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Abstract: Orthogonal Matching Pursuit (OMP) has long beenswered a powerful heuristic for
attacking compressive sensing problems; howeethéoretical development is, unfortunately, sormawh
lacking. This paper presents an improved Restritgethetry Property (RIP) based performance guaeante
for T-sparse signal reconstruction that asymptoticgtigreaches the conjectured lower bound given in
Davenport et al. We also further extend the stétr@-art by deriving reconstruction error bounds the
case of general non-sparse signals subjected teureaent noise. We then generalize our resultBeo t
case of K-fold Orthogonal Matching Pursuit (KOMR)e finish by presenting an empirical analysis
suggesting that OMP and KOMP outperform other ca®give sensing algorithms in average case
scenarios. This turns out to be quite surprisimgesiRIP analysis (i.e. worst case scenario) sugdbat
these matching pursuits should perform roughly 3%mes worse than convex optimization, CoSAMP,
and lterative Thresholding.

Keywords: compressive sensing, sparse approximation, ortredgoatching pursuit, restricted isometry
property, greedy algorithms, error bounds.

1. Introduction

During the last decade, Orthogonal Matching PurDMP) has become an important component of the
toolbox of any mathematician or engineer workinghe field of compressive sensing (CS). The alpaonit
originated as a statistical method for projectingtirdimensional data onto interesting lower diriensl
spaces [14]. It was then introduced to the spgspeoaimation world in its non-orthogonal form Matcg
Pursuit by Mallat et al. in [22]. Today, OMP is ighly celebrated algorithm with applications in riezd
imaging [18],[21], synthetic aperture radar (SAR), [wireless multi-path channel estimation [1], and
others. For the unfamiliar reader, OMP is a gresdthrnative to convex optimization (see [6] and]j1Bat
solves the under-determined linear equation:

y = dx (1.1)

where the vectox is a sparse (or highly compressible) signal, ttarim® is a short, fat measurement
matrix, and the vectoy is a small set of linear measurements of the &kighhile being a powerful
heuristic, OMP suffers from a lack of a decent tedoal analysis. Up until recently, only sparse
approximation performance guarantees have beewnedefor OMP [15],[27]. These results depend on the
coherence (or cumulative coherence) of the matrixFurthermore, these results only bound the error
lly — ¥, wherej is an estimate, produced by OMP, which has a spagresentation in the column span
of ®. In compressive sensing, we are primarily conagmaigh bounds orffx — ¥||,, which do not trivially
follow from bounds odly — ¥||,.



As stated earlier, OMP is an alternative to coneptimization that solves the basic CS problem ®x.
While convex programs tend to be slow, their sohai enjoy powerful error bounds based on a resttict
isometry property (RIP) [7]. Needell and Tropp [d3}er showed that CoOSAMP, an algorithm that is
inherently similar to OMP, does possess similar-BdBed guarantees. The high-level reasoning ferishi
that, like convex programming, CoSAMP works glopdly simultaneously trying to identify all the
correct non-zero entries of a sparse vegtat each iteration. On the other hand, OMP worksllg by
attempting to select one non-zero entrycgber iteration. In [11], an RIP-based conditiordéesived that
guarantees OMP’s ability to recovefTasparse vector. Also, a lower bound on the bessiplesRIP for
OMP is suggested without proof. The main resultldf is slightly tightened in [18]. The paper [1&ffers

an asymptotic improvement over [18], but this coraethe expense of additional coherency assumptions
and the incorporation of large scaling constankss Work will expand and improve the results in][&hd
[18] without the additional conditions imposed i9]. In Section 3, we first derive a strong RIP-dxhs
result for strictlyT-sparse signals that asymptotically approachekther bound conjectured in [11]. Then
we deduce an error bound ¢m — %||, that describes OMP’s ability to estimate non-spaignals in the
presence of measurement noise. In Section 4, wergkze these results to the case of K-fold Ortimad
Matching Pursuit (KOMP) wher& entries ofx are recovered at every iteration. Section 5 festn
empirical comparison of OMP, KOMP, and other pop@& algorithms. We will show that despite the
fact that the RIP implies that OMP perforsfg times worse than convex optimization, OMP and KOMP
still outperform other methods in average case aiesn

2. Prdiminaries

Throughout this paper, we will employ the followingtational conventions. We lete CV denote a signal
of interest. We say that is T-sparse if it consists of at mdBtnon-zero components. More formally, we
can write thaf|x||, = T where||-||, denotes the quasi-norm that counts the numbeoiefzero entries in
its argument. We typically let denote the support af We define the?,, norm of a signat as follows:

N 1/p
el = Y bel? ] 0<p<o
Ve p (2.1)

llxllo = 1r;nnagglenl p=o

It is assumed that we do not have direct accefisetgignalx. Instead, we have access to a sedck N
linear measurements eofthat take the form:

y=®x (2.2)
where® € C"*V is a measurement matrix and the signa C” contains the actual measurements. Our
goal is to solve fox given knowledge of onlgp andy. In practical applicationsp is often either a random
sub-Gaussian matrix or a sub-matrix of a discretgrier transform matrix [25]; however, in theody,can
be any matrix provided it satisfies a restrictemigtry property, which is defined as follows:

Definition 1: A measurement matrisp satisfies a restricted isometry property (RIP)oaderT if there
exists a constartt < §; < 1 such that

A =8plxll3 < llPxllf < (1 + 5p)llxlI3 (2.3)
for all signalsx that areT-sparse. The constafit is called the restricted isometry number of ofler

An equivalent formulation of the RIP is that foreey indexing sei of sizeT, we have that th& x T sub-
matrix ®, generated by selecting tiiecolumns ofd corresponding ta, satisfies:

1 — 67 < Eigenvalues(®,®,) < 1+ 67 (2.4)



It is immediately clear that for a given measuretmeatrix @, the restricted isometry numbefs form an

increasing sequence. Furthermore, Needell et 3].4Row that the growth of these numbers must be su
linear, i.e.

5p < T6,. (2.5)

The kernel of the measurement matdixinduces the quotient spa€® /ker(®) which consists of the
cosets(x) = {u € CN|dx = du}. It is a straight-forward exercise to show that,if < 1, then each coset

can contain at most orfesparse signal. Thus, the generally underdetermsgstem (2.2) is well-defined
if x isT-sparse and,; < 1.

Naive methods for solving (2.2) involve slow condiworial searches over all possitiex T submatrices
of ®. This becomes an intractable problem for lak¥geCandes [7] showed that under the tighter restict
isometry conditiond,; < +/2 — 1, the system (2.2) can be solved via the conveixnigdtion problem:

X = argmin||u||; subjectto du =y (2.6)
u

If x is notT-sparse or is corrupted by noise, then the comstimi(2.6) can be formulated §$u — y||, <

€ for some parameter> 0. In this case it can be shown that the estimiatatisfied an error bound of the
form:

llx = 21, < 0llx — x| )+0<M) @.7)
2 = T2 \/T

The downside to thé; minimization problem shown in (2.6) is that it sum polynomial time. There are
faster algorithms that solve the same problem.

One classical greedy algorithm that solves the cesgive sensing problem is Orthogonal Matching
Pursuit (OMP). The OMP algorithm, which is also Wwmoas Forward Stepwise Regression in the data
mining and statistical learning communities [1g]shown below.

TABLE |
ORTHOGONALMATCHING PURSUIT
INPUTS: Observationy = dx
Measurement Matrixp
Number of IterationT (typically equal to sparsity leve
OUTPUTS:  T-sparse estimate of x.
Residual signat;.
Set of selected support indicés.
PROCEDURE:
-Initialize the residuat, = y and indexing set, = @.
-Fort from 1 toT

-Find the column ofb that maximizes the correlation with the

residualr, i.e. let

Ay = argmax| ;1|
i

whereg; denotes théth column ofd.
-SetA, = Ay U {4}
-Let p, denote the projection gf onto the columns b indexed by

A e,

pe = Pp, Py

-Define the new residual as=y — p;.

-Generate the estimex of x as follows

~__{¢XTy i€A;
0 i¢A;

L




A popular generalization of Orthogonal Matching fiitris K-fold Orthogonal Matching Pursuit (KOMP)
[15]. This procedure is essentially identical to PMxcept for the fact th&t columns ofd are selected per
iteration. Thus, at every step, KOMP incrementsintdexing set according to the rulg = A,_, U L;
wherelL, consists of the indices corresponding to khéargest values ofg;1.|. Observe that OMP is a
special case of KOMP wheti = 1. While clearly faster than OMP, a surprising résilthis paper is that
KOMP can sometimes be more accurate than OMP ds wel

