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Abstract

We propose and develop a novel and effective perfect sampling methodology for simulating from
posteriors corresponding to mixtures with either known (fixed) or unknown number of components.
For the latter we consider the Dirichlet process-based mixture model developed by these authors, and
show that our ideas are applicable to conjugate, and importantly, to non-conjugate cases. As to be
expected, and, as we show, perfect sampling for mixtures with known number of components can
be achieved with much less effort with a simplified version ofour general methodology, whether
or not conjugate or non-conjugate priors are used. While no special assumption is necessary in the
conjugate set-up for our theory to work, we require the assumption of bounded parameter space in
the non-conjugate set-up. However, we argue, with appropriate analytical, simulation, and real data
studies as support, that such boundedness assumption is notunrealistic and is not an impediment in
practice. Not only do we validate our ideas theoretically and with simulation studies, but we also
consider application of our proposal to three real data setsused by several authors in the past in
connection with mixture models. The results we achieved in each of our experiments with either
simulation study or real data application, are quite encouraging.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are developed tosimulate from desired distributions,

from which generation of exact samples is difficult. The methodology has found much use in the

Bayesian statistical paradigm thanks to the natural need tosample from intractable posterior distribu-

tions. But in whatever clever way the MCMC algorithms are designed, the samples are generated only

asymptotically. Due to impossibility of running the chain for an infinite span of time, a suitable burn-in

period is chosen, usually by a combination of empirical and ad-hoc means. The realizations retained

after discarding the burn-in period are presumed to closelyrepresent the true distribution. The degree of

closeness, however, depends upon how suitably the burn-in is chosen, and an arbitrary choice may lead

to serious bias. Even in simple problems non-negligible biases often result if the burn-in period is chosen

inadequately (see, for example, Roberts and Rosenthal (1998)). Such problems can only be aggravated

in the case of realistic, more complex models, such as mixture models of the form, given for the data

pointy, by

[y | Θp,Πp] =

p
∑

j=1

πjf(y | θj), (1)

In (1), Θp denotes the set of parameters(θ1, . . . , θp)
′, Πp = (π1, . . . , πp)

′ are the mixing probabilities

such thatπj > 0 for j = 1, . . . , p, and
∑p

j=1 πj = 1. Here the number of mixture componentsp may

or may not be known. The latter case corresponds to variable dimensional parameter space since the

cardinality of the setΘp then becomes random.

Mixture models form a very important class of models in statistics, known for their versatility. The

Bayesian paradigm even allows for random number of mixture components (making the dimensionality

of the parameter space a random variable), adding to the flexibility of mixture models. Sophisticated

MCMC algorithms are needed for posterior inference in mixture models, raising the question of ade-

quacy of the available practical convergence assessment methods, particularly in the case of variable-

dimensional mixture models. The importance of the aforementioned class of models makes it important

to solve the associated convergence assessment problem. Inthis paper, we develop a rigorous solution to

this problem using the principle of perfect sampling.

The perfect sampling methodology, first proposed in the seminal paper by Propp and Wilson (1996),

attempts to completely avoid the problems of MCMC convergence assessment. In principle, starting at

all possible initial values, so many parallel Markov chainsneed to be run, each starting at timet = −∞.
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If by time t = 0, all the chains coalesce, the coalescent point at timet = 0 is an exact realization

from the stationary distribution. Essentially, this principle works in the same way as the regular MCMC

algorithms, but by replacing its starting timet = 0 with t = −∞ and the convergence timet = ∞
with t = 0. To achieve perfect sampling in practice, Propp and Wilson (1996) proposed the “coupling

from the past” (CFTP) algorithm, which avoids running Markov chains from the infinite past. We briefly

describe this in the next section.

2 The CFTP algorithm

Let us assume that the state spaceX is finite, and let{Xt; t = 0, 1, . . .} denote the underlying Markov

chain. Then, fort ≥ 0 it is possible to represent the Markov chain generically as arandom mapping:

Xt+1 = φt(Xt) = φ(Xt, Rt+1), for some functionφ(·, ·) and aniid sequence{Rt; t = 1, . . .}. Then the

CFTP algorithm is as follows (see Propp and Wilson (1996), Robert and Casella (2004)):

1. Fort = −1,−2, . . ., generateφt(x) for x ∈ X .

2. Fort = −1,−2, . . ., for x ∈ X , define the compositions

Φt(x) = φ0 ◦ φ−1 ◦ · · ·φ−t(x) (2)

3. Determine the timeT such thatΦT is constant.

4. AcceptΦT (x∗) as an exact realization from the stationary distribution for any arbitraryx∗ ∈ X .

It is well-known (see, for example, Casellaet al. (2001)) that the above algorithm terminates almost

surely in finite time and indeed yields a realization distributed exactly according to the stationary dis-

tribution of the Markov chain. Propp and Wilson (1996) recommend takingt = −2j, for j = 1, 2, . . .,

which we shall adopt in this paper. A subtle, but important point is that, even if all the Markov chains

coalesce before timet = 0, the corresponding simulation need not yield a perfect sample. One needs to

carry the algotithm forward till timet = 0; the sample corresponding to onlyt = 0 is guaranteed to be

perfect. For details, see Casellaet al. (2001).

A drawback of the CFTP algorithm is the requirement of a finitestate space. But this problem

may be alleviated by constructing coalescent stochastic bounds for the underlying Markov chain, so that

instead of starting the CFTP algorithm from all possible starting points, only the bounding chains need
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be run, from the maximal and the minimal points of the state space. For details, see Propp and Wilson

(1996). However, the maximal and the minimal points need notexist in the case of real parameters;

also, obtaining coalescent stochastic bounds is not at all straightforward in general. Strategies for perfect

sampling in general state spaces are described in Murdoch and Green (1998) and Green and Murdoch

(1999), but quite restricted set-ups, which do not hold generally, are needed to implement such strategies.

