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Simultaneous concentration of order statistics

Daniel Fresen

To my parents John Fresen and Jill Fresen

Abstract. Let µ be a probability measure on R with cumulative distribution
function F , (xi)

n

1
a large i.i.d. sample from µ, and Fn the associated empirical

distribution function. The Glivenko-Cantelli theorem states that with proba-
bility 1, Fn converges uniformly to F . In so doing it describes the macroscopic
structure of {xi}n1 , however it is insensitive to the position of individual points.
Indeed any subset of o(n) points can be perturbed at will without disturbing
the convergence.

We provide several refinements of the Glivenko-Cantelli theorem which are
sensitive not only to the global structure of the sample but also to individual
points. Our main result provides conditions that guarantee simultaneous
concentration of all order statistics. The example of main interest is the
normal distribution.

1. Introduction

Let µ be a probability measure on R with cumulative distribution function F
and let (xi)

∞
1 denote an i.i.d. sequence of random variables with distribution µ.

For each n ∈ N let Fn denote the empirical cumulative distribution function

Fn(t) =
1

n
|{i ∈ N : i ≤ n, xi ≤ t}|

where |A| denotes the cardinality of a set A. The Glivenko-Cantelli theorem (see
e.g. [8]) states that with probability 1,

lim
n→∞

sup
t∈R

|F (t)− Fn(t)| = 0

The Dvoretzky-Kiefer-Wolfowitz inequality ([9] and [17]) provides a quantitative
formulation of this and states that for all n ∈ N and all λ > 0, with probability at
least 1− 2 exp(−2λ2),

sup
t∈R

√
n|F (t)− Fn(t)| ≤ λ
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This titanic theorem would be well deserving of the name ’the fundamental theorem
of statistics ’ as it is the theoretical foundation behind the idea that a large inde-
pendent sample is representative of the population. There is, however, a certain
crudeness in this noble theorem. Asymptotically, individual points play a negli-
gible role and we learn very little about the finer structure of the sample {xi}n1 .
For instance, it gives us almost no information about either the maximum or the
minimum. We could take any subset of o(n) points and perturb them as we please
without affecting the convergence.

Donsker’s theorem (see e.g. [7], [14] and [16]) gives more insight into the
structure of the sample. Consider the stochastic process Xn defined on R by

Xn(t) =
√
n(Fn(t)− F (t))

Provided that F is strictly increasing and continuous, Xn converges to a re-scaled
Brownian bridge (more precisely, Xn ◦ F−1 converges to a Brownian bridge on
[0, 1]). However Donsker’s theorem is plagued by a similar insensitivity to the cries
of the minority. Through the eyes of Donsker’s theorem, we can ’see’ subsets as
small as

√
n but are blind to anything smaller such as subsets of size log(n).

In this paper we provide refined forms of the Glivenko-Cantelli theorem which,
under certain conditions, guarantee tight control over all or most points in the
sample, not only individually but simultaneously. Super-exponential decay of the
distribution provides simultaneous concentration of all order statistics (see theo-
rem 1) while exponential decay provides simultaneous concentration of most order
statistics and slightly weaker control over the rest (see theorems 2 and 3). We
provide quantitative bounds for log-concave distributions (see theorem 4).

Our results extend the Gnedenko law of large numbers, which guarantees con-
centration of max{xi}n1 . They may be compared to the results in [10] where the
Gnedenko law of large numbers is extended to the multi-dimensional setting, to the
paper [13] that provides estimates of order statistics in terms of Orlicz functions
and to the article [1] that concerns optimal matchings of random points uniformly
distributed within the unit square. We refer the reader to [11] and [19] for an
extensive treatment of empirical process theory and to [2], [4] and [18] for infor-
mation on order statistics. Interesting papers on the Glivenko-Cantelli theorem
include [5], [20], [21] and [22].