Up until recently, the theoretical development afHogonal Matching Pursuit has been limited. In][E6
non-uniform “per signal” performance guarantee, cihiassumes a Gaussian random measurement
ensemble, is derived. Other works, such as [15],[@E., develop results based on dictionary calee
and/or cumulative coherence. The seminal paperaifid] [23] demonstrate that the restricted isometry
property can be used in the analysis of the relgteddy algorithms lIterative Thresholding and CoSAM
(Compressive Sensing Matching Pursuit). These wonkdivated the theoretical thrust to determine
whether OMP enjoys an RIP-based performance gusrag well. In [11], Davenport et al. demonstrate
that OMP can successfully recover divgparse signal provided that the measurement msdtigfies the
RIP:

§p < (2.8)

1
3VT
The authors further allude to the unachievable tdveainds,~1/+/T. In [18], Liu et al. improve this result
slightly and obtain:

1
6T+1 < m. (2.9)

Along these same lines, Lipshitz [19] shows thahwidditional stringent dictionary coherence caists,
the result can be asymptotically improved to:

c
Scrrz < Toz" (2.10)

for some very large constafit-2 x 10° and some very small constant10~¢. Unfortunately, because of
the magnitudes of these constants, the benefihisfresult will be very difficult to realize in potcal
compressive sensing problems.

In Section 3, we improve upon the results (2.8) 42®) and show, without additional coherence
assumptions, that OMP can recover @rgparse signal provided

1

Opp1 < ——, 2.11
T+1 1 +\/T ( )
which is a highly near-optimal figure. In additiome show that for a signal that is notT-sparse and/or

has measurements that are corrupted by noise, GM&btain an estimat& of x satisfying:

llx = %ll, < O(VT)llx = xll2 + O(llx = x7ll,) + O(T)lIwll, (2.12)

wherew represents the measurement noise apds the optimall-sparse estimate af i.e.x truncated to

its T strongest entries. In Section 4, we extend theselts to the case of KOMP and compare the
theoretical performance of OMP and KOMP. In patdcuwe illustrate situations in which KOMP
performs better than OMP. In Section 5, we augntbist discussion by using empirical methods to
compare OMP, KOMP, and the various other populaal@8rithms of the day.



3. Regular Orthogonal M atching Pur suit
We begin by citing two lemmas that will be usedesgedly throughout this analysis:
Lemma 1. Let x be aT-sparse signal with support skt Let A be any subset df1,2,::-, N} such that
ANA=0. Let®d be a measurement matrix with restricted isometmlmersé,. Then the following two
properties are true:

lPAPxll, = (1 = 67)lIx]l; (3.1)
and

|PAPxllz < Eropaflixl. (3.2)

Lemma 2: Let ® be a measurement matrix with restricted isomatimlmerd,. Letx be any signal. Then

1
loxl < T+ 67 (el + = el ). (3:3)

Both lemmas are proved in [23]. The first lemmarnsimmediate consequence of the fact thas nearly
unitary with respect td-sparse signals. The second lemma extends thétedtisometry energy bounds
to non-sparse signals. With these lemmas in mirelare now prepared to develop a sufficient cormlitio
under which Orthogonal Matching Pursuit will recoe@yT-sparse signal from its measurements:

Theorem 1: Suppose thab is a measurement matrix whose RIP constant sisfi

1
O <——.
T+1 1+\/T

Then, OMP will recover any-sparse signal from its measuremehis

(3.4)

Proof. Let x be anyT-sparse signal with suppaft At iterationt, suppose that OMP has only selected
correct atoms. Let, be the current residual. Then= &c, wherec, is also supported ah. Now observe
that, by Lemma 1 and the fact that the RIP constarg increasing if,

lPaPxll2 = (1 = 67)llecllz = (1 = Sraa)llcell. (3.5)
This implies that
930l > gl (3.6)
Now leti be any element not i. Then observe that
[@f®cel, = log@cl, < Sraslicell,. 3.7)
This implies that
[@fc@c]|,, = max||@fy®el| | < Sraallcellz. (3.8)

OMP will recover the next atom correctly if

PrPeeller 2 || @pcPee| (3.9)



which will happen if

(1= 6741)
——leell, = & cello- 3.10
NG lleellz = Srpqlleellz (3.10)

This is equivalent to (3.4). a

This sufficient condition is significantly strongtran the one demonstrated in [11]. In fact, i@sy close
to the unachievable bourgv/T suggested in the same work. Thus, our resuligisiyinear optimal.