The set up of mixture models is much complex, and the known strategies are difficult to apply.

The first attempt to construct perfect sampling algorithms for mixture models is by Hobertet al.

(1999). However, they assumed only 2-component and 3-component mixture models, where only the

mixing probabilities are assumed to be unknown. Bounding chains with monotonicity structures are

used to enable the CFTP algorithm in these cases. Using principles of perfect slice sampler (Miraet al.

(2001)), and assuming conjugate priors on the parameters, Casellaet al. (2002) proposed a perfect sam-

pling methodology for mixtures with known number of components by marginalizing out the parameters.

It is noted in Casellaet al. (2002) that in the conjugate case the marginalized form of the posterior is an-

alytically available, but the authors point out (see Section 2 of Casellaet al. (2002)) that still perfect

simulation from the analytically available marginalized posterior is important. Unfortunately, apart from

the somewhat restricted assumptions of conjugate priors and known number of components, the method-

ology is approximate in nature and the authors themselves demonstrated that the approximation can be

quite poor. Fearnhead (2005) proposed a direct sampling methodology based on recursion relations asso-

ciated with the forward-backward algorithm, for mixtures of discrete distributions assuming a conjugate

set-up and known number of components, thus bringing in an extra and crucial assumption of discrete

data.

However, the drawbacks of the methodologies in no way present the contributions of the aforemen-

tioned authors in poor light, these only show how difficult the problem is. In this paper we attempt to

avoid the restrictions and difficulties by proposing a novelapproach. In the non-conjugate case (but not

in the conjugate case) we are forced to assume boundedness ofthe parameter space, but we argue in

Section 3.3, followed up with a simulated data example in thesupplement and three real data cases in

Section 5, that it is not an unrealistic assumption, particularly in the Bayesian paradigm. Noting partic-

ularly that no methodology exists in the literature that even attempts perfect simulation from mixtures

with unknown number of components, for either bounded or unbounded parameter space, for either con-

jugate or non-conjugate set-up, there is no reason to look upon our boundedness assumption only in the
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non-conjugate case as a serious drawback.

We first construct a perfect sampling algorithm for mixture models with fixed (known) number of

components and then generalize the ideas to mixtures with unknown number of components. For the

sake of illustration, we concentrate on mixtures of normal densities, but our ideas are quite generally

applicable. We illustrate our methodology with simulationstudies as well as with application to three real

data sets. Additional technical details and further details on experiments are provided in the supplement,

whose sections and figures have the prefix “S-” when referred to in this paper.

3 Perfect sampling for normal mixtures with known number of

components

3.1 Normal mixture model and prior distributions

Letting f(· | θj) in (1) denote normal densities with meanµj and varianceσ2
j , we obtain the following

normal mixture model

[y | Θp,Πp] =

p
∑

j=1

πj

√

λj
2π

exp

{

−λj
2
(y − µj)

2

}

, (3)

In (3), θj = (µj, λj), whereλj = σ−2
j . For the sake of convenience of illustration only we consider the

following conjugate prior specification on the unknown variables

λj
iid∼ Gamma(s/2, S/2); j = 1, . . . , p (4)

[µj | λj] iid∼ N(ξj , τ
2
j λ

−1
j ); j = 1, . . . , p (5)

Πp = (π1, . . . , πp) ∼ Dirichlet(γ1, . . . , γp) (6)

(7)

We further assume that{ξ1, . . . , ξp}, {τ1, . . . , τp} and{γ1, . . . , γp} are known.

With conjugate priors the marginal posteriors of the parameters(Πp,Θp) and the allocation variables

Z are available in closed forms, but still sampling from the posterior distributions is important. Indeed,

Casellaet al. (2002) argue that sampling enables inference on arbitrary functionals of the unknown vari-

ables, which are not analytically available. These authorsproposed a perfect slice sampler for sampling

from the marginal posterior of the allocation variableZ only. Given perfect samples from the posterior
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of Z, drawing exact samples from the posterior distributions of(Πp,Θp) is straightforward. But im-

portantly, the posteriors are not available in closed formsin non-conjugate situations, and even Gibbs

sampling is not straightforward in such cases. Since our goal is to provide a general theory that works

for both conjugate and non-conjugate priors, we do not focuson the marginalized approach, although the

conjugate situation is just a special (and simpler) case of our proposed principle (see Sections 3.3 and

4.5). Due to convenience of illustration we begin with the conjugate prior case where the full conditional

distributions needed for Gibbs sampling are available. It will be shown how the same ideas are carried

over to the non-conjugate cases.

3.2 Full conditional distributions

Assuming that a datasetY = (y1, . . . , yn)
′ is available, let us define the set of allocation variablesZ =

(z1, . . . , zn)
′, wherezi = j if yi comes from thej-th component of the mixture. Further, definingnj =

#{i : zi = j}, ȳj =
∑

zi=j
yi/nj,Z−i = (z1, . . . , zi−1, zi+1, . . . , zn)

′ andΘ−jp = (θ1, . . . , θj−1, θj+1, . . . , θp)
′,

the full conditional distributions of the unknown random variables can be expressed as the following:

[zi = j | Θp, Z−i,Π, Y ] ∝ πj
√

λj exp

{

−λj
2
(yi − µj)

2

}

(8)

[λj | Z,Π,Θ−jp, µj, Y ] ∼ Gamma

(

s+ nj
2

,
1

2

{

S +
nj(ȳj − ξj)

2

njτ 2j + 1
+
∑

i:zi=j

(yi − ȳj)
2

})

(9)

[µj | Θ−jp, λj, Z,Π, Y ] ∼ N

(

nj ȳjτ
2
j + ξj

njτ 2j + 1
,

τ 2j

λj
(

njτ
2
j + 1

)

)

(10)

[Π | Z,Θ, Y ] ∼ Dirichlet (n1 + γ1, . . . , np + γp) (11)

Perfect sampling, making use of the full conditional distributions available for Gibbs sampling, has

been developed by Moller (1999). But the development is based on the assumption that the random

variables are discrete and that the distribution functionsare monotonic in the conditioned variables.