Theorem 1. Let µ be any probability measure on R with a continuous strictly
increasing cumulative distribution function F such that for all ε > 0

(1.1) lim
t→∞

1− F (t+ ε)

1− F (t)
= lim

t→−∞

F (t)

F (t+ ε)
= 0

Then there exists a sequence (δn)
∞
1 with limn→∞ δn = 0 such that for all n ∈ N,

if (xi)
n
1 is an i.i.d. sample from µ with corresponding order statistics (x(i))

n
1 , then

with probability at least 1− δn,

(1.2) sup
1≤i≤n

|x(i) − x∗
(i)| ≤ δn

where x∗
(i) = F−1(i/(n+ 1)).
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Theorem 2. Let µ be any probability measure on R with a continuous strictly
increasing cumulative distribution function F such that for all ε > 0

lim sup
t→∞

1− F (t+ ε)

1− F (t)
< 1(1.3)

lim sup
t→−∞

F (t)

F (t+ ε)
< 1(1.4)

Let (ωn)
∞
1 be any sequence in N with limn→∞ ωn = ∞. Then there exists a

sequence (δn)
∞
1 with limn→∞ δn = 0, such that for all n ∈ N, if (xi)

n
1 is an i.i.d.

sample from µ with corresponding order statistics (x(i))
n
1 , then with probability at

least 1− δn,
sup

ωn≤i≤n−ωn

|x(i) − x∗
(i)| ≤ δn

where x∗
(i) = F−1(i/(n+ 1)).

Theorem 3. Let µ be any probability measure on R that obeys the conditions of
theorem 2. Then there exists k > 0 such that for all T > 106 and all n ∈ N, if
(xi)

n
1 is an i.i.d. sample from µ with corresponding order statistics (x(i))

n
1 , then

with probability at least 1− 400T−1/2,

sup
1≤i≤n

|x(i) − x∗
(i)| ≤ kT

Note that in theorem 2 we can take (ωn)
∞
1 to grow arbitrarily slowly, for exam-

ple let ωn = log log logn. We thus have tight control over almost the entire data
set with the exception of a very small proportion of points. This is substantially
better than the

√
n ’visibility’ of Donsker’s theorem.

A probability measure µ is called p-log-concave for some p ∈ (0,∞) if it has
a density function of the form f(x) = c exp(−g(x)p) where g is non-negative and
convex. The 1-log-concave distributions are simply referred to as log-concave. If
µ is p-log-concave then it is also q-log-concave for all 1 ≤ q ≤ p.

Theorem 4. Let p > 1 , q > 0 and let µ be a p-log-concave probability measure on
R with a continuous strictly increasing cumulative distribution function F . Then
there exists c > 0 such that for any n ∈ N and any i.i.d. sample (xi)

n
1 from µ with

order statistics (x(i))
n
1 , with probability at least 1− c(logn)−q,

sup
1≤i≤n

|x(i) − x∗
(i)| ≤ c

log logn

(logn)1−1/p

where x∗
(i) = F−1(i/(n+ 1)).

The main idea behind the proof of these theorems is to first analyze the uniform
distribution on [0, 1]. We do this using a powerful representation of the empirical
point process via independent random variables that allows us to use classical results
such as the law of large numbers (in the form of Chebyshev’s inequality) and the
law of the iterated logarithm. A key step in this analysis is to exploit the inherent
regularity of order statistics which allows for control over all points based on an
inspection of merely logn carefully chosen points. We then transform the points
under the action of F−1 to analyze the general case. We introduce a new class of
metrics on (0, 1) defined by

(1.5) θp(x, y) = max

{
log(x−1y)

(log x−1)1−1/p
,
log((1− y)−1(1− x))

(log(1 − y)−1)1−1/p

}
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for 1 ≤ p < ∞ and 0 < x ≤ y < 1. To see that each θp is indeed a metric,
note that θp(x, y) is decreasing in x and increasing in y throughout the triangular
region {(x, y) ∈ (0, 1)2 : x < y}. We show that F−1 is either Lipschitz or uniformly
continuous with respect to these metrics (depending on the assumptions imposed
on µ). After this, our main results become straightforward to prove.

There are endless variations on the main theme of this paper. Our intention
is simply to highlight a phenomenon and introduce methods by which to study it.
Note that our results are purely asymptotic in nature and we can (and do) assume
throughout the paper that n > n0 for some n0 ∈ N.

