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The most general ELKOs in torsional f(R)-theories

Luca Fabbri∗

INFN & Dipartimento di Fisica, Università di Bologna
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Abstract

We study f(R)-gravity with torsion in presence of the most general ELKO
matter. We check the consistency of the conservation laws with the matter
field equations; we discuss some mathematical features of the field equations.
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1 Introduction

In the last decades, General Relativity has been extended toward several direc-
tions in order to solve some the problems left open by Einstein’s theory in both
the ultra-violet and the infra-red regime; among them one of the simplest is given
by the so-called f(R)-theories: they consist in considering the gravitational La-
grangian to be a general function of the Ricci scalar R. This approach has acquired
great interest in cosmology and astrophysics, where f(R)-theories turned out to
be useful in addressing cosmological and astrophysical puzzles such as dark energy
and dark matter: for example, they lead to possible explanations of the acceler-
ated behaviour of the universe as well as the missing matter at galactic scales.
General Relativity is also enlarged by considering torsion: that is the Ricci scalar
R is written in terms of the most general metric-compatible connection which
carries torsional degrees of freedom. This geometry is enlarged enough to permit
a corresponding generalization of physics, since having the background endowed
with curvature and torsion allows the dynamics to couple energy and spin: this is
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essential, because in the general theory of fields it is well-known that both energy
and spin play an equally fundamental role.

The generalization of Einstein’s theory obtained by introducing torsion was
achieved by Cartan, and in the same way in which Einstein wrote the field equa-
tions coupling curvature to energy Sciama and Kibble wrote the field equations
coupling torsion to spin; the resulting theory known as Einstein-Cartan-Sciama-
Kibble (ECSK) theory is variationally described by a gravitational Lagrangian
linear in the Ricci scalar R. Further generalization giving us an ECSK-like theory
is the one for which the gravitational Lagrangian is non-linear in the Ricci scalar
R: then, Einstein theory is in relationship with the ECSK theory in the same
way in which the metric f(R)-theory is in relationship with the metric-torsional
f(R)-theory [1, 4]. Although in this last case torsion is present even without spin,
nonetheless the matter fields that best exploit the coupling between torsion and
spin density tensor are those having spin, that is the spinor fields; the simplest
case is the spin-1

2
field, which in the case of Dirac fields it has been studied in [5].

However, recently a new form of spin-1
2
spinor field called ELKO has been

defined; this form of matter gets its name from the acronym of the German Eigen-

spinoren des LadungsKonjugationsOperators meaning “eigenspinors of the charge
conjugation operator” defined as λ for which γ2λ∗ = ±λ respectively for self- and
antiself-conjugated fields [6, 7]: as a consequence of their definition they turned
out to be fermions of mass dimension 1 therefore described by scalar-like field
equations [8, 9]. That ELKOs are fermions undergoing second-order derivative
field equations is a fact that could lead to potential damages for the foundations of
their dynamics; however the fundamental problems about acausality and singular-
ities have been solved by showing that actually neither acausal propagation have
place nor singularity formation occurs [10, 11, 12]; as a consequence it makes sense
to pursue the study of their dynamical properties by employing them in physical
applications. In fact they too have gained a lot of interest in cosmology and as-
trophysics, where models with ELKOs were useful for the solution of cosmological
and astrophysical issues such as dark matter and inflation: for instance, within
these models there are promising explanations of the exponential expansion dur-
ing the inflation of the universe and the constant velocity in the rotation curves of
galaxies [13, 29]. Quite recently, this theory of ELKOs has been generalized up to
its most general structure [30].

In the present paper, we shall build the theory of f(R) gravity with torsion
coupled to fields of matter described by ELKOs in their most general form; our
approach will face the problem of the consistency of matter field equations with
the conservation laws, in the same way it has been done in [5, 30]. As it may be
expected, the field equations of the theory will result to be complicated, especially
in the problems of the inversion of the energy and spin density tensor that has to
be done in order for the field equations to be decomposed; in our discussion, we
shall point out all the problems that could be faced. In this scenario, what we see
to be one of the best advantages of having both ELKO and f(R)-theories is that
it is possible to ascribe to two different sources the two different dark components
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of the universe, whose apparently opposite behaviour, attractive for dark matter
and repulsive for dark energy, suggests that they are likely to have independent
explanations. By encompassing these two theories into a single one may be fruitful
for cosmology and astrophysics.

