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Abstract

We develop exact Markov chain Monte Carlo methods for discretely-sampled, directly and indirectly
observed diffusions. The qualification "exact" refers to the fact that the invariant and limiting distribution
of the Markov chains is the exact posterior distribution of the parameters of interest. The class of processes
to which our methods directly apply are those which can be simulated using the most general to date
exact simulation algorithm. The article introduces various methods to boost the performance of the basic
scheme, including reparametrizations and auxiliary Poisson sampling. We contrast both theoretically and
empirically how this new approach compares to irreducible high frequency imputation, which is the state-
of-the-art alternative for the class of processes we consider, and we uncover intriguing connections. All
methods discussed in the article are tested on typical examples.

Keywords: Exact inference; Exact simulation; Markov chain Monte Carlo; Stochastic differential equa-
tion; Transition density

1 Introduction

Diffusion processes provide a flexible framework for modelling phenomena which evolve randomly and con-
tinuously in time, and have become an extensively used tool throughout science. Application areas include
among others finance (Sundaresan, 2000; Eraker et al., 2003; Ait-Sahalia and Kimmel, 2007), biology (Go-
lightly and Wilkinson, 2006), molecular kinetics (Horenko and Schütte, 2008; Kou et al., 2005), pharma-
cokinetics/pharmacodynamics Picchini et al. (2010). Additionally diffusions are used to tackle mainstream
statistical problems, e.g longitudinal data analysis (Taylor et al., 1994), space-time models (Brown et al.,
2000) and functional data analysis (see for example Ramsay et al., 2007, and discussion therein).

A time-homogeneous diffusion process V ∈ Rd is a Markov process defined as the solution to a stochastic
differential equation (SDE):

dVs = β(Vs;θ1)ds+σ(Vs;θ2)dWs, V0 = v, s ≥ 0 (1)

where W is an d-dimensional standard Brownian motion. The functions β : Rd×Θ1→ R
d and σ : Rd×Θ2→

Rd×d are known as the drift and diffusion matrix respectively, and are allowed to depend on an unknown
parameter θ = (θ1,θ2) ∈ Θ ⊂ R

p. The assumption of distinct parameters for each of the functionals is by
no means restrictive and is adopted here for ease of presentation of the methodology. We also introduce
γ = σσT and make the usual set of assumptions on β and σ to ensure that (1) has a unique weak non-
explosive solution see for example Theorem 5.2.1 of Øksendal (2003); see also Section 2. In this article
we focus on the elliptic case, where the dimension of V matches that of W (this is already imposed in the
equation above) and σ is invertible.

Even though the process is defined in continuous time, the available data consist of observations recorded
at a set of discrete time points. We first consider the setting where the process is observed without error at a
collection of time instances,

V :=
¦

Vt0
, Vt1

, . . . , Vtn

©

, 0≤ t0 < t1 < . . . < tn,
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and denote the time increment between consecutive observations by ∆t i = t i − t i−1. Section 6 considers
indirect observations Yt i

∼ q(. | Vt i
,τ) where in this case interest lies in estimating parameter and latent

points.
Bayesian inference for discretely observed diffusions is typically hindered by the unavailability of the

transition density, hence of the (observed) likelihood. One strand of the literature deals with this issue by
resorting to Monte Carlo data augmentation methods. The idea behind this approach is to augment the ob-
served data with auxiliary data such that the joint density of observed and auxiliary data is known explicitly
or at least it can be approximated satisfactorily. This joint density (with respect to an appropriate dominating
measure) is often called complete likelihood. Then, an MCMC algorithm (typically a variant of the Gibbs
sampler) is used to sample from the joint posterior distribution of parameters and auxiliary data. The first
data augmentation (DA) approaches for discretely-observed diffusions (see Jones, 1999; Eraker, 2001; Ele-
rian et al., 2001) used as auxiliary data discretizations of the latent diffusion bridges

�

Vs, s ∈ (t i−1, t i)
	

. The
complete likelihood is still intractable, but it can be reasonably approximated using the Euler (or a Milstein)
scheme which operates on the time increments of the augmented data. The bias introduced in the estimation
of the complete likelihood is eliminated by increasing the number, say M , of the imputed values. We refer to
these DA schemes as high frequency imputation (HFI). There are at least three serious challenges with this
approach. First, how to efficiently simulate the latent bridges conditionally on the parameters; this simula-
tion is required in the "Imputation” step of a data augmentation algorithm. This problem has been intensively
studied and it is the subject of ongoing reseach, see for example Papaspiliopoulos and Roberts (2009) for a
recent account. Second, how to choose M , at least in practice. Ensuring a good approximation typically
requires a large value of M . The appropriate value is not known prior to the execution of the algorithm but
is typically found by repeatedly running the algorithm over increasing M until the estimated posterior dis-
tributions show no change. This adds a further computational burden. However, the most serious challenge
with this approach was pointed out by Roberts and Stramer (2001) (who also provided suggestions for the
other two issues). They showed that when θ2 is unknown the mixing time of the MCMC algorithm is O (M).
This is simply due to the quadratic variation identity for diffusions, according to which any continuous-time
path contains infinite information about θ2. On the other hand, under standard conditions diffusion paths
over bounded time increments only contain finite amount of information about θ1. Thus, DA using the latent
bridge collapses in the limit M → ∞, whereas for finite M it is unappealing since reduction in bias (better
approximation to the true posterior) comes with unbounded increase in the variance (the variance of the
Monte Carlo estimates increases due to deterioration of the Markov chain convergence). This is an extreme
instance of a common problem in DA methods for partially observed stochastic processes, see for example
Papaspiliopoulos et al. (2007).

Roberts and Stramer (2001) demostrated the need for appropriate path-parameter transformations in
order to yield a working DA algorithm which is valid even in the limit M → ∞. We will refer to their
approach as irreducible HFI, since the MCMC algorithms based on this imputation scheme are irreducible for
all values of M , unlike those of the previous generation which are reducible in the limit. The irreducible HFI
is briefly described in Section 3.1.

A third generation of Monte Carlo schemes for diffusions was initiated with the introduction of the exact
algorithm (EA) for the exact simulation algorithms for non-linear diffusions; see Section 2.2 for some details.
In Beskos et al. (2006b) it was shown how to use exact simulation ideas to unbiasedly estimate the likeli-
hood function. This technology has been used to generate simulated likelihood approaches (Beskos et al.,
2009) and particle filters for partially observed diffusions when the parameters are known (see for example
Fearnhead et al., 2008; Jasra and Doucet, 2009).

1.1 Main contributions and structure

This article develops MCMC methods for parameter estimation for all diffusions which can be simulated by
the EA. Additionally, it extends the methods to the case of indirect observations. This generation of MCMC
algorithms is such that their equilibrium distribution is the exact posterior distribution of the parameters. The
potential of using the EA to build an MCMC algorithm for univariate diffusions was sketched in Section 9 of
Beskos et al. (2006b); that was for the simplest case of diffusions which can be simulated by the so-called EA1
which requires strict bounds on the drift. In this paper we develop the theory and the MCMC methods for all
diffusions which can be simulated using the so-called EA3 framework of Beskos et al. (2008): multivariate
elliptic diffusions which after a suitable transformation have constant diffusion matrix and drift which is of
gradient form, see Section 2.1 for details.
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The augmentation is based on a general principle which is applicable widely to stochastic processes. In a
nutshell the principle is as follows. We are given a joint probability model for an observable process V and
an unobservable process X , parametrised in terms of θ . We are interested in the setting where V is finite-
dimensional but X infinite-dimensional (e.g X is a diffusion path, an intensity function, a spatial field, etc).
Then, if we are given a rejection sampling algorithm for the exact simulation of X given V , we can use it to
build an auxiliary variable representation and an exact MCMC algorithm for inference for θ . A clarification
is needed in what sense X is simulated exactly; in the context of diffusions this is well understood and it
is recalled in this article. The exact data augmentation we propose builds exactly on this principle which
is materialised in Theorem 1. In this schematic description the HFI imputes instead a finite-dimensional
approximation of X . A different application of this principle was proposed recently in Adams et al. (2009) in
the context of density estimation.

Another main contribution of the article is the development of reparametrizations for accelerating the
MCMC algorithm. We design noncentred reparametrisations and demonstrate numerically that they lead to
very significant improvements. We also apply the interweaving strategy proposed recently by Meng and Yu
(2011) and also evaluate numerically its effect.

A further contribution of this work is that it investigates theoretically the connection between EDA and
HFI. First, we show that -surprisingly- the EDA augments more than HFI; this is surprising since the former
involves no approximation whereas the latter does. This result is contained in Theorem 2. The point is that
the extra augmentation in EDA creates conditional independence relationships which can be exploited to
apply an algorithm which targets an infinite-dimensional state using finite computation. This result suggests
that HFI for the same amount of computation is expected to mix faster than EDA. This is effectively another
instance of the bias-variance tradeoff. This connection motivates a further observation which links the two
approaches. The converge rate of the EDA can be improved by increasing the intensity of the Poisson process
used in the EA. This intensity has no effect on the acceptance probability when simulating diffusion bridges,
hence for computational reasons it is best to be kept to its minimal allowed value. However, it does have an
effect on the convergence of EDA. Again, this is at first surprising, since it seems as if by imputing more the
convergence rate improves. We discuss various other aspects of both algorithms and investigate numerically
their performance under various scenarios. We also evaluate the effect of eliminating stochastic integrals in
HFI when this is possible. Similar numerical investigations are carried out when the diffusion is indirectly
observed. The existence of the exact MCMC algorithms allows us to gain a better understanding of the error
involved in HFI, and this is exploited in the simulation studies. The findings which relate EDA with HFI
should be useful in other contexts where this auxiliary variable principle can be applied.

A comment on the applicability of the methods proposed here is due. The framework is that of the EA
given in Beskos et al. (2008). The necessary conditions pose little limitations for unidimensional processes,
but much more serious for multivariate processes. The methods rely on a variance-stabilizing transformation
which might not even exist for general multivariate SDEs with coupling in the diffusion. On the other
hand, multivariate processes with no coupling in the diffusion are rather standard in the analysis of physical
systems. The assumption of gradient drift is again natural in the framework of physical systems. In summary,
the technology we develop here is not directly applicable to general stochastic volatility models, say, although
exploiting particular structures can push considerbly these limitations (see for example Kalogeropoulos et al.,
2010). Additionally, advances in the exact simulation of diffusions (as for example in Étoré and Martinez,
2011; Goncalves and Roberts, 2011) would eo ipso lead to exact MCMC methods following the framework of
this article. Note that the variance-stabilizing transformation is necessary for the Roberts and Stramer (2001)
approach as well. Irreducible HFI avoiding this transformation are also currently under investigation, see for
example Golightly and Wilkinson (2008).

Finally, in the article we solely focus on data augmentation methods for inference for diffusions. There
is a vast literature on alternative approaches; see for example Picchini et al. (2010); Stramer et al. (2010);
Forman and Sørensen (2008) and references therein, and the broad contributed discussion in Beskos et al.

