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1 Introduction

Recently, superconformal field theories in various dimensions are attract-
ing more interest, especially in view of their applications in string theory.
Thus, the classification of the UIRs of the conformal superalgebras is of
great importance. For some time such classification was known only for the
D = 4 superconformal algebras su(2, 2/1) [1] and su(2, 2/N) for arbitrary
N [2], (see also [3,4]). Then, more progress was made with the classification
for D = 3 (for even N), D = 5, and D = 6 (for N = 1, 2) in [5] (some
results being conjectural), then for the D = 6 case (for arbitrary N) was
finalized in [6]. Finally, the cases D = 9, 10, 11 were treated by finding the
UIRs of osp(1/2n), [7].

Once we know the UIRs of a (super-)algebra the next question is to find
their characters, since these give the spectrum which is important for the
applications. This problem was addressed in [8] for the UIRs of D = 4 con-
formal superalgebras su(2, 2/N). From the mathematical point of view this
question is clear only for representations with conformal dimension above the
unitarity threshold viewed as irreps of the corresponding complex superalge-
bra sl(4/N). But for su(2, 2/N) even the UIRs above the unitarity threshold
are truncated for small values of spin and isospin. More than that, in the
applications the most important role is played by the representations with
“quantized” conformal dimensions at the unitarity threshold and at discrete
points below. In the quantum field or string theory framework some of these
correspond to operators with “protected” scaling dimension and therefore
imply “non-renormalization theorems” at the quantum level, cf., e.g., [9,10].
Especially important in this context are the so-called BPS states, cf., [10–17].

Finding the characters involves also deeper knowledge of the structure
of the UIRs. Fortunately, most of the needed information is contained
in [2–4, 18]. We use also more explicit results on the decompositions of long
superfields as they descend to the unitarity threshold [8].

In the present paper the above results are applied first to the reduction
of supersymmetries in Section 3, and then to the classification of BPS and
possibly protected states in Section 4.
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2 Preliminaries

2.1 Representations of D=4 conformal supersymme-

try

The conformal superalgebras in D = 4 are G = su(2, 2/N). The even
subalgebra of G is the algebra G0 = su(2, 2) ⊕ u(1) ⊕ su(N). We label
their physically relevant representations of G by the signature:

χ = [ d ; j1 , j2 ; z ; r1 , . . . , rN−1 ] (2.1)

where d is the conformal weight, j1, j2 are non-negative (half-)integers
which are Dynkin labels of the finite-dimensional irreps of the D = 4 Lorentz
subalgebra so(3, 1) of dimension (2j1 + 1)(2j2 + 1), z represents the
u(1) subalgebra which is central for G0 (and is central for G itself when N =
4), and r1, . . . , rN−1 are non-negative integers which are Dynkin labels of
the finite-dimensional irreps of the internal (or R) symmetry algebra su(N).

We recall the root system of the complexification GCI of G (as used in [4]).
The positive root system ∆+ is comprised of αij , 1 ≤ i < j ≤ 4 + N .
The even positive root system ∆+

0̄
is comprised of αij , with i, j ≤ 4 and

i, j ≥ 5; the odd positive root system ∆+
1̄

is comprised of αij , with
i ≤ 4, j ≥ 5. The simple roots are chosen as in (2.4) of [4]:

γ1 = α12 , γ2 = α34 , γ3 = α25 , γ4 = α4,4+N , γk = αk,k+1 , 5 ≤ k ≤ 3+N.
(2.2)

Thus, the Dynkin diagram is:

©
1
−−−

⊗

3

−−−©
5
−−− · · · −−− ©

3+N

−−−
⊗

4

−−−©
2

(2.3)

This is a non-distinguished simple root system with two odd simple roots [20].

Sometimes we shall use another way of writing the signature related to the
above enumeration of simple roots, cf. [4] and (1.16) of [8]:

χ = (2j1 ; (Λ, γ3) ; r1, . . . , rN−1 ; (Λ, γ4) ; 2j2) , (2.4)

(where (Λ, γ3), (Λ, γ4) are definite linear combinations of all quantum num-
bers), or even giving only the Lorentz and SU(N) signatures:

χN = { 2j1 ; r1, . . . , rN−1 ; 2j2 } . (2.5)
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Remark: We recall that the group-theoretical approach to D = 4 con-
formal supersymmetry developed in [2–4] involves two related constructions
- on function spaces and as Verma modules. The first realization employs
the explicit construction of induced representations of G (and of the corre-
sponding supergroup G = SU(2, 2/N)) in spaces of functions (superfields)
over superspace which are called elementary representations (ER). The UIRs
of G are realized as irreducible components of ERs, and then they coincide
with the usually used superfields in indexless notation. The Verma module
realization is also very useful as it provides simpler and more intuitive picture
for the relation between reducible ERs, for the construction of the irreps, in
particular, of the UIRs. For the latter the main tool is an adaptation of the
Shapovalov form [19] to the Verma modules [2, 18]. Here we shall need only
the second - Verma module - construction. ♦

We use lowest weight Verma modules V Λ over GCI , where the lowest weight
Λ is characterized by its values on the Cartan subalgebra H and is in
1-to-1 correspondence with the signature χ. If a Verma module V Λ is
irreducible then it gives the lowest weight irrep LΛ with the same weight.
If a Verma module V Λ is reducible then it contains a maximal invariant
submodule IΛ and the lowest weight irrep LΛ with the same weight is
given by factorization: LΛ = V Λ / IΛ [21]. The reducibility conditions were
given by Kac [21].

