € A; ¢(b) = ¢(a) Vo € Aj,_} of sgc’s since every member of [a
generates exactly the same set. That is S, = S|y.

Set addition and multiplication are straightforward and given by
SaSb = {¢ - .AL_; qb(ab)} = Sab = Sa N Sb,
Sa+ S ={¢ € Al; dla+b)} = Sap,
S, US, = {gb € .AL_; gb(a +b+ ab)} = Sa+b+ab (G.Q.—Q)
and the ~-complement or conjugate S~ of S is given by
87 = Su- = {6 € AL ()} (G2-1)

Regarding set inclusion, we would like that a set includes itself in which case
we must have S,S, = S,z = S,. Thus a further condition for a € A to be
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a “pure set” generation condition (psgc) is for it to be a projector a® = a.

Consequently one has pure and impure sets. If one has a collection of projectors
P ={pe A p*>=p} such that pipy € P Vpi,p» € P, that is (p1ps)? = pip2 50

that the product of any two sets gives another set, then one has a closedH system

20One notes that for any given projector p € A, wvpu is another projector Vu,v € A such that
uwv = 1. One also has partial projectors: if p is a projector then Yu € A, ¢ in the relation
PU = uq, q = q(u,y) is a partial projector. Thus corresponding to any projector p is the class
of projectors P,(A) = {vpu; u,v € A, wv = 1} noting that given {ui,u1,...,u,} C A and
{@1, U, ..., un} C A such that w;i; =1 Vi one has U,V, =1 where U, = H?:l uj, Viu=
[Ty, -

Also, given a projector p, pp is a projector for any p € p’ = {a € A; [a, p] = 0}, the commutant
of p.

L plt = a%la are projectors, where azla =1ly= aa%l. Also

For any given a € A, pL = aa}
a(lg—pl)y=0= (14 -pl)a.
Given ¢ € A% a system of projectors P = {p;, € A; p? = p; Vi} is right ¢-measurable iff
¢(a) =", d(ap;) Va € A. One may refer to an orthogonal system of projectors
Py = {pi; pip; = dijp; Vi,j} as a partition. In a complete system of projector

P={p; € A; p? =p;} any given a € A may be expanded as

a=a+a'p + aijpipj + ot alt i e = Z a' iy
k

ot e C. (G.2.0)

One may orthogonalize a given system of projections Il = {m; € A; 77 = m;, 7}

* =m; Vi} when

A is represented on a Hilbert space H, A — O(H) ~H ® H where one can write

m o= % and the set {|¢;)} can then be orthogonalized. Corresponding to {|¢;)} is the
dual set {|&) = |;)(&]&) "1 1Y, with (&il€;) = dij, from which one obtains the orthogonal
set {|&) = )& 1) 20} with (§]¢;) = 6y, Hence & = |§,)(&] will satisfy #:; = 675
Similarly for projectors written as p; = % corresponds the orthogonal system

pi = |6 (i |€) 2Rl (| €) 2 Bl (| pep; = 6ip. Summation convention is used and the inverse
(and square root) is partial in that they are of the matrix in the index types 4,7, k,... only.

The representation of the projectors p; in terms of subsets of the Hilbert space H will take the
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of sets.

In a commutative algebra where ¢(ab) = ¢(a)@(b), one has that for a projector

general form

pi= Y, l)mle) T ml, Hi Ha CH,

(n,§)€H1xHo

D= D G mlg) I ) I

(n,§)€H1xHo

= Z |6 (k€)™ (mal&) ™= (ml,  pipy = 0igp (G.2.1)

(m,&§)€H1 X Ho

where [, £] simply indicates a partial inverse which is that of a |H;| x |Hz2| matrix, |H;| being
the size of Hy and [¢, j] has a similar meaning meanwhile [¢, j][n, £] indicates a full inverse where
both index types are involved. The case H; = Hs corresponds to projections or equivalently
Hi=H;, (&) = 6(n—E) (&)€;). Thus projectors correspond to subspaces of H? = HxH
meanwhile projections (real projectors) correspond to subspaces of the Hilbert space
‘H. The sum of any number of orthogonal projectors is also a projector. An orthogonal
system of projectors {p;} spans a commutative algebra with elements
c=y,¢pi;, Tr(p;)) =1 = & = Tr(cps).