(2006b).
The article is structured as follows. Section 2.1 contains the background on assumptions, notations and

recalls the EA. Section 3 presents formally the EDA and contrasts it to HFI. Section 5 carries out a careful and
extensive numerical comparison of several schemes. Section 6 dicusses extensions to indirect observations.
Section 7 closes with a discussion and the Appendix contains the proofs of main results.

2 Preliminaries
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In this section we collect some necessary background. In terms of notation, x{i} or x{i j} denote the ith or
(i, j)th element of a vector or matrix x , det[x] and x−1 for the determinant and the inverse of a matrix x

(where appropriate), and Id for the d× d identity matrix. The Euclidean norm is denoted by ||.||. ∇x and ∆x

denote the gradient and Laplacian operators respectively, that is if x ∈ Rd

∇x f (x , y) =

�

∂ f (x , y)

∂ x1
, . . . ,

∂ f (x , y)

∂ xd

�T

∆x f (x , y) =

d
∑

i=1

∂ 2 f (x , y)

∂ x2
i

.

2.1 Reducible diffusions of gradient type

The methods in this paper rely on the existence of a transformation η, such that η(Vs;θ2) solves an SDE with
constant diffusion matrix. This transformation can be obtained for unidimensional diffusions rather trivially.
For multidimensional processes its existence is a subtle matter. In the elliptic case a sufficient condition is
that η solves the equation

∇vη(v;θ2) σ(v;θ2) = Id (2)

which can be further simplified when σ is invertible, to yield explicit conditions on its elements; see for
example Aït-Sahalia (2008). In the rest of the article we will assume the existence of this transformation,
and η−1 will denote the inverse transformation. If Xs := η(Vs;θ2) is the transformed diffusion, then by Itô’s
formula its SDE is given by

dXs = α(Xs;θ)ds+ dWs, X0 = x = η(v;θ2), s ≥ 0, (3)

where α : Rd ×Θ→ Rd , with

α{r}(u;θ) = Aη{r}{η−1(u;θ2);θ2}, (4)

where A is the generator of (1)

Af (v) =

d
∑

i=1

β {i}(v;θ1)
∂ f (v)

∂ vi

+
1

2

d
∑

i, j=1

γ{i j}(v;θ2)
∂ 2 f (v)

∂ vi∂ v j

.

The transition density of the original process V can be derived in terms of that of the transformed process X .
If p̃t(x , z;θ), x , z ∈ Rd denotes the transition density of the process X , then

pt(v, w;θ) =
�

�

�det
�

σ−1(w;θ2)
�

�

�

� p̃t

�

η(v;θ2),η(w;θ2);θ
	

, (5)

where det[.] denotes the determinant.
The methodology also requires certain conditions on the drift α of the transformed process. Again,

these are trivially satisfied in unidimensional processes but they are more restrictive for multidimensional
processes. The following set of assumptions should hold for any θ ∈ Θ.

(a) α{r}(.;θ) is continuously differentiable for r = 1, . . . , d.

(b) There exists H : Rd → R such that ∇x H(x;θ) = α(x;θ).

(c) There exists l(θ)> −∞, such that l(θ)≤ infu∈Rd
1
2

¦

||α(u;θ)||2 +∆x H(u;θ)
©

.

The second condition identifies X as a diffusion of gradient-type, where H is called the potential function.
When the diffusion is ergodic, its invariant log-density can be expressed directly in terms of −H. The first is a
very weak condition and the third is rather mild too. Finally, we require that α is such that the probability law
generated by the solution of (3) is absolutely continuous with respect to the Wiener measure. A particularly
useful and weak set of conditions are given in Rydberg (1997); in the case of (3) if α is locally bounded the
conditions simply require that the SDE be not explosive.
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2.2 The exact algorithm

The exact algorithm (EA) is a rejection sampling algorithm on the space of diffusion paths, which uses Brow-
nian path proposals and delivers the diffusion path revealed at a finite collection of random points. The path
can be filled in later at any desired time point with no further reference to the target process. The main
attractions of the algorithm are that the draws are from the exact finite-dimensional distribution, and that
it can very easily simulate from the diffusion process conditioned on its endpoints. Here we focus on exact
diffusion bridge simulation, i.e. obtain samples from (1) conditionally on the origin V0 = v and terminal point
Vt = w. It turns out that this conditional simulation is really the key to data augmentation methods for
parameter estimation.

The target process (1) is transformed into one of unit diffusion matrix as described in Section 2.1. The
problem is therefore reduced to the simulation of (3) conditionally on the origin x = x(θ2) := η(v;θ2) and
terminal point y = y(θ2) := η(w;θ2). An X -bridge yields a V -bridge by applying the inverse transformation.
Let Q(t ,x ,y)

θ
denote the law of the X -bridge, W(t ,x ,y)

θ
the law of a Brownian bridge conditioned on the same

endpoints, and starting at x and terminating at y at time t, and N d
t
(u) denote the density of a Gaussian

random variable with vector mean 0 and variance tId evaluated at u ∈ Rd . The following lemma, which is
a restatement of Lemma 1 in Beskos et al. (2006b), derives the density of the target law with respect to the
Brownian bridge law; see also Papaspiliopoulos and Roberts (2009) for a collection of results on likelihood
ratios for diffusion bridges, a historical overview and references.

Lemma 1. The law Q
(t ,x ,y)
θ

is absolutely continuous with respect toW
(t ,x ,y)
θ

with density

dQ(t ,x ,y)
θ

dW(t ,x ,y)
θ

(X ) =
N d

t

�

y − x
�

p̃t(x , y;θ)
exp

¨

H(y;θ)−H(x;θ)−
1

2

∫ t

0

¦

||α(Xs;θ)||
2 +∆x H(Xs;θ)

©

ds

«

(6)

∝ exp

¨

−

∫ t

0

φ
�

Xs;θ
�

ds

«

≤ 1, (7)

where φ : Rd ×Θ→ R+ is defined by

φ (u;θ) =
1

2

¦

||α(u;θ)||2 +∆x H(u;θ)
©

− l(θ) ;

Note that application of importance sampling techniques (with rejection sampling as a special case) does
not require the knowledge of the normalizing constant in (6) but instead works with the unnormalized ratio
in (7). The EA is based on recognising (7) as the probability of a specific event from an inhomogeneous
Poisson process of intensity φ

�

Xs;θ
�

on [0, t]. Simulation of events from such processes can be achieved by
constructing an upper bound for the variable intensity and using the thinning property of the Poisson process.
Assume that there exists a finite-dimensional random variable L := L(X ) and a positive function r such that

r(L;θ)≥ sup
s∈[0,t]

φ
�

Xs;θ
�

.

Let Φ = {Ψ,Υ} be a homogeneous Poisson process of intensity r(L;θ) on [0, t] × [0,1], with uniformly
distributed points Ψ =

�

ψ1, . . . ,ψκ
	

on [0, t] and uniformly distributed marks Υ =
�

u1, . . . ,uκ
	

on [0,1],
where κ∼ Po[r(L;θ)t]. If N is the number of points of Φ below the graph s→ φ

�

Xs;θ
�

/r(L;θ), then

P (N = 0 | X ) = exp

¨

−

∫ t

0

φ
�

Xs;θ
�

ds

«

.

This implies a rejection sampler where a proposed path X ∼ W
(t ,x ,y)
θ

is accepted as a path from Q(t ,x ,y)
θ

according to the indicator

I(L, X ,Φ, v, w,θ) :=
κ
∏

j=1

I
h

φ
�

Xψ j
;θ
�

/r(L;θ)< u j

i

. (8)

The output of the EA consists of the collection of random variables {L(X ),Φ,S(X )}, where

S(X ) :=
¦

(0, X0), (ψ1, Xψ1
), . . . , (ψκ, Xψκ), (t, X t)

©

(9)
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is a skeleton of the accepted path. This output can be thought of as a random sufficient statistic of the
continuous path. Indeed, the accept-reject decision is based entirely on finite information from the path but,
in principle, the algorithm accepts an infinite dimensional object. The algorithm is presented in Algorithm 1.

Algorithm 1 Exact Algorithm for diffusion bridges
1: Generate a homogeneous Poisson process Φ = {Ψ,Υ} on [0, t]× [0, 1] as follows

• simulate L = L(X ), where X ∼W
(t,x ,y)
θ

and κ ∼ Po [r(L;θ )t],

• simulate Ψ =
�

ψ1, . . . ,ψκ
	

, where ψ j ∼ Un[0, t] and Υ =
�

u1, . . . , uκ
	

, where u j ∼ Un[0, 1].

2: Simulate X conditionally on L at time instances ψ1, . . . ,ψκ and set S(X ) as in (9).

3: Evaluate the acceptance indicator I :=
κ
∏

j=1
I
h

φ
�

Xψ j
;θ
�

/r(L;θ )< u j

i

.

4: If I = 1 then return {L,Φ, S(X )}, otherwise go to 1.

The technical difficulty that underlines the implementation of the Exact Algorithm is the simulation of
L(X ) that determines the required Poisson rate, and primarily the conditional simulation of a Brownian
bridge given L(X ) (step 2 of the algorithm) for the evaluation of the accept-reject indicator function. This
has resulted in the construction of three EAs that share the rejection sampling principle, but have a different
range of applicability.

2.2.1 The family of EAs

The EA1 (Beskos et al., 2006a) is the simplest of Exact Algorithms and its framework is restricted by

Condition 1. φ (.;θ) is bounded above.

This condition ensures the availability of a path-independent upper bound for the intensity, i.e. r(L;θ) ≡
r(θ), implying that simulation of L(X ) is avoided. As a consequence, step 2 of Algorithm 1 merely requires
simulation of a Brownian bridge at time instances ψ1, . . . ,ψκ. The EA2 (Beskos et al., 2006a) is applicable
only when d = 1 and relaxes Condition 1 to a more mild one:

Condition 2. Either lim supu→∞φ (u;θ) <∞ or lim supu→−∞φ (u;θ) <∞.

For simplicity consider only the first case. The algorithm is based on decomposing a Brownian bridge path at
its minimum, i.e. the proposed path is constructed by first simulating its minimum, say m, and subsequently
the remainder of the path conditioned on the minimum. In this setting the required random variable L(X ) =

{m,τ}, where τ is the time instance the minimum is attained. Then, Condition 2 ensures that for u > m we
can obtain the required upper bound by selecting

r(L;θ) = sup
u

�

φ (u;θ) ;u ≥ m
	

.

Simulating a Brownian bridge conditionally on its minimum is based on a path transformation of two inde-
pendent Bessel bridges, see Beskos et al. (2006b) for more details.