2 Geometrical Foundations

In this paper, we shall indicate spacetime indices by Latin letters. A metric tensor
on the spacetime is denoted by gij and a connection by Γ h

ij ; metric-compatible
connections are those whose covariant derivative applied on the metric tensor van-
ishes, where covariant derivatives are defined as

∇iVj = ∂iVj − Γ h
ij Vh (2.1)

for any generic vector Vk. Given a connection Γ h
ij , the associated torsion and

Riemann curvature tensors are

T h
ij = Γ h

ij − Γ h
ji (2.2a)

Rh
kij = ∂iΓ

h
jk − ∂jΓ

h
ik + Γ h

ip Γ p
jk − Γ h

jp Γ p
ik (2.2b)

where contractions Ti = T
j

ij , Rij = Rh
ihj and R = Rijg

ij are called respectively
the torsion vector, the Ricci tensor and the Ricci scalar curvature, and the com-
mutator of covariant derivatives is expressed in terms of torsion and curvature
as

[∇i,∇j ]Vk = −T h
ij ∇hVk −Ra

kijVa (2.3)

for any generic vector Vk. By considering the commutators of commutators in
cyclic permutation and employing the Jacobi identities one obtains the Bianchi
identities

∇cT
h

ij − T a
ij T h

ca −Rh
cij +∇iT

h
jc − T a

jc T h
ia −Rh

ijc +

+∇jT
h

ci − T a
ci T h

ja −Rh
jci = 0 (2.4a)

∇cR
p
kij − T a

ij R
p
kca +∇iR

p
kjc − T a

jc R
p
kia +

+∇jR
p
kci − T a

ci R
p
kja = 0. (2.4b)

Given a metric tensor gij every metric g-compatible connection can be decomposed
as

Γ h
ij = Γ̃ h

ij −K h
ij (2.5)

so that

K h
ij =

1

2

(

−T h
ij + T h

j i − T h
ij

)

(2.6)

where Γ̃ h
ij is the symmetric Levi–Civita connection written in terms of the metric

gij alone and K h
ij is called the contorsion tensor, whose contraction K

ij
i = Kj is
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such that Ki = −Ti; with the contorsion we can decompose the covariant derivative
of the full connection as

∇iVj = ∇̃iVj +K h
ij Vh (2.7)

where ∇̃ is the covariant derivative of the Levi–Civita connection and we can
decompose the Riemann curvature of the full connection as

Rk
ihj = R̃k

ihj + ∇̃jK
k

hi − ∇̃hK
k

ji +K
p

ji K k
hp −K

p
hi K

k
jp (2.8)

in terms of the Riemann curvature of the Levi–Civita connection R̃ij identically.
In the next sections we shall consider spinor fields; as it is known, the most

suitable variables to describe fermion fields are tetrad and spin-connections. Tetrad
fields possess Lorentz indices denoted by Greek letters as well as spacetime indices
denoted as usual with Latin letters. They are defined by eµ = e

µ
i dx

i together with

their dual eµ = eiµ
∂
∂xi , where e

j
µe

µ
i = δ

j
i and e

j
µe

ν
j = δνµ, and the spin-connections

are defined as 1-forms ωµ
ν = ω

µ
i ν dx

i; metric compatibility conditions are assumed
and they are defined by the requirement that the covariant derivatives of tetrads
and Minkowskian metric vanish, respectively implying that

Γ h
ij = ω

µ
i νe

h
µe

ν
j + ehµ∂ie

µ
j (2.9)

and the antisymmetry ω
µν

i = −ω
νµ

i of the spin-connection. In terms of the
tetrads and the spin-connection, the associated torsion and curvature tensors are

T
µ
ij = ∂ie

µ
j − ∂je

µ
i + ω

µ
i λe

λ
j − ω

µ
j λe

λ
i (2.10a)

R
µν

ij = ∂iω
µν

j − ∂jω
µν

i + ω
µ

i λω
λν

j − ω
µ

j λω
λν

i (2.10b)

whose relationships with the world tensors defined in equations (2.2) are given by
the formulas T h

ij := T α
ij ehα and Rh

kij = R
µ

ij νe
h
µe

ν
k respectively.

