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Abstract: Orthogonal Matching Pursuit (OMP) has long been considered a powerful heuristic for 
attacking compressive sensing problems; however, its theoretical development is, unfortunately, somewhat 
lacking. This paper presents an improved Restricted Isometry Property (RIP) based performance guarantee 
for �-sparse signal reconstruction that asymptotically approaches the conjectured lower bound given in 
Davenport et al. We also further extend the state-of-the-art by deriving reconstruction error bounds for the 
case of general non-sparse signals subjected to measurement noise. We then generalize our results to the 
case of K-fold Orthogonal Matching Pursuit (KOMP). We finish by presenting an empirical analysis 
suggesting that OMP and KOMP outperform other compressive sensing algorithms in average case 
scenarios. This turns out to be quite surprising since RIP analysis (i.e. worst case scenario) suggests that 
these matching pursuits should perform roughly T^0.5 times worse than convex optimization, CoSAMP, 
and Iterative Thresholding. 
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1. Introduction 
 
During the last decade, Orthogonal Matching Pursuit (OMP) has become an important component of the 
toolbox of any mathematician or engineer working in the field of compressive sensing (CS). The algorithm 
originated as a statistical method for projecting multi-dimensional data onto interesting lower dimensional 
spaces [14]. It was then introduced to the sparse approximation world in its non-orthogonal form Matching 
Pursuit by Mallat et al. in [22]. Today, OMP is a highly celebrated algorithm with applications in medical 
imaging [18],[21], synthetic aperture radar (SAR) [2], wireless multi-path channel estimation [1], and 
others. For the unfamiliar reader, OMP is a greedy alternative to convex optimization (see [6] and [10]) that 
solves the under-determined linear equation: 
 � � Φ� (1. 1) 

 
where the vector � is a sparse (or highly compressible) signal, the matrix Φ is a short, fat measurement 
matrix, and the vector � is a small set of linear measurements of the signal. While being a powerful 
heuristic, OMP suffers from a lack of a decent theoretical analysis. Up until recently, only sparse 
approximation performance guarantees have been derived for OMP [15],[27]. These results depend on the 
coherence (or cumulative coherence) of the matrix Φ. Furthermore, these results only bound the error �� � ���	 where �� is an estimate, produced by OMP, which has a sparse representation in the column span 
of Φ. In compressive sensing, we are primarily concerned with bounds on �� � ���	, which do not trivially 
follow from bounds on �� � ���	. 
 



As stated earlier, OMP is an alternative to convex optimization that solves the basic CS problem � � Φ�. 
While convex programs tend to be slow, their solutions enjoy powerful error bounds based on a restricted 
isometry property (RIP) [7]. Needell and Tropp [23] later showed that CoSAMP, an algorithm that is 
inherently similar to OMP, does possess similar RIP-based guarantees. The high-level reasoning for this is 
that, like convex programming, CoSAMP works globally by simultaneously trying to identify all the 
correct non-zero entries of a sparse vector � at each iteration. On the other hand, OMP works locally by 
attempting to select one non-zero entry of � per iteration. In [11], an RIP-based condition is derived that 
guarantees OMP’s ability to recover a �-sparse vector. Also, a lower bound on the best possible RIP for 
OMP is suggested without proof. The main result of [11] is slightly tightened in [18]. The paper [19] offers 
an asymptotic improvement over [18], but this comes at the expense of additional coherency assumptions 
and the incorporation of large scaling constants. This work will expand and improve the results in [11] and 
[18] without the additional conditions imposed in [19]. In Section 3, we first derive a strong RIP-based 
result for strictly �-sparse signals that asymptotically approaches the lower bound conjectured in [11]. Then 
we deduce an error bound on �� � ���	 that describes OMP’s ability to estimate non-sparse signals in the 
presence of measurement noise.  In Section 4, we generalize these results to the case of K-fold Orthogonal 
Matching Pursuit (KOMP) where 
 entries of � are recovered at every iteration. Section 5 features an 
empirical comparison of OMP, KOMP, and other popular CS algorithms. We will show that despite the 
fact that the RIP implies that OMP performs √� times worse than convex optimization, OMP and KOMP 
still outperform other methods in average case scenarios. 
 
2. Preliminaries 
 
Throughout this paper, we will employ the following notational conventions. We let � � 
� denote a signal 
of interest. We say that � is �-sparse if it consists of at most � non-zero components. More formally, we 
can write that ���� � � where ���� denotes the quasi-norm that counts the number of non-zero entries in 
its argument. We typically let Λ denote the support of �. We define the ℓ� norm of a signal � as follows: 
 
 ���� � ��|��|��

��� ��/� 0 � � � ∞
��� � max�$�$�|��| � � ∞  (2.1) 

 
It is assumed that we do not have direct access to the signal �. Instead, we have access to a set of % & ' 
linear measurements of � that take the form: 
 
 � � Φ� (2.2) 

 
where Φ � 
()� is a measurement matrix and the signal � � 
( contains the actual measurements. Our 
goal is to solve for � given knowledge of only Φ and �. In practical applications, Φ is often either a random 
sub-Gaussian matrix or a sub-matrix of a discrete Fourier transform matrix [25]; however, in theory, Φ can 
be any matrix provided it satisfies a restricted isometry property, which is defined as follows: 
 
Definition 1: A measurement matrix Φ satisfies a restricted isometry property (RIP) of order � if there 
exists a constant 0 � *+ � 1 such that 
 
 -1 � *+.���		 / �Φ��		 / -1 0 *+.���		 (2.3) 

 
for all signals � that are �-sparse. The constant *+ is called the restricted isometry number of order �. 
 