We next extend this result to more general sigr@dstainly, ifx is notT-sparse, then it is impossible for
OMP to recovew perfectly inT iterations. However, we are interested in deteimgitnow close OMP’S-
term approximation error is to the optintaterm representation, of x. The following theorem answers
this precise question:

Theorem 2: Let ® be a measurement matrix that satisfies the RIRishio (3.4). Letx € CV be any signal
with optimal T-term approximationc;. Let A = supp(xr) and letx,c = x — xy. Suppose OMP has noisy
measurements of the forjn= dx + w = dx; + e wheree = dx,c + w. Then, afterT iterations, OMP
will recover an estimat# of x that satisfies:

¢:i(T)
VT

where, for reasonable RIP numbetg(T) grows asymptotically like/T.

llx = %llz < (1 + €. (D)llx — x7ll, + llx = xrlly + G(DIwl, (3.11)

Proof. First suppose that at iterationOMP has selected only atoms indexed.iit iterationt + 1, OMP
will select another atom frorh provided the greedy selection condition

@57,

1acTtll (3.12)
I lleo

is satisfied. Now rewrite the residual as= ®,(x; — a,) + e. Here,a, is the coefficient vector of the
projection ofy onto the currently selected atoms. Then one candthe numerator of (3.12) by:

[@rerell < | @pc®alar — a) + Djcel| (3.13)
< [@pc®@aler = adll,, + [|@jcell,, (3.14)

< SrpallCer —adllz + llell, (3.15)

On the other hand, the denominator can be boundedifelow by:
[Prrelle = ! | DTl (3.16)
Tellowo =2 —F—= T .
At \/17 Ath2

=7 [@rPACEr — ap) + Pjcel, (3.17)

> |PAPA(xr — a)ll; — I Pjell, (3.18)

VT
(1—-6741) 1+6
2 — e —adll = |=—lellz. (3:19)

A sufficient condition for the next atom to be stésl fromA is that the numerator is less than the
denominator. This is guaranteed if



(1 —8744) 1+6
SraallCer = adllz + llell, < —==llGxr = adllz = |——=llll. (3.20)

We can rearrange terms to obtain:

VT + 1+ 6744
1 - 6T+1(1 + \/T)

Now lett* denote the first iteration where (3.21) does rwdtl hBy definition of OMP % = a;. We have:

llxr — a,ll; > llell>. (3.21)

lx —2ll, < llar = o + [|xrel, (3.22)

1
< ——— 1P Cer = DIz + [|xel], (3.23)
1—=8,r

whereA’ = A U supp (%) which has cardinality at mo2f'. It is possible to further bound the left handesid
by:

19 Ger = ) + el + llel
e —%ll, <——— W = [lepel] (3.24)

< |Ppr(xr — ae) +ell, + llell,

+ 3.25
(1 (SZT ||xTC||2 ( )
&, (xp —ag)|l, + 2
< ” A (xT a; )“2 ”6"2 "xTC”Z (326)

V1=
J1+6 2lell
< ==y — apll; + ——==+||xsc|, (3.27)

_\/1_52T 1= 8,1

where the second inequality comes from the fact thaOMP, the residual is always decreasing in
magnitude regardless whether the selected atomBameA or not. Since (3.21) does not hold dr it
follows that:

Il — %I, < /(D lell, + [|xre]], (3.28)

where

c'(T)=<‘/1+5T><ﬁ+‘/1+5”1>+ 2 (3.29)
! JT=07) \1 = 6;,(1+VT))  JT=0,r '

We further boundle||, by:

llell, = [|®xpc +wl, (3.30)
< || @xpe|| +lIwll, (3.31)

1
< VTH 57 ([lepell, +ﬁ|IxTc||1) +llwll, (3.32)

Finally, letC;(T) = /1 + 6:C{(T) to obtain that

Callxrell,

+Cyllw (3.33)
T+ Gllwl,

=%l < @+ el +



C(Dllx = x7lly
VT

as was to be shown. ]

= (1+ G(M)llx = xrll, + + G (Dwll (3.34)

The fact that, (T) grows asymptotically like/T should be no surprise: it is already well know#][that,
under mild coherence constraints, the signal olagiemns obey the bound:

ly =l < O(T)lly = yrll. (3.35)

wherey = &x, § = ®%, andyy is the optimal'-term representation of using the columns ab. We note
that it is not necessarily the case that= dx;.

The novelty of our result is that we have derivedearor bound on the signal itself, not simply ¢ i
measurements. In a sparse approximation problemewhis the signal that we're trying to estimate using
the columns ofd, then a bound such as (3.35) is sufficient. Howeire compressive sensing, [ify —
¥, = 0, then all that we may conclude is that ¥ + x, wherex, € ker(®). If the sparsityl' is not
sufficiently small, therx, may be a non-zero vector and our estimate mayuiie tpaccurate. Thus, we
claim that the result in Theorem 2 is more powettiah the sparse approximation results of the past.