3 Torsional f(R)-theories and conservation laws

The torsional f(R)-theories can be formulated in the metric-affine approach [1] or
in the tetrad-affine one [2]; in the first case, the gravitational dynamical fields are
represented by the metric g and a metric compatible connection Γ while in the
second case, the gravitational dynamical fields are given by a tetrad field e

µ
i and a

spin-connection ω
µν

i on the spacetime. Field equations are derived variationally
through a Lagrangian of the kind

L = f(R)
√

|g|dx1 ∧ dx2 ∧ dx3 ∧ dx4 − Lm (3.1)

where f(R) is a real function of the Ricci curvature scalar R written in terms of
the metric and connection, or equivalently tetrad and spin-connection, and Lm

indicates a suitable matter Lagrangian.
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In general the metric-affine formulation is preferred when the spin vanishes,
although we have non-vanishing torsion even if the spin density is zero; on the
other hand, in case of coupling with spin, for instance spinor fields, the tetrad-
affine formulation is more suitable. In this case the corresponding field equations
are given by

f ′(R)R λσ
µσ eiλ −

1

2
eiµf(R) = Σi

µ (3.2a)

f ′(R) (Tα
ts − T σ

tσe
α
s + T σ

sσe
α
t ) =

∂f ′(R)

∂xt
eαs −

∂f ′(R)

∂xs
eαt + Sα

ts (3.2b)

where Σi
µ := − 1

2e
∂Lm

∂e
µ

i

and S α
ts := 1

2e
∂Lm

∂ω
µν

i

e
µ
t e

ν
se

α
i are the stress-energy and spin

density tensors of the matter field. From equation (3.2b) it is seen that, there are
two sources of torsion given by the spin density S α

ts and the non-linearity of the
gravitational Lagrangian (for the derivation of the field equations and discussion
about special properties of particular cases we refer to the works [1, 4]).

It is then possible to write the field equations (3.2) in their equivalent spacetime
form as

f ′Rij −
1

2
gijf = Σij (3.3a)

f ′ (Tijh + Tjghi − Tigjh) + ghi
∂f ′

∂xj
− gjh

∂f ′

∂xi
= Sijh (3.3b)

where Ri
j := R λσ

µσ eiλe
µ
j , Σi

j := Σi
µe

µ
j , T h

ij := T α
ij ehα, S h

ij := S α
ij ehα, which

give the Ricci curvature tensor and torsion tensor in terms of the energy and spin
densities. Notice that in equations (3.3a) one should distinguish the order of the
indices since in general Rij and Σij are not symmetric.

Making use of the identities (2.4) it is possible to work out the field equations
(3.3) to get the conservation laws of the theory

∇aΣ
ai + TaΣ

ai − ΣcaT
ica −

1

2
SspqR

spqi = 0 (3.4a)

∇hS
ijh + ThS

ijh +Σij − Σji = 0 (3.4b)

under which the stress-energy and spin density tensors of the matter fields must
undergo once the matter field equations are assigned. Notice that the antisym-
metric part of the energy tensor is the source of the spin dynamics whereas the
spin-curvature coupling is the source of the energy dynamics, where by source we
mean the source of matter the make the divergence fail to vanish (for the derivation
of these conservation laws see [5]).

In the next section we shall investigate in detail the coupling to the ELKOs.

4 Coupling to most general ELKOs

and consistency of field equations

Let us consider f(R)-theories with torsion coupled to spinor fields, in the simplest
spin-1

2
spin content; in [5] we have already studied the Dirac field, here we would
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like to study the ELKO field. Because ELKO fields have the same spin content
of the Dirac field, that is they have the transformation law of any spin-1

2
particle,

their spinorial covariant derivatives are defined in the same way by

Diλ = ∂iλ+ ω
µν

i Sµνλ (4.1)

with commutator of the derivatives given by

[Di,Dj ]λ = −T h
ij Dhλ+R

µν
ij Sµνλ (4.2)

where Sµν = 1

8
[γµ, γν ] and the gamma matrices γµ satisfy the anticommutation

relationships given by the Clifford algebra, and we define γi = γµeiµ as usual.
The most general Lagrangian for ELKOs in expressed as

