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Abstract

We propose and develop a novel and effective perfect saghpigthodology for simulating from
posteriors corresponding to mixtures with either knowne(ixor unknown number of components.
For the latter we consider the Dirichlet process-basedurextinodel developed by these authors, and
show that our ideas are applicable to conjugate, and impitytdo non-conjugate cases. As to be
expected, and, as we show, perfect sampling for mixturels kvibwn number of components can
be achieved with much less effort with a simplified versioroaf general methodology, whether
or not conjugate or non-conjugate priors are used. Whilepegial assumption is necessary in the
conjugate set-up for our theory to work, we require the agdiom of bounded parameter space in
the non-conjugate set-up. However, we argue, with appatgpanalytical, simulation, and real data
studies as support, that such boundedness assumptionuaneatistic and is not an impediment in
practice. Not only do we validate our ideas theoreticallg arith simulation studies, but we also
consider application of our proposal to three real data se¢sl by several authors in the past in
connection with mixture models. The results we achievedaicheof our experiments with either
simulation study or real data application, are quite eraging.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are developeditoulate from desired distributions,
from which generation of exact samples is difficult. The moeiblogy has found much use in the
Bayesian statistical paradigm thanks to the natural neesénaple from intractable posterior distribu-
tions. But in whatever clever way the MCMC algorithms areigiesd, the samples are generated only
asymptotically. Due to impossibility of running the chaor fin infinite span of time, a suitable burn-in
period is chosen, usually by a combination of empirical atkhac means. The realizations retained
after discarding the burn-in period are presumed to clasglyesent the true distribution. The degree of
closeness, however, depends upon how suitably the buseimasen, and an arbitrary choice may lead
to serious bias. Even in simple problems non-negligibledsabften result if the burn-in period is chosen
inadequately (see, for example, Roberts and Rosentha8)L9Such problems can only be aggravated
in the case of realistic, more complex models, such as naxtwwdels of the form, given for the data

pointy, by
|@p7H ijfy‘e (1)

In (1), ©, denotes the set of parametéés. . . ., p)’, II, = (m,...,m,) are the mixing probabilities
such thatr; > Oforj =1,...,p, andZﬁ.’:1 m; = 1. Here the number of mixture componeptsnay

or may not be known. The latter case corresponds to variablersional parameter space since the
cardinality of the se®,, then becomes random.

Mixture models form a very important class of models in stats, known for their versatility. The
Bayesian paradigm even allows for random number of mixtareponents (making the dimensionality
of the parameter space a random variable), adding to théiliexiof mixture models. Sophisticated
MCMC algorithms are needed for posterior inference in nixtonodels, raising the question of ade-
guacy of the available practical convergence assessmehbds particularly in the case of variable-
dimensional mixture models. The importance of the afordioead class of models makes it important
to solve the associated convergence assessment probléms paper, we develop a rigorous solution to
this problem using the principle of perfect sampling.

The perfect sampling methodology, first proposed in the sahpiaper by Propp and Wilson (1996),
attempts to completely avoid the problems of MCMC convecgesissessment. In principle, starting at

all possible initial values, so many parallel Markov chaiegd to be run, each starting at time —oo.



If by time ¢ = 0, all the chains coalesce, the coalescent point at time 0 is an exact realization
from the stationary distribution. Essentially, this piple works in the same way as the regular MCMC
algorithms, but by replacing its starting time= 0 with ¢ = —oco and the convergence time= oo
with ¢ = 0. To achieve perfect sampling in practice, Propp and Wil4&®96) proposed the “coupling
from the past” (CFTP) algorithm, which avoids running Markains from the infinite past. We briefly

describe this in the next section.

2 The CFTP algorithm

Let us assume that the state spateés finite, and let{ X;;¢ = 0, 1, ...} denote the underlying Markov
chain. Then, fort > 0 it is possible to represent the Markov chain generically esnalom mapping:
X1 = 0(Xy) = o(Xy, Risq), for some functionp(-, -) and aniid sequencd R;;t = 1,...}. Then the

CFTP algorithm is as follows (see Propp and Wilson (1996hdéRband Casella (2004)):

1. Fort = —1,-2,..., generatey,(z) forz € X.

2. Fort=—-1,-2,..., forxz € X, define the compositions
(I)t(x) =@po¢p_10-- '¢—t($) 2)

3. Determine the timé&' such that® is constant.
4. Acceptd(z*) as an exact realization from the stationary distributiarefoy arbitraryz* € X',

It is well-known (see, for example, Case#iaal. (2001)) that the above algorithm terminates almost
surely in finite time and indeed yields a realization disttdanl exactly according to the stationary dis-
tribution of the Markov chain._Propp and Wilson (1996) recoemd takingg = —27, forj = 1,2, .. .,
which we shall adopt in this paper. A subtle, but importanhpis that, even if all the Markov chains
coalesce before time= 0, the corresponding simulation need not yield a perfect $anfne needs to
carry the algotithm forward till timeé = 0; the sample corresponding to orily= 0 is guaranteed to be
perfect. For details, see Casedtaal | (2001).

A drawback of the CFTP algorithm is the requirement of a fisit@éte space. But this problem
may be alleviated by constructing coalescent stochastind®for the underlying Markov chain, so that

instead of starting the CFTP algorithm from all possibletstg points, only the bounding chains need
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be run, from the maximal and the minimal points of the statesp For details, see Propp and Wilson
(1996). However, the maximal and the minimal points needex@dt in the case of real parameters;

also, obtaining coalescent stochastic bounds is not araitystforward in general. Strategies for perfect

sampling in general state spaces are described in MurdatGesen [(1998) and Green and Murdoch

(1999), but quite restricted set-ups, which do not hold gahg are needed to implement such strategies.
The set up of mixture models is much complex, and the knovategjres are difficult to apply.

The first attempt to construct perfect sampling algorithorsrhixture models is by Hobeet al.
(1999). However, they assumed only 2-component and 3-coerganixture models, where only the
mixing probabilities are assumed to be unknown. Boundirgirshwith monotonicity structures are
used to enable the CFTP algorithm in these cases. Usinggeeof perfect slice sampler (Miet al.
(2001)), and assuming conjugate priors on the parametasell@et al| (2002) proposed a perfect sam-
pling methodology for mixtures with known number of compotssy marginalizing out the parameters.
It is noted in_Casellat al. (2002) that in the conjugate case the marginalized formeptbsterior is an-
alytically available, but the authors point out (see Secfoof Casellat al! (2002)) that still perfect
simulation from the analytically available marginalizembperior is important. Unfortunately, apart from
the somewhat restricted assumptions of conjugate priar&aown number of components, the method-
ology is approximate in nature and the authors themselve®udstrated that the approximation can be
quite poor! Fearnhead (2005) proposed a direct samplinigadetogy based on recursion relations asso-
ciated with the forward-backward algorithm, for mixturdslscrete distributions assuming a conjugate
set-up and known number of components, thus bringing in &a& @xd crucial assumption of discrete
data.

However, the drawbacks of the methodologies in no way ptdakercontributions of the aforemen-
tioned authors in poor light, these only show how difficult froblem is. In this paper we attempt to
avoid the restrictions and difficulties by proposing a nagbroach. In the non-conjugate case (but not
in the conjugate case) we are forced to assume boundednéss parameter space, but we argue in
Sectior 3.8, followed up with a simulated data example insiingplement and three real data cases in
Sectiorb, that it is not an unrealistic assumption, paldityiin the Bayesian paradigm. Noting partic-
ularly that no methodology exists in the literature thatreaétempts perfect simulation from mixtures
with unknown number of components, for either bounded oounided parameter space, for either con-

jugate or non-conjugate set-up, there is no reason to look opr boundedness assumption only in the



non-conjugate case as a serious drawback.