4. K-fold Orthogonal M atching Pur suit

A popular extension of Orthogonal Matching Purssitk-fold Orthogonal Matching Pursuit (KOMP).
KOMP is almost identical to OMP except for the fHtat K atoms are selected per iteration instead of 1.
KOMP has two main advantages over OMP which areesdmat mutually exclusive. The first one is
speed: Given &-sparse signal, one may use KOMP to recover theabig T /K iterations versus the usual
T iterations. This yields a significant reductionrim-time especially since the number of least-segia
projections has been cut down by a factoK ofJnfortunately, for accuracy, this method requitest allK
atoms selected per iteration be correct. Very fesasurement matrices enjoy enough coherence to allow
for the correct selection of so many atoms withemrhe sort of re-orthogonalization. As a result,clveose

to exploit the second mutually exclusive advantafjgkOMP over OMP: Runnin@ iterations of KOMP
will select a sef’ of KT indices where, with good probability, our signaigoport sef will be contained

in S'. Thus, we effectively use KOMP to narrow down thlé possible signal indices to the t&(F
candidates. Then, assumirg is not too large, we can perform a least-squanegegtion of our
measurements onto the span of the selecfedolumns of® in order to identify the exact support set and
recover the signal. All of this can be done in mmgt commensurate to that achievable Witherations of
OMP.

To analyze the performance of KOMP, we first naeddfine the top-K norm:

Definition 2: Let x be a signal with sorted entries,), x(), -+, vy Where x| = |xz)| = -+ = x|
Then the top-K norm is defined to be:

Ixltopic = [l (o Xy X)), =

K
> el (4.2)
k=1

In essence, the top-K norm of a vector is¢h@orm of its topK entries. It is not difficult to show that this
is a well-defined norm orC".

We begin by examining KOMP’s ability to correctlglact all the correct non-zero entries of -gparse
signal in addition to at mo$§K — 1)T incorrect entries:



Theorem 3: Let ® be a measurement matrix satisfying

1

1) _ < —
T+(K-2)t+K T—t+1 (42)
I+ =%

for each iteratiort = 1,---,T. Assuming also thali; < 1, then KOMP will recover any-sparse signat
from its measurements.

Proof. Observe first that KOMP will select all the carreentries inT iterations if it selects at least one
correct entry per iteration. Assume that aftdterations, KOMP has selected at leastorrect indices
specified by the set, and no more thatk — 1)t incorrect indices specified by the $t We define the
setA; = (AU B.)\4;, which has no more thah+ (K — 2)t elements. Defining;, as in Theorem 1, we
see that, € colspan(CDAt). As a result, a sufficient condition to ensuret tk@OMP selects at least one
correct index at iteration+ 1 is that

|orgoel  <loiocl,, (43)
We can find an upper bound on the left hand sidelbsvs:
. = max || Pz Dc
||(DAC(DC1_- BQAE” B t”Z (44)
t TopK
|Bl=K
< 5T+(1(—2)t+1(||ct||2- (4.5)
We next calculate a lower bound on the right hade: s
. Py dc
"q’/\cq’ct”mpx > M (4.6)
JT-t+1)/K
> 6T+(K—2)t”Ct”2 @7
JT—-t+1)/K
> 5T+(K—2)t+K||Ct||2 4.8)

- JT=-t+1/K

From these bounds, one can use simple algebraote stat (4.2) is a sufficient condition for (4.3ince
6xr < 1, a simple least squares projection onto the secvlumns ofb will recover the desired signal
exactly. o

For the special cagé = 2, (4.2) takes the form:

1
Opyy <——————. 4.9
T+2 1 -|—\/T_/2 ( )

For relatively largeT, 6;,, = 814, and, therefore, we see that 2-OMP enjoys a suarifly stronger
performance guarantee than regular OMP. This shaalkie intuitive sense since we are allowing for the
selection of up t@ incorrect atoms. As long @, < 1 (which is guaranteed by (4.9) f6r> 1), the least
squares projection of the measuremeants ®x onto the space of selected columns will yield gdor all
incorrectly chosen entries. In general, the perforce of KOMP will improve for increasing until the
final least squares projection becomes unstabléhigipoint, performance will degrade rapidly.