There are submodules which are generated by the singular vectors related
to the even simple roots γ1, γ2, γ5, . . . , γN+3 [4]. These generate an even
invariant submodule IΛc present in all Verma modules that we consider and
which must be factored out. Thus, instead of V Λ we shall consider the
factor-modules:

Ṽ Λ = V Λ / IΛc (2.6)

The Verma module reducibility conditions for the 4N odd positive roots
of GCI were derived in [3, 4] adapting the results of Kac [21]:

d = d1Nk − zδN4 (2.7a)

d1Nk ≡ 4− 2k + 2j2 + z + 2mk − 2m/N

d = d2Nk − zδN4 (2.7b)

d2Nk ≡ 2− 2k − 2j2 + z + 2mk − 2m/N
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d = d3Nk + zδN4 (2.7c)

d3Nk ≡ 2 + 2k − 2N + 2j1 − z − 2mk + 2m/N

d = d4Nk + zδN4 (2.7d)

d4Nk ≡ 2k − 2N − 2j1 − z − 2mk + 2m/N

where in all four cases of (2.7) k = 1, . . . , N , mN ≡ 0, and

mk ≡

N−1
∑

i=k

ri , m ≡

N−1
∑

k=1

mk =

N−1
∑

k=1

krk (2.8)

Note that we shall use also the quantity m∗ which is conjugate to m :

m∗ ≡
N−1
∑

k=1

krN−k =
N−1
∑

k=1

(N − k)rk , (2.9)

m+m∗ = Nm1 . (2.10)

We need the result of [2] (cf. part (i) of the Theorem there) that the follow-
ing is the complete list of lowest weight (positive energy) UIRs of su(2, 2/N) :

d ≥ dmax = max(d1N1, d
3
NN) , (2.11a)

d = d4NN ≥ d1N1 , j1 = 0 , (2.11b)

d = d2N1 ≥ d3NN , j2 = 0 , (2.11c)

d = d2N1 = d4NN , j1 = j2 = 0 , (2.11d)

where dmax is the threshold of the continuous unitary spectrum. Note that
in case (d) we have d = m1, z = 2m/N−m1 , and that it is trivial for N = 1.

Next we note that if d > dmax the factorized Verma modules are irre-
ducible and coincide with the UIRs LΛ . These UIRs are called long in the
modern literature, cf., e.g., [10, 17, 22–26]. Analogously, we shall use for the
cases when d = dmax , i.e., (2.11a), the terminology of semi-short UIRs,
introduced in [10,22], while the cases (2.11b,c,d) are also called short UIRs,
cf., e.g., [10, 17, 23–26].

Next consider in more detail the UIRs at the four distinguished reducibility
points determining the UIRs list above: d1N1 , d2N1 , d3NN , d4NN . The above
reducibilities occur for the following odd roots, resp.:

α3,4+N = γ2+γ4 , α4,4+N = γ4 , α15 = γ1+γ3 , α25 = γ3 . (2.12)
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We note a partial ordering of these four points:

d1N1 > d2N1 , d3NN > d4NN . (2.13)

Due to this ordering at most two of these four points may coincide.

First we consider the situations in which no two of the distinguished four
points coincide. There are four such situations:

a : d = dmax = d1N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3NN(2.14a)

b : d = d2N1 = db ≡ z − 2j2 + 2m1 − 2m/N > d3NN , j2 = 0(2.14b)

c : d = dmax = d3NN = dc ≡ 2 + 2j1 − z + 2m/N > d1N1 (2.14c)

d : d = d4NN = dd ≡ 2m/N − 2j1 − z > d1N1 , j1 = 0 (2.14d)

where for future use we have introduced notations da, db, dc, dd, the defini-
tions including also the corresponding inequality.

We shall call these cases single-reducibility-condition (SRC) Verma
modules or UIRs, depending on the context. In addition, as already stated,
we use for the cases when d = dmax , i.e., (2.14a,c), the terminology of
semi-short UIRs, while the cases (2.14b,d), are also called short UIRs.

The factorized Verma modules Ṽ Λ with the unitary signatures from (2.14)
have only one invariant odd submodule which has to be factorized in order
to obtain the UIRs. These odd embeddings and factorizations are given as
follows:

Ṽ Λ → Ṽ Λ+β , LΛ = Ṽ Λ/Iβ , (2.15)

where we use the convention [3] that arrows point to the oddly embedded
module, and we give only the cases for β that we shall use later:

β = α3,4+N , for (2.14a), j2 > 0, (2.16a)

= α3,4+N + α4,4+N , for (2.14a), j2 = 0, (2.16b)

= α15 , for (2.14c), j1 > 0, (2.16c)

= α15 + α25 , for (2.14c), j1 = 0 (2.16d)

We consider now the four situations in which two distinguished points
coincide:

ac : d = dmax = dac ≡ 2 + j1 + j2 +m1 = d1N1 = d3NN (2.17a)

ad : d = dac ≡ = 1 + j2 +m1 = d1N1 = d4NN , j1 = 0 (2.17b)

bc : d = dbc ≡ = 1 + j1 +m1 = d2N1 = d3NN , j2 = 0 (2.17c)

bd : d = dbd ≡ = m1 = d2N1 = d4NN , j1 = j2 = 0 (2.17d)
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We shall call these double-reducibility-condition (DRC) Verma mod-
ules or UIRs. The cases in (2.17a) are semi-short UIR, while the other cases
are short.

The odd embedding diagrams and factorizations for the DRC modules are [3]:

Ṽ Λ+β′

↑

Ṽ Λ → Ṽ Λ+β

LΛ = Ṽ Λ/Iβ,β
′

, Iβ,β
′

= Iβ ∪ Iβ
′

(2.18)
and we give only the cases for β, β ′ to be used later:

(β, β ′) = (α15, α3,4+N), for (2.17a), j1j2 > 0 (2.19a)

= (α15, α3,4+N + α3,4+N), for (2.17b), j1 > 0, j2 = 0 (2.19b)

= (α15 + α25, α3,4+N), for (2.17c), j1 = 0, j2 > 0 (2.19c)

= (α15 + α25, α3,4+N + α3,4+N), for (2.17d), j1 = j2 = 0 (2.19d)

2.2 Decompositions of long superfields

First we present the results on decompositions of long irreps as they descend
to the unitarity threshold [8].

In the SRC cases we have established that for d = dmax there hold the
two-term decompositions:

(

L̂long

)

|d=dmax

= L̂Λ ⊕ L̂Λ+β , r1 + rN−1 > 0 , (2.20)

where Λ is a semi-short SRC designated as type a (then r1 > 0) or c (then
rN−1 > 0) and there are four possibilities for β depending on the values of
j1, j2 as given in (2.16). In cases (2.16a,c) also the second UIR on the RHS
of (2.20) is semi-short, while in cases (2.16b,d) the second UIR on the RHS
of (2.20) is short of type b, d, resp.