2. The uniform distribution

Let (γi)
n
1 denote an i.i.d. sample from the uniform distribution on [0, 1] with

corresponding order statistics (γ(i))
n
1 and let (zi)

n+1
1 be an i.i.d. sequence of random

variables that follow the standard exponential distribution. For 1 ≤ i ≤ n define

yi =




i∑

j=1

zj







n+1∑

j=1

zj




−1

It is of great interest to us that (yi)
n
1 and (γ(i))

n
1 have the same distribution in

R
n (see chapter 5 in [6]). This is nothing but an expression of the fact that the

empirical point process locally resembles the Poisson point process. Also of interest
is the fact that these random vectors have the same distribution as the partial sums
of a random vector uniformly distributed (with respect to Lebesgue measure) in
the standard simplex ∆n = {w ∈ R

n+1 : wi ≥ 0 ∀i, ∑i wi = 1}. The power of
this representation is that we have an expression for (γ(i))

n
1 in terms of independent

random variables. Note that

(2.1) yi =
i

n+ 1



1

i

i∑

j=1

zj







 1

n+ 1

n+1∑

j=1

zj




−1

Both lemma 1 and lemma 3 below can be compared to the results in [23].

Lemma 1. Let T > 106 and n ∈ N. With probability at least 1 − 400T−1/2 the
following inequalities hold simultaneously for all 1 ≤ i ≤ n,

(2.2) T−1 ≤ γ(i)

(
i

n+ 1

)−1

≤ T

(2.3) T−1 ≤ (1− γ(i))

(
1− i

n+ 1

)−1

≤ T

Proof. Let Q = 2−1T 1/2 and momentarily fix 1 ≤ i ≤ n + 1. The random

variable i−1
∑i

j=1 zj has mean 1 and variance i−1. Using Chebyshev’s inequality,

with probability at least 1− i−1Q−2 we have

−Q < 1− 1

i

i∑

j=1

zj < Q

The random variable

Ui = |{j ∈ N : j ≤ i, zj ≤ 2Q−1}|
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follows a binomial distribution with i trials and success probability 1−exp(−2Q−1) ≤
2Q−1. Using Chebyshev’s inequality again, with probability at least 1− 32i−1Q−1

we have Ui < i/2, which implies that i−1
∑i

j=1 zj > Q−1. Hence, with probability

at least 1− 33i−1Q−1 we have

(2.4) Q−1 <
1

i

i∑

j=1

zj < Q+ 1

Let M = ⌊log2(n)⌋. With probability at least 1 − 33Q−1
∑M

j=0 2
−j − 33(n +

1)−1Q−1 ≥ 1−100Q−1equation (2.4) holds simultaneously for i = 1, 2, 22, 23 . . . 2M

and for i = n + 1. Hence, by (2.1), with probability at least 1 − 100Q−1 we have
that for all such i

1

2
Q−2 i

n+ 1
≤ yi ≤ 2Q2 i

n+ 1

Since (yi)
n
1 is an increasing sequence, control over the values (y2j )

M
j=1 leads to

control over the entire sequence and, recalling the representation of (γ(i))
n
1 in terms

of (yi)
n
1 , the bound (2.2) follows for all 1 ≤ i ≤ n. The bound (2.3) then follows by

symmetry. �

Lemma 2. Let t ∈ (0, 1) and n ∈ N. With probability at least 1 − 2 exp(−nt2/5)
the following inequality holds simultaneously for all 1 ≤ i ≤ n,

(2.5)

∣∣∣∣γ(i) −
i

n+ 1

∣∣∣∣ ≤ t

Proof. We can assume without loss of generality that n−1 ≤ 2t/3 (otherwise
the probability bound becomes trivial). Note that since our sample is taken from
the uniform distribution we have

sup
1≤i≤n

|γ(i) − i(n+ 1)−1| ≤ n−1 + sup
1≤i≤n

|γ(i) − in−1|

= n−1 + sup
0≤t≤1

|Fn(t)− F (t)|

where F (t) = t is the cumulative distribution function and Fn is the empirical
distribution function. By the Dvoretzky-Kiefer-Wolfowitz inequality (as mentioned
in the introduction), with probability at least 1− 2 exp(−5−1nt2) we have

sup
0≤t≤1

|Fn(t)− F (t)| ≤ t/3

and the result follows. �

Note that in the preceding proof one can also use Doob’s martingale inequality
(in the form of Kolmogorov’s inequality) and the representation of (γ(i))

n
1 in terms

of (yn)
n
1 , although this approach yields an inferior probability bound.