These are not satisfied in the case of mixtures. Full conditional based perfect sampling has also been used

by Schneider and Corcoran (2004) in the context of Bayesian variable selection in a linear regression

model, but their methods depend strongly on the underlying structure of their linear regression model

and prior assumptions and do not apply to mixture models. Ourproposed method hinges on obtaining

stochastic lower and upper bounds for theZ-part of the Gibbs sampler, and simulating only from the two

bounding chains, and noting their coalescence. It turns outthat, in our methodology, there is no need to
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simulate the other unknowns,(Πp,Θp) before coalescence, even in the non-conjugate set-up. Details are

provided in the next section.

3.3 Bounding chains forZ

For i = 1, . . . , n, letFi(· | Z−i,Πp,Θp) denote the distribution function corresponding to the fullcondi-

tional ofzi. WritingX−i = (Z−i,Πp,Θp), let

FL
i (·) = inf

X−i

Fi(· | X−i) (12)

FU
i (·) = sup

X−i

Fi(· | X−i) (13)

be the lower and the upper bounds ofFi(· | Z−i,Πp,Θp). The infimum and the supremum in (12) and

(13) can be made to be bounded away from 0 and 1 by enforcing bounds onΘp. This is not an unrealistic

assumption since in all practical situations, parameters are essentially bounded. In fact, the prior on the

parameters is expected to contain at least the information regarding the range of the parameters. In almost

all practical applications, this range is finite, which, in principle, is possible to elicit. We believe that

unbounded parameter spaces are assumed only due to the associated analytic advantages (for instance,

generally integrals are easier to evaluate analytically when the parameter spaces are unbounded) and

because of the difficulty involved in elicitation of proper priors with bounded support.

In our case, a pilot Gibbs sampling run with unboundedΘp may be implemented first, and then the

effective range of the posterior ofΘp can be chosen as the bounded support of the prior ofΘp. It is

demonstrated with a simulated example in Section S-11.3, and with three real applications in Sections

5.1, 5.2 and 5.3 that often the posterior with theoreticallyunbounded support is almost the same as that

with bounded support, obtained from pilot Gibbs sampling. Unless otherwise mentioned, throughout we

assume bounded support ofΘp. We remark here that the boundedness assumption is not needed in the

case of conjugate prior onΘp. In that case,Θp will be integrated out analytically, and hence (12) and

(13) will not involveΘp, thus simplifying proceedings, typically decreasing the distance between the

bounds (12) and (13).

Had the minimizer and the maximizer ofFi(j | X−i) with respect toX−i been constant with respect

to j, then, trivially, (12) and (13) would have been distribution functions. But this is not the case unless

zi takes on only two values with positive probability, as in thecase of 2-component mixture models.

However, as shown in Section 7,FL
i (·) andFU

i (·) satisfy the properties of distribution functions for
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any discrete random variable. So, their inversions will sandwich all possible realizations obtained by

invertingFi(· | X−i), irrespective of anyX−i.

To clarify the sandwiching argument, we first define the inverse of any distribution functionF by

F−(x) = inf{y : F (y) ≥ x}. Further, letRZ,t = {Rzi,t; i = 1, . . . , n} be a common set ofiid random

numbers used to simulateZ at timet for Markov chains starting at all possible initial values. If we define

zit = Fi
−(Rzi,t | X−i), zLit = FU

i

−

(Rzi,t) andzUit = FL
i

−

(Rzi,t), then it holds thatzLit ≤ zi ≤ zUit for

i = 1, . . . , n andt = 1, 2, . . .. These imply that once allzi; i = 1, . . . , n, drawn by invertingFL
i and

FU
i coalesce, then so will every realization ofZ drawn fromFi(· | X−i), for i = 1, . . . , n, starting at all

possible initial values.

Analogous to{RZ,t; t = 1, 2, . . .}, let {RΠp,t; t = 1, 2, . . .} and{RΘp,t; t = 1, 2, . . .} denote sets

of iid random numbers needed to generateΠp andΘp, respectively, in a hypothetical CFTP algorithm,

where Markov chains from all possible starting values are simulated, withZ updated first. OnceZ

coalesces, so will(Πp,Θp) since their full conditionals (see (9), (10) and (11)) show that the cor-

responding deterministic random mapping function dependsonly uponZ, {RΠp,t; t = 1, 2, . . .}, and

{RΘp,t; t = 1, 2, . . .}.

Hence, it is interesting to note that we need to run just two chains (12) and (13) and check their

coalsecence; there is no need to simulate(Πp,Θp) before coalescence occurs with respect toZ in these

two bounding chains, even in non-conjugate cases. This property of our methodology has some important

advantages which are detailed in Section 3.6.

It is proved in Section 8 that coalescence ofZ occurs almost surely in finite time. Foss and Tweedie

(1998) showed that coalescence occurs in finite time if and only if the underlying Markov chain is

uniformly ergodic. In Section 9 we show that our Gibbs sampler, which first updatesZ, is uniformly

ergodic. The proofs in Sections 7, 8 and 9 go through with the modified bounds needed for mixtures

with unknown number of components.