Lm =
(

Di

¬

λ (gij + aSij)Djλ−m2
¬

λ λ
)

e dx1 ∧ dx2 ∧ dx3 ∧ dx4 (4.3)

in terms of the coefficient a and where m is the mass of the ELKO. By varying
(4.3) with respect to the matter field we obtain the matter field equations

(

D2λ+ T iDiλ
)

+ a
(

SijDiDjλ+ TkS
kjDjλ

)

+m2λ = 0 (4.4)

in terms of the mass m of the matter field itself; by varying with respect to tetrads
and spin-connection we get field equations (3.2) where the stress-energy and spin
density tensors are

Σkj =
1

2

(

Dj

¬

λ Dkλ+Dk

¬

λ Djλ− gjkDi

¬

λ Diλ
)

+

+a
2

(

Dj

¬

λ SkaD
aλ+Da

¬

λ SakDjλ− gjkDi

¬

λ SiaDaλ
)

+ 1

2
gjkm

2
¬

λ λ (4.5a)

Skij =
(

Dj

¬

λ Skiλ−
¬

λ SkiDjλ
)

+ a
(

Dp
¬

λ SpjSkiλ−
¬

λ SkiSjpD
pλ

)

. (4.5b)

We shall now show that the matter field equations (4.4) are consistent with the
conservation laws (3.4); to see this, we calculate the divergences of the conserved
quantities

DkΣ
kj = 1

2
(DkDj

¬

λ Dkλ+Dk

¬

λ DkDjλ) +

+a
2
(DkDj

¬

λ SkaD
aλ+Da

¬

λ SakD
kDjλ) +

+1

2
(Dj

¬

λ D2λ+D2
¬

λ Djλ) +

+a
2
(Dj

¬

λ SkaDkDaλ+DkDa

¬

λ SakDjλ) +

+Dj(1
2
m2

¬

λ λ− 1

2
Di

¬

λ Diλ− a
2
Di

¬

λ SiaDaλ) (4.6a)
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DjS
kij = (D2

¬

λ Skiλ−
¬

λ SkiD2λ) +

+a(DjDp

¬

λ SpjSkiλ−
¬

λ SkiSjpDjDpλ) +

+(Dj
¬

λ SkiDjλ−Dj

¬

λ SkiDjλ) +

+a(Dp

¬

λ SpjSkiDjλ−Dj

¬

λ SkiSjpDpλ). (4.6b)

By employing the matter field equations (4.4), equations (4.6) simplify to

DkΣ
kj = 1

2
(DkDj

¬

λ Dkλ+Dk

¬

λ DkDjλ) +

+a
2
(DkDj

¬

λ SkaD
aλ+Da

¬

λ SakD
kDjλ) +

+Dj(−1

2
Di

¬

λ Diλ− a
2
Di

¬

λ SiaDaλ)−

−1

2
Tk(D

j
¬

λ Dkλ+Dk
¬

λ Djλ)− a
2
Tk(D

j
¬

λ SkaDaλ+Da

¬

λ SakDjλ) (4.7a)

DjS
kij = a(Dp

¬

λ SpjSkiDjλ−Dj

¬

λ SkiSjpDpλ) +

+Tj(
¬

λ SkiDjλ−Dj
¬

λ Skiλ) + aTj(
¬

λ SkiSjbDbλ−Db

¬

λ SbjSkiλ). (4.7b)

We combine together the first three lines of equation (4.7a) and the first line of
equation (4.7b) to get

DkΣ
kj = 1

2
([Dk,Dj]

¬

λ Dkλ+Dk

¬

λ [Dk,Dj]λ) +

+a
2
([Dk,Dj ]

¬

λ SkaD
aλ+Da

¬

λ Sak[D
k,Dj ]λ)−

−1

2
Tk(D

j
¬

λ Dkλ+Dk
¬

λ Djλ)− a
2
Tk(D

j
¬

λ SkaDaλ+Da

¬

λ SakDjλ) (4.8a)

DjS
kij = a(Dp

¬

λ [Spj, Ski]Djλ) +

+Tj(
¬

λ SkiDjλ−Dj
¬

λ Skiλ) + aTj(
¬

λ SkiSjbDbλ−Db

¬

λ SbjSkiλ). (4.8b)

Now by employing the commutators of spinorial covariant derivatives Di and the
commutator of the generators Sij we obtain