Lemma 3. Let (ωn)
∞
1 be any sequence in N such that limn→∞ ωn = ∞. Then for

all T > 1 and all δ ∈ (0, 1) there exists n0 ∈ N such that for all n > n0, if (γ(i))
n
1

are the order statistics from an i.i.d. sample from the uniform distribution on [0, 1],
then with probability at least 1− δ, (2.2) and (2.3) hold for all ωn ≤ i ≤ n− ωn.

Proof. We use the representation (2.1). Let T > 1 and δ ∈ (0, 1) be given.
Without loss of generality we may assume that T ≤ 2. Let (z̃i)

∞
1 denote any i.i.d.
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sequence of random variables that follow the standard exponential distribution.
Define the deterministic sequence (λj)

∞
1 as follows,

λj = P{sup
i≥j

(2i log log i)−1/2

∣∣∣∣∣

i∑

k=1

(z̃k − 1)

∣∣∣∣∣ ≤ 2}

Note that (λj)
∞
1 is an increasing sequence and by the law of the iterated logarithm,

limj→∞ λj = 1. Fix n0 ∈ N with n0 ≥ 64δ−1(T 1/2 − 1)−2 such that for all n > n0

we have the following inequalities,

λω(n) ≥ 1− δ/4
(
8 log logωn

ωn

)1/2

≤ T 1/2 − 1

Now consider any n > n0 and let (γ(i))
n
1 denote the order statistics mentioned in

the statement of the lemma. With probability at least 1−δ/4, for all ω(n) ≤ i ≤ n,
∣∣∣∣∣∣
1− 1

i

i∑

j=1

zj

∣∣∣∣∣∣
≤

(
8 log logωn

ωn

)1/2

≤ T 1/2 − 1

By Chebyshev’s inequality and the fact that the function u 7→ u−1 is 4-Lipschitz
on [1/2,∞), with probability at least 1− 16n−1(T 1/2 − 1)−2 ≥ 1− δ/4

∣∣∣∣∣∣∣
1−


 1

n+ 1

n+1∑

j=1

zj




−1
∣∣∣∣∣∣∣
< T 1/2 − 1

By (2.1), with probability at least 1 − δ/2, (2.2) holds for all ω(n) ≤ i ≤ n. By
symmetry, with the same probability (2.3) holds for all 1 ≤ i ≤ n − ω(n). The
lemma is thus proven. �

3. The general case

Lemma 4. Let F be a continuous strictly increasing cumulative distribution func-
tion that satisfies (1.1). Then F−1 is continuous and for all T > 1 and all δ > 0
there exists η ∈ (0, 1) such that for all x, y ∈ (0, η) with T−1 ≤ xy−1 ≤ T and all
x, y ∈ (1− η, 1) with T−1 ≤ (1− x)(1 − y)−1 ≤ T we have |F−1(x)− F−1(y)| ≤ δ.

Proof. Consider any T > 1 and δ > 0. By (1.1) there exists t0 ∈ R such that
for all t ≤ t0, TF (t) < F (t+ δ). Let η1 = F (t0). Consider any x, y ∈ (0, η1) such
that T−1 ≤ xy−1 ≤ T . Without loss of generality, x < y. Let s = F−1(x) and
t = F−1(y). Then s ≤ t0, hence F (t) = y ≤ Tx = TF (s) < F (s+ δ), from which
it follows that t < s + δ and that |F−1(x) − F−1(y)| ≤ δ. Analysis of the right
hand tail is identical and provides us with η2 > 0 such that for all x, y ∈ (1− η2, 1)
with T−1 ≤ (1 − x)(1 − y)−1 ≤ T we have |F−1(x) − F−1(y)| ≤ δ. The result
follows with η = min{η1, η2}. �
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Lemma 5. Let F be a continuous strictly increasing cumulative distribution func-
tion that satisfies both (1.3) and (1.4). Then F−1 is continuous and for all δ > 0
there exists T > 1 such that for all x, y ∈ (0, 1) such that T−1 ≤ xy−1 ≤ T and
T−1 ≤ (1− x)(1− y)−1 ≤ T we have |F−1(x)−F−1(y)| ≤ δ. In particular, F−1 is
uniformly continuous with respect to the metric θ1 (see (1.5)).