EA3 (Beskos et al., 2008) poses no upper boundary conditions. The construction of the Poisson rate
r(L;θ) is achieved by creating an appropriate partition on the path space using a series of lower and upper

bounds for each path coordinate. In particular, for a user-specified constant δ >
p

t/3 and x̄{r} := x{r}∧ y{r},

ȳ{r} := x{r} ∨ y{r}, the partition consists of the sets Dr

�

l{r}
�

, l{r} ∈ N∗, r = 1, . . . , d, defined by

Ar

�

l{r}
�

=

¨

sup
0≤s≤t

X {r}
s
∈
�

ȳ{r} + (l{r} − 1)δ, ȳ{r} + l{r}δ
�

«

∩

§

inf
0≤s≤t

X {r}
s
> x̄{r} − l{r}δ

ª

,

Br

�

l{r}
�

=

§

inf
0≤s≤t

X {r}
s
∈
�

x̄{r} − l{r}δ, x̄{r} − (l{r} − 1)δ
�

ª

∩

¨

sup
0≤s≤t

X {r}
s
< ȳ{r} + l{r}δ

«

,

Dr

�

l{r}
�

= Ar

�

l{r}
�

∪ Br

�

l{r}
�

.
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x {r}

x̄ {r} −δ

x̄ {r} − 2δ

x̄ {r} − 3δ

x̄ {r} − 4δ

y {r}

ȳ {r} +δ

ȳ {r} + 2δ

ȳ {r} + 3δ

ȳ {r} + 4δ

Figure 1: The rth coordinate of a Brownian bridge from X0 = x to X t = y, with x {r} > y{r}. In this example, the event
Br(3) has occurred. Therefore, L{r} = 3.

In this case, the required L(X ) is set to be the d-dimensional discrete random variable, L(X ) = (L{1}, . . . , L{d})

where L{r} = l{r} if X ∈ Dr(l
{r}). Figure 1 illustrates the construction for an arbitrary coordinate. Hence,

{L{r} ≤ l{r}, r = 1, . . . , d} ≡
¦

x̄{r} − l{r}δ < X {r}
s
< ȳ{r} + l{r}δ, 0≤ s ≤ t, r = 1, . . . , d

©

. This random variable
is referred to as the Brownian bridge layer and a Brownian bridge path conditioned on this layer as the layered

Brownian bridge. Conditioned on the value L = l, and using the continuity of φ (.;θ), the Poisson rate can
be found as

r(L;θ) = sup
¦

φ (u;θ) ;u{r} ∈ ( x̄{r} − l{r}δ, ȳ{r} + l{r}δ), r = 1, . . . , d
©

.

The exact mathematical and implementation details of sampling a layered Brownian bridge can be found in
the original paper.

2.2.2 Computational considerations

The EA3 has the widest framework of applicability, which encompasses that of EA1 and EA2. Nevertheless,
simulating a layered Brownian bridge is a non-trivial task and is achieved by means of a rejection sampling
mechanism, thus adding to the EA3 an extra level of computational complexity. In particular, an extensive
empirical study by Peluchetti and Roberts (2008) suggests as a rule of thumb that EA3 is approximately 10
times slower than EA1.

Moreover, as any rejection sampler, the computational performance of EA depends on its acceptance
probability. For any two fixed points x and y , expression (7) implies that the probability of accepting a
proposed path is

a(x , y, t,θ) := E
W
(t,x ,y)
θ

�

exp

¨

−

∫ t

0

φ
�

Xs;θ
�

ds

«�

, (10)

thus suggesting that the acceptance probability decays exponentially to 0 as d or t increase.
Finally, we note that, for fixed θ , the EA can be implemented with any Poisson sampling rate R, where

R ≥ r(L;θ). Choosing a large value of R results in an additional computational cost since the number of
Poisson points to be simulated (and thus the number of time instances where the path is revealed) is now
larger; however, it does not affect the acceptance probability of the algorithm since the accept-reject decision
depends only on the Poisson points for which u j < r(L;θ)/R. This observation will turn out to be quite
relevant when we consider MCMC methods based on the EA.
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3 Exact data augmentation (EDA) for discretely observed diffusions

We are interested in exploring the posterior density

π(θ | V )∝ π(θ)

n
∏

i=1

p∆t i
(Vt i−1

, Vt i
;θ) (11)

which is typically intractable due to the transition densities. In this section we describe irreducible data
augmentation approaches for parameter estimation. The auxiliary variables we will introduce lead to MCMC
algorithms which involve no approximation to the statistical model of interest, and the only source of error
is that due to Monte Carlo. The auxiliary variables are intimately related to the output of the EA for diffusion
bridges.

At first, this approach appears totally different from the HFI paradigm. However, there are close but
subtle links and the presentation in this section has been structured to naturally bring those out. Effectively,
the limiting (M =∞) irreducible data augmentation of Roberts and Stramer (2001), which is recalled below,
leads to two possibilities. One is its approximation by a HFI with some finite M , which leads to bias. The
other is to consider an EA for the simulation of the auxiliary process identified by Roberts and Stramer (2001)
and identify finite-dimensional auxiliary variables which then lead to an exact MCMC algorithm. Section 3.2
identifies those variables and Section 3.3 gives a theorem which establishes the connection between the
limiting irreducible HFI and EDA. In fact, Section 4.3 shows that there is a spectrum of algorithms with the
EDA on the one end and the limiting irreducible HFI on the other, with intermediate algorithms produced by
varying the intensity of the Poisson process in the EA. This leads to a computational time/variance tradeoff
which can be exploited, but all the algorithms in the spectrum are unbiased.

It has already been emphasized in Section 1.1 that the principles behind the methods we develop here
have impact on several other problems which involve computations with partially observed stochastic pro-
cesses.

3.1 Irreducible HFI

We first outline the Roberts and Stramer (2001) approch for HFI. The method is developed first for the lim-
iting case M =∞, hence it yields an idealized algorithm for parameter estimation which involves imputing
an infinite dimensional auxiliary variable. This auxiliary process is obtained after two path-parameter trans-
formations of the original latent bridge. We will call this augmentation scheme limiting irreducible HFI;
limiting since it refers to the limit M =∞ and irreducible since it generates a Markov chain (on an infinite-
dimensional space) which is mixing, as opposed to alternative schemes which in that limit are reducible. We
then review the approach that has been taken so far in the literature, which is to subsequently approximate
the algorithm with some finite M .

Consider, for the moment, only two observations from the diffusion process, V0 = v and Vt = w. We first
transform the diffusion process Vs → Xs = η(Vs;θ2), where η(.;θ2) is described in Section 2.1. After this
variance-stabilization all the parameters relate with the drift of the transformed process, see (3). X -paths
over bounded time increments only contain finite information for θ , which motivates the adoption of this
transformation. The transformed path starts at x(θ2) and terminates at y(θ2), which are both deterministic
functions of θ2 and the observations. This suggests that a DA scheme based on X will not work either when
θ2 is unknown. A realization of X determines θ2 through its endpoints. An alternative way to see the problem

is to note that the collection of dominating measures
n

W
(t ,x ,y)
θ

,θ ∈Θ
o

are mutually singular, and therefore

a Gibbs or an EM algorithm based on this augmentation would not converge, but would instead be trapped
in the support of one of these measures. This necessitates a further reparametrisation from Xs → X̃s, where

X̃s := Xs −

�

1−
s

t

�

x(θ2)−
s

t
y(θ2), s ∈ [0, t], (12)

which forces the path to start and finish at 0 and essentially transforms the distribution Q(t ,x ,y)
θ

in such a way
that the dominating measure, now given byW(t ,0,0), is independent of θ .

The irreducible HFI is based on imputing X̃ . Thus, the complete data likelihood and posterior which will
subsequently be targetted by MCMC schemes are as follows. Let π(θ) denote the prior density of θ with
respect to Lebesgue measure and

¦

X̃ i,s, s ∈ [0,∆t i]
©

be the imputed paths. For economy of notation let X

denote the path obtained by the inverse transformation of (12), X̃ → X , where in this setting X is a function
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of X̃ the endpoints and the parameters, and similarly let X i be the transformation of X̃ i . Then the joint
posterior density of θ and imputed paths, πHF,∞(θ , {X̃ i , 1 ≤ i ≤ n} | V ), can be derived with respect to the
product law Lebp ⊗n

i=1W
(∆t i ,0,0), and is proportional to

π(θ)exp
�

H{xn(θ2);θ} − H{x0(θ2);θ} − l(θ)(tn− t0)
�

×

n
∏

i=1

�

�

�det
�

σ−1(Vt i
;θ2)

�

�

�

�N d
∆t i

�

x i(θ2)− x i−1(θ2)
	

exp

(

−

n
∑

i=1

∫ ∆t i

0

φ
�

X i,s;θ
�

ds

)

. (13)

For a proof, the reader is referred to Section 3 of Roberts and Stramer (2001). Note however, that the
expression we obtain in (13) is numerically more stable than the one in Roberts and Stramer (2001). We
have exploited the assumptions on the drift (the fact that it is a gradient type) to perform integration by parts
and transform stochastic integrals into time integrals. This improves the convergence of the algorithm ADD
LATER.

The joint posterior density written above will typically not be computable since the augmented paths
cannot be represented by a finite number of variables, hence the integrals cannot be computed. Instead,
an approximation is done at this stage. The auxiliary paths are approximated by vectors of size M + 2,
¦

X̃ i, j∆t i/(M+1), j = 0, . . . , M + 1
©

, and the integrals are approximated numerically, typically by Riemann sums,
to yield πHF,M(θ , {X̃ i , 1 ≤ i ≤ n} | V ) (where by an abuse of notation we let X̃ i denote the path and its
discretization). This introduces a bias in the inference for θ . The approximated posterior is targeted by an
MCMC algorithm which updates in turns the parameters and the discretized auxiliary processes according to
their conditional densities. A simple way to simulate the auxiliary processes is by proposing Brownian bridge
skeletons and accepting them according to the target density. Crucially for the efficiency of the algorithm, the
auxiliary processes (and their approximations) X̃ i , i = 1, . . . , n are independent of each other conditionally
on θ . The following algorithm is a typical general implementation of the irreducible HFI, where updates of
θ are obtained from a Metropolis-Hastings step with proposal kernel q(θ , .).

Algorithm 2 Irreducible HFI

1: Initialiase by choosing θ 0, and X̃ 0
i
=
n

X̃ 0
i, j∆ti/M

, j = 0, . . . , M
o

, 1≤ i ≤ n. Set t = 0.

2: Iterate the following steps

• for 1 ≤ i ≤ n

• simulate Yi =
¦

Yi, j∆ti/M
, j = 0, . . . , M

©

, where Yi ∼W
(∆ti ,0,0),

• sample U ∼ Un(0, 1),

• if

U <
πHF,M (Yi | θ

t , V )

πHF,M (X
t
i
| θ t , V)

= exp







−
∆ti

M + 1

M
∑

j=0

�

φ
�

Yi, j∆ti/(M+1);θ
t
�

−φ
�

X̃ t
i, j∆ti/(M+1);θ

t
��







then set X̃ t+1
i
= Yi, else set X̃ t+1

i
= X̃ t

i
.

• sample θ ∗ ∼ q(θ t , .) and U ∼ Un(0, 1),

• if

U <
πHF,M (θ

∗, {X̃ t+1
i

, 1≤ i ≤ n} |) q(θ ∗,θ t)

πHF,M (θ , {X̃ t+1
i

, 1≤ i ≤ n}) q(θ t ,θ ∗)

then set θ t+1 = θ ∗, else set θ t+1 = θ t,

• set t = t + 1.