We first construct a perfect sampling algorithm for mixturedals with fixed (known) number of
components and then generalize the ideas to mixtures wkhawn number of components. For the
sake of illustration, we concentrate on mixtures of normeaigities, but our ideas are quite generally
applicable. We illustrate our methodology with simulatstadies as well as with application to three real
data sets. Additional technical details and further detail experiments are provided in the supplement,

whose sections and figures have the prefix “S-" when refeoréal this paper.

3 Perfect sampling for normal mixtures with known number of

components

3.1 Normal mixture model and prior distributions

Letting f(- | 6;) in (@) denote normal densities with meapand variance ?, we obtain the following

[y | ©p, 11,] :ZWJ\/geXp{_% (y_ﬂj)z}a (3)

In @), 6; = (11, A;), whereX; = 2. For the sake of convenience of illustration only we constte

normal mixture model

following conjugate prior specification on the unknown abtes

id

Aj ~ Gamma(s/2,5/2);j=1,...,p 4)
i | A~ NG, )i=1,...,p (5)
I, = (m,...,m,) ~ Dirichlet(y,...,7) (6)

(7)

We further assume thgt,,.... &}, {n...., 7} and{y,...,,} are known.

With conjugate priors the marginal posteriors of the patanséll,. ©,) and the allocation variables
Z are available in closed forms, but still sampling from theteaor distributions is important. Indeed,
Caselleet al. (2002) argue that sampling enables inference on arbittargtionals of the unknown vari-
ables, which are not analytically available. These autpovposed a perfect slice sampler for sampling

from the marginal posterior of the allocation varialeonly. Given perfect samples from the posterior
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of Z, drawing exact samples from the posterior distribution$ldf, ©,) is straightforward. But im-
portantly, the posteriors are not available in closed formon-conjugate situations, and even Gibbs
sampling is not straightforward in such cases. Since ourigda provide a general theory that works
for both conjugate and non-conjugate priors, we do not focuhe marginalized approach, although the
conjugate situation is just a special (and simpler) caseuopooposed principle (see Sectidns|3.3 and
[4.3). Due to convenience of illustration we begin with thajagate prior case where the full conditional
distributions needed for Gibbs sampling are available.illthe shown how the same ideas are carried

over to the non-conjugate cases.

3.2 Full conditional distributions

Assuming that a datas&t = (v, ...,y,)" is available, let us define the set of allocation variatiles
(z1,...,2n)", Wherez; = j if y; comes from thg-th component of the mixture. Further, defining=
#{i: =7}y = Ezz:j Yi/ng, Z_i = (21, Zic1, Ziv1, - -5 2n) @NAO_j, = (01, ..., 0,21,0;11,...,0,),
the full conditional distributions of the unknown randonriglles can be expressed as the following:

. A

(20 =710y, Zi, ILY] o< mjy/Ajexp {_?J(yi - Mj)Q} (8)

| - stmn 1 (G5 = &)
A | Z,11,0_p, 1, Y] Gamma ( 55 {S+ I 1 +Z;] 9)

1 y] "'_53 7

O A, ZILY] ~ N : . 10
15 1 ©—js A ] < nﬂ'j +1 "\ (nﬂf + 1)) (10)
1] Z,0,Y] ~ Dirichlet (ny +1,...,1, +7) (11)

Perfect sampling, making use of the full conditional disitions available for Gibbs sampling, has
been developed by Moller (1999). But the development is dasethe assumption that the random
variables are discrete and that the distribution functiares monotonic in the conditioned variables.
These are not satisfied in the case of mixtures. Full conwitibased perfect sampling has also been used
by |Schneider and Corcoran (2004) in the context of Bayesaiabie selection in a linear regression
model, but their methods depend strongly on the underlyingcture of their linear regression model
and prior assumptions and do not apply to mixture models. gdaposed method hinges on obtaining
stochastic lower and upper bounds for fwpart of the Gibbs sampler, and simulating only from the two

bounding chains, and noting their coalescence. It turnshattin our methodology, there is no need to



simulate the other unknowndl],,, ©,) before coalescence, even in the non-conjugate set-upilata

provided in the next section.

3.3 Bounding chains forZ

Fori=1,...,n,letF(- | Z_;11,,©,) denote the distribution function corresponding to the ¢olhdi-
tional of z;. Writing X_; = (Z_;,11,,,0,), let

FF() = inf (-] X2) (12)
FU() = supF(| X_,) (13)

—1

be the lower and the upper boundsiof- | Z_;,11,,©,). The infimum and the supremum in{12) and
(13) can be made to be bounded away from 0 and 1 by enforcingdsan®,,. This is not an unrealistic
assumption since in all practical situations, parameter&ssentially bounded. In fact, the prior on the
parameters is expected to contain at least the informagigarding the range of the parameters. In almost
all practical applications, this range is finite, which, inngiple, is possible to elicit. We believe that
unbounded parameter spaces are assumed only due to theaesbanalytic advantages (for instance,
generally integrals are easier to evaluate analyticallgmthe parameter spaces are unbounded) and
because of the difficulty involved in elicitation of propetqrs with bounded support.

In our case, a pilot Gibbs sampling run with unbounégdmay be implemented first, and then the
effective range of the posterior &, can be chosen as the bounded support of the pri@,oflt is
demonstrated with a simulated example in Sedtion S-11@waih three real applications in Sections
6.1,[5.2 and 513 that often the posterior with theoreticafipounded support is almost the same as that
with bounded support, obtained from pilot Gibbs samplingldds otherwise mentioned, throughout we
assume bounded support®f. We remark here that the boundedness assumption is notcheethe
case of conjugate prior oB,. In that caseP, will be integrated out analytically, and hen¢el(12) and
(@3) will not involve ©,, thus simplifying proceedings, typically decreasing tlgtahce between the
bounds[(1R) and (13).

Had the minimizer and the maximizer 6f(;j | X_;) with respect taX _; been constant with respect
to j, then, trivially, [12) and[(113) would have been distributfonctions. But this is not the case unless
z; takes on only two values with positive probability, as in ttese of 2-component mixture models.

However, as shown in Section Z/(-) and FV(-) satisfy the properties of distribution functions for
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any discrete random variable. So, their inversions willdseioh all possible realizations obtained by
inverting F;(- | X_;), irrespective of any _;.

To clarify the sandwiching argument, we first define the iseenf any distribution functiod’ by
F~(z) = inf{y : F(y) > «}. Further, letR;, = {R., ;i = 1,...,n} be a common set a@fd random
numbers used to simulageat timet for Markov chains starting at all possible initial valuelswe define
ziw = By (Ray | X)), 25 = FY (R,,;) andzl = FF (R..,), then it holds that} < 2, < 2 for
i=1,...,nandt = 1,2,.... These imply that once alj;; i = 1,...,n, drawn by invertingt"’* and
FVY coalesce, then so will every realizationfdrawn fromF;(- | X_;), fori = 1,..., n, starting at all
possible initial values.

Analogous to{ Rzt = 1,2,...}, let {Rp, ¢+t = 1,2,...} and{Re,;t = 1,2,...} denote sets
of 7id random numbers needed to geneldteand©,, respectively, in a hypothetical CFTP algorithm,
where Markov chains from all possible starting values aneufated, withZ updated first. Once’
coalesces, so willIl,,©,) since their full conditionals (se€]l(9)._(10) aridl(11)) shdwttthe cor-
responding deterministic random mapping function depemdg uponZ, {Ry, .t = 1,2,...}, and
{Re,s;t=1,2,...}.

Hence, it is interesting to note that we need to run just twairch[12) and[(13) and check their
coalsecence; there is no need to simulélg ©,,) before coalescence occurs with respect tim these
two bounding chains, even in non-conjugate cases. Thispiwpf our methodology has some important
advantages which are detailed in Secfion 3.6.