3.4 Efficiency of the bounding chains

It is an important question to ask if the lower bound (12) can be made larger or if the upper bound

(13) can be made smaller, to accelerate coalescence. This can be achieved if a monotonicity structure

can be identified in(Πp,Θp). In Section S-11 we illustrate this with an example. In Section 4.5 we

propose a method for reducing the gaps between the bounds in mixture models with unknown number
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of components. There it is also discussed that for these models, more information in the data can further

reduce the gap between the bounding chains.

3.5 Restricted parameter space and rejection sampling after coalescence

If our algorithm colaseces at timet < 0, then Gibbs sampling is necessary from that point on till time

t = 0. The bounds, however, may prevent exact simulation from thefull conditionals ofΘp using con-

ventional methods, such as the Box-Muller transformation (Box and Muller (1958)) in the case of normal

full conditionals, which becomes truncated normal under the restrictions. In these situations, rejection

sampling may be used. Briefly, let{R∗

rt; r = 1, 2, . . .} denote a collection of infinite random numbers,

to be used sequentially for rejection sampling of the continuous random variables at timet by the full

conditionals of the continous random variables. Actual simulation using rejection sampling is not neces-

sary untilZ coalesces. In the case of non-conjugate priors (perhaps, inaddition to restricted parameter

space), the full conditional densities are often log-concave. In such situations the same principle can be

used, but with rejection sampling replaced by adaptive rejection sampling (Gilks and Wild (1992), Gilks

(1992)).

3.6 Advantages of our approach

Our bounding chain approach for only the discrete componentsZ has several advantages over the previ-

ous approaches. Firstly, simulation of the continuous parameters before coalescence ofZ, is unnecessary.

This advantage is important because construction of boundsfor the continuous parameters, even if pos-

sible, may not be useful since the coalescence probability of continuous parameters corresponding to the

bounding chains, is zero. Moreover, bounding the distribution functions of continuous parameters in the

mixture model context does not seem to be straightforward without discretization. Another advantage of

our perfect sampling principle is that we do not need a partial order of the multi-dimensional state space

and it is unnecessary to find minimal and maximal elements to serve as initial values of the bounding

chains. Indeed, our bounding chains begin with simulationsfrom FL
1 andFU

1 , which do not require

any initial values. Also, importantly, our approach of creating bounds forZ does not depend upon the

assumption of conjugate priors. Exactly the same approach will be used in the case of non-conjugate pri-

ors. After coalescence, regardless of bounded parameter space or non-conjugate priors, Gibbs sampling

can be carried out in a very straightforward manner till timet = 0.
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3.7 Obtaining infimum and supremum ofFi(· | X−i) in practice

The boundsFL
i (·) , FL

i (· | Z∗

−i), F
U
i (·) , FU

i (· | Z∗

−i) are bounded away from 0 and 1 but not always

easily available in closed forms. Numerical optimization using simulated annealing (see, for example,

Robert and Casella (2004) and the references therein) with temperatureT ∝ 1
log(1+t)

, wheret is the

iteration number, turned out to be very effective in our case. This is because the method, when properly

tuned, can be quite accurate, and it is entirely straightforward to handle constraints (introduced through

the restricted parameter space in our methodology) with simulated annealing through the acceptance-

rejection steps as in Metropolis-Hastings algorithm. At each timet a set of fixed random numbers will

be used for implementation of simulated annealing within our perfect sampling methodology.

Interestingly, for our perfect sampling algorithm we do notneed simulated annealing to be arbitrarily

accurate; given random numbers{RZ,t; t = 1, 2, . . .} we only need it to be accurate enough to generate

the same realization from the approximated distribution functions as obtained had we used the exact

solution. For instance, assume thatFL
i (j − 1) < Rzi,t ≤ FL

i (j), implying thatzLit = j. Letting F̂L
i

denote the approximated distribution function, we only need the approximation to satisfŷFL
i (j − 1) <

Rzi,t < F̂L
i (j) so thatzLit = j even under the approximation. This is achievable even if arbitrarily

accurate approximation is not obtained.

Our perfect sampling methodology is illustrated in a 2-component normal mixture example in Sec-

tion S-11; here we simply note that our method worked excellently. A further experiment associated

with the same example, and reported in Section S-11.4, showed that perfect sampling based on simu-

lated annealing yielded results exactly the same as those obtained by perfect sampling based on exact

optimization, in 100% cases. The latter experiment clearlyvalidates the use of simulated annealing for

optimization in perfect sampling.

We now extend our perfect sampling methodology to mixtures with unknown number of com-

ponents, which is a variable-dimensional problem. In this context, the non-parametric approach of

Escobar and West (1995) and the reversible jump MCMC (RJMCMC) approach of Richardson and Green

(1997) are pioneering. The former uses Dirichlet process (see, for example, Ferguson (1974)) to implic-

itly induce variability in the number of components, while maintaining a fixed-dimensional framework,

while the latter directly treats the number of components asunknown, dealing directly, in the process,

with a variable dimensional framework. The complexities involved with the latter framework makes

it difficult to extend our perfect sampling methodology to the case of RJMCMC. A new, flexible mix-
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ture model based on Dirichlet process has been introduced byBhattacharya (2008) (henceforth, SB),

which is shown by Mukhopadhyayet al. (2011b) (see also Mukhopadhyayet al. (2011a)) to include

Escobar and West (1995) as a special case, and is much more efficient and computationally cheap com-

pared to the latter. Hence, we develop a perfect sampling methodology for the model of SB, which

automatically applies to Escobar and West (1995).