3.2 Exact MCMC

The auxiliary variable methods first identify auxiliary random variables such that the joint density of observed
data, parameters and the auxiliary variables is tractable, and then target the conditional density given the
observed data by MCMC methods (typically variants of the Gibbs sampler). The main contribution of this
section is to demonstrate that an exact rejection sampling algorithm for simulating diffusion bridges implies
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(a)

0

−δ

−2δ

−3δ

−4δ

δ

2δ

3δ

4δ

(b)

x {r}(θ2)

x {r}(θ2)− δ

x {r}(θ2)− 2δ

x {r}(θ2)+ δ

y {r}(θ2)+ 2δ

y {r}(θ2)

y {r}(θ2)− δ

y {r}(θ2)− 2δ

y {r}(θ2)+ δ

y {r}(θ2)+ 2δ

Figure 2: The rth coordinate of a layered Brownian bridge path X̃ starting and terminating at 0 with L̃{r} = 2 (top). The
transformed process X̃ {r}

s
+ (1− s/t) x {r}(θ2) + s y{r}(θ2)/t starts at x {r}(θ2) and terminates at y{r}(θ2), with x {r}(θ2) <

y{r}(θ2) (bottom). The dashed lines provide a lower and upper bound for the coordinate of the transformed path.
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appropriate auxiliary variables which can be used to design MCMC algorithms for exact inference in diffu-
sions. In the following sections we elaborate on this construction and propose various improvements on the
basic scheme which is developed here. We describe the data augmentation and the MCMC algorithm which
corresponds to the EA3 case, and later comment on the simplifications that arise when a more basic EA is
applicable to the model of interest.

We will first identify the appropriate auxiliary variables for each pair of arbitrary consecutive observations,
V0 = v and Vt = w. Then, by the Markov property we will be able to find the auxiliary variables for
an arbitrary number of observations. To do this, we need the two main tools we have developed so far.
First, the two path-parameter transformations proposed by Roberts and Stramer (2001) for irreducible data
augmentation; recall that these are V → X and X → X̃ . Second, the EA for simulating an X -bridge according
to Q(t ,x ,y)

θ
, with x and y as defined in Section 2.2.1. Let Q̃(t)

θ
denote the measure induced by the linearly

transformed bridge X̃ , when X is drawn from Q(t ,x ,y)
θ

. In passing, recall that when X is drawn fromW(t ,x ,y)
θ

,
X̃ is distributed according toW(t ,0,0).

We first sketch an EA for simulating from Q̃(t)
θ

using proposals fromW(t ,0,0). This is a minor modification

of the EA for X , since a proposed path X̃ ∼ W(t ,0,0) is accepted as a path from Q̃(t)
θ

if and only if X̃s +
�

1− s

t

�

x(θ2) +
s

t
y(θ2), s ∈ [0, t], is accepted as a path from Q(t ,x ,y)

θ
. Let L̃ denote the layer of a Brownian

bridge that starts and terminates at 0, and denote by M(t) the joint law of (X̃ , L̃); hence if (X̃ , L̃) ∼ M(t),
marginally X̃ ∼ W(t ,0,0). The pair L̃, X̃ imply realizations for the corresponding variables in the X -space.
These are easy to obtain, since conditionally on a given L̃,

¦

X̃ {r}
s

, s ∈ [0, t]
©

moves within (− L̃{r}δ, L̃{r}δ),
and thus

x̄{r}(θ2)− L̃{r}δ <X̃ {r}
s
+

�

1−
s

t

�

x{r}(θ2) +
s

t
y{r}(θ2)< ȳ{r}(θ2) + L̃{r}δ,

where x̄{r}(θ2) := x{r}(θ2)∧ y{r}(θ2) and ȳ{r}(θ2) := x{r}(θ2)∨ y{r}(θ2). The above construction, along with
the derivation of the lower and upper bounds, is illustrated in Figure 2. An EA which samples from Q̃(t)

θ

follows easily. If Φ = {Ψ,Υ} is a homogeneous Poisson process of intensity r( L̃;θ) on [0, t]× [0,1], where
Ψ is the projection of the points on [0, t] and Υ the projection on [0,1], and

r( L̃;θ) = sup
¦

φ (u;θ) ;u{r} ∈ ( x̄{r}(θ2)− L̃{r}δ, ȳ{r}(θ2) + L̃{r}δ), r = 1, . . . , d
©

, (14)

then the algorithm accepts the proposed ( L̃, X̃ ,Φ) according to

I( L̃, X̃ ,Φ, v, w,θ) :=
κ
∏

j=1

I

�

1

r( L̃;θ)
φ

¨

X̃ψ j
+

�

1−
ψ j

t

�

x(θ2) +
ψ j

t
y(θ2);θ

«

< u j

�

, (15)

which is the familiar indicator function (8), reformulated in terms of ( L̃, X̃ ,Φ).
We now define the augmentation scheme for a pair of observations V0, Vt by the random variables ( L̃, X̃ ,Ψ)

that are returned in the EA3 output. Note that we explicitly do not include the Υ process, which is not
necessary for obtaining a tractable density and its inclusion would lead to overconditioning. The density of
the auxiliary variables is derived in the following lemma, which is proved in the Appendix.

Lemma 2. Let ( L̃, X̃ ) ∼M(t) and Ψ be a homogeneous Poisson process of intensity r( L̃;θ) on [0, t]. If I is the

acceptance indicator in (15), then the conditional density of ( L̃, X̃ ,Ψ) given I = 1, π( L̃, X̃ ,Ψ | u, v,θ), is

r( L̃;θ)κ

λκa(x , y, t,θ)
exp
¦

t
�

λ− r( L̃;θ)
�©

κ
∏

j=1

�

1−φ

¨

X̃ψ j
+

�

1−
ψ j

t

�

x(θ2) +
ψ j

t
y(θ2);θ

«

/r( L̃;θ)

�

, (16)

with respect to the product measure M(t) × P
(t)

λ
, where P

(t)

λ
is the measure of a homogeneous Poisson process on

[0, t] with intensity λ≥ 1, and a(x , y, t,θ) is the acceptance probability of the EA.

The Lemma introduces a degree of freedom, which will make use later, which is the intensity of the dominat-
ing Poisson process. The value of λ does not affect the inferential procedure (since it is a constant) and will
typically be chosen equal to 1. However, for mathematical reasons we shall see below, we assume a generic
value λ≥ 1.
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Extending the augmentation scheme to account for all observations is straightforward. Specifically, we
define x i = x i(θ2) := η(Vt i

;θ2), i = 0,1, . . . , n, and let L̃i , X̃ i = {X̃ i,s, s ∈ [0,∆t i]} and Φi = {Ψi ,Υi} denote
the accepted elements of EA applied to the interval [t i−1, t i], for 1 ≤ i ≤ n. Due to the Markov property of
the diffusion process, the bridges conditionally on the observations are independent, implying that the joint
density of all the imputed random variables conditionally on the observations Y and θ is

π({ L̃i , X̃ i ,Ψi , 1≤ i ≤ n} | V,θ) =
n
∏

i=1

π( L̃i, X̃ i ,Ψi | Vt i−1
, Vt i

,θ) .

We complete the development of EDA with the following Theorem which specifies the joint density of
data, auxiliary variables and parameters. This has a simple computable form and it admits the target posterior
π(θ | V ) as a marginal with respect to the auxiliary variables and conditional with respect to the data. The
key observation for the development of exact MCMC methods, is that the joint density is only a function of
the finite-dimensional

¦

S(X̃ i), L̃i , 1≤ i ≤ n
©

, which are delivered by the EA, and it is constant with respect to
the rest of the auxiliary variables. Additionally, the intractable normalizing constant has been cancelled out.
The proof of the Theorem is given in the Appendix.

Theorem 1. The joint density of observed data V , the p-dimensional parameters θ and auxiliary variables

{ L̃i , X̃ i ,Ψi , 1 ≤ i ≤ n}, is given below with respect to the θ -independent dominating measure Lebn+p ⊗n
i=1

�

M(∆t i) ×P
(∆t i)

λ

�

:

π(V,θ , {S(X̃ i), L̃i , 1≤ i ≤ n}) = π(θ)

n
∏

i=1

p∆t i
(Vt i−1

, Vt i
;θ)

n
∏

i=1

π( L̃i , X̃ i ,Ψi | Vt i−1
, Vt i

,θ) =

π(θ)

λ
∑n

i=1 κi

exp

 

H{xn(θ2);θ} −H{x0(θ2);θ} − [l(θ)− λ] (tn − t0)−

n
∑

i=1

r( L̃i;θ)∆t i

!

×

n
∏

i=1

�

�

�det
�

σ−1(Vt i
;θ2)

�

�

�

�N d
∆t i

�

x i(θ2)− x i−1(θ2)
	

r( L̃i;θ)
κi

×

n
∏

i=1

κi
∏

j=1

h

1−φ
n

gθ (X̃ i,ψi, j
);θ
o

/r( L̃i;θ)
i

. (17)

and it admits (11) as a marginal when { L̃i , X̃ i ,Ψi , 1≤ i ≤ n} is integrated out and V conditioned upon.

This density can be targeted by MCMC methods; actually at this stage we are only interested in the
conditional density given V , i.e the joint posterior of parameters and auxiliary variables. We advocate a Gibbs
sampler variant since conditionally on V and θ the auxiliary variables {S(X̃ i), L̃i , 1 ≤ i ≤ n} are independent
over i and can be generated using the EA. The conditional density of θ , π(θ |V, {S(X̃ i), L̃i , 1 ≤ i ≤ n}) is
computable and although it will not be easy to generate from it directly, we can do so using a Metropolis-
Hastings step. A typical implementation of the EMCMC is given below.

3.2.1 Special cases: Exact MCMC 1 and 2

Certain simplifications are feasible when a simpler EA can be applied to the process of interest. The EDA
based on EA1 requires less imputation than that of EA3, since exact simulation from the target measure
Q̃
(t)

θ
no longer requires the random variable L̃. Thus, the augmentation scheme involves only the auxiliary

variables {X̃ i ,Ψi , 1 ≤ i ≤ n}. The joint density analogous to (17) can be easily obtained and amounts to
simply replacing r( L̃;θ) by r(θ). Similarly the conditional of θ trivially follows; originally it was given in
Theorem 3 of Beskos et al. (2006b).

A data augmentation algorithm can be built using the auxiliary variables used in the EA2. We will not
present the details of this, since it is not a direct modification of the general algorithm, as it is the case with
EA1, but instead it involves a different construction of bridges. Details can be found in Chapter 7 of Sermaidis
(2010).
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Algorithm 3 Exact MCMC using EA3

1: Initialise the algorithm choosing θ 0. Set t = 0,
2: Iterate the following steps

• for 1 ≤ i ≤ n, set Ii = 0 and repeat the following until Ii = 1

• sample layer L̃i of Brownian bridge path X̃ i ∼W
(t,0,0),

• sample κi ∼ Po[r(L̃i ;θ
t )∆ti],

• simulate uniformly distributed varibles (ψi, j , ui, j) on [0,∆ti]× [0, 1]
and set Φi =

�

Ψi ,Υi

	

, where Ψi = {ψi, j , 1≤ j ≤ κi} and Υi = {ui, j , 1≤ j ≤ κi},

• conditionally on L̃i, sample Brownian bridge X̃ i,ψi, j
,

• set Ii = I(L̃i, X̃ i ,Φi, Vti−1
, Vti

,θ t) as in (15),

• if Ii = 1, then set L̃ t+1
i
= L̃i, Ψ

t+1
i
= Ψi and X̃ t+1

i
= X̃ i.