It is proved in Sectiofl8 that coalescenceZobccurs almost surely in finite time. Foss and Tweedie
(1998) showed that coalescence occurs in finite time if arlg ibrihe underlying Markov chain is
uniformly ergodic. In Sectioh]9 we show that our Gibbs sampidnich first updates, is uniformly
ergodic. The proofs in Sectiof$[7, 8 ddd 9 go through with teified bounds needed for mixtures

with unknown number of components.

3.4 Efficiency of the bounding chains

It is an important question to ask if the lower boundl(12) cenntade larger or if the upper bound
(@3) can be made smaller, to accelerate coalescence. Thisecachieved if a monotonicity structure
can be identified inIL,, ©,). In Section S-11 we illustrate this with an example. In Sedd.5 we

propose a method for reducing the gaps between the boundsimrenmodels with unknown number



of components. There itis also discussed that for these Isyadere information in the data can further

reduce the gap between the bounding chains.

3.5 Restricted parameter space and rejection sampling aftecoalescence

If our algorithm colaseces at time< 0, then Gibbs sampling is necessary from that point on tilketim
t = 0. The bounds, however, may prevent exact simulation fronfutheonditionals of©,, using con-
ventional methods, such as the Box-Muller transformaiBox(and Muller(1958)) in the case of normal
full conditionals, which becomes truncated normal underrtstrictions. In these situations, rejection
sampling may be used. Briefly, I€¢RR*,;r = 1,2, ...} denote a collection of infinite random numbers,
to be used sequentially for rejection sampling of the camttirs random variables at timeby the full
conditionals of the continous random variables. Actuakdation using rejection sampling is not neces-
sary untilZ coalesces. In the case of non-conjugate priors (perhapsldition to restricted parameter
space), the full conditional densities are often log-cercdn such situations the same principle can be
used, but with rejection sampling replaced by adaptivectigje sampling(Gilks and Wild (1992), Gilks
(1992)).

3.6 Advantages of our approach

Our bounding chain approach for only the discrete compa@giias several advantages over the previ-
ous approaches. Firstly, simulation of the continuousrpatars before coalescenceffis unnecessary.
This advantage is important because construction of bofondee continuous parameters, even if pos-
sible, may not be useful since the coalescence probabildgrtinuous parameters corresponding to the
bounding chains, is zero. Moreover, bounding the distidoufunctions of continuous parameters in the
mixture model context does not seem to be straightforwatidout discretization. Another advantage of
our perfect sampling principle is that we do not need a daotier of the multi-dimensional state space
and it is unnecessary to find minimal and maximal elemententeesas initial values of the bounding
chains. Indeed, our bounding chains begin with simulatfoms - and FV, which do not require
any initial values. Also, importantly, our approach of d¢ne@ bounds forZ does not depend upon the
assumption of conjugate priors. Exactly the same approdthewused in the case of non-conjugate pri-
ors. After coalescence, regardless of bounded parametee §p non-conjugate priors, Gibbs sampling

can be carried out in a very straightforward manner till time 0.
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3.7 Obtaining infimum and supremum of F;(- | X_;) in practice

The boundstt () , EE(- | z*,), FY(-) , FY(- | Z*,) are bounded away from 0 and 1 but not always
easily available in closed forms. Numerical optimizati@ing simulated annealing (see, for example,
Robert and Casella (2004) and the references therein) estipératurel’ oc m wheret is the
iteration number, turned out to be very effective in our cases is because the method, when properly
tuned, can be quite accurate, and it is entirely straigitiod to handle constraints (introduced through
the restricted parameter space in our methodology) withulsited annealing through the acceptance-
rejection steps as in Metropolis-Hastings algorithm. Atreimet a set of fixed random numbers will
be used for implementation of simulated annealing withinpmrfect sampling methodology.

Interestingly, for our perfect sampling algorithm we do need simulated annealing to be arbitrarily
accurate; given random numbdiB;;t = 1,2, ...} we only need it to be accurate enough to generate
the same realization from the approximated distributiamcfions as obtained had we used the exact
solution. For instance, assume thgt(; — 1) < R,,, < FF(j), implying thatz} = j. Letting F;F
denote the approximated distribution function, we onlycheéee approximation to satisleL(j -1) <
R... < EFF(j) so thatzl, = j even under the approximation. This is achievable even itrarily
accurate approximation is not obtained.

Our perfect sampling methodology is illustrated in a 2-comgnt normal mixture example in Sec-
tion[S-11; here we simply note that our method worked exo#ile A further experiment associated
with the same example, and reported in Sedtion St11.4, shtive perfect sampling based on simu-
lated annealing yielded results exactly the same as thaséneld by perfect sampling based on exact
optimization, in 100% cases. The latter experiment cleealidates the use of simulated annealing for
optimization in perfect sampling.

We now extend our perfect sampling methodology to mixturés wnknown number of com-
ponents, which is a variable-dimensional problem. In tloatext, the non-parametric approach of
Escobar and West (1995) and the reversible jump MCMC (RIMEApProach of Richardson and Green
(1997) are pioneering. The former uses Dirichlet process, f®r example, Ferguson (1974)) to implic-
itly induce variability in the number of components, whil@imtaining a fixed-dimensional framework,
while the latter directly treats the number of componentardsiown, dealing directly, in the process,
with a variable dimensional framework. The complexitiegolmed with the latter framework makes

it difficult to extend our perfect sampling methodology te ttase of RIMCMC. A new, flexible mix-
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ture model based on Dirichlet process has been introducéhbttacharya (2008) (henceforth, SB),
which is shown by Mukhopadhyag all (2011b) (see also Mukhopadhyetyal. (2011a)) to include
Escobar and West (1995) as a special case, and is much morergféind computationally cheap com-
pared to the latter. Hence, we develop a perfect samplinfpadetogy for the model of SB, which

automatically applies to Escobar and West (1995).

4 Perfect sampling for normal mixtures with unknown number of

components

As before, lety’ = (y1, ..., y,) denote the available data set. SB considers the followindeho

M
1 Yy Yy
e €l ~ 3 3oy 5% e { =Y - (1
j=1

In the above M is the maximum number of components the mixture can poshkilg, and is known;
On = {61,062, ...,00} with 6; = (15, \;), where); = aj‘z. We further assume th&,, are samples
drawn from a Dirichlet process:

itd

Hj ~ G
G ~ DP(aGy) (15)

Usually aGamma prior is assigned to the scale parameter

UnderG,
iid s S
Aj ~ Gamma <§,§) (16)
i [ A] ~ N(po, A7) (17)

Under the Dirichlet process assumption the paramétease coincident with positive probability;

because of thig (14) reduces to the form

p 2\ 2\*
[yi |@M]:Zﬂj\/;exp{_?](yi_ﬂj)z}v (18)

where{0;, ..., 0} arep distinct components i, with 0% occuring); times, andr; = M; /M.
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Using allocation variableg = (zi,...,z,), SB’s model can be represented as follows: Foet
1,...,nandj=1,..., M,

il 5= 5,0 = ﬁexp{—ﬁ@i—uj)?} (19)
[zi:j] = o5 (20)

As is easily seen and is argued.in Mukhopadhstaal. (20114a), setting/ = n andz; = ¢ for i =
1,...,M(=n), thatis, treatingZ = (1,2, ...,n) as non-random, yields the Dirichlet process mixture
model of Escobar and West (1995).

However, unlike the case of mixtures with fixed number of comgnts, the full conditionals of only
Z and©,, can not be used to construct an efficient perfect samplingristhgn in the case of unknown
number of components. This is because the full conditiohé} given the rest depends upahas well
as©_;,, which implies that even i¥ coalescesf; can not coalesce unless ;,, also coalesces. But
this has very little probability of happening in one step. Mdre concern is the fact that may again
become non-coalescent@f,,; does not coalesce immediately aftércoalseces. Hence, although the
algorithm will ultimately converge, it may take too manyrdagons. This problem can be bypassed by
considering the reparameterized version of the model,dbasethe distinct elements @ ,, and the

configuration indicators.