Proof. Consider any δ > 0. By (1.4) there exists T1 > 1 and t0 ∈ R such
that for all t < t0, T1F (t) ≤ F (t+ δ). Let η1 = min{F (t0), 2

−1}. As in the proof
of the previous lemma, it follows that for all x, y ∈ (0, η1) with T−1

1 ≤ xy−1 ≤ T1

we have |F−1(x) − F−1(y)| ≤ δ. Similarly (using (1.3)), there exists T2 > 1 and
η2 ∈ (2−1, 1) such that for all x, y ∈ (η2, 1) with T−1

2 ≤ (1 − x)(1 − y)−1 ≤ T2

we have |F−1(x) − F−1(y)| ≤ δ. By continuity of F−1 relative to the standard
topology on (0, 1), and by compactness of [2−1η1, 1 − 2−1η2] there exists 0 < δ′ <
10−1min{η1, η2} such that for all x, y ∈ [2−1η1, 1−2−1η2] with |x−y| < δ′ we have
|F−1(x) − F−1(y)| ≤ δ. We leave it to the reader to verify that the result holds
with

T = min{T1, T2, 1 + δ′}
�

Proof of theorem 1. We shall construct a function h that takes an arbi-
trary δ ∈ (0, 1) and produces an appropriate n0 = h(δ) ∈ N. Then, using this
function we shall define the desired sequence (δn)

∞
1 that is mentioned in the state-

ment of the theorem. To this end, let δ ∈ (0, 1) be given. Define

(3.1) T = 106δ−2

By lemma 4 there exists η ∈ (0, 1) such that if x, y ∈ (0, η) and T−1 ≤ xy−1 ≤ T ,
or x, y ∈ (1 − η, 1) and T−1 ≤ (1 − x)(1 − y)−1 ≤ T , then |F−1(x) − F−1(y)| ≤ δ.
By compactness, F−1 is uniformly continuous on [η/2, 1− η/2], which implies the
existence of t ∈ (0, η/2) such that if x, y ∈ [η/2, 1 − η/2] and |x − y| ≤ t, then
|F−1(x)− F−1(y)| ≤ δ. Define

(3.2) n0 =
⌈
5t−2 log(4δ−1)

⌉

and consider any n ≥ n0. Let (γ(i))
n
1 denote the order statistics corresponding to

an i.i.d. sample from the uniform distribution on [0, 1]. Note that we have the
representation

(3.3) x(i) = F−1(γ(i))

valid for all 1 ≤ i ≤ n. By lemmas 1 and 2, as well as equations (3.1) and (3.2),
with probability at least 1−δ inequalities (2.2), (2.3) and (2.5) hold simultaneously
for all 1 ≤ i ≤ n. Suppose that these inequalities do indeed hold and consider any
fixed 1 ≤ i ≤ n. Since t ≤ η/2, one of the three sets [0, η], [η/2, 1−η/2] and [1−η, 1]
contains both γ(i) and i(n+1)−1, which implies that |F−1(γ(i))−F−1(i(n+1)−1)| ≤
δ, which is inequality (1.2).

Define the non-decreasing sequence (κn)
∞
1 by κn = max{h(e−i) : 1 ≤ i ≤ n}

and set
δn = exp(−max{i ∈ N : κi ≤ n})

where we define max ∅ = 0. It is clear that limn→∞ δn = 0. Consider any fixed
n ∈ N. If {i ∈ N : κi ≤ n} = ∅ then the probability bound is trivial, otherwise let
j = max{i ∈ N : κi ≤ n}. The result follows by the inequality h(δn) = h(e−j) ≤
κj ≤ n and by definition of the function h. �
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Proof of theorems 2 and 3. The proof is very similar to that of theorem
1. We use the representation (3.3). The main difference is that we use lemmas 3
and 5 instead of lemmas 1 and 4. The details are left to the reader. �

4. Log-concave distributions

The following two lemmas are modifications of lemmas 6 and 9 in [10].