• sample θ ∗ ∼ q(θ t , .) and U ∼ Un[0, 1],

• if

U <
π(V,θ ∗, {S(X̃ t+1

i
), L̃ t+1

i
, 1≤ i ≤ n}) q(θ ∗,θ t)

π(V,θ t , {S(X̃ t+1
i
), L̃ t+1

i
, 1≤ i ≤ n}) q(θ t ,θ ∗)

then set θ t+1 = θ ∗, else set θ t+1 = θ t,

• set t = t + 1.

3.3 Interpreting EDA in terms of the limiting irreducible HFI

The following result, which is based on Theorem 1, provides the connection between HFI and EDA. It effec-
tively shows that the limiting irreducible HFI is a collapsed version of the EDA, i.e when we integrate out a
subset of the latent variables we obtain the distribution which is targeted by HFI. This is an interesting and
rather surprising result.

Theorem 2. Let π(θ ,
¦

X̃ i , 1≤ i ≤ n
©

| V ) be the density obtained from (17) by conditioning on V , and

marginalizing w.r.t
¦

L̃i ,Ψi , 1≤ i ≤ n
©

, and πHF,∞(θ , {X̃ i , 1 ≤ i ≤ n} | V ) the density targeted by the limit-

ing irreducible HFI defined in (13). Then , the two densities are equal a.s.

The result is insightful towards the comparison of the computational efficiency of EMCMC to that of
HFI, as it suggests that the mixing time of the former might generally be larger due to its higher degree of
augmentation; a price one has to pay in order to eliminate the discretisation error. The numerical comparison
of EDA and HFI is investigated in Section 5 in concrete examples. Nonetheless, in the next section, we show
a variety of ways with which one can increase the performance of EMCMC and achieve good mixing rates.

4 Boosting EMCMC by reparametrisations and auxiliary Poisson sampling

We can make some qualitative remarks about the efficiency of the MCMC schemes based on the HFI and
EDA which were reviewed and developed in Sections 3.1 and 3.2 respectively, and outlined in Algorithms
2 and 3. These remarks are based on general properties of data augmentation methods, as for example
discussed in Papaspiliopoulos et al. (2007); Meng and Yu (2011). These qualitative statements are backed
up by numerical evidence in Section 5, and they motivate the three approaches we propose in this Section to
boost the algorithmic efficiency.

To fix terminology, we will identify data augmentation with a Gibbs-type sampler which updates auxiliary
variables and parameters according to their conditional distributions. In general terms, data augmentation
works well when the fraction of missing information is not too large relative to the observed information.
This statement can be made precise mathematically (see for example the aforementioned references) but in-
formally it means that when the augmented dataset is not considerably more informative than the observed
regarding the parameters. For instance, in the naive HFI when θ2 is unknown the augmented data is increas-
ingly more informative than the observed data as M increases, infinitely more so in the limit M →∞. This is
the reason why that scheme collapses.

In irreducible HFI, the efficiency of Gibbs sampling improves when the time increment t between a pair
of observations decreases. When t is small, latent bridges look like Brownian bridges and all information
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about the drift is contained in the end points. Thus, as t decreases the augmented information converges to
the observed one. Indeed, in the trivial case where the process is Brownian motion with drift, the auxiliary
variables and the parameters are independent and the algorithm samples directly from the posterior of the
parameters regardless of the value of M . On the other hand, for moderate t the augmented data will be
substantially more informative. The main advantage of HFI paradigm is that irreducible algorithm exists
even at the limit where continuous paths are imputed.

In EDA the efficiency depends on r. We focus on the typical situation where r depends on θ . In the
limiting case when the Poisson rate is 0, the missing data and parameters are independent (since the skele-
ton is empty) and EDA achieves maximal efficiency. The higher the sensitivity of φ to the parameters is, the
stronger the dependence between parameters and missing data becomes. There are two reasons for this.
First, the number of points contained in the skeleton is informative about r, and thus about θ . Second,
changes in the parameters causes changes to the acceptance probabilities of the skeleton points, which pe-
nalises parameter values for which φ is considerably different than the one under which the current skeleton
was accepted. Note that this problem affects also parameters not related with r, but which affect other
features of φ. Similarly, for a given r the efficiency of EDA worsens as the time increment between consecu-
tive observations increases. The acceptance rate of the EA at the imputation step decays to 0 exponentially
with t. Hence, when data are sparsely sampled, the MCMC algorithm can spend a large amount of time by
simulating proposed paths until acceptance. There are (at least) two ways to deal with this problem. First,
instead of using rejection sampling to update the latent paths, one can use multiple independent Metropolis-
Hastings steps where each proposal is accepted according to a likelihood ratio using (16). Alternatively, one
can apply consecutively the EA on smaller time segments by imputing O (t) additional points between pairs
of observations, thus resulting in a computational cost which is linear in t. Both methods, however, will have
an impact on the MCMC mixing rate; the first due to rejections of Metropolis proposals restricting movement
in that direction, and the second due to the additional augmentation.

4.1 EMCMC efficiency by reparametrisation

One general approach for improving efficiency of data augmentation in hierarchical models and auxiliary
variable models is to adopt a reparametrisation. Indeed, we have already done so in irreducible HFI and in
EDA by transforming V → X̃ . Following Papaspiliopoulos et al. (2007), for a generic random variable E and
data V , a reparametrisation of an augmentation scheme E is defined by any random pair (Ẽ,θ) together with
a function h such that

E = h(Ẽ,θ , V ),

where h need not be 1-1. A reparametrisation is called noncentred when the distribution of Ẽ is independent
of θ . Intuitively, in cases where V is not strongly informative about E, a noncentred scheme can perform well
due to the prior independence of Ẽ and θ . We will attempt to reduce the dependence between the Poisson
process and θ by resorting to a noncentred reparametrisation. Hence, we seek for a function h of θ and a
parameter independent process, say Ψ̃, such that Ψ= h(Ψ̃, L̃,θ), where Ψ is a Poisson process of rate r( L̃;θ)
on [0, t].

Noncentred reparametrisations for decoupling the dependence between Poisson processes and their in-
tensity were originally proposed in Roberts et al. (2004). Applying their idea in this context, if Ψ̃ is a
homogeneous Poisson process of unit intensity on [0, t]× [0,∞), with point-coordinates {(ψ̃ j, ξ̃ j)} then

Ψ= h(Ψ̃, L̃,θ) =
¦

ψ̃ j; ξ̃ j < r( L̃;θ)
©

. (18)

Although Ψ̃ includes an infinite number of points, Ψ only depends on a finite subset of the points, those
for which the second coordinate is below r( L̃;θ). Accounting for all the observations, the noncentred
reparametrisation is (θ , { L̃i , X̃ i ,Ψi , 1,≤ i ≤ n}) → (θ , { L̃i , X̃ i , Ψ̃i , 1,≤ i ≤ n}), where Ψi = h(Ψ̃i , L̃i ,θ). The
theorem below derives the conditional density of θ given the latent variables { L̃i , X̃ i , Ψ̃i , 1 ≤ i ≤ n} and
observations.

Theorem 3. For 1 ≤ i ≤ n, let Sθ (X̃ i) =
n

(0,0), (ψ̃i, j , X̃ i,ψ̃i, j
), (∆t i , 0); ξ̃i, j < r( L̃i;θ)

o

be the skeleton of the

accepted path X̃ i evaluated at time points ψ̃i, j for which ξ̃i, j < r( L̃i;θ). Then θ is conditionally independent of

{X̃ i , 1≤ i ≤ n} given {Sθ (X̃ i), L̃i , 1≤ i ≤ n}, with density πnc(θ | {Sθ (X̃ i), L̃i , 1≤ i ≤ n}, V ) proportional to
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π(θ)exp
�

H{xn(θ);θ} − H{x0(θ);θ} − l(θ)(tn− t0)
�

×

n
∏

i=1

�

�

�det
�

σ−1(Vt i
;θ2)

�

�

�

�N d
∆t i

�

x i(θ2)− x i−1(θ2)
	

×

n
∏

i=1

∞
∏

j=1

h

1− I
�

ξ̃i, j < r( L̃i;θ)
�

φ
n

gθ (X̃ i,ψi, j
);θ
o

/r( L̃i;θ)
i

(19)

Expression (19) implies that evaluating the density at different values of θ requires revealing the paths at
different collections of time instances which depend on θ . However, Theorem 3 ensures that evaluation for
any value of θ requires only a finite number of calculations and therefore discretisations are avoided.

A simplification can be achieved when the EA1 is applicable, where the transformation in that case be-
comes {X̃ i ,Ψi , 1,≤ i ≤ n} → {X̃ i , Ψ̃i , 1,≤ i ≤ n}, where Ψi = h(Ψ̃i,θ) = { ψ̃i, j; ξ̃i, j < r(θ)}. The conditional
density of θ given the augmented dataset is essentially given by expression (19) replacing r( L̃i;θ) with r(θ).
Noncentred transformations can be found for EMCMC based on EA2, the details can be found in Section
7.4.3 of Sermaidis (2010).

The MCMC algorithm based on this reparametrisation is as follows, and practically it is a small modifica-
tion of the MCMC based on EDA. First, we wish to draw from the conditional distribution of { L̃i , X̃ i , Ψ̃i , 1 ≤
i ≤ n} given V and the current parameter value, say θ t . It is clear from (18) that the proposal Pois-
son process Ψ̃i need only be revealed at a finite collection of time points, namely for those that satisfy
ξ̃i, j < r( L̃i;θ

t ). Therefore, we only need to simulate a Poisson process on [0,∆t i]× [0, r( L̃i ,θ
t)], which

involves only κ̃i ∼ Po[r( L̃i ,θ
t)∆t i] number of points and is sufficient for the implementation of the EA. The

ith output consists of the accepted Poisson process Ψ̃i partially observed at
¦

(ψ̃i, j, ξ̃i, j), 1≤ j ≤ κ̃i

©

and the

pair { L̃i , X̃ i} discretely observed at the revealed times points ψ̃i, j of Ψ̃i . However, sampling from the condi-
tional distribution of θ given the latent variables and Y is more tricky. Specifically, if the proposed value, say
θ ∗, is such that r( L̃i,θ

∗) > r( L̃i;θ
t), then evaluating the conditional density (19) at θ ∗ requires revealing

the accepted path at additional time points
¦

ψ̃i, j; r( L̃i;θ
t )< ξ̃i, j < r( L̃i;θ

∗)
©

, which have not been revealed
in the EA output. Notice that this situation does not occur when r( L̃i;θ

∗) < r( L̃i;θ
t), since the path has

already been revealed at all time instances required to evaluate the conditional density at θ t and θ ∗.
We propose two ways to perform the update of θ . The first approach is based on prospectively reveal-

ing the accepted Poisson process and path at any additional required time instances. Specifically, Ψ̃i can
be further revealed on [0,∆t i] × [0, r( L̃i;θ

∗)] by simply simulating extra κ̃∗
i

uniform random variates on

[0,∆t i]×[r( L̃i;θ
t ), r( L̃i;θ

∗)], where κ̃∗
i
∼ Po

¦�

r( L̃i;θ
∗)− r( L̃i;θ

t )
�

∆t i

©

. The accepted path is then filled
in at the additional κ̃∗

i
points by Brownian bridge interpolations. The second approach is closest in spirit to

the retrospective nature of the exact algorithm. In particular, the proposed value θ ∗ can be simulated prior
to the application of the EA and therefore the values r( L̃i;θ

t) and r( L̃i;θ
∗) are known before the simulation

of the latent path. Consequently, we can simulate the Poisson process directly on [0,∆t i] × [0, r( L̃i;θ
∗)]

and reveal the paths X̃ i at all required time instances during the implementation of the EA. As a result, the
accepted path X̃ i will be revealed at all required time points.