4.1 Reparametrization using configuration indicators and asociated full condi-

tionals

As before we define the set of allocation variables= (z4, ..., z,), wherez; = j if y; is from the
j-th component. Lettin@;, = {6}, ...,0;} denote the distinct components@,, the element; of
the configuration vectof' = (cy,...,cy) is defined as; = ¢ifandonly if6; = 6;; 5 =1,..., M,

¢ =1,...,k. Thus,(Z,0,) is reparameterized t6Z, C, k, ©},), k denoting the number of distinct
components ir®,,.

The full conditional distribution of; is given by

A\

. . Aj
= 1V,Ck 03] o 5 exp { =Y - @)

SinceO,, can be obtained frord’ and©?,, we represented the right hand sidelof (21) in term® gf
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To obtain the full conditional of;, first letk; denote the number of distinct valuesdn ;,,, and let
9{‘; ¢=1,..., k; denote the distinct values. Also suppose Hjébccursng times.

Then the conditional distribution ef is given by

kqp 1if 0=1,... k,
[Cj:€|KZ7C—jukj7®>]k\4]: ’ (22)
kqo; If £ =Fk;+1
where
() 1 \® [1\?
=0y e 1) T \er
25+n] F(5+nj)
. 2 (23)
{S+ mnijff D i (Wi — G5)? }
. N7 N . _
ey = MZJ( ‘ )”_y exp | ——-qni(mp —7;)° + Z(yi_yj>2
(271') 2 2 1:2;=]
(24)

In (23) and [(24) is the normalizing constant,; = #{i : z; = j} andy; = >_,. _.yi/n;. Note that

qo; 1s the normalizing constant of the distributiof) defined by the following:

. s+mn; 1 n;(9; —
[Aj] Gamma( 5 ,2{5—{— ”ﬂ/’ﬂLl —I—Z

1:2;=]
(25)
n;y;Y + o Y
A~ N[22 7 26
s | A ( njv+1 " Aj(ny + 1)) (20)
The conditional posterior distribution 6f is given by
[‘92( | Y7 27 C] ~ Gamma (AZ Sé? SZ) X N( MOZ7¢Z ) ) (27)

where

nz = an, gZ: angjj/an, SZ:nZ;_S, (28)

Jicj=¢ Jicj=¢ Jicj=¢
oo = (¥ng¥y + po) / (Yng + 1), (29)
v = /(g +1), (30)
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and

S = 2{S+W¢“°+1 +an —7+ ) Z(yiyﬁ}- (31)

Jicj= Jicj=Li:z;=j
It is to be noted that thé; are conditionally independent.
For Gibbs sampling, we first updafg followed by updating” and the number of distinct compo-
nentsk, and finally{¢;; ¢ =1, ..., k}.

4.2 Non-conjugateG)

In the case of non-conjugate, (which may have the same density form as a conjugate priowlit
bounded support); is not available in closed form. We then modify our Gibbs skmgpstrategy by
bringing in auxiliary variables in a way similar to that ofgdrithm 8 iniNeal [(2000). To clarify, let
0* = (u*, \*) denote an auxiliary variable (the suffix™ stands for auxiliary). Then, before updating
c; we first simulate from the full conditional distribution 6f given the current; and the rest of the
variables as follows: i¢; = ¢, for somel # j, thenf* ~ G,. If, on the other hand;; # ¢, V¢ # j, then
we sett” = 67 . Onced” is obtained we then replace the intractaplewith the tractable expression

R T @)
Oncec; is simulated, if it is observed thé} # 0 Vj, thend” is discarded.

4.3 RelabelingC

Simulation ofC' by successively simulating from the full conditional dilstitions [22) incurs a labeling
problem. For instance, it is possible that allare equal even though each of them corresponds to a
distinctd;. For an example, suppose tita}, consists ofM distinct elements, and, = M Vj. Then
although there are actually/ distinct components, one ends up obtaining just one distmmponent.

For perfect sampling we create a labeling method which ety such that the relabeled version, which
we denote bys = (sy, ..., sy), coalesces i€ coalesces. To construstwe first simulate:; from (22);

if ¢; € {1,....k;}, then we set; = 67 and ifc; = k; + 1, we drawd; = 0 ~ G;. The elements

of S are obtained from the following definition ef: s; = ¢ if and only if §; = 6;. Note thats; = 1
andl < s; < s;_1 + 1. In Sectior 1D it is proved that coalescence”oimplies the coalescence &f

irrespective of the value @d;, associated witld".
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4.4 Full conditionals usingS

With the introduction ofS' it is now required to modify some of the full conditionals dtunknown
random variables, in addition to introduction of the fullhclitional distribution ofS. The form of the
full conditional [z; | Y, S, k, ©%,] remains the same as (21), i, involved in the right hand side
of (21)) is now obtained fron and ©},. The modified full conditional of;, which we denote by
lc; | Y, Z,5_;,k;,03,], now depends upofi_;, rather thanC_;, the notation being clear from the
context. The form of this full conditional remains the sarad22) but now the distinct componer@ﬁg;
¢ =1,..., k; are associated with the corresponding components mather thanC'. The form of the
modified full conditional distribution of;, which we now denote byy; | Y, Z, S, k|, remains the same
as [27), but in equations_(28) fo (31),must be replaced by. In the above full conditionals; andk;
are now assumed to be associated ith

The conditional posteriofS | Y, C, ©,,] gives point mass t&*, whereS* = (s7,...,s},) is the
relabeling obtained fromd’ and© ,, following the method described in Sectionl4.3. For the aoiasion
of bounds, the individual full conditionals; | Y, S_;, C, ©,,], giving full mass tos?, will be considered
due to convenience of dealing with distribution functiorisone variable. It follows that onc& and
C coalescess and©3;, must also coalesce. In the next section we describe how tstrom efficient
bounding chains foZZ, C' andS. Bounding chains folS are not strictly necessary as it is possible to
optimize the bounds foZ andC' with respect taS, but the efficiency of the other bounding chains is
improved, leading to an improved perfect sampling alganitif we also construct bounding chains for
S.

4.5 Bounding chains

As in the case of mixtures with known number of components htso the idea of constructing bound-
ing chains is associated with distribution functions ofdiserete random variates, but here the bounding
chains can be made efficient by fixing the already coalesabdidual discrete variates while taking the
supremum and the infimum of the distribution functions. Mwes, for informative data, the full condi-
tional distributions ot:; (hence, of;) will be similar given any values of the conditioned varetlthus
the difference between the supremum and the infimum of th&tirilslition functions are expected to be
small. Theis particular heuristic is reflected in the resaftthe application of our methodology to three

real data sets in Sectidh 5. Also, as noted in Sectidn 3.8, ievie case of unknown number of compo-
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nents,0}, can be analytically marginalized out in conjugate casesplilying optimization procedures
and decreasing the gaps between the upper and the lowerdohmalfull conditional distributions asso-
ciated with our model, marginalized over;, in a conjugate case are provided in Mukhopadhstal.
(2011b).

45.1 Bounds forZ

Let F..(- | Y, S,k,©},) denote the distribution function of the full conditional of and letF, (- |
Y, S, k;,©3), Fy, (- | Y,5_;,C,0,) stand for those of; ands;, respectively. Also assume that
—00 < My < pj < My <ooandd < Mz < \; < My < oo, forall j.

Letting S denote the set consisting of only thosehat have coalesced, and k&t = S\ S consist of

the remainings;. Then

FE(|Y,S) = inf F,(-|Y,5,5 k63 (33)
' S~ .k,0%,

FU(1Y,S) = sup F,(-|Y,55 k63 (34)
S*,k,@)}‘M

Clearly, fixingS helps reduce the gap betwegn](33) (34). The infimum arguffremum above can
be calculated by simulated annealing. For the proposal amsim needed for simulated annealing with
S held fixed, we selected;, € S~ uniformly from {1,...,s;_; + 1}, wheres,_, either belongs t& or
has been selected uniformly frofd, ..., s;_» + 1}. OnceS is proposed in this way, this determines
k automatically. We then propogk, . . ., 6; using normal random walk proposals with approximately

optimized variance.