An equivalent formulation of the RIP is that for every indexing set Λ of size �, we have that the % ) � sub-
matrix Φ1 generated by selecting the � columns of Φ corresponding to Λ, satisfies: 
 
 1 � *+ / Eigenvalues-Φ1; Φ1. / 1 0 *+ (2.4) 

 



It is immediately clear that for a given measurement matrix Φ, the restricted isometry numbers *+ form an 
increasing sequence. Furthermore, Needell et al. [23] show that the growth of these numbers must be sub-
linear, i.e. 
 
 *+ / �*	. (2.5) 

 
The kernel of the measurement matrix Φ induces the quotient space 
�/ker-Φ. which consists of the 
cosets >�? � @A � 
�|Φ� � ΦAB. It is a straight-forward exercise to show that if *	+ � 1, then each coset 
can contain at most one �-sparse signal. Thus, the generally underdetermined system (2.2) is well-defined 
if � is �-sparse and *	+ � 1. 
 
Naïve methods for solving (2.2) involve slow combinatorial searches over all possible % ) � submatrices 
of Φ. This becomes an intractable problem for large '. Candes [7] showed that under the tighter restricted 
isometry condition  *	+ � √2 � 1, the system (2.2) can be solved via the convex optimization problem: 
 
 �D � argminE �A��  subject to ΦA � � (2.6) 

 
If � is not �-sparse or is corrupted by noise, then the constraint in (2.6) can be formulated as �ΦA � ��	 �L for some parameter L M 0. In this case it can be shown that the estimate �D satisfied an error bound of the 
form:  
 �� � �D�	 / N-�� � �+�	. 0 N O�� � �+��√� P (2.7) 

 
The downside to the ℓ� minimization problem shown in (2.6) is that it runs in polynomial time. There are 
faster algorithms that solve the same problem. 
 
One classical greedy algorithm that solves the compressive sensing problem  is Orthogonal Matching 
Pursuit (OMP). The OMP algorithm, which is also known as Forward Stepwise Regression in the data 
mining and statistical learning communities [17], is shown below. 

 

 
 

TABLE I 
ORTHOGONAL MATCHING PURSUIT 

INPUTS: Observations � � Φ� 
Measurement Matrix Φ 
Number of Iterations � (typically equal to sparsity level) 

OUTPUTS: �-sparse estimate �� of �. 
Residual signal Q+ . 
Set of selected support indices Λ+ .  

PROCEDURE: 
-Initialize the residual Q� � � and indexing set Λ� � S. 
-For T from 1 to � 
{ 

-Find the column of Φ that maximizes the correlation with the 
residual QU , i.e. let 

 VU � argmaxW |XW;QU| 
where XW denotes the Yth column of Φ. 

-Set ΛU � ΛUZ� [ @VUB. 
-Let �U denote the projection of � onto the columns of Φ indexed by ΛU, i.e. �U � Φ1\Φ1\] �. 
-Define the new residual as QU � � � �U. 

} 
-Generate the estimate �� of � as follows:  

��W � ^Φ1_] � Y � Λ+0 Y ` Λ+ a. 



A popular generalization of Orthogonal Matching Pursuit is K-fold Orthogonal Matching Pursuit (KOMP) 
[15]. This procedure is essentially identical to OMP except for the fact that 
 columns of Φ are selected per 
iteration. Thus, at every step, KOMP increments its indexing set according to the rule ΛU � ΛUZ� [ bU 
where bU consists of the indices corresponding to the 
 largest values of |XW;QU|. Observe that OMP is a 
special case of KOMP when 
 � 1. While clearly faster than OMP, a surprising result of this paper is that 
KOMP can sometimes be more accurate than OMP as well. 
 