In the DRC cases we have established that for N > 1 and d = dmax =
dac hold the four-term decompositions:

(

L̂long

)

|d=dac

= L̂Λ ⊕ L̂Λ+β ⊕ L̂Λ+β′ ⊕ L̂Λ+β+β′ , r1rN−1 > 0 , (2.21)
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where Λ is the semi-short DRC designated as type ac and there are four
possibilities for β, β ′ depending on the values of j1, j2 as given in (2.19a,b,c,d).
Note that in case (2.19a) all UIRs in the RHS of (2.21) are semi-short. In
the case (2.19b) the first two UIRs in the RHS of (2.21) are semi-short, the
last two UIRs are short of type bc. In the case (2.19c) the first two UIRs in
the RHS of (2.21) are semi-short, the last two UIRs are short of type ad. In
the case (2.19d) the first UIR in the RHS of (2.21) is semi-short, the other
three UIRs are short of types bc, ad, bd, resp.

Next we note that for N = 1 all SRC cases enter some decomposition,
while no DRC cases enter any decomposition. For N > 1 the situation is
more diverse and so we give the list of UIRs that do not enter decompositions
together with the restrictions on the R-symmetry quantum numbers:

• SRC cases:

•a d = da , r1 = 0 .

•b d = db , r1 ≤ 2 .

•c d = dc , rN−1 = 0 .

•d d = dd , rN−1 ≤ 2 .

• DRC cases:
all non-trivial cases for N = 1, while for N > 1 the list is:

•ac d = dac , r1rN−1 = 0 .

•ad d = dad , rN−1 ≤ 2 , r1 = 0 for N > 2.

•bc d = dbc , r1 ≤ 2 , rN−1 = 0 for N > 2.

•bd d = dbd , r1, rN−1 ≤ 2 for N > 2, 1 ≤ r1 ≤ 4 for N = 2.

For further use we recall that d > dmax the factorized Verma modules
are irreducible and coincide with the UIRs LΛ [2–4]. These UIRs are called
long in the modern literature, cf., e.g., [10,17,22–26]. Analogously, we shall
use for the cases when d = dmax , the terminology of semi-short UIRs,
cf. [10,22], while the reducible cases when d < dmax are called short UIRs,
cf., e.g., [10, 17, 23–26].
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3 Reduction of supersymmetry in short and

semi-short UIRs

Our first task in this paper is to present explicitly the reduction of the su-
persymmetries in the irreducible UIRs. This means to give explicitly the
number κ of odd generators which are eliminated from the corresponding
lowest weight module, (or equivalently, the number of super-derivatives that
annihilate the corresponding superfield).

3.1 R-symmetry scalars

We start with the simpler cases of R-symmetry scalars when ri = 0 for all
i, which means also that m1 = m = m∗ = 0. These cases are valid also for
N = 1. More explicitly:

• a d = da|m=0
= 2 + 2j2 + z , j1 arbitrary,

κ = N + (1−N)δj2,0 , or casewise : (3.1)

κ = N, j2 > 0,

κ = 1, j2 = 0

Here, κ is the number of anti-chiral generators X+
3,4+k, k = 1, . . . , κ, that

are eliminated. Thus, in the cases when κ = N the semi-short UIRs may
be called semi-chiral since they lack half of the anti-chiral generators.

• b d = db|m=0
= z , j1 arbitrary, j2 = 0,

κ = 2N (3.2)

These short UIRs may be called chiral since they lack all anti-chiral genera-
tors X+

3,4+k , X+
4,4+k , k = 1, . . . , N .

• c d = dc|m=0
= 2 + 2j1 − z , j2 arbitrary,

κ = N + (1−N)δj1,0 , or casewise : (3.3)

κ = N, j1 > 0,

κ = 1, j1 = 0

9



Here, κ is the number of chiral generators X+
1,4+k, k = 1, . . . , κ, that are

eliminated. Thus, in the cases when κ = N the semi-short UIRs may be
called semi–anti-chiral since they lack half of the chiral generators.

• d d = dd|m=0
= − z , j2 arbitrary, j1 = 0,

κ = 2N (3.4)

These short UIRs may be called anti-chiral since they lack all chiral genera-
tors X+

1,4+k , X+
2,4+k , k = 1, . . . , N .

• ac d = dac|m=0
= 2 + j1 + j2 , z = j1 − j2 ,

κ = 2N + (1−N)(δj1,0 + δj2,0), or casewise : (3.5)

κ = 2N, ifj1, j2 > 0,

κ = N + 1, ifj1 > 0, j2 = 0,

κ = N + 1, ifj1 = 0, j2 > 0,

κ = 2, ifj1 = j2 = 0.

Here, κ is the number of mixed elimination: chiral generators X+
1,4+k,

and anti-chiral generators X+
3,4+k. Thus, in the cases when κ = 2N the

semi-short UIRs may be called semi–chiral–anti-chiral since they lack half
of the chiral and half of the anti-chiral generators. (They may be called
Grassmann-analytic following [10].)

• ad d = dad|m=0
= 1 + j2 = − z , j1 = 0,

κ = 3N + (1−N)δj2,0, or casewise : (3.6)

κ = 3N, j2 > 0,

κ = 2N + 1, j2 = 0.

Here, κ is the number of mixed elimination: chiral generators X+
1,4+k , and

both types anti-chiral generators X+
3,4+k, X+

4,4+k . Thus, in the cases when
κ = 3N the semi-short UIRs may be called chiral and semi–anti-chiral since
they lack half of the chiral and all of the anti-chiral generators.
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• bc d = dbc|m=0
= 1 + j1 = z , j2 = 0,

κ = 3N + (1−N)δj1,0, or casewise : (3.7)

κ = 3N, j1 > 0,

κ = 2N + 1, j1 = 0 .

Here, κ is the number of mixed elimination: both types chiral generators
X+

1,4+k , X+
2,4+k , and anti-chiral generators X+

3,4+k. Thus, in the cases when
κ = 3N the semi-short UIRs may be called semi–chiral and anti-chiral since
they lack all the chiral and half of the anti-chiral generators.

The last two cases (ad,bc) form two of the three series of massless states,
holomorphic and antiholomorphic [2], see also [4, 8].

The case •bd for R-symmetry scalars is trivial, since also all other quan-
tum numbers are zero (d = j1 = j2 = z = 0).

3.2 R-symmetry non-scalars

Here we need some additional notation. Let N > 1 and let i0 be an integer
such that 0 ≤ i0 ≤ N − 1 , ri = 0 for i ≤ i0 , and if i0 < N − 1 then
ri0+1 > 0. Let now i′0 be an integer such that 0 ≤ i′0 ≤ N−1 , rN−i = 0 for
i ≤ i′0 , and if i′0 < N − 1 then rN−1−i′

0
> 0.2

With this notation the cases of R-symmetry scalars occur when i0 + i′0 =
N − 1, thus, from now on we have the restriction:

0 ≤ i0 + i′0 ≤ N − 2 (3.8)

Now we can make a list for the values of κ, with the same interpretation
as in the previous subsection, only the last case is added here.