Corresponding to each projector p with additional property Tr(pp*) = 1 one can define a state

¢p given by
_ e (Eal§) _ .
Tr(a) = ; e ¢p(a) = Tr(pap™),
(€lu)(vl§) (v|€) (§]w) 1£) &l
T = A AN VA ol bl IS/AST Y
e =2 g~ L e L g T e

Tr,([a,b],) =0, where [a,b], := apb — bpa, Tr,(a) = Tr(pa). (G.2.2)

A projector p can be written as a sum p = m; +m2, W =m, m5 = —m2 of a hermitian and an

antihermitian operator with the following properties
2

2
T =W — Wy, NW1T2 + Wom = T2

= 7T27T17T2:7T1(1—7T1)2. (G23)
A tensor product p; ® pa ® ... of projectors p1, pa, ... is also a projector. In general one may form
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p, o(p*) = o(p)o(p) = o(p) = ¢(p) = 0,1 Vo. That is, membership is of the

exclusive type for a projector (projective sgc) in a commutative algebra
Ap. Thus projectors indeed generalize sgc’s from exclusive (ie. commutative) to
nonexclusive (ie. noncommutative) logic. The generalization of the logic operation
~is p~=14—0p.

Addition/union of sets is possible but not essential since every set
contains the same elements without any exclusions and two sets can only differ
in the aom, aon or aou of individual elements. That is, in this sense, all sets are
already united.

We may now say that A is a left (right) or two-sided subset of B iff AB (BA)

a A-deformed tensor product (compare with [.T=G)) of two sets as

N
Sa®a Sy ={p € Aj; mA()(a@b)} = Sagap, A: (A" = @A), n,N €N,
k=0
(id @ maA) o T A = (mA ® id) o meA  (may not necessarily hold in general),
mA(¢)(a @ b) = (o ® ¢”|a ® b) = ¢a(a)p (b).
A = ( (id®@)F A (®id)" * 1 Yom, A" VI <k<n-—1,
T3A(¢) = (id ® mA) o mA(P) = (id @ m2A)(da ® %) = ¢a @ T2 A(PY)
=60 ® (¢*)p ® (¢67)°.
mA(@)(a) = dla),  mA(P)(a@b®c) = pala) (67)s(b) (%) (c), . (G.2.4)
The tensor product that corresponds (ie. is dual) to the product in A is a particular case A; of
A defined by ¢(ab) = (dlab) = (maA1(@)]a @ b) = m2A1(¢)(a®b). On the other end the A that
corresponds to the usual (undeformed) tensor product ® is given by
m2A0(@)(a @ b) = (maAp(@)la @ b) = (¢ @ dla ® b) = ¢(a)p(b). Thus possible A’s interpolate
between Ag and A; = Aj. The actual A’s to be considered may be determined by the way
one or more physical systems behave (or evolve) relative to (ie. interact or correlate with) one

another. S, may be interpreted as the amplitude distribution or “painting” in A* of the system

represented by a € A.
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is more related to A than it is to B or any other set. ie.
AB~A (BA~A) or AB~ BA~ A. (G.2.5)

In particular for each given projector p € A which is a sgc for .S, any other projector
p’ € A such that p'p = p’ or pp’ = p’ or p'p = pp’ = p’ generates a subset S, of S,
with SpS, =S, or S,5, =S8y or S,S,=S5,5, =S, respectively.

Since every set now has the same members one may introduce a measure on

the sets and compare their sizes as for example

m(Sa) = [ D [6(@)?, p2(Sa) = max |¢(a)], (G.2.6)
PEAL, 1*

We will define a family of open sets to be one in which the intersection (ie.
product) of any number of open sets is another open set. Since summation/union is
not necessary so is the concept of a cover for a space S unnecessary. The existence
of one or more “closed” or “complete” systems of projectors (ie. the existence of
one or more families of open sets) in A as described above is sufficient to account
for results that could require completeness/compactness in terms of covers. Any
closed collection of projectors
P ={a€ A a*> =a}, PP = {ab; a,b € P} = P generates a family of open
sets which may be considered to define a topology on A* (one can choose to work
with the whole set of linear functionals). Thus the number of such P collections
will give the number of possible topologies available for one to work with. Due to
the duality between A and A* any given topology on 4* automatically induces an

equivalent topology on A.
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G.3 Physics: The logic of quantum theory

At any given time, the conditional presence or state S, of a physical system in
A* is determined (or generated) by the creation or existence condition a € A of
the physical system. That is a physical system, with conditional presence
or state S, in A*, is defined (by a community of physical observers)
by specifying a creation or existence condition a € A for the physical
system .