Up until recently, the theoretical development of Orthogonal Matching Pursuit has been limited. In [16], a 
non-uniform “per signal” performance guarantee, which assumes a Gaussian random measurement 
ensemble, is derived. Other works, such as [15],[27], etc., develop results based on dictionary coherence 
and/or cumulative coherence. The seminal papers [3] and [23] demonstrate that the restricted isometry 
property can be used in the analysis of the related greedy algorithms Iterative Thresholding and CoSAMP 
(Compressive Sensing Matching Pursuit). These works motivated the theoretical thrust to determine 
whether OMP enjoys an RIP-based performance guarantee as well. In [11], Davenport et al. demonstrate 
that OMP can successfully recover any �-sparse signal provided that the measurement matrix satisfies the 
RIP: 
 *+ � 13√�. (2.8) 

 
The authors further allude to the unachievable lower bound *+~1/√�. In [18], Liu et al. improve this result 
slightly and obtain: 
 *+e� � 1f1 0 √2g√�. (2.9) 

 
Along these same lines, Lipshitz [19] shows that with additional stringent dictionary coherence constraints, 
the result can be asymptotically improved to: 
 *h+i.j � k��.	. (2.10) 

 
for some very large constant l~2 ) 10m and some very small constant k~10Zn. Unfortunately, because of 
the magnitudes of these constants, the benefit of this result will be very difficult to realize in practical 
compressive sensing problems. 
 
In Section 3, we improve upon the results (2.8) and (2.9) and show, without additional coherence 
assumptions, that OMP can recover any �-sparse signal provided 
 
 *+e� � 11 0 √� , (2.11) 

 
which is a highly near-optimal figure. In addition, we show that for a signal � that is not T-sparse and/or 
has measurements that are corrupted by noise, OMP will obtain an estimate �� of � satisfying: 
 
 �� � ���	 / Nf√�g�� � �+�	 0 N-�� � �+��. 0 Nf√�g�p�	 (2.12) 

 
where p represents the measurement noise and  �+ is the optimal �-sparse estimate of �, i.e. � truncated to 
its � strongest entries. In Section 4, we extend these results to the case of KOMP and compare the 
theoretical performance of OMP and KOMP. In particular, we illustrate situations in which KOMP 
performs better than OMP. In Section 5, we augment this discussion by using empirical methods to 
compare OMP, KOMP, and the various other popular CS algorithms of the day. 
 
 
 
 
 
 



3. Regular Orthogonal Matching Pursuit 
 
We begin by citing two lemmas that will be used repeatedly throughout this analysis: 
 
Lemma 1: Let � be a T-sparse signal with support set Λ. Let q be any subset of @1,2, r , 'B such that q s Λ � S. Let Φ be a measurement matrix with restricted isometry numbers *+. Then the following two 
properties are true: 
 
 �Φ1; Φ��	 t -1 � *+.���	 (3.1) 

 
and 
 
 �Φu; Φ��	 / *+e|u|���	. (3.2) 

 
Lemma 2: Let Φ be a measurement matrix with restricted isometry number *+. Let � be any signal. Then 
 
 �Φ��	 / v1 0 *+ w���	 0 1√� ����x. (3.3) 

 
Both lemmas are proved in [23]. The first lemma is an immediate consequence of the fact that Φ is nearly 
unitary with respect to T-sparse signals. The second lemma extends the restricted isometry energy bounds 
to non-sparse signals. With these lemmas in mind, we are now prepared to develop a sufficient condition 
under which Orthogonal Matching Pursuit will recover any T-sparse signal from its measurements: 
 
Theorem 1: Suppose that Φ is a measurement matrix whose RIP constant satisfies 
 
 *+e� � 11 0 √�. (3.4) 

 
Then, OMP will recover any T-sparse signal from its measurements Φ�. 
 
Proof. Let � be any T-sparse signal with support Λ. At iteration t, suppose that OMP has only selected 
correct atoms. Let QU be the current residual. Then QU � ΦkU where kU is also supported on Λ. Now observe 
that, by Lemma 1 and the fact that the RIP constants are increasing in �, 
 
 �Φ1; Φ��	 t -1 � *+.�kU�	 t -1 � *+e�.�kU�	. (3.5) 

 
This implies that 
 
 �Φ1; ΦkU� t -1 � *+e�.√� �kU�	. (3.6) 

 
Now let Y be any element not in Λ. Then observe that 
 
 yΦ@WB; ΦkUy � yΦ@WB; ΦkUy	 / *+e��kU�	. (3.7) 

 
This implies that 
 
 yΦ1z; ΦkUy � maxW`1 yΦ@WB; ΦkUy / *+e��kU�	. (3.8) 

 
OMP will recover the next atom correctly if 
 
 �Φ1; ΦkU� t yΦ1z; ΦkUy  (3.9) 

 



which will happen if 
 
 -1 � *+e�.√� �kU�	 t *+e��kU�	. (3.10) 

 
This is equivalent to (3.4). □        
 
This sufficient condition is significantly stronger than the one demonstrated in [11]. In fact, it is very close 
to the unachievable bound 1/√� suggested in the same work. Thus, our result is highly near optimal. 
 