We can extend the KOMP result to general signaghe following Theorem:



Theorem 4: Let ® be a measurement matrix that satisfies the RIRishio (4.2). Letx € CV be any signal
with optimal T-term approximationc;. Let A = supp(x;) and letx,c = x — xy. Suppose OMP has noisy
measurements of the forjm= ®x + w = dx; + e wheree = dx,c + w. Then, aftefT iterations, KOMP
will recover aKT-sparse estimate of x that satisfies:

Cx(T
llc = &ll2 < (1 + Ce (D) llx — 27l + %T) llx = xrlly + Ce(DlIwll, (4.10)

where, for reasonable RIP numbefs(T) grows asymptotically likg/T /K.

Proof. The argument is very similar in nature to thafTimorem 2. We retain the notation used in the
proofs of Theorem 2 and Theorem 3. As before, wipgse that at iterationh OMP has selected at least
one atom indexed by per iteration. At iteratiom + 1, OMP will select at least one atom frénprovided
the greedy selection condition

@il

(4.11)

is satisfied wherd, = (A U B,)\A4; has no more thafi + (K — 2)t elements. Now rewrite the residual as
1y = @, (xr — a;) + e. We bound the numerator from below as follows:

= gg\)té”q);((pl\t(xT —a)+ e)llz

q)*cT' 412
leiendl,,, (4.12)
< o;d - + ®;
ggtgll 50, Cor — ), max|[jell, 4.13)
IBI=K |Bl=K
< STLK”xT_atHZ + 1+ &kllell, (4.14)
whereT, , =T + (K — 2)t + K. Next, we derive a lower bound for the denominator
i QL (Pp.(xp—a) +e
loxrell,,,. = [93,(0n,Cxr a0 + e} (4.15)
P JT =t+1/K
oh@a 0 a0, [@iel, 1o
JT—t+1)/K
Orollxr —acll, — |1+ 67, llell
- Ttk T tlhi2 Ttk 2 (417)
B JT—t+1)/K
Our bounds imply that a sufficient condition forX(#) is that
(T—t+1)/KJ1+ 6 + /1+5
\/ \/ K Tex (4.18)

llxr — acllz > llell.

1—6p,,(1+ JT =t +1)/K)

Now lett* denote the first iteration where this bound doashold. By definition of KOMP & = a;. We
have:

lx—%ll, =|xr—%+ xTC”z < lxr = %ll2 + ||xTc||2 (4.19)

1
S F—
V1= 6+

@47 Cer = )l + [Joeell, (4.20)



whereA’ = A U supp(%) which has cardinality at mog§K + 1)T. It is possible to further bound the left
hand side by:
|P A (xr — %) +ella + llell,

V1= 0wy

NPy G —ar) +ell; + llell,

lx —%ll, < + [lacpe]l, (4.21)

+ ||xrc 4.22
1—1 —6(K+1)T || T ||2 ( )
DO, r(xr —ap)ll, +2
< |® 4 Ger — ag)ll2 llell + ||xTc||2 (4.23)

V1= 6k+nr

/1 + 6y,
Tek 2|lell,

<y — apell; e + ||y (4.24)
J1- 5(K+1)T vV 1- 5(K+1)T 2
J1+6 2lell
< Ty — el + e + ||y (4.25)
v 1- 5(K+1)T v 1- 5(K+1)T ’

whereTy =T + (K — 2)T + K. The second inequality comes from the fact thaDMP, the residual is
always decreasing in magnitude regardless of wéichns are selected. Now let

CoT) = JT/KJ1+ 6+ 1+ 5TK. 4.26)

1-67,(1+/T/K)

Since||x; — a+|l, < C¢ (T)llell,, which follows from (4.18), we have that

lx — %[, < Cx(Dllell, + IIXTCII2 (4.27)
where
JI+6.. 2
Cp(T) = X—K_¢cy(T) + (4.28)

V1= 8w+nr V1= 8w+nr

We use our previous bound

1
llell, < T+ 55 (||xTc||2 o ||xTc||1> + Iwll, (4.29)
and the definitiorC, (T) = /1 + 6;Cx(T) to obtain:

Cillerell,

e =%l < (1+ Cl|acpe|, + + Cklwll (4.30)
Cx (T llx — x7|
< (1+ C(M)llx — x7ll; +%+6Kmnwuz (4.31)

as was to be shown. ]