4 Perfect sampling for normal mixtures with unknown number of

components

As before, letY = (y1, . . . , yn)
′ denote the available data set. SB considers the following model

[yi | ΘM ] ∼ 1

M

M
∑

j=1

√

λj
2π

exp

{

−λj
2
(yi − µj)

2

}

(14)

In the above,M is the maximum number of components the mixture can possiblyhave, and is known;

ΘM = {θ1, θ2, . . . , θM} with θj = (µj, λj), whereλj = σ−2
j . We further assume thatΘM are samples

drawn from a Dirichlet process:

θj
iid∼ G

G ∼ DP (αG0) (15)

Usually aGamma prior is assigned to the scale parameterα.

UnderG0,

λj
iid∼ Gamma

(

s

2
,
S

2

)

(16)

[µj | λj] ∼ N(µ0, ψλ
−1
j ) (17)

Under the Dirichlet process assumption the parametersθj are coincident with positive probability;

because of this (14) reduces to the form

[yi | ΘM ] =

p
∑

j=1

πj

√

λ∗j
2π

exp

{

−
λ∗j
2
(yi − µ∗

j)
2

}

, (18)

where
{

θ∗1, . . . , θ
∗

p

}

arep distinct components inΘM with θ∗j occuringMj times, andπj =Mj/M .
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Using allocation variablesZ = (z1, . . . , zn)
′, SB’s model can be represented as follows: Fori =

1, . . . , n andj = 1, . . . ,M ,

[yi | zi = j,ΘM ] =

√

λj
2π

exp

{

−λj
2
(yi − µj)

2

}

(19)

[zi = j] =
1

M
(20)

As is easily seen and is argued in Mukhopadhyayet al. (2011a), settingM = n andzi = i for i =

1, . . . ,M(= n), that is, treatingZ = (1, 2, . . . , n)′ as non-random, yields the Dirichlet process mixture

model of Escobar and West (1995).

However, unlike the case of mixtures with fixed number of components, the full conditionals of only

Z andΘM can not be used to construct an efficient perfect sampling algorithm in the case of unknown

number of components. This is because the full conditional of θj given the rest depends uponZ as well

asΘ−jM , which implies that even ifZ coalesces,θj can not coalesce unlessΘ−jM also coalesces. But

this has very little probability of happening in one step. Ofmore concern is the fact thatZ may again

become non-coalescent ifΘM does not coalesce immediately afterZ coalseces. Hence, although the

algorithm will ultimately converge, it may take too many iterations. This problem can be bypassed by

considering the reparameterized version of the model, based on the distinct elements ofΘM and the

configuration indicators.

4.1 Reparametrization using configuration indicators and associated full condi-

tionals

As before we define the set of allocation variablesZ = (z1, . . . , zn)
′, wherezi = j if yi is from the

j-th component. LettingΘ∗

M = {θ∗1, . . . , θ∗k} denote the distinct components inΘM , the elementcj of

the configuration vectorC = (c1, . . . , cM)′ is defined ascj = ℓ if and only if θj = θ∗ℓ ; j = 1, . . . ,M ,

ℓ = 1, . . . , k. Thus,(Z,ΘM) is reparameterized to(Z,C, k,Θ∗

M), k denoting the number of distinct

components inΘM .

The full conditional distribution ofzi is given by

[zi = j | Y, C, k,Θ∗

M ] ∝
√

λj
2π

exp

{

−λj
2
(yi − µj)

2

}

(21)

SinceΘM can be obtained fromC andΘ∗

M , we represented the right hand side of (21) in terms ofΘM .
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To obtain the full conditional ofcj , first letkj denote the number of distinct values inΘ−jM , and let

θj
∗

ℓ ; ℓ = 1, . . . , kj denote the distinct values. Also suppose thatθj
∗

ℓ occursMℓj times.

Then the conditional distribution ofcj is given by

[cj = ℓ | Y, Z, C−j, kj,Θ
∗

M ] =







κq∗ℓj if ℓ = 1, . . . , kj

κq0j if ℓ = kj + 1
(22)

where

q0j = α
(S
2
)
s
2

Γ( s
2
)
×
(

1

njψ + 1

)
1
2

×
(

1

2π

)

nj

2

× 2
s+nj

2 Γ(
s+nj

2
)

{

S +
nj(ȳj−µ0)2

njψ+1
+
∑

i:zi=j
(yi − ȳj)2

}

s+nj

2

, (23)

q∗ℓj = Mℓj

(λj
∗

ℓ )
nj

2

(2π)
nj

2

exp

[

−λ
j∗

ℓ

2

{

nj(µ
j∗

ℓ − ȳj)
2 +

∑

i:zi=j

(yi − ȳj)
2

}]

(24)

In (23) and (24),κ is the normalizing constant,nj = #{i : zi = j} andȳj =
∑

i:zi=j
yi/nj . Note that

q0j is the normalizing constant of the distributionGj defined by the following:

[λj ] ∼ Gamma

(

s+ nj
2

,
1

2

{

S +
nj(ȳj − µ0)

2

njψ + 1
+
∑

i:zi=j

(yi − ȳj)
2

})

(25)

[µj | λj ] ∼ N

(

nj ȳjψ + µ0

njψ + 1
,

ψ

λj(njψ + 1)

)

(26)

The conditional posterior distribution ofθ∗ℓ is given by

[θ∗ℓ | Y, Z, C] ∼ Gamma (λ∗ℓ : s
∗

ℓ , S
∗

ℓ )×N
(

µ∗

ℓ : µ
∗

0ℓ, ψ
∗

ℓλ
∗

ℓ
−1
)