We next extend this result to more general signals. Certainly, if � is not T-sparse, then it is impossible for 
OMP to recover � perfectly in T iterations. However, we are interested in determining how close OMP’s T-
term approximation error is to the optimal T-term representation �+ of �. The following theorem answers 
this precise question: 
 
Theorem 2: Let Φ be a measurement matrix that satisfies the RIP shown in (3.4). Let � � 
� be any signal 
with optimal T-term approximation �+. Let Λ � supp-�+. and let �+z � � � �+. Suppose OMP has noisy 
measurements of the form � � Φ� 0 p � Φ�+ 0 | where | � Φ�+z 0 p. Then, after T iterations, OMP 
will recover an estimate �� of � that satisfies: 
 
 
 �� � ���	 / f1 0 l�-�.g�� � �+�	 0 l�-�.√� �� � �+�� 0 l�-�.�p�	 (3.11) 

 
where, for reasonable RIP numbers, l�-�. grows asymptotically like √�. 
 
Proof. First suppose that at iteration t, OMP has selected only atoms indexed in Λ. At iteration t + 1, OMP 
will select another atom from Λ provided the greedy selection condition 
 
 yΦ1z; QUy �Φ1; QU� � 1 (3.12) 

 
is satisfied. Now rewrite the residual as QU � Φ1-�+ � }U. 0 |. Here, }U is the coefficient vector of the 
projection of � onto the currently selected atoms. Then one can bound the numerator of (3.12) by: 
 yΦ1z; QUy  / yΦ1z; Φ1-�+ � }U. 0 Φ1z; |y  (3.13) 
 / yΦ1z; Φ1-�+ � }U.y 0 yΦ1z; |y  (3.14) 
 / *+e��-�+ � }U.�	 0 �|�	 (3.15) 

 
On the other hand, the denominator can be bounded from below by: 
 �Φ1; QU�  t 1√� �Φ1; QU�	 (3.16) 

 � 1√� yΦ1; Φ1-�+ � }U. 0 Φ1z; |y	 (3.17) 

 t �Φ1; Φ1-�+ � }U.�	 � �Φ1; |�	√�  (3.18) 

 t -1 � *+e�.√� �-�+ � }U.�	 � ~1 0 *+e�� �|�	. (3.19) 

 
A sufficient condition for the next atom to be selected from Λ is that the numerator is less than the 
denominator. This is guaranteed if 



 
 *+e��-�+ � }U.�	 0 �|�	 � -1 � *+e�.√� �-�+ � }U.�	 � ~1 0 *+e�� �|�	. (3.20) 

 
We can rearrange terms to obtain: 
 
 ��+ � }U�	 M √� 0 v1 0 *+e�1 � *+e�f1 0 √�g �|�	. (3.21) 

 
Now let T; denote the first iteration where (3.21) does not hold. By definition of OMP, �� � }+. We have: 
 �� � ���	 / ��+ � ���	 0 y�+zy	 (3.22) 

 / 1v1 � *	+ �Φ1�-�+ � ��.�	 0 y�+zy	 (3.23) 

 
where Λ� � Λ [ supp-��. which has cardinality at most 2�. It is possible to further bound the left hand side 
by: 
 �� � ���	 / �Φ1�-�+ � ��. 0 |�	 0 �|�	v1 � *	+ 0 y�+zy	 (3.24) 

 / �Φ1�-�+ � }U;. 0 |�	 0 �|�	v1 � *	+ 0 y�+zy	 (3.25) 

 / �Φ1�-�+ � }U;.�	 0 2�|�	v1 � *	+ 0 y�+zy	 (3.26) 

 / v1 0 *+v1 � *	+ ��+ � }U;�	 0 2�|�	v1 � *	+ 0 y�+zy	 (3.27) 

 
where the second inequality comes from the fact that in OMP, the residual is always decreasing in 
magnitude regardless whether the selected atoms are from Λ or not. Since (3.21) does not hold for T;, it 
follows that: 
 
 �� � ���	 / l��-�.�|�	 0 y�+zy	 (3.28) 

 
where 
 
 l��-�. � O v1 0 *+v1 � *	+P O √� 0 v1 0 *+e�1 � *+e�f1 0 √�gP 0 2v1 � *	+ . (3.29) 

 
We further bound �|�	 by: 
 �|�	 � yΦ�+z 0 py	 (3.30) 
 / yΦ�+zy	+�p�	 (3.31) 
 / v1 0 *+ wy�+zy	 0 1√� y�+zy�x 0 �p�	 (3.32) 

 

Finally, let l�-�. � v1 0 *+l��-�. to obtain that 
 �� � ���	 / -1 0 l�.y�+zy	 0 l�y�+zy�√� 0 l��p�	 (3.33) 



 � f1 0 l�-�.g�� � �+�	 0 l�-�.�� � �+��√� 0 l�-�.�p�	 (3.34) 

 
as was to be shown. □ 
 
The fact that l�-�. grows asymptotically like √� should be no surprise: it is already well known [27] that, 
under mild coherence constraints, the signal observations obey the bound: 
 
 �� � ���	 / Nf√�g�� � �+�	 (3.35) 

 
where � � Φ�, �� � Φ��, and �+ is the optimal �-term representation of � using the columns of Φ. We note 
that it is not necessarily the case that �+ � Φ�+. 
 