We observe that the constaf{g(T) form a decreasing sequence with respedt,tahich suggests that the
errors||x — X||, decrease as we I&t increase. Of course, one may argue that sincedohk, X is KT-
sparse, and therefore, it is unfair to compare nsizactions using different values Bt As a result, we
will let X; denote the truncation @fto its topT values. It is fairly straight-forward to show theund



llx = %7 Il < 2llx = %l + llx — x|l (4.32)
which implies the following corollary.
Corollary 1: Let ® be a measurement matrix that satisfies the RIRsho (4.2). Then, for any signal
KOMP will return aKT-sparse estimaté whoseT-sparse truncatiofi; satisfies:

Cx(T)
VT

We can now make a comparison of OMP and KOMP bypaoing the constants; (T) agains2Cy (T) +
2. Assume for the moment that the restricted isoynetimbers obey, = §,#¢ for somef < 1. For

sparsity levell' = 100, g € {.3,.8,.95}, andd, = .00015, we calculated the above constants and plotted
them in Figure 1.

llx — %7 I, < (3 + ZCK(T))”x —xrll; + llx — xrlly + 2[wll> (4.33)

Theoretical Comparison of OMP and KOMP

©-2C,+2(B= 3)
&2C,+2(B=8)
4c2C,+2 (B = .95)
0.C,(B=.3)
-0-C, (= 8)

Constant CK(T)

-A:C, (B=.95)

Figure 1:Comparison of OMP and KOMP consta6{§T) and 2C(T) + 2.

In the case off =.3 andp = .8, we see that KOMP achieves better results than @MénkK = 9 and

K = 12 respectively. Eventually, when the RIP constaatssparsity levell00K become too large (as in
the caseB = .95), the constantC,(T) begins to increase rapidly. In this latter cas@M® does not
achieve a stronger error bound than OMP regardiégbe choice ofK. As we can see, selecting an
appropriatek can be challenging. K is selected too small, then KOMP’s performance gl suboptimal
when compared against OMP and KOMP with lai§eHowever, ifK is selected too large, then instability
may arise due to the fact that the underlying RtiRstants are becoming increasingly large as well.
Selecting the right value oK is, thus, somewhat of an art form: Intuition dedvfrom copious
experimentation is extremely helpful.

5. Experimental Results

An observation that one will quickly make regardicgmpressive sensing algorithms is that, in pregctic
they all work better than predicted by their resivectheoretical guarantees. In other words, tistricted
isometry property only affords relatively weak sci#int conditions specifying when some algorithnm ca



exactly recover any signal with a given numifeof non-zero entries. The reason for this is thERsR
provide worse case estimates that may not appéam of practice. In order to address this issuegchmu
work has been done in performing “average-caselyaes on compressive sensing algorithms (see [26],
[12], etc.). In these works, theoretical results abtained regarding the various algorithms' peréorce in
recovering commonplace sparse signals, e.g. withs§an or binary coefficients. For our purposes, we
will empirically perform a similar analysis by dgeing several experiments which are shown below.

In the first experiment, for every sparsity ledefrom 4 to 52 in increments of 4, the following tesas
repeated 100 times: A-sparse Gaussian signal of length 256 was geneaattdheasurements of the form
®x were collected where is a100 x 256 Gaussian random matrix (selected differently eticte).
Then the following algorithms were used to recave©OMP, 2-OMP, Hybrid 0.2-OMP CoSAMR [22],
CoSAMP?, lterative Thresholding [3],[8],[13], and Basis rBuit [5],[7],[9]. Both versions of CoSAMP
were run with 10 iterations. For Iterative Threstiof), the Hard Thresholding routine in the Sparsify
MATLAB package [4] was used with all parametersnigeselected optimally by the software. We used the
L1-Magic package [24] for Basis Pursuit with thdaidt settings. The two performance criteria evidda
were the probability of exact reconstruction (witli 1% tolerance for relative error) and the rustilots

of the results are shown below in Figure 2 and fe&du In terms of exact reconstruction probabilBgsis
Pursuit did slightly better than OMP. However, thedifications proposed in Section 2.2 came in quite
handy because 2-OMP and Hybrid 0.2 OMP both outpexd Basis Pursuit. Thus, the suggestion of
allowing multiple atoms to be selected per iteratizas exactly what was needed to give OMP the extra
boost to put it on top. CoSAMPerformed better than CoSAMRNd Iterative Thresholding fell roughly
in between in this particular experimental setupthWespect to runtime, all of the algorithms weery
fast with the exception of convex optimization. $aelgorithms took no more than a tenth of a setond
run whereag; minimization took about a half of a second. Theralle&eonclusion of this experiment is
that 2-OMP was the best overall performer.