45.2 Bounds forC

Let Z denote the set of coalesced and letZ~ = Z\Z consist of those; that did not yet coalesce.
Then

FE(Y,5,7) = inf  F.(-|Y,S,5,k;j,Z,Z7,0}) (35)
7 S—kj,z-.0%5

FU(-|Y.5.2) = swp  F,(|Y.5.5 k.2,2°.6}) (36)
’ 5=k, Z-,0%,

Note that the supremum correspondstto= 1 and the infimum corresponds tg = M — 1. For

optimization with simulated annealing, proposal mechasisor S and©};, may be same as described
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in Sectior 4.5.11 for obtaining the bounds fgr while the elements af — may be proposed by drawing
uniformly from {1,..., M}.
4.5.3 Bounds forS

LettingC andC~ = C\C denote the sets of coalesced and the non-coalesctt lower and the upper

bounds for the distribution function af are

Fs[; ( | Y, C’) = Cinef)‘* st<' ‘ Y, Ca c, 67\4) (37)
FU(-1Y,C) = sup F,(-|Y,C,C7,0%) (38)
’ -0

For simplicity letus denoté}, (- | Y, C,C~, ©%,) by F,, (-) suppressing the conditioned variables. Since,
givenC and®©j,, S is uniquely determinedf (k) = 0 or 1, fork = 1,..., M. Thus, optimization of
F,(k) needs to be carried out extremely carefully because eitigecdrrect optimum or the incorrect
optimum will be obtained, leaving no scope for approximatidowever, simulated annealing is unlikely
to perform adequately in this situation. For instance, &hilaximizing, a long sequence of iterations
yielding Fi (k) = 0 does not imply that 1 is not the maximum. Similarly, a longwsatce of 1's
while minimizing may mislead one to believe that 1 is the mmam. In other words, the algorithm
does not exhibit gradual move towards the optimum, makinyemence assessment very difficult.
So, we propose to construct functiohs(-) of F (-)’'s and appropriate auxiliary variables such that
the optimization off’,, (-) is embedded in the optimization &f(-), while avoiding the aforementioned

problems by allowing gradual move towards the optimum. Dxetaie provided below.

A more convenient optimizing function

We construct;(-) as follows:

M (Fy() w2
hj(W’F):;wi{Twi} (39)

whereW = (wi, ..., wy) denotes the vector of weight®, = (F, (1),..., F,,(M)) and 3 w; = 1
with w; > 0,Vj. Clearly,0 < h;(-) < 1. We representy; asw; = =x—, wheren; > 0. We use

simulated annealing to optimize (39) with respectits, C—, ©3,) but letn, — oo with the iteration
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number while simulating othet;;: # k randomly from some bounded interval. This leads to opti-
mization of ', (k), while avoiding the problems of naive simulated anneallngour examples we took

ny o< log(1 + t), wheret is the iteration number.

Optimizing strategy

SinceS is just a relabeled version @f, the distribution functions of the full conditionals of ands;

are optimized by the sante,,, provided that none of; coalesced during optimization in the case’bf

All that the proposal mechanism requires then is to simulate C~ uniformly from {1, ..., M}. If C

(= CUC~)andO,, do not lead to a valid, then the proposal is to be rejected, remaining at the curren
C~, else the acceptance-rejection step of simulated aniggalio be implemented. If, on the other hand,
somes; had coalesced during optimizationdy the optimizer in the case 6f is expected to be a slight
modification of that in the case of. We construct the modification as follows.df simulated from the
bounding chaind (35) an@ (136) in the previous step, is notpatible with®,,, then we augmer®,
with new components drawn uniformly: ~ U (M, M,) and\ ~ U(Mj3, M), in such a manner that
compatibility is ensured. We then use the adjusted sépfor rest of the annealing steps. This scheme
worked adequately in all our experiments. Note that if endircoalesces, then for ajland for anyo,,
associated witl', I (- | V,C) = FU (- | Y,C) = F,(- | Y, C, ©x), which implies coalescence 6f
(recall the discussion in Sectibn 4.4).

The proof presented in Sectibh 7 goes through to show thaktheds of the distribution functions of
(Z,C,S),which are obtained by optimizing the original functiorestting the coalesced random variates
fixed, are also distribution functions. The proof remainkdvaven if the original distribution functions
of the discrete variates are optimized with respect to théeguarametesr and other hyper-parameters.
Optimization with respect to the latter is necessaryaind the hyper-parameters are treated as unknowns
and must be simulated perfectly, likewise@g. Assuming that the original Gibbs sampling algorithm
is updated by first updating, thenC, followed by S, and finally©3;,, the proof of coalescence of the
random variables in finite time is exactly as that provide8attior 8. The proof of uniform ergodicity
presented in Sectidd 9 applies with minor modifications & ¢hrrent mixture problem with unknown

number of components.
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4.6 lllustration of perfect simulation in a mixture with max imum two compo-

nents

We illustrate our new methodologies in the framework of thetare model of SB assuming/ = 2. In

other words, we consider the model

yz | @2 yzv,uja (40)

l\DI»—t
i

We further assume that; = A\, = A, where)\ is assumed to be known. Hen¢®; = (64,6-), where
8, = pj, j = 1,2. Asin the case of the two-component mixture example detaiieSection S-111,
here also we consider a simplified model for conveniencdustilation and to validate the reliability of
simulated annealing as the optimizing method in our case.

We specify the prior of:; as follows:

w NG, j=1,2

G ~ D(QGQ),
(41)

iid

andy; ~ N(uo, A1) underGy,.
We draw 3 observationg,, y», y3, from (40) after fixingu; = 2.19, py = 2.73 and\ = 20. We
assume that = 1 (known). Using a pilot Gibbs sampling run we et = M; < uq, pus < My = 3.5.

4.6.1 Optimizer for bounding the distribution function of z;

The exact minimizer and the maximizer of the distributiondtion of z; with respect to©, or the
reparameterized variabl¢s, ©%) are of the form(a, b) where each ofi andb can take the valueg;,
M, or M,. Evaluation of the distribution function at these pointslgs the desired minimum and the

maximum at different time points

4.6.2 Optimizer for bounding the distribution function of ¢,

For ¢;, the optimizer with respect t®, is given by (a,b) wherea andb can take the valueg;, M,
and M,. Of course, this is the same as what would be obtained by aatigawith respect to the

reparameterized versidib, ©5). As before, evaluation of the distribution function at thg®ints is
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necessary for obtaining the desired optimizer. In this ddeoptimizer with respect tg is obtained by

considering all possible values &f= (2, z», 23)’.

4.6.3 Optimizer for bounding the distribution function of s;

No explicit optimization is necessary to obtain the bourafssf, asS = (si, s2) is completely deter-
mined byC' obtained from its corresponding bounding chains. Noteftirathe four possible values of
C = (c1,00): (1,1),(1,2),(2,1), (2,2), the corresponding values 8f= (s1, s9) are(1,1), (1,2), (1,1)
and(1,2), respectively.

4.6.4 Results of perfect sampling

Results ofi, 00, 000 izd perfect samples are displayed in Figure 1; the results anpaced withl, 00, 000
independent Gibbs sampling runs, each time discardingaimples obtained in the firgd, 000 Gibbs
sampling iterations and retaining only the sample inlbhe01-th iteration. Close agreement between
perfect sampling and Gibbs sampling, the latter implentni¢h much care for the sake of reliability,

validates our perfect sampling methodology.