We will consider the set generating projectors p € A to represent creation or
existence conditions of actual physical systems living or operating in the space A*
and each closed collection of projectors P will represent a collection of basic or
elementary physical systems [eps’s| (where the systems are basic or elementary in
that the product of any two of them gives another). The set S, or equivalently
o(p), V¢ € A*, determines the amplitude distribution, at a given time, of the
elementary physical system (eps) represented by p € A. That is S, is interpreted
as the (probability) amplitude distribution or “painting” in A* of the system rep-
resented by a € A.

As time progresses the eps can change p = p(t) and thus its amplitude dis-
tribution Sy changes and maps out a “path” (time parametrized set of am-
plitude distributions) in the space A*. For p(t) to remain a projector (ie. for
system to remain an eps) during the time evolution the time evolution needs to
be in the form p(t) = U(t, to)p(te)U (L, t9), U(t,t) = 14 Vt (More gener-
ally p(t) = Ul(t, to)p(to)V (t,to), V(t, to)U(t, ty) € Z(A) = AN A"). Moreover,
for the product pi(t)p2(t) of any pi(t),pa(t) € P to also remain in P (ie.
(p1(t)p2(t))* = p1(t)p2(t)) the time evolution U(t,t;) must be common to all ele-

ments of P (ie. for all eps’s). An infinitesimal time evolution, for such a pure or
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elementarity preserving time evolution, may be effected using a directional
derivation along a hermitian variable h(t) € A, h(t)* = h(t) which generates

unitary time evolution; ie. with U*(t,to) = U~ (¢, o).

[%,p(t)]a(t) = —i[h(t),p(t)]a(t) Ya: R — A,
W) i), 1)) = ~iDy pl1),
WEO) _ i (h(e) pie). (G3-1)

Even though these equations were derived by considering projective classes, non-
projective solutions may be possible and all possible solutions can be physically
significant as any given solution either describes pure time evolution or
describes impure time evolution.

Although the actual eps is described by p(t), different observers experiment-
ing on the eps may use different methods and/or parameters (or coordinates) to
construct or represent p(t) and h(t). In addition measurements are carried out
during experiments and the measurement parameters are the functionals ¢ € A*
and consequently different observers may also use different functionals.

For a particular observer, if we imagine the projector p(t) and h(t) to be con-
structed from auziliary variables q(t), ¢: R — AY = A x AV~! which we

will refer to as coordinates, p(t) = P(t,q), h(t) = H(t,q) then we have

% = —iDy P(t,q) = —i[H(t,q), P(t,q)] VP =
dq;z(st) = —iDy ¢'(t) = —i[H(t,q),¢'()], i=1,2,..,N. (G.3.-1)

It is important to realize that there can be more than one choice of the variables
q'(t), say ¢i(t) and ¢4(t) as well as the choice of functionals, say ¢; and ¢, that
give the same projector P(t,q) and same H(t,q). The transformation
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qi(t) — ¢i(t), ¢1 — ¢ is a symmetry of P(t,q) and H(t,q), or simply a symmetry
of the eps that p represents. The center Z(G,) = G, N G’ of the algebra G, of
the symmetry group G C A of the transformations commutes with all of G, C A.
However, when two transformations commute they share the same spectrum
and are therefore equivalent in a sense. For this reason, the spectrum of the center
Z(G,) represents properties that are shared by all of G, and hence by all
observers and in particular Z(G,) may therefore be considered to be intimately
related to the most important (ie. basic or elementary) physical (ie. observer
independent) characteristics of the eps. The spectrum of Z(G,) (ie. its spectral
orbit in A*) can be used to predict, including yet unobserved, basic or elementary
characteristics which the eps will eventually display under suitable conditions and
which each and every observer will be able to detect even with their different
coordinate or parameter systems.