The novelty of our result is that we have derived an error bound on the signal itself, not simply on its 
measurements. In a sparse approximation problem where � is the signal that we’re trying to estimate using 
the columns of Φ, then a bound such as (3.35) is sufficient. However, in compressive sensing, if �� ����	 � 0, then all that we may conclude is that � � �� 0 �� where �� � ker-Φ.. If the sparsity � is not 
sufficiently small, then �� may be a non-zero vector and our estimate may be quite inaccurate. Thus, we 
claim that the result in Theorem 2 is more powerful than the sparse approximation results of the past. 
 
 
4. K-fold Orthogonal Matching Pursuit 
 
A popular extension of Orthogonal Matching Pursuit is K-fold Orthogonal Matching Pursuit (KOMP). 
KOMP is almost identical to OMP except for the fact that 
 atoms are selected per iteration instead of 1. 
KOMP has two main advantages over OMP which are somewhat mutually exclusive. The first one is 
speed: Given a �-sparse signal, one may use KOMP to recover the signal in �/
 iterations versus the usual � iterations. This yields a significant reduction in run-time especially since the number of least-squares 
projections has been cut down by a factor of 
. Unfortunately, for accuracy, this method requires that all 
 
atoms selected per iteration be correct. Very few measurement matrices enjoy enough coherence to allow 
for the correct selection of so many atoms without some sort of re-orthogonalization. As a result, we choose 
to exploit the second mutually exclusive advantage of KOMP over OMP: Running � iterations of KOMP 
will select a set �� of 
� indices where, with good probability, our signal’s support set � will be contained 
in ��. Thus, we effectively use KOMP to narrow down all the possible signal indices to the top 
� 
candidates. Then, assuming 
 is not too large, we can perform a least-squares projection of our 
measurements onto the span of the selected 
� columns of Φ in order to identify the exact support set and 
recover the signal. All of this can be done in runtime commensurate to that achievable with � iterations of 
OMP. 
 
To analyze the performance of KOMP, we first need to define the top-K norm: 
 
Definition 2: Let � be a signal with sorted entries �-�., �-	., r , �-�. where ��-�.� t ��-	.� t r t ��-�.�. 
Then the top-K norm is defined to be: 
 
 ���Top� � yf�-�., �-	., r , �-�.gy	 � ����-�.�	�

��� . (4.1) 

 
In essence, the top-K norm of a vector is the ℓ	 norm of its top 
 entries.  It is not difficult to show that this 
is a well-defined norm on  
�. 
 
We begin by examining KOMP’s ability to correctly select all the correct non-zero entries of a �-sparse 
signal in addition to at most -
 � 1.� incorrect entries: 



 
Theorem 3: Let Φ be a measurement matrix satisfying 
 
 *+e-�Z	.Ue� � 1

1 0 �� � T 0 1
  
(4.2) 

 
for each iteration T � 1, r , �. Assuming also that *�+ � 1, then KOMP will recover any �-sparse signal � 
from its measurements. 
 

Proof. Observe first that KOMP will select all the correct entries in � iterations if it selects at least one 
correct entry per iteration. Assume that after T iterations, KOMP has selected at least T correct indices 
specified by the set qU and no more than -
 � 1.T incorrect indices specified by the set �U. We define the 
set ΛU � -Λ [ �U.\qU, which has no more than � 0 -
 � 2.T elements. Defining kU as in Theorem 1, we 
see that kU � colspanfΦ1\g. As a result, a sufficient condition to ensure that KOMP selects at least one 
correct index at iteration T 0 1 is that 

 
 �Φ1\z; ΦkU�Top� � yΦ1\; ΦkUyTop� . (4.3) 

 
We can find an upper bound on the left hand side as follows: 
 �Φ1\z; ΦkU�Top� 

� max��1\z|�|��
�Φ�; ΦkU�2 

(4.4) 

 / *+e-�Z	.Ue��kU�2. (4.5) 
 
We next calculate a lower bound on the right hand side: 
 yΦ1\; ΦkUyTop� t yΦ1\; ΦkUy2v-� � T 0 1./
 (4.6) 

 t *+e-�Z	.U�kU�2v-� � T 0 1./
 (4.7) 

 t *+e-�Z	.Ue��kU�2v-� � T 0 1./
  (4.8) 

 
From these bounds, one can use simple algebra to show that (4.2) is a sufficient condition for (4.3). Since *�+ � 1, a simple least squares projection onto the selected columns of Φ will recover the desired signal 
exactly. □ 
 
For the special case 
 � 2, (4.2) takes the form: 
 
 *+e	 � 11 0 v�/2. (4.9) 

 
For relatively large �, *+e	 � *+e� and, therefore, we see that 2-OMP enjoys a significantly stronger 
performance guarantee than regular OMP. This should make intuitive sense since we are allowing for the 
selection of up to � incorrect atoms. As long as *	+ � 1 (which is guaranteed by (4.9) for � M 1), the least 
squares projection of the measurements � � Φ� onto the space of selected columns will yield zeros for all 
incorrectly chosen entries. In general, the performance of KOMP will improve for increasing 
 until the 
final least squares projection becomes unstable. At this point, performance will degrade rapidly. 
 