4.6.5 Validation of simulated annealing in this example

As in the example with known number of components here alsealvgate simulated annealing by sep-
arately obtainind 0, 000 i:d samples using our perfect sampling algorithm but using kitad annealing
(with 7,000 iterations) to optimize the bounds for the disttion functions of(Z, C, S). We have used
the same random numbers as used in the perfect samplingragpéfor obtainingl0, 000 7id samples
using the exact bounds. All the corresponding samples atitin0 turned out to be the same, just as in
the example of the mixture with exactly two components. Taigdates the use of simulated annealing

in perfect sampling from mixtures with unknown number of gaments.

5 Application of perfect simulation to real data

We now consider application of our perfect sampling methagipto three real data sets—Galaxy, Acid-
ity, and Enzyme data. Both RG and SB used all the three datacsiustrate their methodologies. The

Galaxy data set consists of 82 univariate observations lmtities of galaxies, diverging from our own
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Figure 1: Posterior densities pf andu, using samples obtained from perfect simulation (red curve)

and independent runs of Gibbs sampling (black curve).
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galaxy. The second data concerns an acidity index measur@dample of 155 lakes in north-central
Wisconsin. The third data set concerns the distributiomalyenic activity in the blood, for an enzyme

involved in the metabolism of carcinogenic substances ranaogroup of 245 unrelated individuals.

5.1 Perfect sampling for Galaxy data
5.1.1 Determination of appropriate ranges of the parametes

We implemented a Gibbs sampler with = 10, s = 4; S = 1; uo = 20; a, = 10; b, = 0.5;

1 = 33.3; and obtained results quite similar to that reported in SBy wsed\/ = 30. Using the results
obtained in our experiments, we set the following boundshenparameters: for = 1,..., M (= 10),
9.5 < p; <34.5,0.01 < A <5and0.08 < a < 35.5. The fit to the data obtained with this set up

turned out to be similar to that obtained by SB.

5.1.2 Computational issues

We implemented our perfect sampling algorithm with the abmentioned hyperparameter values and
parameter ranges. Our experiments suggested that 50Gasatainnealing iterations for each optimiza-
tion step are adequate, since further increasing the nuatitterations did not significantly improve the
optima. The terminal chains coalesced after 32,768 stdpsrelason for the coalescence of the bounding
chains after a relatively large number of iterations mayhpps be attributed to the inadequate amount
of information contained in the relatively sparse 82-palata set required to reduce the gap between
the bounding chains (recall the discussion in Sedtioh 4rbfact, as it will be seen, perfect sampling
with the other two data sets containing much more data paimisshowing comparatively much clear
evidence of bimodality (particularly the Acidity data setalseced in much less number of steps. How-
ever, compared to the number of steps needed to achievesceat®, the computation time needed to
implement the steps turned out to be more serious. In thiaxgalata, with)\/ = 10, the computation
time taken by a workstation to implement 32,768 backwardiiens turned out to be about 11 days! We
discuss in Sectionl 6 that parallel computing is an effeatiag to drastically reduce computation time.
In Sectiori 5.1.4 we consider another experiment With= 5 that took just 13 hours for implementation,

yielding results very similar to those withl = 10.
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5.1.3 Results of implementation

After coalescence, we ran the chain forward to tilme 0, thus obtaining a perfect sample. We then
further generated 15,000 samples using the forward Gibhplsa The red curve in Figuleé 2 stands for
the posterior predictive density, and the overlapped gcaere is the the Gibbs sampling based posterior
predictive density corresponding to the unbounded pammsptce. The figure shows that the difference
between the posterior predictive distributions with respe bounded and unbounded parameter spaces
are negligible, and can perhaps be attributed to Monte Gartir only. The posterior probabilities of
the number of distinct components beifilg . .., 10} turned out to bg0, 0, 0.000067, 0.0014, 0.0098,
0.044133, 0.1358, 0.265133, 0.3436, 0.20006&spectively.

5.1.4 Experiment to reduce computation time by setting/ = 5

As a possible alternative to reduce computation time, weddeldo further reduce the value 6f to 5.

The ranges of the parameters whigh= 5 turned out to be somewhat larger compared to the case of
M =10:forj=1,...,5,9.5 < p; <34.5,0.01 < )\; <20and0.08 < a < 100. Now the two terminal
chains coalesced in 2048 steps taking about 13 hours. Asdheiace the terminal chains coalesced, we
ran the chain forward to time= 0, and then further generated 15,000 samples using the foi@inbs
sampler. The posterior predictive density is shown in Fe¢Br As before, the figure shows that the
differences between the posterior predictive densiti¢is sespect to bounded and unbounded parameter
spaces are negligible enough to be attributed to Monte @artw. Moreover, when compared to Figure
[2, Figurel B indicates that the fitted DP-based mixture modigl W/ = 5 is not much worse than that
with M = 10. Here the posterior probabilities of the number of distcanponents beingl, 2, 3, 4,5},
respectively, ar¢0.000067, 0.001467, 0.026667,0.229733, 0.742067

5.2 Perfect sampling for Acidity data

Following the procedure detailed in Sectlon|5.1 we set theviing bounds: for; = 1,..., M (= 10),

4 < p; <6.9,0.08 <\ <25,and0.08 < o < 50. We implemented our perfect sampler with these
ranges, and with hyperparameters- 4, S = 0.7, uo = 5.02, a, = 15, b, = 0.5, andy) = 33.3. Asin
the Galaxy data, here also 500 iterations of simulated dimgefar each optimization step turned out to
be sufficient. The terminal chains took about 4 hours to caalén 128 steps.

The posterior predictive distribution is shown in FiglteAgain, as before, the figure demonstrates
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Figure 2: Histogram of the Galaxy data and the posterioriptied density corresponding to perfect
simulation withAM/ = 10 (red curve). The green curve stands for the Gibbs sampliegdposterior

predictive density assuming unbounded parameter space.
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Figure 3: Histogram of the Galaxy data and the posterioriptied density corresponding to perfect
simulation withM = 5 (red curve). The green curve stands for the Gibbs samplisgdposterior

predictive density assuming unbounded parameter space.
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Figure 4: Histogram of the Acidity data and the posteriodptve density corresponding to perfect
simulation withAM/ = 10 (red curve). The green curve stands for the Gibbs sampliegdposterior

predictive density assuming unbounded parameter space.
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that the posterior predictive density remains virtuallchianged whether or not the parameter space
is truncated. Figurel4 also indicates that the posteriadiptige distribution matches closely with that
of the histogram of the data. The posterior probabilitieshef number of distinct components being
{1,...,10} are {0, 0, 0.000067, 0.0024, 0.012, 0.0556, 0.159867, 0.3030.323067, 0.143867

respectively.

5.3 Perfect sampling for Enzyme data

Following the procedures detailed in Sectidns 5.1[and 5.f®w&/ = 10; the bounds on the parameters
are: forj = 1,...,M(= 10), 0.15 < p; < 3,0.08 < A; < 150.5 and0.08 < o < 50. The
hyperparameters in this example are givensby 4; S = 0.33; o = 1.45; a, = 20; b, = 0.5 and

¥ = 33.3.

We implemented our perfect sampler with these specificatimiong with 500 iterations of simulated
annealing for each optimization step. The terminal chaoaesced in 2048 steps taking about 4 days.
As to be expected from the previous applications, here alsshown in Figurgl5, truncation of the
parameter space virtually makes no difference to the regufiosterior predictive density associated
with unbounded parameter space. Good fit of the model to tteeidalso indicated. The posterior
probabilities of the number of distinct components befng. . ., 10}, respectively, argd0, 0.000933,
0.012067, 0.0634, 0.179, 0.2782, 0.219867, 0.1454, 038580259 .