From the point of view of the community of observers, specifying an eps is
equivalent to specifying its elementary physical properties (epp’s). Hence
elementary time evolution (ete) of the eps must also preserve any symmetry group
(or equivalently any symmetry group of the eps should preserve the ete of the eps)
in order that the epp’s be maintained.

Possible conditions that can be imposed by physical observations on the vari-

ables ¢'(t) include
(1) [a'(), ¢ (1)) = iQ7 € Z(A) = AN A
(2) [d'(t), d’(t)] = Cxa" (), CYy € Z(A)
etc. (G.3.-2)
One notes that it is also possible to have more general impure time evolution

during which a physical system can tunnel from one pure sgc class to
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a different pure sgc class in a dynamaically projective manner. That is,
intermediate stages of time evolution involve impure sgc’s (ie. nonprojective sgc’s).
Thus different pure sgc classes may be associated with inequivalent
physical vacua. The form of the infinitesimal time evolution equation in this
case can be more general (nonlinear) than the simple (linear) form considered

so far. To see how, consider the linear ansatz

p=hp+ph,, p°=p = pp+pp=p (= pop=0)
= php+phip=0 = hy=—h. (G.3.-2)

[ Note: These results show that p+ pp and p + pp are also projectors for
any given projector p. One notes also that p> = p = pp+pp = p but
pp+pp=p # p°>=p and so we will simply consider the operators obeying
pp + pp = p as a dynamical generalization of those obeying p? = p and refer to
them as dynamical projectors.|

The nonlinear ansatz p = hyp — haop + phgp implies p(hy — hy + h3)p =0

and so
d];—(tt) = ha(Dp(t) = p(ha(t) + p(t) (ha(t) — ha(£))p(t) (G.3-1)
= [h1,p] + p(—6hy 4 6hy p), Ohy = hy — hy,
% = —pmVi +p1Vipr, Vi = Uy '6hUy, py = Uy 'pUy, Uy = T(ef’fhl)7
% = Va2 = p2Vope dd—? = T2Var Tz, (G.3.-2)

Tio = UrpUs, Viy = Uy (hy — h)Uy, Uy =T(e/' ™), Uy = T(el ™)

will describe dynamically projective impure time evolution of p. [One
notes once more that dynamically nonprojective solutions (which are of

course impure) are possible.
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Thus

dlpa
Ble i [l ~ ple Vi Pl
Voa = U (ho — ho)Us, Ua = T(el <) (G.3.-3)

describes tunneling between any given pure sgc class [p], and a reference pure sgc
class [plo with V4, being the “tunneling potential”. Vg, = 0 corresponds to zero

tunneling or pure time evolution in the class [p],.

Since dQ~'=—Q'dQ Q' the solution to Lz = T,V Tr is

dt

t
T2 = —(/ VZl)_l = Ul_lpU2 =

t
1
p=UToUs'=-U /V tuyt=-U Uy,
L 1 21) 2 ! fthl(h2 — hy)Uy ?

Uy =Ty, Uy=T(J ™). (G.3.-4)

In the limit hy — h; = h one obtains the linear solution
p=UpU™", po= lim -1 =po(h), (G.3-3)
' ha—h1=h ft Uyt (hy — h)U;

where one may check that %0 = 0.

Writing p = U1p12U1_1 = U2p21U2_1 one identifies the “directed” tunneling

operators

1
J U (ha = hy)Uy
1
J U (ha = h)UL

P12 = U2_1U1,

pn = —U;'U; (G.3.-3)

Represented on a Hilbert space, a particular projective solution of
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p = hip — phy + p(ha — hy)p takes the form

_ gl dm) ¢l _
oo nlm(€le) _ 1 )
HPPE TP ot (639

When one wishes that p* be described by the same equation as p (which is not

necessary if p* describes an independent [anti-]system) we must have

hi = —hy, W= —h,.

The possible kinds of dynamics may be classified as follows:

dynamics (time evolution)

linear p = [h,p|

projective (pure) p* = p

nonprojective (impure) p? # p

nonlinear

P = hip — pha + p(ha — hy)p

dynamically projective (pure/impure)
pp+pp=p

dynamically nonprojective (impure)

pp+Dpp # P

where one notes that the projective linear dynamics is always dynamically pro-

jective, and also that the linear nonprojective dynamics can either be dynamically

projective or dynamically nonprojective.