• a d = da , j1, j2 arbitrary,

κ = 1 + i0(1− δj2,0) ≤ N − 1 . (3.9)

2Both definitions are formally valid for N = 1 with i0 = 0 since r0 ≡ 0 by
convention and with i

′

0
= 0 since rN = 0 by convention.
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• b d = da , j2 = 0 , j1 arbitrary,

κ = 2 + 2i0 ≤ 2N − 2 . (3.10)

• c d = dc , j1, j2 arbitrary,

κ = 1 + i′0(1− δj1,0) ≤ N − 1 . (3.11)

• d d = dd , j1 = 0, j2 arbitrary,

κ = 2 + 2i′0 ≤ 2N − 2 . (3.12)

• ac d = dac , z = j1 − j2 + 2m/N −m1 , j1, j2 arbitrary,

κ = 2 + i0(1− δj2,0) + i′0(1− δj1,0) ≤ N . (3.13)

Here, the eliminated chiral generators are X+
1,4+k , k ≤ 1 + i′0 , and the

eliminated anti-chiral generators are X+
3,4+k , k ≤ 1 + i0 .

• ad d = dad , j1 = 0 , z = 2m/N −m1 − 1− j2 , j2 arbitrary,

κ = 3 + i0(1− δj2,0) + 2i′0 ≤ 1 +N + i′0 ≤ 2N − 1 . (3.14)

Here, the eliminated chiral generators are X+
1,4+k , k ≤ 1 + i′0 , and the

eliminated anti-chiral generators are X+
3,4+k , X

+
4,4+k , k ≤ 1 + i0 .

• bc d = dbc , j2 = 0 , z = 2m/N −m1 + 1 + j1 , j1 arbitrary,

κ = 3 + 2i0 + i′0(1− δj1,0) ≤ 1 +N + i0 ≤ 2N − 1 . (3.15)

Here, the eliminated chiral generators are X+
1,4+k , X+

2,4+k , k ≤ 1 + i′0 , and

the eliminated anti-chiral generators are X+
3,4+k , k ≤ 1 + i0 .

12



• bd d = dbd , j1 = j2 = 0 , z = 2m/N −m1 ,

κ = 4 + 2i0 + 2i′0 ≤ 2N . (3.16)

Here, the eliminated chiral generators are X+
1,4+k , X+

2,4+k , k ≤ 1 + i′0 , and

the eliminated anti-chiral generators are X+
3,4+k , X+

3,4+k , k ≤ 1 + i0 .
Note that the case κ = 2N is possible exactly when i0 + i′0 = N − 2, i.e.,
when there is only one nonzero ri, namely, ri0+1 6= 0, i0 = 0, 1, . . . , N − 2:

• bd κ = 2N : d = m1 = ri0+1 , j1 = j2 = 0 , z = ri0+1
2 + 2i0 −N

N
.

(3.17)
When d = m1 = 1 these 1

2
-eliminated UIRs form the ’mixed’ series of mass-

less representations [2], see also [4, 8].3

Remark: In this paper we use the Verma (factor-)module realization of the
UIRs. We give here a short remark on what happens with the ER realization
of the UIRs. As we know, cf. [4], the ERs are superfields depending on
Minkowski space-time and on 4N Grassmann coordinates θia, θ̄kb , a, b = 1, 2,
i, k = 1, . . . , N . There is 1-to-1 correspondence in these dependencies and
the odd null conditions. Namely, if the condition X+

a,4+k |Λ〉 = 0, a = 1, 2,
holds, then the superfields of the corresponding ER do not depend on the
variable θka , while if the condition X+

a,4+k |Λ〉 = 0, a = 3, 4, holds,
then the superfields of the corresponding ER do not depend on the variable
θ̄ka−2 . These statements were used in the proof of unitarity for the ERs
picture, cf. [18], but were not explicated. They were analyzed in detail in
the papers [10–12,23], using the notions of ’harmonic superspace analyticity’
and Grassmann analyticity. ♦

In the next Section we shall use the above classification to the so-called
BPS states.

3This series is absent for N = 1.
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4 BPS states

4.1 PSU(2,2/4)

The most interesting case is when N = 4. This is related to super-Yang-Mills
and contains the so-called BPS states, cf., [10–17]. They are characterized
by the number κ of odd generators which annihilate them - then the corre-
sponding state is called κ

4N
-BPS state. Group-theoretically the case N = 4

is special since the u(1) subalgebra carrying the quantum number z becomes
central and one can invariantly set z = 0.

We give now the explicit list of these states:

•a d = d141 = 2 + 2j2 + 2m1 −
1
2
m > d344 . The last inequality leads

to the restriction:
2j2 + r1 > 2j1 + r3 . (4.1)

In the case of R-symmetry scalars, i.e., m1 = 0, follows that j2 > j1 , i.e.,
j2 > 0, and then we have:

κ = 4, m1 = 0, j2 > 0 . (4.2)

In the case of R-symmetry non-scalars, i.e., m1 6= 0, we have the range:
i0 + i′0 ≤ 2, and thus:

κ = 1 + i0(1− δj2,0) ≤ 3 . (4.3)

•b d = d241 = 1
2
m∗ > d344 , j2 = 0 . The last inequality leads to the

restriction:
r1 > 2 + 2j1 + r3 . (4.4)

The latter means that r1 > 2, i.e., m1 6= 0, i0 = 0, and thus:

κ = 2 . (4.5)

The next two cases are conjugate to the previous two so we present them
shortly:

•c d = d344 = 2 + 2j1 +
1
2
m > d141 =⇒

2j1 + r3 > 2j2 + r1 , (4.6)
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m1 = 0 =⇒ j1 > j2 =⇒ j1 > 0 =⇒

κ = 4, m1 = 0, j1 > 0 . (4.7)

m1 6= 0 =⇒ i0 + i′0 ≤ 2 =⇒

κ = 1 + i′0(1− δj1,0) ≤ 3 . (4.8)

•d d = d444 = 1
2
m > d141 , j1 = 0, =⇒

r3 > 2 + 2j2 + r1 , (4.9)

=⇒ r3 > 2 =⇒ m1 6= 0, i′0 = 0 =⇒

κ = 2 . (4.10)