, (27)

where

n∗

ℓ =
∑

j:cj=ℓ

nj , ȳ∗ℓ =
∑

j:cj=ℓ

nj ȳj

/

∑

j:cj=ℓ

nj , s∗ℓ =
n∗

ℓ + s

2
, (28)

µ∗

0ℓ = (ψn∗

ℓ ȳ
∗

ℓ + µ0) / (ψn
∗

ℓ + 1) , (29)

ψ∗

ℓ = ψ
/

(ψn∗

ℓ + 1) , (30)
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and

S∗

ℓ =
1

2







S +
n∗

ℓ(µ0 − ȳ∗ℓ )
2

ψn∗

ℓ + 1
+
∑

j:cj=ℓ

nj(ȳj − ȳ∗ℓ )
2 +

∑

j:cj=ℓ

∑

i:zi=j

(yi − ȳj)
2







. (31)

It is to be noted that theθ∗ℓ are conditionally independent.

For Gibbs sampling, we first updateZ, followed by updatingC and the number of distinct compo-

nentsk, and finally{θ∗ℓ ; ℓ = 1, . . . , k}.

4.2 Non-conjugateG0

In the case of non-conjugateG0 (which may have the same density form as a conjugate prior butwith

bounded support),q0j is not available in closed form. We then modify our Gibbs sampling strategy by

bringing in auxiliary variables in a way similar to that of Algorithm 8 in Neal (2000). To clarify, let

θa = (µa, λa) denote an auxiliary variable (the suffix “a” stands for auxiliary). Then, before updating

cj we first simulate from the full conditional distribution ofθa given the currentcj and the rest of the

variables as follows: ifcj = cℓ for someℓ 6= j, thenθa ∼ G0. If, on the other hand,cj 6= cℓ ∀ℓ 6= j, then

we setθa = θ∗cj . Onceθa is obtained we then replace the intractableq0j with the tractable expression

qaj = α
(λaj )

nj

2

(2π)
nj

2

exp

[

−
λaj
2

{

nj(µ
a
j − ȳj)

2 +
∑

i:zi=j

(yi − ȳj)
2

}]

(32)

Oncecj is simulated, if it is observed thatθj 6= θa ∀j, thenθa is discarded.

4.3 RelabelingC

Simulation ofC by successively simulating from the full conditional distributions (22) incurs a labeling

problem. For instance, it is possible that allcj are equal even though each of them corresponds to a

distinctθj . For an example, suppose thatΘ∗

M consists ofM distinct elements, andcj = M ∀j. Then

although there are actuallyM distinct components, one ends up obtaining just one distinct component.

For perfect sampling we create a labeling method which relabelsC such that the relabeled version, which

we denote byS = (s1, . . . , sM)′, coalesces ifC coalesces. To constructS we first simulatecj from (22);

if cj ∈ {1, . . . , kj}, then we setθj = θ∗cj and if cj = kj + 1, we drawθj = θ∗cj ∼ Gj. The elements

of S are obtained from the following definition ofsj: sj = ℓ if and only if θj = θ∗ℓ . Note thats1 = 1

and1 ≤ sj ≤ sj−1 + 1. In Section 10 it is proved that coalescence ofC implies the coalescence ofS,

irrespective of the value ofΘ∗

M associated withC.
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4.4 Full conditionals usingS

With the introduction ofS it is now required to modify some of the full conditionals of the unknown

random variables, in addition to introduction of the full conditional distribution ofS. The form of the

full conditional [zi | Y, S, k,Θ∗

M ] remains the same as (21), butΘM involved in the right hand side

of (21) is now obtained fromS andΘ∗

M . The modified full conditional ofcj, which we denote by

[cj | Y, Z, S−j, kj,Θ
∗

M ], now depends uponS−j, rather thanC−j , the notation being clear from the

context. The form of this full conditional remains the same as (22) but now the distinct componentsθj
∗

ℓ ;

ℓ = 1, . . . , kj are associated with the corresponding components ofS rather thanC. The form of the

modified full conditional distribution ofθ∗ℓ , which we now denote by[θ∗ℓ | Y, Z, S, k], remains the same

as (27), but in equations (28) to (31),C must be replaced byS. In the above full conditionals,k andkj

are now assumed to be associated withS.

The conditional posterior[S | Y, C,ΘM ] gives point mass toS∗, whereS∗ = (s∗1, . . . , s
∗

M)′ is the

relabeling obtained fromC andΘM following the method described in Section 4.3. For the construction

of bounds, the individual full conditionals[sj | Y, S−j, C,ΘM ], giving full mass tos∗j , will be considered

due to convenience of dealing with distribution functions of one variable. It follows that onceZ and

C coalesces,S andΘ∗

M must also coalesce. In the next section we describe how to construct efficient

bounding chains forZ, C andS. Bounding chains forS are not strictly necessary as it is possible to

optimize the bounds forZ andC with respect toS, but the efficiency of the other bounding chains is

improved, leading to an improved perfect sampling algorithm, if we also construct bounding chains for

S.

4.5 Bounding chains

As in the case of mixtures with known number of components, here also the idea of constructing bound-

ing chains is associated with distribution functions of thediscrete random variates, but here the bounding

chains can be made efficient by fixing the already coalesced individual discrete variates while taking the

supremum and the infimum of the distribution functions. Moreover, for informative data, the full condi-

tional distributions ofcj (hence, ofsj) will be similar given any values of the conditioned variables; thus

the difference between the supremum and the infimum of their distribution functions are expected to be

small. Theis particular heuristic is reflected in the results of the application of our methodology to three

real data sets in Section 5. Also, as noted in Section 3.3, even in the case of unknown number of compo-
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nents,Θ∗

M can be analytically marginalized out in conjugate cases, simplifying optimization procedures

and decreasing the gaps between the upper and the lower bounds. The full conditional distributions asso-

ciated with our model, marginalized overΘ∗

M in a conjugate case are provided in Mukhopadhyayet al.