One may also regard interactions within/without a given physical system as

some kind of tunneling where 6h = h—hy = h; is the interaction Hamiltonian.

However one should emphasize that this is only a particular case which can exhaust

neither the applicability of the nonlinear tunneling equation

p = hip—pho+p(he—h1)p nor that of any possible generalizations of the equation.

If one defines a finite evolution process as the (time) ordered (tensor) prod-

uct
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Qirlp] = Hif:t ®p(t) where one can also multiply/add processes to obtain new
ones, then the amplitude A? of involvement or participation of a particular func-
tional ¢ € A* in the process is
ty
Al = A)(Qislp)) = A [ (1)), (G.3-2)
t=t;
where p(t) may be interpreted as an instantaneous evolution process an infi-
nite evolution process will involve an infinite time interval. The overall process

amplitude is

Aig =Y AL =Y M@ en). (G.3.-1)
¢ ¢ t=t;

An example of a physical process amplitude (in coordinate representation)
is the path integral in quantum theory.

One notes that an evolution process may involve the switching on and off of
interactions in specific time intervals [t,, ts]: eg. in the case of linear time evolution

one may have
h(t) = ho(t) + > 0(t — t,)0(ts — ) Vio(t) = ho(t) + hy(t).  (G.3.0)

Process classes can be named according to the class of dynamics that determines
p(t) Vt.
One may also relate hy and hy by imposing either the conservation of hq
;ll - hlhl - hth + hl(hg - hl)hl - 0
= hy=hy or h1 =1 (G?)O)

or the conservation of hs

;12 - hlhg - h2h2 + hg(hg - hl)hg = 0

= hl = hg or hg =1. (G?)O)
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One can similarly derive an evolution equation for a system of sgc’s satisfying
bipj = fz’jkpk~
piv; = fii"pe = pipj + piv; = fij e, (G.3.1)
Then linear time evolution
pi = hp; — pih (G.3.2)
needs no modification. However, nonlinear evolution will be in the form

Pi = hapi — piha + ¢7* pj(ha — ha)py (G.3.3)

where the ¢’s obey some contraction identities with the f’s.
One can have more general nonlinear time evolutions (which would describe
tunneling from a given vacuum into more than one different vacua simultaneously)

as for example:

p = hip + phy + phsp + haphsp + phephs, (G.3.4)
pp+pp=p =
hi+hy +hs =0, hy = hg, hs+h; =0

or h1+h2+h320, h4—|—h6:(), h5:h7

and
p = hap + phs + phsp + haphsp + phephy + phsphop, (G.3.2)
pptpp=p =
hl—l-hg—l-hg:(), h4:h6:h8, h5+h7+h9:0
or h1—|—h2—|—h3:0, h4+h6+h820, h5:h7:hg
and so on.
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G.3.1 Coordinate types

We will consider only linear time evolution.

The “mechanical” choice of coordinates,
¢ :R—= AV t—q(t)={d(t); i =1,2,..., N} = (¢"(t), ¢*(t), ..., d" (1))
or q:NyxR— A, (i,t) =~ ¢(t), Ny = {1,2,..., N}, which we made earlier is of
course only for illustration. In principle both the number and choices of coordinates
(ie. observers), and hence of the corresponding symmetries, is arbitrarily diverse.

The following are a few other examples of coordinate choices:
e Scalar fields

q:RIXR=RM o Az = (t,7) — ¢*(t) = q(t, D).
dq(t, 7)
ot

= —i[H(t,q),q(t,Z¥)] = —iDyq(t, T). (G.3.-1)
e Vector fields

q: Ny x R 5 A () — ¢*(t, T).

% — —i[H(t,q)7q“(t,f)] = —iDHq“(t,f), (G3—1)

e p-Tensor fields

q: (Ngp)? x R 5 A (o, 2) — ¢°(t, 7).
0q*(t, )

S = ilH(tq), " (17)) = —iDug (1), (G3-1)

e Spinor fields

q: Nﬁ X R 5 A, (0,2) = ¢°(t, 7).
% = —i[H(t,q),¢"(t, 7)) = —i(Du)" ¢ (£, 7),

(Du)’or = (V")7or Dan = Dpu(7")% o1, 9" +7"7" = 29",
Y=t T), g" = g"(t, D). (G.3.-3)
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e r-Gauge fields

q: (Ngi)™ x (N2%)" x (Ny)" x R™Y 5 A, (u,z) — ¢“(t, 7).
0q¢"(t, %)

P = —t[H(t,q), q"(t,T)], ©w= (1, fhans T1s oy Oy Q1,5 -vy Ay ).

e Composite coordinates: In general ¢ = (q1,¢o,...) can be made up of one
or more of the coordinate systems above meaning H depends on the whole

composite as well;

H=H(t,q) = H(t,q,q,...)