Lemma 6. Let µ be a log-concave probability measure on R with a continuous
strictly increasing cumulative distribution function F . Then there exists c > 0
such that for all 0 < x < y < 1,
(4.1)

|F−1(y)− F−1(x)| ≤ cmax

{∣∣F−1(y)
∣∣ log(x

−1y)

log y−1
,
∣∣F−1(x)

∣∣ log((1− x)/(1 − y))

log(1− x)−1

}

Proof. By theorem 5.1 in [15] (see lemma 5 in [10] for a proof) F is log-
concave. Hence the function u(t) = − logF (t) is convex (and strictly decreasing).
Let Eµ denote the centroid of µ (the expected value of a random variable with
distribution µ). By lemma 5.12 in [15] (see also lemma 3.3 in [3]) F (Eµ) ≥ e−1,
hence u(Eµ) ≤ 1. By convexity of u we have the inequality (t−s)−1(u(t)−u(s)) ≤
(Eµ − t)−1(u(Eµ) − u(t)), which is valid for all s < t < Eµ. Let 0 < x < y <
min{e−2, F (0), F (−2Eµ)} and define s = F−1(x) and t = F−1(y). Then we have

F−1(y)− F−1(x) ≤ (Eµ− F−1(y))
log(x−1y)

log y−1 − u(Eµ)

It follows from the restrictions on y that F−1(y) < 0 and that
∣∣F−1(y)

∣∣ ≥ 2 |Eµ|.
Since y < F (Eµ)2, it follows that log y−1 > 2u(Eµ) and (4.1) follows for such x and
y with c = 4. For other values of x and y, inequality (4.1) follows by compactness,
continuity and symmetry. �

Lemma 7. Let p ≥ 1 and let µ be a p-log-concave probability measure on R with
cumulative distribution function F . Then there exists c > 0 such that for all
x ∈ (0, 1),

(4.2) |F−1(x)| ≤ cmax{(log x−1)1/p, (log(1− x)−1)1/p}
As a consequence of (4.2) and (4.1), F−1 is Lipschitz with respect to the metric θp
(see (1.5)).

Proof. By lemma 9 in [10] (which holds for p ≥ 1) there exists c1, c2 > 0
and t0 > 1 such that for all t < −t0, F (t) ≤ c1|t|1−p exp(−c2|t|p). Let η1 =
min{F (−t0), c

−1
1 } and consider any x ∈ (0, η1). Let t = F−1(x). Hence x =

F (t) ≤ c1|t|1−p exp(−c2|t|p), which implies that

|F−1(x)| = −t

≤ (c−1
2 (log c1 + log x−1))1/p

≤ 21/pc
−1/p
2 (log x−1)1/p

The result now follows by symmetry, compactness and continuity. �
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Lemma 8. Let F be a continuous strictly increasing cumulative distribution func-
tion associated to a log-concave probability measure. Then there exists c > 0 such
that for all ε ∈ (0, 1/2) and all x, y ∈ [ε, 1− ε],

|F−1(x)− F−1(y)| ≤ cε−1|x− y|
Proof. This follows from lemmas 6 and 7 with p = 1 and the inequality

log t ≤ t− 1. �

Proof of theorem 4. By lemmas 1, 6 and 7, with probability at least 1 −
400(logn)−q, for all i ≤ n3/4 and all i ≥ n− n3/4 we have

|x(i) − x∗
(i)| ≤ c

log logn

(logn)1−1/p

Let I = [2−1n−1/4, 1− 2−1n−1/4]. By lemma 8, for all x, y ∈ I we have

|F−1(x) − F−1(y)| ≤ cn1/4|x− y|
By lemma 2, with probability at least 1 − 2 exp(−5n1/4), for all 1 ≤ i ≤ n we

have
|γ(i) − i(n+ 1)−1| ≤ n−3/8

Hence for all n3/4 ≤ i ≤ n − n3/4 both γ(i) and i(n + 1)−1 are elements of I
and the result follows. �
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