We can extend the KOMP result to general signals via the following Theorem: 



 
Theorem 4: Let Φ be a measurement matrix that satisfies the RIP shown in (4.2). Let � � 
� be any signal 
with optimal T-term approximation �+. Let Λ � supp-�+. and let �+z � � � �+. Suppose OMP has noisy 
measurements of the form � � Φ� 0 p � Φ�+ 0 | where | � Φ�+z 0 p. Then, after T iterations, KOMP 
will recover a 
�-sparse estimate �� of � that satisfies: 
 
 �� � ���	 / f1 0 l�-�.g�� � �+�	 0 l�-�.√� �� � �+�� 0 l�-�.�p�	 (4.10) 

 

where, for reasonable RIP numbers, l�-�. grows asymptotically like v�/
. 
 
Proof. The argument is very similar in nature to that in Theorem 2. We retain the notation used in the 
proofs of Theorem 2 and Theorem 3. As before, we suppose that at iteration t, OMP has selected at least 
one atom indexed by Λ per iteration. At iteration t + 1, OMP will select at least one atom from Λ provided 
the greedy selection condition 
 yΦ1\; QUy�����Φ1\z; QU�����

� 1 (4.11) 

 
is satisfied where ΛU � -Λ [ �U.\qU has no more than � 0 -
 � 2.T elements. Now rewrite the residual as QU � Φ1\-�+ � }U. 0 |. We bound the numerator from below as follows: 
 �Φ1\z; QU�Top� 

� max��1\z|�|��
yΦ�; fΦ1\-�+ � }U. 0 |gy2 

(4.12) 

 / max��1\z|�|��
yΦ�; Φ1\-�+ � }U.y2 0 max��1\z|�|��

�Φ�; |�2 
(4.13) 

 / *+\,���+ � }U�2 0 v1 0 *��|�	 (4.14) 
 
where �U,� � � 0 -
 � 2.T 0 
. Next, we derive a lower bound for the denominator: 
 yΦ1\; QUyTop� t yΦ1\; fΦ1\-�+ � }U. 0 |gy2v-� � T 0 1./
  (4.15) 

 t yΦ1\; Φ1\-�+ � }U.y2 � yΦ1\; |y2v-� � T 0 1./
  (4.16) 

 t *+\,���+ � }U�2 � �1 0 *+\,��|�	v-� � T 0 1./
  (4.17) 

 
Our bounds imply that a sufficient condition for (4.11) is that 
 
 ��+ � }U�	 M v-� � T 0 1./
v1 0 *� 0 �1 0 *+\,�1 � *+\,�f1 0 v-� � T 0 1./
g �|�	. (4.18) 

 
Now let T; denote the first iteration where this bound does not hold. By definition of KOMP, �� � }+. We 
have: 
 �� � ���	 � y�+ � �� 0 �+zy	 / ��+ � ���	 0 y�+zy	 (4.19) 

 / 1v1 � *-�e�.+ �Φ1�-�+ � ��.�	 0 y�+zy	 (4.20) 



 
where Λ� � Λ [ supp-��. which has cardinality at most -
 0 1.�. It is possible to further bound the left 
hand side by: 
 �� � ���	 / �Φ1�-�+ � ��. 0 |�	 0 �|�	v1 � *-�e�.+ 0 y�+zy	 (4.21) 

 / �Φ1�-�+ � }U;. 0 |�	 0 �|�	v1 � *-�e�.+ 0 y�+zy	 (4.22) 

 / �Φ1�-�+ � }U;.�	 0 2�|�	v1 � *-�e�.+ 0 y�+zy	 (4.23) 

 / �1 0 *+\;,�v1 � *-�e�.+ ��+ � }U;�	 0 2�|�	v1 � *-�e�.+ 0 y�+zy	 (4.24) 

 / v1 0 *+�v1 � *-�e�.+ ��+ � }U;�	 0 2�|�	v1 � *-�e�.+ 0 y�+zy	 

 

(4.25) 

 
where �� � � 0 -
 � 2.� 0 
. The second inequality comes from the fact that in OMP, the residual is 
always decreasing in magnitude regardless of which atoms are selected. Now let 
 
 l���-�. � v�/
v1 0 *� 0 v1 0 *+�1 � *+�f1 0 v�/
g . (4.26) 

 
Since ��+ � }U;�	 / l���-�.�|�	, which follows from (4.18), we have that 
 
 �� � ���	 / l�� -�.�|�	 0 y�+zy	 (4.27) 

 
where 
 
 l�� -�. � v1 0 *+�v1 � *-�e�.+ l���-�. 0 2v1 � *-�e�.+ (4.28) 