The (more basic) coordinate types g above are thought to correspond to irre-
ducible representations of a symmetry group whose action may be expressed in a

coordinate dependent way as

¢"(@") = U7 (A, 0)q"(@)U(A,b) = S"y(A,b) ¢"(Ax +b),

b e Rd-l—l A€ Rd-l—l ® Rd-l—l
or in a coordinate independent way as

U(A,B)U(N, V) = UAN, AV +b). (G.3.-6)
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This is also the isometry group of R%*! as a metric space

H(R™) = (Der(R™1), (,) = pcon), n € Der*(R™*!) @ Der*(R™*1),
(UNBENUA, D)) = (€]&) ¥E & € H(RMY),
Der(R™) = {D : F(C,R™) — F(C,R™), D(f+h) = D(f)+ D(h),
D(fh) = D(f) h+ f D(h) Yf h € F(C,R*™)}
= {Dy; v e F(C,R™H™ Y}, (Dy(f))(x) = v'(2)di f (),
(Dul Do) (@) = nij w' ()07 (2),
(UM, B) DU (A, D) Dy)) () = myj u'(Az + b)o! (Az + b) = ny; u' ()0’ (x)

= u'(x) = v’(:v) =ds' (= Der(]Rd“) ~ RI+1 ), naBAO‘Z-ABj = Nij,

where Der(R4*1) is the space of all directional derivatives in R+,
Dynamically (ie. p(t) = P(t,q)), pis determined by H = H(t, q) and therefore
the possible types of dynamics (including interactions) of various physical systems

are described, by observers, by specifying various functional forms of H(t, q).

G.3.2 On Gravity

One may want to “enlarge” the isometry group of R to that of an R%*!-manifold
M(R1) in order to treat gravity which is believed to be related to the met-

ric/curvature of some R¥*'-manifold. That is, gravity is related to the isometry

group
(U@U(@) =Ulpoy), p,¢' : DCM—CCM)of M=M(RH) with its
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tangent fiber as a metric space

H(M) = (Der(M), (,) = pcog), g€ Der"(M)@ Der*(M),

({Up)E|U(p)&1) = (£]&1) V€ & € H(M),

Der(M) ={D: F(C,M) — F(C,M), D(f+h)=D(f)+ D(h),
D(fh)=D(f) h+ f D(h) Vf,he F(C,M)}
= {Dy; v e F(C, M)}, (Dy(f))(x) = v'(2)d f (),

({(DulDu))(2) = gij(2) u'(x)v(x) Vu,v,

({U(@)DulU () D)) () = gij(™ (2)) u'(p(2)0? (p(2)) = gii(x) ' (2)0? (2)
= (Du|Dy))(z), (G.3.-20)

where Der(M) is the space of all directional derivatives on M. One can apply the
functional operator Qus = [ du(x)du(z) &L%(y)éu%(z), du(z) = /det g(x)d**z on
the equation g¢;;(p'(z)) u'(¢(x))v!(¢(z)) = gij(x) u'(x)v/(z) Yu,v to remove
the u, v dependence (Check the infinitesimal form ¢'(z) = 2’ +02'(z) = 2'+&(x)).

There is the constraint

9ii (¢~ (2)) det g(p(2)) = gij(2) detg(z) = detg(y™'(z)) = det g(a).

Once the metric g has been determined (eg. by postulating the matter energy
momentum tensor as the source of the curvature R generated by g, or by some
other means) then the transformations ¢, and hence the irreducible representations
of
Ulp)U(¢") = U(poy') =U(popop toy 1) U(¢')U(p) can then be determined
as well.