•ac d = dac = 2 + j1 + j2 +m1 . From z = 0 follows:

2j2 + r1 = 2j1 + r3 . (4.11)

In the case of R-symmetry scalars, i.e., m1 = 0, follows that j2 = j1 = j ,
and then we have:

κ = 8− 6δj,0 , d = 2 + 2j . (4.12)

In the case of R-symmetry non-scalars, i.e., m1 6= 0, i0 + i′0 ≤ 2, and thus:

κ = 2 + i0(1− δj2,0) + i′0(1− δj1,0) ≤ 4 . (4.13)

•ad From z = 0 follows: r3 = 2 + 2j2 + r1 =⇒ r3 ≥ 2 =⇒ m1 6= 0,
and i′0 = 0, i0 ≤ 2 =⇒

κ = 3 + i0(1− δj2,0) ≤ 5 ,

d = dad = 1 + j2 +m1 = 3 + 3j2 + 2r1 + r2 , (4.14)

χ4 = { 0 ; r1, r2, 2 + 2j2 + r1 ; 2j2 } .

•bc From z = 0 follows: r1 = 2 + 2j2 + r3 =⇒ r1 ≥ 2 =⇒ m1 6= 0,
and i0 = 0, i′0 ≤ 2 =⇒

κ = 3 + i′0(1− δj1,0) ≤ 5 ,

d = dbc = 1 + j2 +m1 = 3 + 3j2 + 2r1 + r2 , (4.15)

χ4 = { 2j1 ; 2 + 2j2 + r3, r2, r3 ; 0 } .

15



•bd From z = 0 follows: r1 = r3 = r, thus, i0 = i′0 = 0, 1 and then we
have:

κ = 4(1 + i0) , (4.16)

d = dbd = m1 = 2r + r2 6= 0 , r, r2 ∈ ZZ+ ,

χ4 = { 0 ; r, r2, r ; 0 } .

From the above BPS states we list now the most interesting ones:

4.1.1 1
2
-BPS states, κ = 8

These are possible in case ac, cf. (4.55), for R-symmetry scalars and
nontrivial vector Lorentz spin:

d = 2 + 2j ≥ 3 , j1 = j2 = j ≥ 1
2
, m1 = z = 0 , (4.17)

or in terms of the signature in (2.5):

d = 2 + n , χ4 = {n ; 0, 0, 0 ; n } , n = 2j ∈ IN . (4.18)

They are also possible in case bd, cf. (4.60), when i0 = i′0 = 1, i.e.,
r1 = r3 = 0, r2 6= 0 :

d = r2 = r ≥ 1 , r1 = r3 = j1 = j2 = z = 0 , (4.19)

or
d = r ∈ IN , χ4 = { 0 ; 0, r, 0 ; 0 } . (4.20)

4.1.2 1
4
-BPS states, κ = 4

These happen in most cases with appropriate conditions:

Case a, cf. (4.2),

d = 2 + 2j2 ≥ 3 , m1 = z = 0, j2 ≥
1
2
. (4.21)

or

d = 2 + n + k , χ4 = {n ; 0, 0, 0 ; n+ k } , n = 2j1 ∈ ZZ+ , k ∈ IN .
(4.22)
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Case c, cf. (4.50),

d = 2 + 2j1 ≥ 3 , m1 = z = 0, j1 ≥
1
2
. (4.23)

or

d = 2 + n + k , χ4 = {n+ k ; 0, 0, 0 ; n } , n = 2j2 ∈ ZZ+ , k ∈ IN .
(4.24)

In case ac we deal with R-symmetry non-scalars with only one non-zero
ri entry, since we have i0 + i′0 = 2, thus, we take r1+i0 6= 0, 0 ≤ i0 ≤ 2, with
the condition:

j1 − j2 = m1 −
1
2
m = 1

2
r1+i0(1− i0) , (4.25)

and then we have:

d = 2 + j1 + j2 + ri0 = 2 + 2j + ri0 , (4.26)

where case-wise:

j = j2 , j1 = j + 1
2
r1 , χ4 = { 2j + r1 ; r1, 0, 0 ; 2j } ,

j = j1 = j2 , χ4 = { 2j ; 0, r2, 0 ; 2j } , (4.27)

j = j1 , j2 = j + 1
2
r3 , χ4 = { 2j ; 0, 0, r3 ; 2j + r3 } .

Case ad, cf. (4.14),

d = 3 + 3j2 + r2 ≥
9
2
, r3 = 2 + 2j2 ≥ 3 , j2 ≥

1
2
, r1 = j1 = z = 0 .

(4.28)
or

d = 3 + 3
2
n + r , χ4 = { 0 ; 0, r, 2 + n ; n } , r, n ∈ IN . (4.29)

Case bc, cf. (4.15),

d = 3 + 3j1 + r2 ≥
9
2
, r1 = 2 + 2j1 ≥ 3 , j1 ≥

1
2
, r3 = j2 = z = 0 .

(4.30)
or

d = 3 + 3
2
n + r , χ4 = {n ; 2 + n, r, 0 ; 0 } , r, n ∈ IN . (4.31)

Case bd, cf. (4.60), when i0 = i′0 = 0, i.e., r1 = r3 = n 6= 0:

d = r + 2n ≥ 2 , n ≥ 1, r = r2 ≥ 0, j1 = j2 = z = 0 . (4.32)

or
d = r + 2n , χ4 = { 0 ; n, r, n ; 0 } , r, n ∈ IN . (4.33)
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4.1.3 1
8
-BPS states, κ = 2

Case a, cf. (4.2) with j2 > 0, i0 = 1,

d = 2 + 2j2 + r2 +
1
2
r3 , 2j2 > 2j1 + r3 , r2 > 0, r1 = z = 0 . (4.34)

or

d = 2 + k + 2n + r2 +
3
2
r3 , χ4 = {n ; 0, r2, r3 ; n + r3 + k } , (4.35)

k, r2 ∈ IN, n, r3 ∈ ZZ+ .

Case b, cf. (4.48),

d = 1
2
(3r1 + 2r2 + r3) ≡

1
2
m∗ , r1 > 2 + 2j1 + r3 , j2 = z = 0 . (4.36)

or

d = 3 + 2r3 + r2 +
3
2
(n+ k), χ4 = {n ; 2 + n+ r3 + k, r2, r3 ; 0 } ,(4.37)

k ∈ IN, n, r2, r3 ∈ ZZ+ .