 
We use our previous bound 
 
 �|�	 / v1 0 *+ wy�+zy	 0 1√� y�+zy�x 0 �p�	 (4.29) 

 

and the definition l�-�. � v1 0 *+l�� -�. to obtain: 
 �� � ���	 / -1 0 l�.y�+zy	 0 l�y�+zy�√� 0 l��p�	 (4.30) 

 / f1 0 l�-�.g�� � �+�	 0 l�-�.�� � �+��√� 0 l�-�.�p�	 (4.31) 

 
as was to be shown. □ 
 
We observe that the constants l�-�. form a decreasing sequence with respect to 
, which suggests that the 
errors �� � ���	 decrease as we let 
 increase. Of course, one may argue that since for each 
, �� is 
�-
sparse, and therefore, it is unfair to compare reconstructions using different values of 
. As a result, we 
will let  ��+ denote the truncation of �� to its top � values. It is fairly straight-forward to show the bound 



 
 �� � ��+  �	 / 2�� � ���	 0 �� � �+�	. (4.32) 

 
which implies the following corollary. 
 
Corollary 1: Let Φ be a measurement matrix that satisfies the RIP shown in (4.2). Then, for any signal �, 
KOMP will return a 
�-sparse estimate �� whose �-sparse truncation ��+ satisfies: 
 
 �� � ��+  �	 / f3 0 2l�-�.g�� � �+�	 0 l�-�.√� �� � �+�� 0 2�p�	 (4.33) 

 
We can now make a comparison of OMP and KOMP by comparing the constants  l�-�. against 2l�-�. 02. Assume for the moment that the restricted isometry numbers obey *ℓ � *	ℓ� for some � / 1. For 
sparsity level � � 100, � � @.3, .8, .95B, and *	 � .00015, we calculated the above constants and plotted 
them in Figure 1. 
 
 

 
Figure 1:Comparison of OMP and KOMP constants l�-�. and  2l�-�. 0 2. 

 
 
In the case of � � .3 and � � .8, we see that KOMP achieves better results than OMP when 
 t 9 and 
 t 12 respectively. Eventually, when the RIP constants for sparsity level 100
 become too large (as in 
the case � � .95), the constant l�-�. begins to increase rapidly. In this latter case, KOMP does not 
achieve a stronger error bound than OMP regardless of the choice of 
. As we can see, selecting an 
appropriate 
 can be challenging. If 
 is selected too small, then KOMP’s performance will be suboptimal 
when compared against OMP and KOMP with larger 
. However, if 
 is selected too large, then instability 
may arise due to the fact that the underlying RIP constants are becoming increasingly large as well. 
Selecting the right value of 
 is, thus, somewhat of an art form: Intuition derived from copious 
experimentation is extremely helpful. 
 
 
5. Experimental Results 
 
An observation that one will quickly make regarding compressive sensing algorithms is that, in practice, 
they all work better than predicted by their respective theoretical guarantees. In other words, the restricted 
isometry property only affords relatively weak sufficient conditions specifying when some algorithm can 
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exactly recover any signal with a given number � of non-zero entries. The reason for this is that RIPs 
provide worse case estimates that may not appear often in practice. In order to address this issue, much 
work has been done in performing “average-case” analyses on compressive sensing algorithms (see [26], 
[12], etc.). In these works, theoretical results are obtained regarding the various algorithms' performance in 
recovering commonplace sparse signals, e.g. with Gaussian or binary coefficients. For our purposes, we 
will empirically perform a similar analysis by designing several experiments which are shown below. 
 
In the first experiment, for every sparsity level � from 4 to 52 in increments of 4, the following test was 
repeated 100 times: A �-sparse Gaussian signal of length 256 was generated and measurements of the form Φ� were collected where Φ is a 100 ) 256 Gaussian random matrix (selected differently each time). 
Then the following algorithms were used to recover �: OMP, 2-OMP, Hybrid 0.2-OMP1, CoSAMP2 [22], 
CoSAMP1

2, Iterative Thresholding [3],[8],[13], and Basis Pursuit [5],[7],[9]. Both versions of CoSAMP 
were run with 10 iterations. For Iterative Thresholding, the Hard Thresholding routine in the Sparsify 
MATLAB package [4] was used with all parameters being selected optimally by the software. We used the 
L1-Magic package [24] for Basis Pursuit with the default settings. The two performance criteria evaluated 
were the probability of exact reconstruction (within a 1% tolerance for relative error) and the runtime. Plots 
of the results are shown below in Figure 2 and Figure 3. In terms of exact reconstruction probability, Basis 
Pursuit did slightly better than OMP. However, the modifications proposed in Section 2.2 came in quite 
handy because 2-OMP and Hybrid 0.2 OMP both outperformed Basis Pursuit. Thus, the suggestion of 
allowing multiple atoms to be selected per iteration was exactly what was needed to give OMP the extra 
boost to put it on top. CoSAMP1 performed better than CoSAMP2 and Iterative Thresholding fell roughly 
in between in this particular experimental setup. With respect to runtime, all of the algorithms were very 
fast with the exception of convex optimization. These algorithms took no more than a tenth of a second to 
run whereas ℓ� minimization took about a half of a second. The overall conclusion of this experiment is 
that 2-OMP was the best overall performer. 
 