(2011b).

4.5.1 Bounds forZ

Let Fzi(· | Y, S, k,Θ∗

M) denote the distribution function of the full conditional ofzi, and letFcj (· |
Y, S−j, kj,Θ

∗

M), Fsj (· | Y, S−j , C,ΘM) stand for those ofcj and sj , respectively. Also assume that

−∞ < M1 ≤ µj ≤M2 <∞ and0 ≤M3 ≤ λj ≤ M4 <∞, for all j.

Letting S̄ denote the set consisting of only thosesj that have coalesced, and letS− = S\S̄ consist of

the remainingsj . Then

FL
zi

(

· | Y, S̄
)

= inf
S−,k,Θ∗

M

Fzi(· | Y, S̄, S−, k,Θ∗

M) (33)

FU
zi

(

· | Y, S̄
)

= sup
S−,k,Θ∗

M

Fzi(· | Y, S̄, S−, k,Θ∗

M) (34)

Clearly, fixingS̄ helps reduce the gap between (33) and (34). The infimum and thesupremum above can

be calculated by simulated annealing. For the proposal mechanism needed for simulated annealing with

S̄ held fixed, we selectedsj ∈ S− uniformly from {1, . . . , sj−1 + 1}, wheresj−1 either belongs tōS or

has been selected uniformly from{1, . . . , sj−2 + 1}. OnceS is proposed in this way, this determines

k automatically. We then proposeθ∗1, . . . , θ
∗

k using normal random walk proposals with approximately

optimized variance.

4.5.2 Bounds forC

Let Z̄ denote the set of coalescedzi, and letZ− = Z\Z̄ consist of thosezj that did not yet coalesce.

Then

FL
cj

(

· | Y, S̄, Z̄
)

= inf
S−,kj,Z−,Θ∗

M

Fcj (· | Y, S̄, S−, kj, Z̄, Z
−,Θ∗

M) (35)

FU
cj

(

· | Y, S̄, Z̄
)

= sup
S−,kj,Z−,Θ∗

M

Fcj (· | Y, S̄, S−, kj, Z̄, Z
−,Θ∗

M) (36)

Note that the supremum corresponds tokj = 1 and the infimum corresponds tokj = M − 1. For

optimization with simulated annealing, proposal mechanisms forS andΘ∗

M may be same as described
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in Section 4.5.1 for obtaining the bounds forzi, while the elements ofZ− may be proposed by drawing

uniformly from{1, . . . ,M}.

4.5.3 Bounds forS

LettingC̄ andC− = C\C̄ denote the sets of coalesced and the non-coalescedcj , the lower and the upper

bounds for the distribution function ofsj are

FL
sj

(

· | Y, C̄
)

= inf
C−,Θ∗

M

Fsj(· | Y, C̄, C−,Θ∗

M) (37)

FU
sj

(

· | Y, C̄
)

= sup
C−,Θ∗

M

Fsj(· | Y, C̄, C−,Θ∗

M) (38)

For simplicity let us denoteFsj(· | Y, C̄, C−,Θ∗

M) byFsj (·) suppressing the conditioned variables. Since,

givenC andΘ∗

M , S is uniquely determined,Fsj(k) = 0 or 1, fork = 1, . . . ,M . Thus, optimization of

Fsj(k) needs to be carried out extremely carefully because either the correct optimum or the incorrect

optimum will be obtained, leaving no scope for approximation. However, simulated annealing is unlikely

to perform adequately in this situation. For instance, while maximizing, a long sequence of iterations

yielding Fsj (k) = 0 does not imply that 1 is not the maximum. Similarly, a long sequence of 1’s

while minimizing may mislead one to believe that 1 is the minimum. In other words, the algorithm

does not exhibit gradual move towards the optimum, making convergence assessment very difficult.

So, we propose to construct functionshj(·) of Fsj (·)’s and appropriate auxiliary variables such that

the optimization ofFsj (·) is embedded in the optimization ofhj(·), while avoiding the aforementioned

problems by allowing gradual move towards the optimum. Details are provided below.

A more convenient optimizing function

We constructhj(·) as follows:

hj(W,F ) =
M
∑

i=1

wi

{

Fsj(i) + wi

1 + wi

}
1
2

(39)

whereW = (w1, . . . , wM) denotes the vector of weights,F = (Fsj(1), . . . , Fsj(M)) and
∑M

j=1wj = 1

with wj > 0, ∀j. Clearly,0 < hj(·) < 1. We representwj aswj =
nj

∑M
i=1 ni

, whereni > 0. We use

simulated annealing to optimize (39) with respect to(W,C−,Θ∗

M) but letnk → ∞ with the iteration
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number while simulating otherni; i 6= k randomly from some bounded interval. This leads to opti-

mization ofFsj(k), while avoiding the problems of naive simulated annealing.In our examples we took

nk ∝ log(1 + t), wheret is the iteration number.

Optimizing strategy

SinceS is just a relabeled version ofC, the distribution functions of the full conditionals ofcj andsj

are optimized by the sameΘM , provided that none ofsj coalesced during optimization in the case ofC.