Case c, cf. (4.50) with j1 > 0, i′0 = 1,

d = 2 + 2j1 + r2 +
1
2
r1 , 2j1 > 2j2 + r1 , r2 > 0, r3 = z = 0 , (4.38)

or

d = 2 + k + 2n + r2 +
3
2
r1 , χ4 = {n+ r1 + k ; r1, r2, 0 ; n } , (4.39)

k, r2 ∈ IN, n, r1 ∈ ZZ+ .

Case d, cf. (4.53),

d = 1
2
m = 1

2
(r1 + 2r2 + 3r3) , r3 > 2 + 2j2 + r1 , j1 = z = 0 , (4.40)

or

d = 3 + 2r1 + r2 +
3
2
(n+ k), χ4 = { 0 ; r1, r2, 2 + n + r1 + k ; n } ,(4.41)

k ∈ IN, n, r2, r1 ∈ ZZ+ .

Case ac, cf. (4.55),(4.57),

d = 2 +m1 ≥ 2 , j1 = j2 = z = 0 . (4.42)
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or
d = 2 + r1 + r2 + r3 , χ4 = { 0 ; r1, r2, r3 ; 0 } . (4.43)

Some of these BPS-cases are extensively studied in the literature, mostly
those listed here as cases ac,bd, cf. [10–17].

Finally, we remark that some of the above states would violate the pro-
tectedness conditions that we gave in Subsection 2.2. These would be the
1
4
-BPS cases listed as cases ad,bc, and in case bd for n > 2, while for the

1
8
-BPS cases that would be the cases b,d, and in case ac for r1r3 6= 0.

4.2 SU(2,2/N), N ≤ 3

We can set z = 0 also for N 6= 4 though this does not have the same group-
theoretical meaning as for N = 4. In this Subsection we treat separately the
cases N = 1, 2, 3, which are more peculiar.

4.2.1 SU(2,2/1)

For N = 1 setting z = 0 is possible only for three cases a,c,ac :

•a d = 2 + 2j2 , j2 > j1 ≥ 0,

κ = 1, 1
4
-BPS;

•c d = 2 + 2j1 , j1 > j2 ≥ 0,

κ = 1, 1
4
-BPS;

•ac d = 2 + 2j , j1 = j2 = j,

κ = 2, 1
2
-BPS.

Note that according to the result of Subsection 2.2 the first two cases would
not be protected.

4.2.2 SU(2,2/2)

For N = 2 holds i0 = i′0 = 0, 1 . Setting z = 0 is possible for four cases
a,c,ac,bd when we have:

•a d = 2 + 2j2 + r1 , j2 > j1 ≥ 0,

κ = 1 + i0 ≤ 2 ;
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•c d = 2 + 2j1 + r1 , j1 > j2 ≥ 0,

κ = 1 + i′0 ≤ 2 ;

•ac d = 2 + 2j + r1 , j1 = j2 = j,

κ = 2 + 2δi0j,0 ≤ 4;

•bd d = r1 6= 0 , j1 = j2 = 0, (here z = 0 holds in all cases),

κ = 4, 1
2
-BPS.

Note that according to the result of Subsection 2.2 the first three cases
would not be protected when r1 6= 0, i.e., when i0 = i′0 = 0. In contradis-
tinction, when r1 = 0, i.e., i0 = i′0 = 1, the first two are 1

4
-BPS, and

the third, when j > 0, a 1
2
-BPS. The fourth case would not be protected if

r1 > 4.

4.2.3 SU(2,2/3)

In fact, the case N = 3 is similar in these considerations to N = 4, (though
some results differ), so we present it telegraphically.

•a d = d131 = 2 + 2j2 + 2m1 − 2m/3 > d333 =⇒

j2 +
1
3
r1 > j1 +

1
3
r2 . (4.44)

For m1 = 0 ⇒ j2 > j1 ⇒ j2 > 0 ⇒

κ = 3, m1 = 0, j2 > 0 . (4.45)

For m1 6= 0, ⇒ i0 + i′0 ≤ 1 ⇒

κ = 1 + i0(1− δj2,0) ≤ 2 . (4.46)

•b d = d231 = 2m1 − 2m/3 > d333 , j2 = 0 =⇒

r1 > 3 + 3j1 + r2 =⇒ (4.47)

r1 > 3 ⇒ m1 6= 0 and i0 = 0 =⇒

κ = 2 . (4.48)

•c d = d333 = 2 + 2j1 + 2m/3 > d131 =⇒

j1 +
1
3
r2 > j2 +

1
3
r1 , (4.49)
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m1 = 0 =⇒ j1 > j2 =⇒ j1 > 0 =⇒

κ = 3, m1 = 0, j1 > 0 . (4.50)

m1 6= 0 =⇒ i0 + i′0 ≤ 1 =⇒

κ = 1 + i′0(1− δj1,0) ≤ 2 . (4.51)

•d d = d433 = 2m/3 > d131 , j1 = 0, =⇒

r2 > 3 + 3j2 + r1 , (4.52)

=⇒ r2 > 3 =⇒ m1 6= 0, and i′0 = 0 =⇒

κ = 2 . (4.53)

•ac d = d131 = d333 = 2 + j1 + j2 +m1 . From z = 0 follows:

j2 +
1
3
r1 = j1 +

1
3
r2 . (4.54)

In the case of R-symmetry scalars, i.e., m1 = 0, follows that j2 = j1 = j ,
and then we have:

κ = 6− 4δj,0 . (4.55)

Thus, for j 6= 0 we have 1
2
-BPS state:

κ = 6, d = 2 + 2j ≥ 3 , χ3 = { 2j ; 0, 0 ; 2j } . (4.56)

In the case of R-symmetry non-scalars, i.e., m1 6= 0, i0 + i′0 ≤ 1, and thus:

κ = 2 + i0(1− δj2,0) + i′0(1− δj1,0) ≤ 3 . (4.57)

Thus, when i0j2 6= 0 or i′0j1 6= 0 we have 1
4
-BPS state since κ = 3.

•ad From z = 0 follows: r2 = 3 + 3j2 + r1 =⇒ r2 ≥ 3 =⇒ m1 6= 0,
and i′0 = 0, i0 ≤ 1 =⇒

κ = 3 + i0(1− δj2,0) ≤ 4 ,

d = dad = 1 + j2 +m1 = 4 + 4j2 + 2r1 , (4.58)

χ3 = { 0 ; r1, 3 + 3j2 + r1 ; 2j2 } .