DkΣ
kj = −T kjh 1

2
(Dh

¬

λ Dkλ+Dk

¬

λ Dhλ)−

−T kjh a
2
(Dh

¬

λ SkaD
aλ+Da

¬

λ SakDhλ)−

−Rabkj 1
2
(
¬

λ SabDkλ−Dk

¬

λ Sabλ)−

−Rabkj a
2
(
¬

λ SabSkpD
pλ−Dp

¬

λ SpkSabλ)−

−1

2
Tk(D

j
¬

λ Dkλ+Dk
¬

λ Djλ)− a
2
Tk(D

j
¬

λ SkaDaλ+Da

¬

λ SakDjλ) (4.9a)

DjS
kij = a

2
(Dk

¬

λ SijDjλ+Dj

¬

λ SjiDkλ−Di
¬

λ SkjDjλ−Dj

¬

λ SjkDiλ) +

+Tj(
¬

λ SkiDjλ−Dj
¬

λ Skiλ) + aTj(
¬

λ SkiSjbDbλ−Db

¬

λ SbjSkiλ). (4.9b)
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According to the definition of the stress-energy and spin density tensors (4.5) we
finally obtain

DkΣ
kj = −T kjhΣkh +

1

2
RabkjSabk − TkΣ

kj (4.10a)

DjS
kij = (Σik − Σki)− TjS

kij (4.10b)

showing that the matter field equations are consistent with the conservation laws.
So the system of field equations given by the matter field equations (4.4) and
the field equations (3.3) with conserved quantities (4.5) describe the most general
ELKOs in torsional f(R)-theories.

Now in dealing with equations (3.3) and (4.4), the standard procedure consists
in decomposing them in torsionless terms and torsional contributions: this proce-
dure is necessary in studying mathematical aspects such as the Cauchy, causality
and singularity problems considered in [31, 32, 33, 10, 11, 12]. More in detail, the
steps to follow are: firstly, obtaining from the trace of the Einstein-like equations
(3.3a), the expression of the Ricci scalar R as a function of metric and matter
fields with their derivatives; secondly, inserting the obtained relationship in the
equations (3.3b) getting an explicit representation of the torsion tensor, again in
terms of metric and matter fields with their derivatives; finally, replacing the ex-
pression for the torsion in equations (3.3a) by making use of equations (2.5), (2.6)
and (2.8). By proceeding in this way, the theory can be reduced to an Einstein-like
theory where the Einstein-like and matter field equations give the dynamics for
the metric tensor and the matter fields, while the role of the torsion-spin equation
(3.3b) is to define the torsion tensor as an algebraic function of the metric and
matter fields with their derivatives.

In the case of ELKOs this procedure works for torsional f(R) = R: in the
case a = 0 this decomposition is given explicitly in [12], while for the most general
model a 6= 0 the decomposition is not given explicitly, although the fact that it
is always possible to achieve is discussed through a constructive approach in [30];
however for generic torsional f(R)-theories this procedure does not work. This
situation is due to the fact that both the stress-energy and spin density tensors
involve the covariant derivative of the spinors: as a consequence, when replacing
the scalar curvature as function of the matter trace in the torsion-spin equation,
we no longer have an algebraic but a differential equation for torsion; in other
words, we now have a dynamical equation for torsion which is then a genuinely
dynamical variable. This is a feature that clearly distinguishes ELKOs from other
matter fields, such as the Dirac field, scalar field, electrodynamic field or perfect
fluid, within torsional f(R) gravity.

5 Conclusions

In this paper, we have considered f(R)-theories of gravitation with Ricci scalar
written in terms of connections having both metric and torsional degrees of free-
dom, in the case in which the matter field was described by ELKOs in their most
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general dynamics: we have seen that the general conservation laws obtained in [5]
are satisfied for the stress-energy and spin density tensors of ELKO once ELKO
matter field equations are used; we have discussed general differences between
ELKO and other matter fields in torsional f(R)-theories.

It is known that both ELKO and f(R)-theories are very promising in explaining
many of the open problems of cosmology and astrophysics, and ELKO in f(R)-
theories of gravitation could give two different sources for the two complementary
dark components of the universe; it is our conviction that further studies will reveal
very intriguing consequences.
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