In our implementations, we follow the retrospective approach because it can be applied in a similar
fashion to all three exact algorithms. The prospective approach is simple in the EA1 case due to simple
Brownian bridge interpolations, but becomes more involved in the EA2 and EA3 cases. We note, however,
that if θ is to be updated using an alternative approach to Metropolis-Hastings, such as a rejection sampling
mechanism, then prospective sampling is the only feasible solution since the number of proposed values θ ∗

until one accepted cannot be known prior to the application of EA.

4.2 An interweaving strategy

When a noncentred transformation is available, it is not necessary to choose between that and the original
parametrisation. Meng and Yu (2011) propose instead to interweave the two, by creating a single algorithm
which mixes steps of both algorithms. This requires practically no extra coding work, but as it is demon-
strated in the article, in certain cases (and even when taking the added computational cost into account) the
interweaved algorithm outperforms its parent algorithms.
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Algorithm 4 Noncentred Exact MCMC using EA3

1: Initialise the algorithm choosing θ 0. Set t = 0,
2: Iterate the following steps

• sample θ ∗ ∼ q(θ t , .) and U ∼ Un[0, 1],

• for 1 ≤ i ≤ n, set Ii = 0 and repeat the following until Ii = 1

• sample layer L̃i of Brownian bridge path X̃ i ∼W
(t,0,0),

• set rmax = r(L̃i ;θ
t)∨ r(L̃i ;θ

∗) and sample κ̃i ∼ Po[rmax∆ti],

• simulate uniformly distributed varibles (ψ̃i, j , ũi, j , ξ̃i, j) on [0,∆ti]× [0, 1]× [0, rmax ],

set Ψ̃i =
¦

(ψ̃i, j , ξ̃i, j), 1≤ j ≤ κ̃i

©

and Φi = {Ψi ,Υi}, where Ψi = h(Ψ̃i , L̃i,θ
t) and Υi = h(Υ̃i , L̃i,θ

t) as in
(18),

• conditionally on L̃i, sample Brownian bridge X̃ i,ψ̃i, j
,

• set Ii = I(L̃i, X̃ i ,Φi, Vti−1
, Vti

,θ t) as in (15),

• if Ii = 1, then set L̃ t+1
i
= L̃i, Ψ̃

t+1
i
= Ψ̃i and X̃ t+1

i
= X̃ i.

• if

U <
πnc(θ

∗ | {Sθ ∗ X̃
t+1
i

, L̃ t+1
i

, 1≤ i ≤ n}, V ) q(θ ∗,θ t)

πnc(θ
t | {Sθ ∗ X̃

t+1
i

, L̃ t+1
i

, 1≤ i ≤ n}, V) q(θ t ,θ ∗)

then set θ t+1 = θ ∗, else set θ t+1 = θ t,

• set t = t + 1.

In the EMCMC context, if θ t and { L̃ t
i
, X̃ t

i
, Ψ̃t

i
, 1,≤ i ≤ n} denote the current state of the chain, then

the algorithm can effectively be described in four steps. The first two are identical to sampling from the
noncentred algorithm, i.e. the latent variables are updated to { L̃ t+1

i
, X̃ t+1

i
, Ψ̃t+1

i
, 1,≤ i ≤ n} using the EA

and then the parameter is updated by drawing θ t+ 1
2 ∼ πnc(. | {Sθ (X̃

t+1
i
), L̃ t+1

i
, 1 ≤ i ≤ n}, V ). Subsequently,

the latent data are transformed to their original parametrisation using Ψi = h(Ψ̃t+1
i ,θ t+ 1

2 ); notice that this
step does not impose any computational difficulties, since it merely involves a deterministic transformation.
Finally, the parameter is re-drawn under the original parametrisation, θ t+1 ∼ π(. | {S(X̃ t+1

i
), L̃ t+1

i
, 1 ≤ i ≤

n}, V ).

4.3 Auxiliary Poisson sampling

An alternative way to improve the mixing time by increasing the computational cost is to exploit the connec-
tion between EDA and HFI. For simplicity we presente the theoretical result for EMCMC based on EA1, and
then discuss extensions to EA3.

Note that if r(θ) is the Poisson rate, then it is valid to apply the EA1 with Poisson sampling rate R(θ) for
any R(θ) > r(θ); the acceptance probability is invariant to that choice. For simulating bridges it is optimal
(in terms of computing time) to implement the algorithm with the smallest possible R(θ). This is not the
case though for the EMCMC which iterates between imputation and estimation. Of course execution time will
increase with R(θ). It turns out that the dependence between missing data and parameters decreases with
R(θ) and optimal implementation (in terms of execution time and MC time) can be achieved for R(θ)> r(θ).
Thus, we consider data augmentation where the auxiliary variables are chosen according to the output of
EA1, as described in Section 3.2, but where the Poisson rate is R(θ).

A theoretical result (not included here) goes along the following lines. Let R(θ) = r(θ) + λ− 1, where
λ ≥ 1 is a user-specified constant independent of θ . Then, the joint law of (θ ,

¦

X̃ i , , 1≤ i ≤ n
©

) after a step
of the exact MCMC with parameter λ, converges to the law of one step of the limiting irreducible HFI when
λ→∞. An argument for proving this is based on properties of series expansions for exponential functionals,
as discussed for example in Papaspiliopoulos (2011).

Hence, in a sense the auxiliary variables Ψi are effectively integrated out by increasing computation.
Thus, we should expect an improvement in the convergence of the algorithm as λ increases, although this
should be counterbalanced by the additional computational cost. λ gives an additional degree of freedom to
enhance algorithmic performance.

A similar property is enjoyed by a generic EMCMC based on EA3. In fact, the limiting algorithm as λ

16



increases is a limiting irreducible HFI which also imputes the layer, although the latter is immaterial in the
limit since it does not contain additional information about the parameters.

5 Numerical investigation of MCMC algorithms

We investigate the numerical performance of the several algorithms we have presented on some standard
examples. One is a diffusion which belongs in the Pearson family, see for example Forman and Sørensen
(2008), and it is an example of a process that can be simulated using the EA1. The second is a double well
potential model, typical of models that are used to describe processes with metastable behaviour, see for
example Metzner et al. (2006). This is an example of a process that can only be simulated using the EA3.

We compare several algorithms. The plain-vanilla EMCMC together which its elaborations: using non-
centred reparametrisation, using an interweaving of centred and noncentred, and using auxiliary Poisson
sampling. Additionally, we compare against the irreducible HFI using different amounts of imputation. Fi-
nally, we consider a version of the irreducible HFI which is based on an alternative target density to (13).
As we commented in Section 3.1 the expression we provide is not identical to the one obtained in equations
(6) and (15) of Roberts and Stramer (2001), the difference being that we exploit the structure of the drift
in the family of models we consider, to perform an integration by parts and replace a stochastic integral by
a time integral. This is expected to lead to smaller Monte Carlo errors, hence we evaluate the effect of this
simplification.

The existence of the EMCMC allows us to have a realistic evaluation of the performance of the irreducible
HFI. We carry out bootstrap Kolmogorov-Smirnov tests (Sekhon, 2007) for checking whether the posterior
distributions on the parameters obtained by different levels of imputation are significantly different from the
exact samples. These evaluations are based on thinning the original Markov chain output so that to obtain
practically independent draws from the corresponding distributions.

5.1 A Pearson diffusion

Consider the univariate diffusion process specified by

dVs = −ρ(Vs − µ)ds+σ
p

1+ V 2
s

dWs,

where σ > 0, ρ > 0 is a mean reverting parameter and µ ∈ R is the stationary mean. This model belongs to
a rich class of diffusion processes, known as the Pearson diffusions (see Forman and Sørensen, 2008), and it
admits a stationary distribution with heavy tails and skewness. It is easy to check that the invariant density
of the process is proportional to

(1+ v2)−(k+1)/2 exp

�

2ρµ

σ2 tan−1(v)

�

,

where k := 1+ 2ρ/σ2, thus exhibiting tails decaying at the same rate as a t-distribution with k degress of
freedom; when µ= 0, the density coincides with a scaled t-distribution with k degrees of freedom and scale
parameter k−1/2.

The Lamperti transform is easily derived as η(v;σ) = sinh(v)/σ, and the drift of the unit volatility process
is given by

a(x;θ) =−
�ρ

σ
+
σ

2

�

tanh(σx) +
ρµ

σ cosh(σx)
.

It can be easily verified that the process belongs to the EA1 class, and that exact inference can be performed
with

l(θ) = −
1

2

�

ρ+
σ2

2
+
ρµ

2

�

, r(θ) =
1

8

¨

ρ(6µ+ 8) + 3σ2 +
4ρ2

σ2 (µ
2+ µ+ 1)

«

. (20)

We test the methods on a simulated data set from this process, based on n = 1000 (excluding the initial
point) equidistant points with ∆t i = 1, V0 = 1 and parameter values (ρ,µ,σ) = (1/2,1,1/2) (Figure 3a).
We have used improper prior densities for the parameters, π(ρ) ∝ 1, π(µ) ∝ 1, and π(σ) ∝ 1/σ. For all
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Figure 3: Simulated datasets from (a) the Pearson diffusion model, (b) the double well potential model and (c) the
double well observed with error.

algorithms, sampling from the conditional density of the parameters was performed using a block Metropolis-
Hastings step. The chains were run for 105 iterations.