6 Summary, discussion and future work

We have proposed a novel perfect sampling methodology the¢sior mixtures where the number of
components are either known or unknown, and the set-uphisrasbnjugate or non-conjugate. We have
first developed the method for mixtures with known number ahponents, then extending it to the
more important case of mixtures with unknown number of congods. Our methodology hinges upon
exploiting the full conditional distributions of the diste random variables of the problem, optimizing
the corresponding distribution functions with respecthe tonditioned random variables, obtaining
upper and lower bounds of the corresponding Gibbs sampers.particularly intriguing aspect of this
strategy is perhaps the fact that even though perfect sampleontinuous random variables will also

be generated, simulation of the latter is not at all requivefibre coalescence of the discrete bounding
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Figure 5: Histogram of the Enzyme data and the posteriorigtiee density corresponding to perfect
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predictive density assuming unbounded parameter space.
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chains. We have shown that the gaps between the upper arambiedounds of the Gibbs sampler can
be narrowed, making way for fast coalescence. Further aagas over the existing perfect sampling
procedures are also discussed in detail. It is also easyetthae our current methodology need not be
confined to univariate data, and the same methodology gomsgh for handling multivariate instances.
With simulation studies we have validated our methodolagyfixtures with known, as well as with
unknown, number of components. However, application tbdata sets revealed substantial computa-
tional burden, and obtaining a single perfect sample togkrs¢ hours with our limited computational
resources. Thus, even though the convergence (burn-u isscompletely eliminated, obtainirigl
realizations from the posteriors turned out to be infeasills discussed in Section 5.1, the difficulties
are likely to persist in problems where large values of th&imam number of components are plau-
sible, and in sparse data sets. Computational challengesisu likely to appear in massive data sets,
since then the number of allocation variables for perfeetgang will increase manifold. In multivariate
data sets too, the computation can be excessively burderstere the number of discrete simulations
necessary remains the same as in the corresponding utévpr@lem, but optimization with respect
to the continuous variables may be computationally expenstcause of increased dimensionality. In
such situations, parallel computing can be of great helgedd, in a parallel computing environment the
upper and lower bounding chains can be simulated in diftgyarallel processors, which would greatly
reduce the computation time. Moreover, quite importarnthysimulations from the posteriors can also
be carried out easily by simulating perfect samples indéeetly in separate parallel processors. This
can be done most efficiently by utilizing two processors facheperfect realization, so that, say, with
16 parallel processors 8 perfectl realizations can be obtained in about half the time a singtéept
realization is generated in a stand-alone machine. Thélglasamputing procedure can be repeated to
obtain as manyid realizations as desired within a reasonable time. Inangasie number of parallel
processors can obviously speed up this procedure many, tivhash would make implementation of our
algorithm routine. Although the authors have the expentigarallel computing, they are yet to have ac-
cess to parallel computing facilities, which is the reasdny we could not obtain perfe¢td realizations
in our real data experiments and could not experiment withela/ or massive data. In the near future,
however, such access is expected, and then it will be easieisfto elaborate on these computational

issues.

Supplementary Material
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Throughout, we refer to our main manuscript as MB.

7 Proof that F%; and FY, are distribution functions

Letting X_; denote all unknown variables other thanwe need to show that for almost all_; the

following holds:
() limp__oo FE(R) = limy_,_oo FU(R) = 0.
(i) Timy o0 FE(R) = limy o0 FY () = 1.
(iiiy Foranyz, > xo, FE(z1) > FE () andEY (z1) > FY (2).
(iv) limy,_,. FE(h) = FE(x) andlimy,_,,, FY(h) = FV(x).

Proof: Let X_; denote all unknown variables other thgn To prove (i), note that for alk < 1,
Fy(h | X_;) = 0 for almost allX ;. Hence, by[(B) of MB and by definition, both"(2) and FV (h) are
0 with probability 1. Hencelim;,_, ., FX(h) = lim;_,_o, F7(h) = 0 almost surely.

To prove (ii) note that for alh. > p, F;(h | X_;) = 1 for almost allX_;. Hence, forh > p,
FE(h) = FY(h) = 1, thatis,lim;, ., F¥(h) = limj, o, £V (h) = 1 for almost allX _;.

To show (iii), leth; > hs. Then, since;(- | X_;) is a distribution function satisfying monotonicity,
it holds thatFl(h,) = infx_, Fy(hy | X_;) < Fi(he | X_;) < Fy(hy | X_;) for almost allX _;. Hence,
Fl(hy) <infx , Fi(hy | X_;) = FF(hy). Similarly, FY (hy) = supy_, F;(hy | X_;) > Fi(hy | X_;) >
Fi(hy | X_;) for almost allX_;. Hence,F) (h1) > supy_, Fi(ho | X_;) = F(hs).

To prove (iv), first observe that due to the monotonicity @y (iii), the following hold for anyz:

Jim FE(h) > () (42)
Jim FY(n) > FY(z) (43)
—x+

Then observe that, due to discretendss§, | X_;) is constant in the intervak, x + §) for somed > 0.
Since the supports aft, £V and F;(- | X_;) for almost allX_; are sameF}* and F must also be
constants inx, x + ). This implies that equality holds ib_(42) and {43).

Hence, bothv’F and FV satisfy all the properties of distribution functions.
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Remark: The right continuity property formalized by (iv) not be triee continuous variables. Suppose
X ~U(0,0),0 > 0. Here the distribution function i8'(z | §) = 7,0 < 2 < 6 < co. But

x
lim sup— = lim 1 =1
z—=0+ ¢ z—0+4

and,

x
sup lim — —supO =0
0 r—0+ 9

As a consequence of the above problem, attempts to constrit@ble stochastic bounds for the continu-
ous parameterdl,, ©,) may not be fruitful. In our case such problem does not ariseesive only need

to construct bounds for the discrete random variables t@aelour goal.

8 Proof of validity of our CFTP algorithm

Theorem: The terminal chains coalesce almost surely in finite timethed/alue obtained at time= 0

is a a realization from the target distribution.

Proof:

Let 2% denote the realization obtained at timby inverting 7, that is,z% = FY " (R,, ), where
{R,,;i=1,...,n;t=1,2,...} isacommon set df (0, 1) random numbers which ai& with respect
to both: and¢. used to simulate/ = (z,..., 2,)" at timet for Markov chains starting at all possible
initial values. Similarly, let:! = F*"(R,,,). Clearly, for anyz;; = F; (R,,; | X_;) started with any

initial value and for anyX _;, 2% < z; < 2 for all 7 andt.

Fori=1,...,nandforj =1,2,..., we denote bﬁf the event
ZiL,—zz( —2” 1)_22 _ai(— -2/,

which signifies that the terminal chains and hence the iddafichains started at= —27 will coalesce
att = —2/-1. It is important to note that both’ and FV are irreducible which has the consequence
that the probability ofs?, P(S7) > ¢; > 0, for some positive;. Since, for fixedi, {S/;j = 1,2,...}
depends only upon the random numbfels, ;;t = —27, ..., —2771}, {S7;j=1,2,...} are independent
with respect toj. Moreover, for fixedj, S’ depends only upon théd random numberg§R,, oi;i =

1,...,n}. Hence,{S/;i =1,...,n;j = 1,2,...} are independent with respect to botnd;;.
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Let ¢ = min{ey,...,e,}. Then due to independence {)Sf,z = 1,...,n}, it follows that for

j=1,2,...,8 =nm S are independent, and
P(3) > e (44)

The rest of the proof resembles the proof of Theorem|2 of Gaaigdl. (2001). In other words,

T

P(No coalescence after T iteratigns< H {1-P(5)} (45)
j=1

= {1-e"Y -0asT — . (46)

Thus, the probability of coalescence is 1. That the time &aste is almost surely finite follows from
the Borel-Cantelli lemma, exactly asin Casedlal/ (2001).