However this “enlargement” effect can also be realized in different ways: by
dimensional increase/reduction, coordinate spectrum increase/decrease (eg. by
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making z’ noncommutative), etc. Then gravity can arise as a physical effect in-
duced by dimensional reduction, coordinate spectrum increase, etc. And since the
usual (general relativistic) gravity theory is acceptable as an effective theory, any
other fundamental theory of gravity needs to be compatible with it.

The time evolution of a gravitational system may involve tunnel-
ing between inequivalent physical vacua and hence the nonlinear impure
time evolution equation (G3.-1)) may be more suitable for describing a physical

gravitational system.

G.3.3 Projectors on Self Hilbert Spaces

H =HO(A) = (A, (,)p = popao (x®@id)) = {|&)y; £ € A}, ¢ € A,
pao(x®id): A A— A, a®b— a’b.
HY = HAY(A) = (A, (Yar = A" opgo (x®id)) ~ A x A"

One can have multiplication operator representations:

mb: A — O(H?(A)), a = mE:H(A) = HP(A), |€) — |af).
mf: A= O(H?(A)), a— ml:HP(A) = HP(A), |€) — |a).

and/or matrix representations:

T A= OHY(A), am 7(a) = Y [€)a (sl
() EH? xHS

= Y e,

(EmEHT xHS

pP=mp) = Y e (malés)y (sl

(Em)EHS xHS
pPi(ti) = U=t )p? (U (ti, 1) = U~ (ti, tp)p®™ (t1)U (ti, ).
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For example:

A=AyRP) ={a; =W(f)= ) f(a)d; f:R” = C},
zeRDP
A = A5 (RP) = {¢, = Trom; ; © € RP},

A~

0p = Y M0 [ V] = igh

keRDP
As ={W(8,) = Y 0y(2)de = Y oy — )b, = b, y RV} C A,
z€RP zeRP
Ac={W(er) = ) en(w)d, = > "0, =™ ke R} C A
zeRP zeRP
HO(A) = (A (o)y HESA) = (Aes (Do) © HP(A).
()gu = Puopiao (x®id) =Trom; opao (x®id). (G.3.-35)

G.4 Primitivity: The logic of human society

The logic can be exclusive, nonexclusive or both.

The analysis in the previous section (Physics: The logic of quantum theory)
is a reflection of the primitivity or science of human society. The algebra A is
the collection of all possible human emotions (the language of Eternity or Greed,
known otherwise as God). The number field, such as the field of complex numbers
C, in which the linear functionals ¢ € A* take values is the set of all possible
Gold (or money) amplitudes or potentials. Here ¢ € A* represents an individual
being and ¢(a) is the gold amplitude of ¢ to the primitive system represented by
the emotion a € A. A high gold amplitude is supposedly a blessing from Eternity
meanwhile a low gold amplitude would mean Eternity’s disapproval.

At any given time, the emotional presence or state S, of a primitive system in

A* is determined (or generated) by the creation or existence emotion a € A of the
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primitive system. That is a primitive system, with emotional presence or
state S, in A*, is defined (by a community of primitive observers [ex-
plicitly or implicitly prophets/messengers of Eternity]) by specifying
a creation or existence emotion a € A for the primitive system.

We will consider the set generating projectors p € A to represent creation or
existence emotions of actual primitive systems living or operating in the space A*
and each closed collection of projectors P will represent a collection of basic or
elementary primitive systems [eps’s] (where the systems are basic or elementary in
that the product of any two of them gives another). The set S, or equivalently
o(p), Vo € A* determines the amplitude distribution (or configuration), at a
given time, of the elementary primitive system (eps) represented by p € A. That
is 9, is interpreted as the (probability) amplitude distribution or configuration in
A* of the system represented by a € A.

The dynamics of a primitive system may be described in parallel to the previous
section with the following replacements:
physics—primitivity, physical—primitive, condition—emotion,
observer—prophet /messenger of Eternity, and so on.

In the dynamics of primitive systems there can be interactions (a case of tun-
neling), involving one or more primitive systems. During an interaction process the
prophets or messengers of Eternity (the observers) make various readjustments or
redefinitions (known as “offerings or sacrifices” willed by Eternity) of the primitive
systems. Thus an interaction may result in the conversion (as decided by Eternity
through the observers) of some of the initial primitive systems involved into other

primitive systems which were not involved initially.
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