Figure 4 shows the autocorrelation plots along with posterior density estimates derived from the Markov
chains. Starting from EMCMC1 under the original parametrisation, notice that for λ = 1, the chain exhibits
strong serial dependence even at large lags, particularly for ρ. This is due to stong a priori dependence
between the parameter and the number of Poisson points (see expression (20)); which remains significant
in the posterior distribution. In particular, the posterior correlation between

∑n

i
κi and ρ was estimated

equal to 0.93, thus suggesting that noncentring the Poisson process can result in better mixing rates, as
Figure 4e confirms. In order to improve the performance of algorithm under the original parametrisation,
we consider various values for λ = {6,11,21}, thus revealing the path at additionally 5,10 and 20 points
between consecutive observations respectively. The increase in performance is reflected in the autocorrelation
function, which now decays to 0 more quickly. As expected, the chains of the HFI algorithms mix more
rapidly than the exact ones due to the less amount of augmentation. Finally, notice that that the posterior
distributions estimated from the HFI algorithms seem to provide a reasonable approximation to the true ones
only for M = 30 (Figures 4g to 4i).

Table 1 presents posterior summary statistics, the average number of imputed points between consec-
utive observations, the effective sample size (ESS) (calculated with R (R Development Core Team, 2010)
package coda (Plummer et al., 2010)), the computational (CPU) time of each algorithm, and the p-value
for the bootstrap Kolmogorov-Smirnov test with null hypothesis that the simulated draws from the marginal
distributions of HFI and exact algorithms come from the same distribution. Notice that even for M = 30, the
HFI algorithm fails to pass the tests at a 5% significance level, whereas less amount of imputation (M = 20)
combined with the integration by parts yields less biased approximations, clearly illustrating the importance
of eliminating the stochastic integral. For each method, we also calculate an adjusted effective sample size,
defined as the ratio of the effective sample size to the CPU time. In terms of computational performance, the
noncentred algorithm outperforms the rest and exhibits an adjusted ESS for µ and σ which is approximately
60% larger than that of the sufficiently accurate HFI methods.

The algorithms were also run using proper priors for the parameters, an exponential distribution for ρ, a
Gaussian for µ and an inverse Gamma for σ2, yielding no significant differences from the results presented
above.
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Figure 4: The Pearson diffusion model with n = 1000 simulated data points. True values are (ρ,µ,σ) = (1/2, 1, 1/2).
Autocorrelations are reported after a burn in of 5000 iterations. Posterior density estimates using EMCMC1 (noncentred)
and HFI algorithms for (g) ρ, (h) µ and (i) σ.
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Method Parameter λ− 1 Imp. points Mean Std. dev. ESSad j ESS KS Time Correlation matrix

Exact (noncentred) ρ 2.316 0.505 0.048 6.599 16.789 2.544 1.000 -0.447 0.539
µ 0.995 0.050 12.432 31.629 1.000 0.008
σ 0.499 0.015 12.117 30.829 1.000

Exact (original) ρ 0 2.193 0.503 0.047 2.628 6.133 2.333 1.000 -0.428 0.531
µ 0.995 0.050 8.549 19.946 1.000 0.017
σ 0.499 0.015 8.091 18.879 1.000

Exact (original) ρ 5 7.202 0.505 0.048 2.602 15.186 5.836 1.000 -0.451 0.538
µ 0.995 0.049 6.796 39.656 1.000 -0.021
σ 0.500 0.014 6.124 35.739 1.000

Exact (original) ρ 10 12.205 0.505 0.047 2.425 22.607 9.321 1.000 -0.426 0.528
µ 0.995 0.049 5.222 48.672 1.000 0.033
σ 0.499 0.014 4.849 45.201 1.000

Exact (interweaved) ρ 0 2.314 0.506 0.049 5.795 22.170 3.826 1.000 -0.438 0.540
µ 0.994 0.050 13.032 49.859 1.000 0.021
σ 0.499 0.015 12.488 47.779 1.000

HFI-5 ρ 5.000 0.488 0.045 20.244 74.643 < 0.001 3.687 1.000 -0.439 0.459
µ 0.985 0.049 21.841 80.530 < 0.001 1.000 0.029
σ 0.477 0.013 24.563 90.566 < 0.001 1.000

HFI-20 ρ 20.000 0.500 0.048 7.080 80.155 0.006 11.321 1.000 -0.427 0.518
µ 0.992 0.050 7.426 84.077 0.037 1.000 0.016
σ 0.493 0.014 7.721 87.414 < 0.001 1.000

HFI-30 ρ 30.000 0.501 0.048 4.916 80.518 0.005 16.380 1.000 -0.439 0.519
µ 0.993 0.050 5.160 84.516 0.017 1.000 0.021
σ 0.495 0.014 5.329 87.293 < 0.001 1.000

HFI-5 (int-by-parts) ρ 5.000 0.507 0.049 22.221 81.018 0.005 3.646 1.000 -0.443 0.537
µ 0.994 0.050 23.749 86.591 0.553 1.000 0.001
σ 0.500 0.014 24.578 89.612 0.007 1.000

HFI-20 (int-by-parts) ρ 20.000 0.505 0.049 6.740 78.421 0.395 11.636 1.000 -0.426 0.541
µ 0.995 0.050 7.414 86.264 0.192 1.000 0.020
σ 0.499 0.014 7.599 88.418 0.720 1.000

Table 1: The Pearson diffusion model with n = 1000 simulated data points. True values are (ρ,µ,σ) = (1/2, 1, 1/2). Summaries of exact and approximate posterior distributions.
Statistics are reported after a burn-in period of 5000 iterations. The ESS column shows the effective sample size of each chain per 1000 iterations. The Time column shows the
time (in seconds) required for 1000 iterations of each chain. The adjusted effective sample size is shown in column ESSad j . Each entry of the KS column shows the p-value for the
Kolmogorov-Smirnov test with null hypothesis that draws from the marginal distributions of HFI and exact algorithm (noncentred) come from the same distribution.
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5.2 A double well potential model

We consider the solution process to

dVs =−ρVs

�

V 2
s
− µ
�

ds+σdWs,

where ρ > 0,µ > 0,σ > 0. The process is known as the double well potential process (denoted by DWELL
hereafter). We simulated n = 1000 (excluding the initial point) equidistant observations with ∆t i = 1 for
parameter setting (ρ,µ,σ) = (0.1,2,1/2) and V0 ∼ N(2,1/4) (Figure 3b). Reduction to a unit volatility
process is easily achieved using Xs := Vs/σ, which solves the SDE

dXs = −ρXs

�

σ2X 2
s
−µ
�

ds+ dWs.

Simple calculations reveal that the function f (u;θ) := ||α(u;θ)||2 +∆x H(u;θ)/2 is given by

f (u;θ) =
ρ

2

�

ρσ4u6 − 2ρµσ2u4 +
�

ρµ2 − 3σ2
�

u2 + µ
�

,

and that the algorithms are applicable with

l(θ) = f
�

ul ;θ
�

,where u2
l
=

2ρµ+
p

ρ(ρµ2 + 9σ2)

3ρσ2 .

Finally, for a given realisation of the layer L̃ we need to find the upper bound (14). This is easily achieved by
noticing that

f (u;θ) ≤
ρ

2

�

ρσ4u6 +ρµ2u2 + µ
�

=: g(u;θ),

which is positive and has a minimum at u = 0, implying that

r( L̃;θ) =
�

g
¦

− L̃T + x̄{r}(θ2);θ
©

∨ g
¦

L̃T + ȳ{r}(θ2);θ
©�

− l(θ). (21)

We assign improper prior densities to the parameters with π(ρ) ∝ 1, π(µ) ∝ 1, and π(σ) ∝ 1/σ, and run
the chains for 105 iterations. The performance of the algorithms and posterior density estimates are shown
in Figure 5. Notice that the performance of EMCMC under the original parametrisation is very poor, due
to strong posterior correlation between Poisson points and parameters; a fact attributed to the sensitity of
r( L̃,θ) to the parameters (see expression (21)). On the other hand, the noncentred aglorithm exhibits a
much stronger performance with low serial correlation for each parameter even after 50 lags.

Posterior summaries from the output of the chains and computational performance are gathered in Table
2. In contrast to the EA1 example presented earlier, the interweaved strategy, after accounting for the addi-
tional computational cost, does not offer any significant improvement over the noncentred algorithm. Finally,
the HFI method with M = 40 paired with the integration by parts provide a reasonable approximation to
the posterior marginal densities and, in terms of computational performance, exhibits slightly larger adjusted
ESS than the noncentred algorithm. The results were robust in changes in parameter prior distributions.
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Figure 5: The DWELL diffusion model with n = 1000 simulated data points. True values are (ρ,µ,σ) = (0.1, 2, 1/2).
Autocorrelations are reported after a burn in of 5000 iterations. Posterior density estimates using EMCMC3 (noncentred)
and HFI algorithms for (g) ρ, (h) µ and (i) σ.
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Method Parameter λ− 1 Imp. points Mean Std. dev. ESSad j ESS KS Time Correlation matrix

Exact (noncentred) ρ 6.028 0.089 0.010 1.699 24.244 14.270 1.000 0.469 0.383
µ 2.023 0.160 1.756 25.053 1.000 0.029
σ 0.495 0.012 2.449 34.947 1.000

Exact (original) ρ 5 10.472 1.093 0.011 0.088 1.966 22.286 1.000 0.433 0.359
µ 7.631 1.136 0.181 4.030 1.000 -0.003
σ 1.640 0.020 0.309 6.896 1.000

Exact (original) ρ 10 15.437 1.093 0.011 0.068 2.109 31.063 1.000 0.475 0.338
µ 7.553 1.197 0.133 4.132 1.000 -0.033
σ 1.641 0.020 0.305 9.459 1.000

Exact (original) ρ 20 25.474 1.093 0.012 0.050 2.459 48.714 1.000 0.502 0.334
µ 7.611 1.276 0.094 4.574 1.000 -0.011
σ 1.641 0.020 0.270 13.142 1.000

Exact (interweaved) ρ 0 5.978 0.089 0.011 1.451 24.060 16.581 1.000 0.488 0.353
µ 2.019 0.163 1.587 26.322 1.000 0.005
σ 0.495 0.012 2.458 40.757 1.000

HFI-40 ρ 40.000 0.090 0.011 3.337 73.816 0.052 22.123 1.000 0.472 0.386
µ 2.029 0.161 3.631 80.322 0.186 1.000 0.026
σ 0.494 0.012 3.594 79.502 < 0.001 1.000

HFI-60 ρ 60.000 0.090 0.011 2.296 72.493 0.033 31.572 1.000 0.470 0.362
µ 2.026 0.163 2.571 81.187 0.011 1.000 0.016
σ 0.494 0.012 2.622 82.772 0.107 1.000

HFI-20 (int-by-parts) ρ 20.000 0.089 0.010 6.367 72.584 0.035 11.400 1.000 0.474 0.387
µ 2.024 0.163 7.026 80.104 0.258 1.000 0.022
σ 0.495 0.012 7.166 81.695 0.005 1.000

HFI-40 (int-by-parts) ρ 40.000 0.089 0.010 3.409 74.472 0.079 21.848 1.000 0.467 0.376
µ 2.023 0.160 3.916 85.557 0.694 1.000 0.006
σ 0.495 0.012 3.796 82.930 0.294 1.000

Table 2: The DWELL diffusion model with n= 1000 simulated data points. True values are (ρ,µ,σ) = (0.1, 2, 1/2). Summaries of exact and approximate posterior distributions.
Statistics are reported after a burn-in period of 5000 iterations. The ESS column shows the effective sample size of each chain per 1000 iterations. The Time column shows the
time (in seconds) required for 1000 iterations of each chain. The adjusted effective sample size is shown in column ESSad j . Each entry of the KS column shows the p-value for the
Kolmogorov-Smirnov test with null hypothesis that draws from the marginal distributions of HFI and exact algorithm (noncentred) come from the same distribution.
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6 Diffusion observed with error

The methodology described so far can be easily extended to account for cases where the diffusion is not
directly observed. We assume that the observations inform only indirectly about the value of the process (1)
at discrete times t i , i = 0,1, . . . , n, according to the following observation equation

Yt i
∼ q(. | Vt i

,τ), (22)

where Y := {Yt0
, Yt1

, . . . , Ytn
} are conditionally independent given V = {Vt0

, Vt1
, . . . , Vtn

}, and q is a known
density function parametrised by an unknown parameter τ.