The realization obtained at tinte= 0 after occurrence of the coalescence ev&rfor some; yields
Z = Z, exactly from its marginal posterior distribution. Giveristt¥,, drawinglIl,, from the full
conditional distribution[(1l1) of MB and then drawif,, sequentially from[(9) and (10) of MB givefy,
andll,, yields a realizationZ,, 11,0, ©,0) exactly from the target posterior. The proof of this exasthe
follows readily from the general proof (see, for example@rand Wilson (1996), Caseléhal! (2001))
that if convergent Markov chains colasece in a CFTP algarithuring timet < 0, then the realization

obtained at time = 0 is exactly from the stationary distribution.

9 Uniform ergodicity

Let P(-,-) denote a Markov transition kernel wheRéz, A) denotes transition from the stateto the
setA € B, B being the associated Borelalgebra. If we can show that for atlin the state space the
following minorization holds:

P(z,A) > eQ(A), A€ B,
for some0 < ¢ < 1 and for some probability measu€¥-), thenP(-, -) is uniformly ergodic.

In our mixture model situation the Gibbs sampling transitiernel is

20 110, 0 | Z(t=D 1= @l-1]

p

= (2 1 e y] [ 2. Y] (e | 2.1y

> { inf [Z20)] Hg—ﬂ,@(t—l),y}} [ |z y] el |z nd y]  (47)

p
Hz()tfl)@g&fl)
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The infimum in inequality[(47) is finite since bo =1 and@ét_l) are bounded.
Denoting the right hand side of inequality (47) bz ®, 11, ©{), we put

e=> /H /@ 9(Z,11,,0,)dI1,do, > 0. (48)
A P P

Sinceg(-) is bounded above by the Gibbs transition kernel which irtisgrto 1, it follows from[(48)
that0 < ¢ < 1. Hence, identifying the density of th@-measure ag(-)/¢, the minorization condition

required for establishment of uniform ergodicity of our @stsampling chain is seen to hold.

10 Proof that coalescence of' implies the coalescence of

LetC' = (¢4,...,cpn )" be coalescent. For convenience of illustration assumeaftext simulating each
c;, followed by drawing; depending upon the simulated valuegfthe entire se$ is obtained from the
updated set of parameteps,. Note that in practice, only; will be obtained immediately after updating
c; andd;. LetS_; = {s1,...,8j-1,8j41,.-.,5m}. Thenc;y; = ¢ denotes thé-th distinct element of
S_;. It {1,...,d;} are the distinct components {1 ;, d; being the number of distinct components, and
¢ < sj,thens;; = £. On the other hand, f < ¢j ;1 < d; + 1, thens;;; = s; + 1.

Now note thats; = 1, which is always coalescent.df > 1, thens, = 2, elses, = 1, for all Markov
chains. Hences, is coalescent. It > s,, thens; = sy + 1, elsess = ¢3. Sinces, is coalescent, then
So isss. In general, ifc;; > s;, thens; . = s; + 1, elses; 1 = ¢;41. Sincesy, . .., s; are coalescent,

hence sois;.,, forj =1,..., M — 1. In other words,S must coalesce if' coalesces.

S-11 lllustration of perfect simulation with a two-component nor-

mal mixture example
Fori =1,...,n, data pointy; has the following distribution:
i | 7,02) ~ N (s 1, AT + (1= 7) N (i p2, A ), (49)

where, for the sake of simplicity in illustration; and\,; are assumed known. The reason for considering
this simplified model is two-fold. Firstly, it is easy to erqph complicated methodological issues with

a simple example. Secondly, the boundsZofire available exactly in this two-component example;
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the results can then be compared in the same example witbxapyate bounds obtained by simulated
annealing. This will validate the use of simulated annegiimour methodology.
The prior ofy;; 7 = 1,2, is assumed to be of the forim (5) of MB. Fixing the true values & 0.8,
p = 2.19 andp, = 2.73, we draw a sample of size= 3 from a normal mixture where? = \;' = 0.9,
02 = \;' = 0.5 are considered known. The hyperparameters are set to thwifag values:r, = 0.9,

7 = 0.8, & = 2.5 and&; = 3.5. We illustrate our methodology in drawing samples exaatiyrf the

posteriorr (m, i1, p2 | Y1, Y2, Ys)-

S-11.1 Construction of bounding chains

To obtainF* andFY; i = 1,2, 3, note that here we only need to minimize and maximize

Ty exp { =3 (yi — n)?}
VA exp {—%(yz - M1)2} + (1 = m)Azexp {—%2(3/2‘ - M2)2}

with respect tquy, 1o andw. Based on a pilot Gibbs sampling run we obtain the followingrds for

F(1|X) = (50)

pwyandug: My = 0.2 < pp < 412 = MyandM; = 1.0 < py < 5.2 = M,. The minimizer and
the maximizer of[(50) occur at co-ordinates of the famb), wherea can take the valueg;, M; or

M,, andb can take the valueg;, M or M,. Evaluating [(5D) at these co-ordinates yields the desired
minimum and the maximum. At timg let ,,;, ; andé,,.,, denote the minimizer and the maximizer,
respectively. Minimization and maximization of (50) witkspect tar (assuming thalt < o <7 <b <

1 for somea, b obtained using Gibbs sampling) would have led to the indépetdistribution functions
FF and IV, but there exists a monotonicity structure in the the comaid distribution ofr (see also
Robert and Casella (2004)) which can be exploited to reduegaps betweeh!” and FV, by keeping

7 fixed in the lower and the upper bounds. Moreover, since apdition with respect tar is no longer

needed, truncation of the parameter space isfnot required. Details follow.

S-11.2 Monotonicity structure in the simulation of r

It follows from (11) of MB thatr ~ Beta(n; + 1,n — ny + 1). Then, at time, = can be represented
asm = Sy Revi/ S0 i Ry where{ R, ik = 1,...,n + 2} is a random sample fromzp(1),
that is, the exponential distribution with mean 1. Thusjs increasing with respect to,, since the

set of random numbers is fixed for all the Markov chains at im€&he form of [50) suggests that the

34



distribution function is increasing with and hence with,. Letny, = #{i : z;; = 1}, nl, = #{i :
zE =1} andnl, = #{i : 2 = 1}, and note that!, < n,, < nY, for anyt. Define
ng,+1 R

L P k?:]. ﬂ-vtvk
o= Srn (51)
k=1 7T7t7k

U
ny,+1 R
= bk
m = LT (52)
k’zl thvk

With these, the lower and upper bounds of the distributiorction of z; at timet are given by

EL(' ‘ TrtL) = E( | emin,t77TtL> (53)
FIC 7)) = F( | Omaxe. ) (54)

S-11.3 Results of perfect simulation in the two-component ixture example

We first investigated the consequences of truncating thenpater space. Figure $-6 illustrates that in
this example, the exact posterior densitie$mfi, p2) corresponding to bounded and full (unbounded)
supports are almost indistinguishable from each other.

We then implemented our perfect sampling algorithm by satingd 2 from the boundd (83) and (54)
and simulating the upper and lower chains fousing the formulae (51) an@d (62). The histograms in
Figure[S-7, corresponding tio 00, 000 iid perfect samples match the exact posteriors almost peffectl

indicating that our algorithm has worked really well.

S-11.4 Comparison with perfect sampling involving simulagd annealing

In the same two-component normal mixture example, we censtbtwo versions of our perfect sampling
algorithm: in the first version we considered exact optimdraof the distribution function ot;, and in
the second version we used simulated annealing for optimizan both cases, we obtainéd, 000 iid
samples of 7, i1, p2) at timet = 0, using the same set of random numbers. 1811000 samples of the
second version turned out to be equal to the correspondinglea of the first version, suggesting great

reliability of simulated annealing.
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Figure S-6: Investigation of consequences of truncatiegpdrameter space: the solid and the broken
lines (almost indistinguishable) correspond to the exastgrior densities with respect to unbounded

and bounded parameter spaces, respectively.
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Figure S-7: The histograms correspond to perfect sampéegrdusing our algorithm. The density lines

correspond to the exact posterior density.
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