Thus, when i0j2 = 0 we have 1
4
-BPS state since κ = 3.
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•bc From z = 0 follows: r1 = 3 + 3j1 + r2 =⇒ r1 ≥ 3 =⇒ m1 6= 0,
and i0 = 0, i′0 ≤ 1 =⇒

κ = 3 + i′0(1− δj1,0) ≤ 4 ,

d = dbc = 1 + j1 +m1 = 4 + 4j1 + 2r2 , (4.59)

χ3 = { 2j1 ; 3 + 3j1 + r2, r2 ; 0 } .

Thus, when i′0j1 = 0 we have 1
4
-BPS state since κ = 3.

•bd From z = 0 follows: r1 = r2 =
1
2
m1 = r ∈ IN , thus, i0 = i′0 = 0 and

then we have:

κ = 4 , d = dbd = 2r 6= 0 , χ3 = { 0 ; r, r ; 0 } . (4.60)

Note that according to the result of Subsection 2.2 the following cases
would not be protected: cases a,ad when r1 6= 0; cases c,bc when
r2 6= 0; cases b,d; case ac when r1r2 6= 0, (i.e., i0 = i′0 = 0); case bd
when r > 2.

4.3 SU(2,2/N), N ≥ 5

The cases N ≥ 5 are described adequately by the general exposition in
Section 3, though some cases are excluded for z = 0. Thus, we shall give
only the special cases.

4.3.1 1
2
-BPS states, κ = 2N

These are possible only in cases ac,bd, and appear as for N = 4.

In case ac we deal with R-symmetry scalars and j1 = j2 = j ≥ 1
2
:

d = 2 + n, n = 2j ∈ IN, χN = {n ; 0, . . . , 0 ; n } . (4.61)

In case bd this is possible when N is even, and there is only one
non-zero ri, namely, the middle one, i.e.,

d = m1 = r1
2
N−1

6= 0 , χN = { 0 ; 0, . . . , 0, r1
2
N−1

, 0, . . . , 0; 0 } .

(4.62)

Note that according to the result of Subsection 2.2 these 1
2
-BPS cases would

be protected.
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4.3.2 1
4
-BPS states, κ = N

In case a we deal with R-symmetry scalars and j2 > j1 ,

d = 2 + n+ k, n = 2j1 ∈ ZZ+, k ∈ IN, χN = {n ; 0, . . . , 0 ; n+ k } .
(4.63)

In the conjugate case c, j1 > j2 ,

d = 2 + n+ k, n = 2j2 ∈ ZZ+, k ∈ IN, χN = {n+ k ; 0, . . . , 0 ; n } .
(4.64)

In case b we would deal with R-symmetry non-scalars for N -even, and
we must have i0 = N

2
− 1; this means that ri = 0 for i = 1, . . . , N

2
− 1.

On the other hand we must satisfy the condition:

1+j1 < m1−2m/N =

N
2
−1

∑

k=1

(rk−rN−k)(1−2k/N) = −

N
2
−1

∑

k=1

rN−k(1−2k/N) ≤ 0 ,

which is not possible.

For the same reason the conjugate case d is not possible.

In case ac we deal with R-symmetry non-scalars with only one non-zero ri
entry, since we have i0+ i′0 = N−2, thus, we take r1+i0 6= 0, 0 ≤ i0 ≤ N−2,
with the condition:

j1 − j2 = m1 − 2m/N = r1+i0(1−
2
N
(1 + i0)) , (4.65)

and then we have:

d = 2+ j1+ j2+ ri0 , χN = { 2j1 ; 0, . . . , 0, ri0 , 0, . . . , 0; 2j2 } . (4.66)

Note that: i0 <
N
2
− 1 =⇒ j1 − j2 > 0,

i0 >
N
2
− 1 =⇒ j1 − j2 < 0,

i0 =
N
2
− 1 =⇒ j1 − j2 = 0, only for N–even.

In case ad we deal with R-symmetry non-scalars with two subcases de-
pending whether j2 is zero or not.
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• When j2 = 0 we have κ = N = 3 + 2i′0 , i.e., N is odd, and
i′0 = 1

2
(N − 3), (i0 ≤ 1

2
(N − 1)). On the other hand from z = 0 we must

satisfy the condition (rescaling by N):

N = 2m−Nm1 =

1
2
(N−1)
∑

k=1

(rN−k−rk)(N−2k) = r1
2
(N+1)

−

1
2
(N−1)
∑

k=1

rk(N−2k) .

Thus, we have:

d = 1 +m1 = 1 +

1
2
(N+1)
∑

k=1

rk = 1 +N +
N−1
∑

k=
1
2
(N+1)

rk(1 +N − 2k) ,

χN = { 0 ; r1, . . . , 0, r1
2
(N+1)

, 0, . . . , 0; 0 } .(4.67)

• When j2 6= 0 we have κ = N = 3+ 2i′0 + i0 , from where we follows that
i0 + i′0 = N − 2 is not possible, thus i0 + i′0 ≤ N − 3, also i′0 ≤ 1

2
(N − 3).

Also the following condition must hold:

1 + j2 =
2
N
m−m1 .

Thus, we have:
d = 1 + j2 +m1 =

2
N
m , j1 = 0 . (4.68)

In the conjugate case bc we expose shortly:

• j1 = 0 ⇒ κ = N = 3 + 2i0 ⇒ N is odd, ⇒ i0 = 1
2
(N − 3),

(i′0 ≤
1
2
(N − 1)). On the other hand must hold:

N = Nm1−2m =

1
2
(N−1)
∑

k=1

(rk−rN−k)(N−2k) = r1
2
(N−1)

−

1
2
(N−1)
∑

k=1

rN−k(N−2k) .

Thus, we have:

d = 1 +m1 = 1 +
N−1
∑

k=
1
2
(N−1)

rk = 1 +N +
N−1
∑

k=
1
2
(N+1)

rk(1 + 2k −N) ,

χN = { 0 ; 0, . . . , 0, r1
2
(N−1)

, r1
2
(N+1)

, . . . , rN−1; 0 } .(4.69)
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• j1 6= 0 ⇒ κ = N = 3 + 2i0 + i′0 ⇒ i0 + i′0 = N − 2 is not possible,
thus i0+ i′0 ≤ N − 3, also i0 ≤

1
2
(N − 3). Also the following condition must

hold:
1 + j1 = m1 −

2
N
m .

Thus, we have:

d = 1 + j1 +m1 = 2m1 −
2
N
m = 2

N
m∗ , j2 = 0 . (4.70)

Case bd is possible only for N–even with R-symmetry non-scalars, and
from κ = N and z = 0 follows:

i0 + i′0 =
N
2
− 2 , m1 = 2

N
m 6= 0 .