The EDA described in Section 3.2 is not appropriate anymore since the end points Vt i
are not directly

observed. On the other hand, Theorem 1 can be used to design an augmentation scheme where apart from
the auxiliary variables involved in EDA, the latent points V are imputed as well. A direct application of Bayes’
theorem yields that inference about parameters and latent points must be based upon

π(V,θ ,τ{S(X̃ i), L̃i , 1≤ i ≤ n} | Y )∝

π(θ ,τ)π(V, {S(X̃ i), L̃i , 1≤ i ≤ n} | θ)π(Vt0
| θ)

n
∏

i=0

q(Yt i
| Vt i

,τ)
(23)

where the second term is obtained directly from Theorem 1, π(. | θ) is a prior density function for the initial
point of the diffusion process Vt0

and where potentially a joint prior is specified for (θ ,τ). As before, a direct
simplification is available when the EA1 can be applied to simulate from V .

A simple scheme for simulating from (23) is by a component-wise updating algorithm. {S(X̃ i), L̃i , 1≤ i ≤

n} and θ are simulated conditionally on V and τ, using any of the EMCMC schemes we have proposed, and
subsequently V and τ conditionally on {S(X̃ i), L̃i , 1≤ i ≤ n} and θ according to the conditional derived from
(23). When π(θ ,τ) = π(θ)π(τ), τ is conditionally independent from {S(X̃ i), L̃i , 1 ≤ i ≤ n} and θ given V ,
and in many cases it might have a conditional density which can be easily simulated. Simulation of the latent
points V can be done with various ways of differing intelligence. The simplest approach is to update them
one-at-a-time (an approach often called single-site updating) according to their conditional density. Such
schemes for time series are known to be in general problematic (see for example Pitt and Shephard, 1999)
especially when the latent process exhibits high persistence and the observations are not very informative
about the latent points (see also Papaspiliopoulos et al., 2007). In the example we consider below we adopt
this simplistic approach since it works quite well. In applications where the process V exhibits very high
persistence a joint update of the endpoints can be done using a Metropolis-adjusted Langevin algorithm, or
more general version of such algorithms, discussed for example in Girolami et al. (2011). Other possibility
is to resort to an overlapping block scheme, as for example in Pitt and Shephard (1999); Golightly and
Wilkinson (2008).

6.1 An illustration

We illustrate the performance of the methods using the DWELL model, after adding to the previous observa-
tions a Gaussian error with mean 0 and variance τ2 = 1/4 (Figure 3c). We have assigned the same priors for
the diffusion parameters as in the previous example, and an improper prior proportional to 1/τ for τ. In view
of the poor performance of the exact methods under the original parametrisation, we only employ EMCMC
under the noncentred parametrisation along with the HFI scheme with increasing values of M = 5,10,20,40.
The algorithms are run for 105 iterations and the MCMC outputs are thinned every 10 iterations. Figure 6
presents trace and autocorrelation plots for all parameters along with the marginal posterior density esti-
mates. It is interesting to notice that the presence of noise in the observations seems to aid the aproximation
of the HFI methods, since the posterior densities do not change significantly as M increases, and seem to
provide a reasonable approximation to the exact ones.
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Figure 6: The DWELL diffusion model observed with error with n = 1000 simulated data points. True values are (ρ,µ,σ,τ) = (1/2, 1, 1/2, 1/2). The outputs of the MCMC chains
are subsampled every 10 iterations. Trace plots (top row) of output from exact (noncentred) algorithm. Autocorrelations are reported after a burn in of 5000 iterations. Posterior
density estimates using EMCMC3 (noncentred) and HFI algorithms for (g) ρ, (h) µ, (i) σ, and (j) τ. In (g)-(i) we superimpose the posterior density obtained when the same
process is directly observed.
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7 Discussion

We have developed exact data augmentation methods for discretely directly and indirectly observed diffu-
sions. We have established the precise connection between this paradigm and the best existing alternative
method when the variance-stabilizing transformation can be performed, the irreducible HFI. We have also
pointed out an intriguing connection between exact and approximate methods: the degree of freedom ren-
dered by the Poisson sampling rate. On going work involves the rigorous proof of the effect of the auxiliary
Poisson sampling. The auxiliary sampling can be seen as a variance reduction scheme. In general, there
is a large scope for investigating other such schemes both for EDA and HFI. In this article we have already
demonstrated the effect of performing integration by parts where possible to the efficiency of MCMC sam-
pling.

The extension of these methods outside the class of processes prescribed by the current version of EA3
is definitely an exciting direction. Another direction of interest for future research is to explore further
the connection between unbiased estimation of transition density and MCMC. There is a large and growing
literature which develops MCMC algorithms for models with intractable likelihoods using unbiased estimators
thereof; see for example Andrieu and Roberts (2009); Andrieu et al. (2010). The class of diffusions where
such estimators can be obtained is much larger than that simulated by EA3, see for example Section 4.6 of
Papaspiliopoulos (2011).

There exists available software for implementing all the methods in this paper, which is available on
request by the authors.
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8 Appendix

Proof of Lemma 2

Proof. Let L(t)
θ

be the measure of a homogeneous Poisson process of intensity r( L̃;θ) on [0, t] × [0,1].
Expression (16) is derived by writing the density of the accepted random variables ( L̃, X̃ ,Φ) with respect to
the law of the proposed M(t)×L(t)

θ
,

π( L̃, X̃ ,Φ | v, w,θ) =
1

a(x , y, t,θ)

κ
∏

j=1

I

�

1

r( L̃;θ)
φ

¨

X̃ψ j
+

�

1−
ψ j

t

�

x(θ2) +
ψ j

t
y(θ2);θ

«

< u j

�

,

and by invoking a change of measure from the law of a Poisson process of intensity r( L̃;θ) to the law of
one of intensity λ, thus ensuring a parameter-independent dominating measure. Finally, integrating out the
marks Υ = {u j , 1≤ j ≤ κ}, we obtain expression (16).

Proof of Theorem 1
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Proof. The factorization of the density in the three terms is elementary. For any two fixed points x and y ,
taking expectations on both sides of (6) with respect toW(t ,x ,y)

θ
we derive the fundamental identity

p̃t(x , y;θ) =N d
t

�

y − x
�

exp
�

H(y;θ)− H(x;θ)− l(θ)t
	

a(x , y, t,θ), (24)

which combined with (5) gives a(x , y, t,θ) as a function of pt(Vt i−1
, Vt i

;θ). Combining this with Lemma 2
yields the expression.

It remains to show that (11) can be obtained by integrating out the auxiliary variables and condi-
tioning on the data. However, this is trivial since by taking expectations w.r.t the dominating measure

⊗n
i=1

�

M(∆t i) ×P
(∆t i)

λ

�

we obtain the marginal π(θ)
∏n

i=1 p∆t i
(Vt i−1

, Vt i
;θ) from which (11) follows as a con-

ditional.

Proof of Theorem 2

Proof. For notational simplicity, we define K(V,θ) to be the following deterministic function of observations
V and θ :

exp
�

H{xn(θ2);θ} − H{x0(θ2);θ} − l(θ)(tn− t0)
	

n
∏

i=1

�

�

�det
�

σ−1(Vt i
;θ2)

�

�

�

�N d
∆t i

�

x i(θ2)− x i−1(θ2)
	

. (25)

The joint posterior density of θ and imputed data
¦

L̃i , X̃ i ,Ψi , 1≤ i ≤ n
©

is given (up to a constant) in expres-
sion (17). Integrating out the Poisson processes is easily done by first integrating out the coordinates and
then the number of Poisson points. Therefore, integrating out Ψi =

¦

ψi, j, 1≤ j ≤ κi

©

, 1≤ i ≤ n, we obtain

π(θ)K(V,θ)exp

 

−

n
∑

i=1

�

r( L̃i;θ)− λ
�

∆t i

!

n
∏

i=1

(

1

λ∆t i

∫ ∆t i

0

�

r( L̃i;θ)−φ
¦

gθ (X̃ i,s);θ
©�

ds

)κi

.

Integrating out the Poisson points yields which, by integrating out the Poisson points, yields the posterior
density of θ and

¦

L̃i , X̃ i , 1≤ i ≤ n
©

with respect to Lebp ⊗n
i=1M

(∆t i), as

π(θ)K(V,θ)exp

 

−

n
∑

i=1

�

r( L̃i;θ)−λ
�

∆t i

!

×

n
∏

i=1

exp

(

λ∆t i





1

λ∆t i

∫ ∆t i

0

�

r( L̃i;θ)−φ
¦

gθ (X̃ i,s);θ
©�

ds− 1





)

= π(θ)K(V,θ)exp

(

−

n
∑

i=1

∫ ∆t i

0

φ
¦

gθ (X̃ i,s);θ
©

ds

)

.

Given that the construction ofM(∆t i), we obtain that by integrating out the layers, we obtain the joint density
of θ and

¦

X̃ i , 1≤ i ≤ n
©

with respect to Lebp ⊗n
i=1W

(∆t i ,0,0) which coincides with the posterior density (13)
targeted by HFI.

Proof of Theorem 3

Proof. For a pair of observations (vt i−1
, vt i
), the joint density of the accepted elements of EA3 ( L̃i , X̃ i , Ψ̃i)

conditionally on Vt i−1
, Vt i

,θ is given by

∏∞

j=1

n

1− I
�

ξ̃i, j < r( L̃i;θ)
�

φ
n

gθ (X̃ i,ψi, j
);θ
o

/r( L̃i;θ)
o

a(x i−1(θ2), x i(θ2),∆t i ,θ)
,

with respect to the product measure M(∆t i) × L̃(∆t i), where L̃(t) is the measure of a unit rate Poisson process
on [0, t]× (0,∞). Using the conditional independence of the latent data given V and θ ,

πnc({ L̃i, X̃ i , Ψ̃i , 1 ≤ i ≤ n} | V,θ) =
n
∏

i=1

πnc( L̃i, X̃ i , Ψ̃i | Vt i−1
, Vt i

,θ),

and the proof follows along the same lines as Theorem 1.
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