Exact Reconstruction Probabilities for Compressive Sensing Algorithms
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Figure 2: Probability of exact reconstruction ofsparse signals using various compressive sensing
algorithms.

! Hybrid a-OMP is variation of KOMP where at iterationthe top (T — t + 1) atoms are selected. Thus,
it selects more atoms during earlier iterations femeer atoms in subsequent iterations.

2 CoSAMP, is a variation of regular CoOSAMRsee [22]) wherd’ atoms are selected per iteration as
opposed to the standazd.
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Figure 3: Runtimes of various compressive sensiggrdhms when recovering T-sparse signals.

Of course, the above experiment only compares @hews compressive sensing algorithms with resjgect
their abilities to recover sparse signals. In tea&trexperiment, the objective signals were notvadid to
strictly be sparse. Here, 20 instances of a sigrfdisngth 256 were generated with exponentiallyagéng
coefficients in random locations. The decay rates waven by |x(n)| < 0.9™. The signals were
reconstructed using the same algorithms and spapsitameters varying froff =4 to T =52 in
increments of four. Figure 4 shows the various ayer, reconstruction errors produced by these

algorithms.
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Figure 4: Average T-term reconstruction errors @covering signals with exponentially decaying d¢oieffits generated by the
various compressive sensing algorithms as a funaifdhe sparsity parameter T.



In this experiment, OMP and its variants outperfednthe other algorithms. In fact, tfieterm error
produced by 2-OMP is nearly identical to the optirfierm error up until around = 25. The L1-
minimization error converges to around 0.24 whetbastrue optimal error should converge to zero. An
interesting point to note is that all of the abareedy algorithms ultimately experience a suddesh an
significant breakdown in performance whg&nis taken too large. This is because of the inktatihat
arises from computing projections when the undegyiestricted isometry numbers approach unity. In
other words, the more vectors that are being pesekat any particular iteration, the greater tiséainility.
This makes algorithms such as lIterative Threshgléind CoSAMP, which process a large set of atoms
right from the start, highly susceptible to breakdoif care is not selected in choosing an appropria
sparsity levell. In these case§, becomes a highly sensitive parameter that carupbthe output very
suddenly and swiftly. On the other hand, OMP amd/driants are more robust with respect to tolegadi
large value off'. This is because these algorithms select no nmae & few atoms per iteration. Thus, any
instability that may result from a poor choice ofwill defer itself to later iterations. The firseweral
selected atoms will remain correct. As a resultprie observes instability beginning to developha t
matching pursuit, then he/she can backtrack a fesations and simply decide to stop there. Thisoisan
option with Iterative Thresholding and CoSAMP. Wittely, all of the greedy algorithms will experierec
breakdown in performance; however, OMP and itsavdsi are structured so that they can be stopped
before the resulting error grows out of control.

Overall, we see that OMP is an extremely powesdtflcient, and robust algorithm that receives mleds
credit than it deserves. It is significantly fastiean convex optimization techniques and is lessitiee to
errors in sparsity level estimates.

6. Conclusion

Convex optimization has long been considered the standard compressive sensing recovery algorithm.
Throughout the years, it has enjoyed significaebtktical development, putting it ahead of othetdia
algorithms, which up until recently, have been ladeas mere heuristics. The discovery of RIP-based
performance guarantees for globalized matchingyigrsuch as CoOSAMP and Iterative Thresholding has
prompted a landslide of theoretical research ini® ¢lass of algorithms. This paper presented npamal
RIP-based guarantees for the more localized OrtalgMatching Pursuit algorithm and the related
method K-fold Orthogonal Matching Pursuit. In adafit to deriving improved sufficient conditions
guaranteeing the recoverability of strictly spasggnals, we also proved reconstruction error bounds
general signals possibly corrupted by measurenm@aenWhile making significant contributions to OMP
theoretical development, we have failed to rigolpysrove that OMP performs better than convex
optimization, COSAMP, Iterative Thresholding, etich do not suffer from theT blow-up factor that
the latter algorithms successfully avoid. Thus, oray be led to believe that OMP is an inferior altipon.

Of course, the empirical evidence of Section 5 satg otherwise. In practice, OMP and KOMP often
outperform other algorithms in terms of accura@nwergence, and stability. A possible explanation f
this oxymoronic behavior is that RIP analysis cdass worst case scenarios. In other words, it ssipte

to construct “bad” signals that convex optimizatiwould recover more successfully than OMP. However,
if an average case metric is used to theoretiealjuate the wide suite of compressive sensingitthgas,

we are quite confident that OMP would rank verylwel
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