Thus, we have:

d = m1 =

1+i0+
N
2

∑

k=1+i0

rk , j1 = j2 = 0 . (4.71)

Note that according to the result of Subsection 2.2 the following 1
4
-BPS

cases would not be protected: case ad when r1 6= 0; case bc when
rN−1 6= 0; case bd when r1, rN−1 > 2.

4.3.3 1
8
-BPS states, κ = N/2, N-even

In all possible cases we deal with R-symmetry non-scalars.

In case a to achieve κ = N
2
, we need j2 6= 0, and i0 = N

2
− 1. We also

have the defining restriction (with z = 0): j2 > j1+(m−m∗)/N . Combining
all, we have:

d = 2 + 2j2 +
2
N
m∗ , (4.72)

χN = { 2j1 ; 0, . . . , 0, rN
2

, . . . , rN−1 ; 2j2 } ,

j2 > j1 +

N−1
∑

k=
N
2
+1

( 2
N
k − 1)rk .
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In case b to achieve κ = N
2
, we need i0 = N

4
− 1. Thus, this case is

possible only if N is divisible by 4. We also have the defining restriction
(with z = 0): (m∗ −m)/N > j1 + 1. Combining all, we have:

d = 2
N
m∗ , χN = { 2j1 ; 0, . . . , 0, rN

4

, . . . , rN−1 ; 0 } , (4.73)

N
2
−1

∑

k=
N
4

(1− 2
N
k)rk > 1 + j1 +

N−1
∑

k=
N
2
+1

( 2
N
k − 1)rk .

The conjugated cases c,d are presented shortly:

In case c : j1 6= 0, i′0 =
N
2
− 1, j1 > j2 + (m∗ −m)/N =⇒

d = 2 + 2j1 +
2
N
m , (4.74)

χN = { 2j1 ; r1, . . . , rN
2

, 0, . . . , 0 ; 2j2 } ,

j1 > j2 +

N
2
−1

∑

k=1

(1− 2
N
k)rk .

In case d : i′0 = N
4
− 1, N is divisible by 4, (m − m∗)/N > j2 + 1.

Combining all, we have:

d = 2
N
m , χN = { 0 ; r1, . . . , 0, r3N

4

, 0, . . . , 0 ; 2j2 } , (4.75)

3N
4

∑

k=
N
2
+1

( 2
N
k − 1)rk > 1 + j2 +

N
2
−1

∑

k=1

(1− 2
N
k)rk .

The case ac has several subcases depending on j1, j2 being zero or not:

• The subcase j1 = j2 = 0 is possible only for N = 4 considered above.

• In the subcase j1 = 0, j2 6= 0 should hold i0 = N
2
− 2, i′0 ≤ N

2
− 2.

Altogether we have:

d = 2 + j2 +m1 , (4.76)

χN = { 0 ; 0, . . . , 0, rN
2
−1

, . . . , rN−1 ; 2j2 } ,

j2 +
2
N
rN

2
−1

=

N−1
∑

k=
N
2
+1

rk(
2
N
k − 1) .
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• In the conjugate subcase j1 6= 0, j2 = 0 should hold i0 ≤ N
2
− 2,

i′0 =
N
2
− 2 =⇒

d = 2 + j1 +m1 , (4.77)

χN = { 2j1 ; r1, . . . , rN
2
+1

, 0, . . . , 0 ; 0 } ,

j1 +
2
N
rN

2
+1

=

N
2
−1

∑

k=1

rk(1−
2
N
k) .

• In the subcase j1j2 6= 0 should hold i0 + i′0 =
N
2
− 2, χN is in general

position, and we have:

d = 2 + j1 + j2 +m1 , (4.78)

j2 − j1 = (m−m∗)/N .

In case ad we need κ = N
2

= 3 + i0(1 − δj2,0) + 2i′0, while from the
condition z = 0 follows:

1 + j2 = (m−m∗)/N =

N−1−i′
0

∑

k=1+i0

rk(
2
N
k − 1) , (4.79)

and then we have:

d = 2
N
m = 2

N

N−1−i′
0

∑

k=1+i0

krk . (4.80)

The subcase j2 = 0 leads to the restriction that N = 6, 10, . . ., and i′0 =
1
2
(N
2
− 3), and then:

j2 = 0 =⇒ 1 =

1
4
(3N+2)
∑

k=1+i0

rk(
2
N
k − 1) , d = 2

N

1
4
(3N+2)
∑

k=1+i0

krk . (4.81)

In case bc we need κ = N
2

= 3 + i′0(1 − δj1,0) + 2i0, while from the
condition z = 0 follows:

1 + j1 = (m∗ −m)/N =

N−1−i′
0

∑

k=1+i0

rk(1−
2
N
k) , (4.82)
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and then we have:

d = 2
N
m∗ = 2

N

N−1−i′
0

∑

k=1+i0

(N − k)rk . (4.83)

The subcase j1 = 0 leads to the restriction that N = 6, 10, . . ., and i0 =
1
2
(N
2
− 3), and then:

j1 = 0 =⇒ 1 =

N−1−i′
0

∑

k=
1
4
(3N+2)

rk(1−
2
N
k) , d = 2

N

N−1−i′
0

∑

k=
1
4
(3N+2)

(N−k)rk . (4.84)

In case bd we need κ = N
2

= 4+2i0+2i′0 , thus i0+ i′0 =
N
4
− 2, thus

N = 8, 12, . . .. From z = 0 follows that m = m∗ = N
2
m1, and then

d = m1 =

1+i0+
3N
4

∑

k=1+i0

rk , j1 = j2 = 0 . (4.85)

Note that according to the result of Subsection 2.2 the following 1
8
-BPS

cases would not be protected: case ad when r1 6= 0; case bc when
rN−1 6= 0; case bd when r1, rN−1 > 2.

5 Outlook

In the present paper, we presented the classification of BPS states in D=4
conformal supersymmetry. We gave also the necessary conditions for the pro-
tected states. Our considerations are group-theoretic and model-independent.
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