 
 

 
Figure 2: Probability of exact reconstruction of T-sparse signals using various compressive sensing 

algorithms. 

                                                           
1 Hybrid �-OMP is variation of KOMP where at iteration T, the top  �-� � T 0 1. atoms are selected. Thus, 
it selects more atoms during earlier iterations and fewer atoms in subsequent iterations. 
2 CoSAMP1 is a variation of regular CoSAMP2 (see [22]) where � atoms are selected per iteration as 
opposed to the standard 2�. 



 
Figure 3: Runtimes of various compressive sensing algorithms when recovering T-sparse signals. 

 
Of course, the above experiment only compares the various compressive sensing algorithms with respect to 
their abilities to recover sparse signals. In the next experiment, the objective signals were not allowed to 
strictly be sparse. Here, 20 instances of a signals of length 256 were generated with exponentially decaying 
coefficients in random locations. The decay rate was given by ��-�.� / 0.9�. The signals were 
reconstructed using the same algorithms and sparsity parameters varying from � � 4 to � � 52 in 
increments of four. Figure 4 shows the various average ℓ	 reconstruction errors produced by these 
algorithms. 
 
 

 
Figure 4: Average T-term reconstruction errors in recovering signals with exponentially decaying coefficients generated by the 

various compressive sensing algorithms as a function of the sparsity parameter T. 



In this experiment, OMP and its variants outperformed the other algorithms. In fact, the �-term error 
produced by 2-OMP is nearly identical to the optimal �-term error up until around � � 25. The L1-
minimization error converges to around 0.24 whereas the true optimal error should converge to zero. An 
interesting point to note is that all of the above greedy algorithms ultimately experience a sudden and 
significant breakdown in performance when � is taken too large. This is because of the instability that 
arises from computing projections when the underlying restricted isometry numbers approach unity. In 
other words, the more vectors that are being processed at any particular iteration, the greater the instability. 
This makes algorithms such as Iterative Thresholding and CoSAMP, which process a large set of atoms 
right from the start, highly susceptible to breakdown if care is not selected in choosing an appropriate 
sparsity level �. In these cases, � becomes a highly sensitive parameter that can corrupt the output very 
suddenly and swiftly. On the other hand, OMP and its variants are more robust with respect to tolerating a 
large value of �. This is because these algorithms select no more than a few atoms per iteration. Thus, any 
instability that may result from a poor choice of � will defer itself to later iterations. The first several 
selected atoms will remain correct. As a result, if one observes instability beginning to develop in the 
matching pursuit, then he/she can backtrack a few iterations and simply decide to stop there. This is not an 
option with Iterative Thresholding and CoSAMP. Ultimately, all of the greedy algorithms will experience a 
breakdown in performance; however, OMP and its variants are structured so that they can be stopped 
before the resulting error grows out of control. 
 
Overall, we see that OMP is an extremely powerful, efficient, and robust algorithm that receives much less 
credit than it deserves. It is significantly faster than convex optimization techniques and is less sensitive to 
errors in sparsity level estimates. 
 
 
6. Conclusion 
 
Convex optimization has long been considered the gold standard compressive sensing recovery algorithm. 
Throughout the years, it has enjoyed significant theoretical development, putting it ahead of other faster 
algorithms, which up until recently, have been labeled as mere heuristics. The discovery of RIP-based 
performance guarantees for globalized matching pursuits such as CoSAMP and Iterative Thresholding has 
prompted a landslide of theoretical research into this class of algorithms. This paper presented near-optimal 
RIP-based guarantees for the more localized Orthogonal Matching Pursuit algorithm and the related 
method K-fold Orthogonal Matching Pursuit. In addition to deriving improved sufficient conditions 
guaranteeing the recoverability of strictly sparse signals, we also proved reconstruction error bounds for 
general signals possibly corrupted by measurement noise. While making significant contributions to OMP’s 
theoretical development, we have failed to rigorously prove that OMP performs better than convex 
optimization, CoSAMP, Iterative Thresholding, etc. which do not suffer from the √� blow-up factor that 
the latter algorithms successfully avoid. Thus, one may be led to believe that OMP is an inferior algorithm. 
Of course, the empirical evidence of Section 5 suggests otherwise. In practice, OMP and KOMP often 
outperform other algorithms in terms of accuracy, convergence, and stability. A possible explanation for 
this oxymoronic behavior is that RIP analysis considers worst case scenarios. In other words, it is possible 
to construct “bad” signals that convex optimization would recover more successfully than OMP. However, 
if an average case metric is used to theoretically evaluate the wide suite of compressive sensing algorithms, 
we are quite confident that OMP would rank very well. 
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