All that the proposal mechanism requires then is to simulatecj ∈ C− uniformly from {1, . . . ,M}. If C

(= C̄ ∪C−) andΘM do not lead to a validS, then the proposal is to be rejected, remaining at the current

C−, else the acceptance-rejection step of simulated annealing is to be implemented. If, on the other hand,

somesj had coalesced during optimization incj, the optimizer in the case ofsj is expected to be a slight

modification of that in the case ofcj. We construct the modification as follows. IfC, simulated from the

bounding chains (35) and (36) in the previous step, is not compatible withΘM , then we augmentΘM

with new components drawn uniformly:µ ∼ U(M1,M2) andλ ∼ U(M3,M4), in such a manner that

compatibility is ensured. We then use the adjusted set ofΘM for rest of the annealing steps. This scheme

worked adequately in all our experiments. Note that if entireC coalesces, then for allj and for anyΘM

associated withC, FL
sj

(

· | Y, C̄
)

= FU
sj

(

· | Y, C̄
)

= Fsj(· | Y, C,ΘM), which implies coalescence ofS

(recall the discussion in Section 4.4).

The proof presented in Section 7 goes through to show that thebounds of the distribution functions of

(Z,C, S), which are obtained by optimizing the original functions treating the coalesced random variates

fixed, are also distribution functions. The proof remains valid even if the original distribution functions

of the discrete variates are optimized with respect to the scale parameterα and other hyper-parameters.

Optimization with respect to the latter is necessary ifα and the hyper-parameters are treated as unknowns

and must be simulated perfectly, likewise asΘM . Assuming that the original Gibbs sampling algorithm

is updated by first updatingZ, thenC, followed byS, and finallyΘ∗

M , the proof of coalescence of the

random variables in finite time is exactly as that provided inSection 8. The proof of uniform ergodicity

presented in Section 9 applies with minor modifications in the current mixture problem with unknown

number of components.
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4.6 Illustration of perfect simulation in a mixture with max imum two compo-

nents

We illustrate our new methodologies in the framework of the mixture model of SB assumingM = 2. In

other words, we consider the model

[yi | Θ2] ∼
1

2

2
∑

j=1

N(yi;µj, λ
−1
j ) (40)

We further assume thatλ1 = λ2 = λ, whereλ is assumed to be known. Hence,Θ2 = (θ1, θ2), where

θj = µj , j = 1, 2. As in the case of the two-component mixture example detailed in Section S-11,

here also we consider a simplified model for convenience of illustration and to validate the reliability of

simulated annealing as the optimizing method in our case.

We specify the prior ofµj as follows:

µj
iid∼ G, j = 1, 2

G ∼ D(αG0),

(41)

andµj
iid∼ N(µ0, ψλ

−1) underG0.

We draw 3 observationsy1, y2, y3, from (40) after fixingµ1 = 2.19, µ2 = 2.73 andλ = 20. We

assume thatα = 1 (known). Using a pilot Gibbs sampling run we set0.5 =M1 ≤ µ1, µ2 ≤M2 = 3.5.

4.6.1 Optimizer for bounding the distribution function of zi

The exact minimizer and the maximizer of the distribution function of zi with respect toΘ2 or the

reparameterized variables(S,Θ∗

2) are of the form(a, b) where each ofa andb can take the valuesyi,

M1 or M2. Evaluation of the distribution function at these points yields the desired minimum and the

maximum at different time pointst.

4.6.2 Optimizer for bounding the distribution function of cj

For cj, the optimizer with respect toΘ2 is given by(a, b) wherea and b can take the values̄yj, M1

andM2. Of course, this is the same as what would be obtained by optimizing with respect to the

reparameterized version(S,Θ∗

2). As before, evaluation of the distribution function at these points is
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necessary for obtaining the desired optimizer. In this case, the optimizer with respect toZ is obtained by

considering all possible values ofZ = (z1, z2, z3)
′.

4.6.3 Optimizer for bounding the distribution function of sj

No explicit optimization is necessary to obtain the bounds for sj , asS = (s1, s2) is completely deter-

mined byC obtained from its corresponding bounding chains. Note thatfor the four possible values of

C = (c1, c2): (1, 1), (1, 2), (2, 1), (2, 2), the corresponding values ofS = (s1, s2) are(1, 1), (1, 2), (1, 1)

and(1, 2), respectively.

4.6.4 Results of perfect sampling

Results of1, 00, 000 iid perfect samples are displayed in Figure 1; the results are compared with1, 00, 000

independent Gibbs sampling runs, each time discarding the samples obtained in the first10, 000 Gibbs

sampling iterations and retaining only the sample in the10, 001-th iteration. Close agreement between

perfect sampling and Gibbs sampling, the latter implemented with much care for the sake of reliability,

validates our perfect sampling methodology.

4.6.5 Validation of simulated annealing in this example

As in the example with known number of components here also wevalidate simulated annealing by sep-

arately obtaining10, 000 iid samples using our perfect sampling algorithm but using simulated annealing

(with 7,000 iterations) to optimize the bounds for the distribution functions of(Z,C, S). We have used

the same random numbers as used in the perfect sampling experiment for obtaining10, 000 iid samples

using the exact bounds. All the corresponding samples at time t = 0 turned out to be the same, just as in

the example of the mixture with exactly two components. Thisvalidates the use of simulated annealing

in perfect sampling from mixtures with unknown number of components.

5 Application of perfect simulation to real data

We now consider application of our perfect sampling methodology to three real data sets—Galaxy, Acid-

ity, and Enzyme data. Both RG and SB used all the three data sets to illustrate their methodologies. The

Galaxy data set consists of 82 univariate observations on velocities of galaxies, diverging from our own
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Figure 1: Posterior densities ofµ1 andµ2 using samples obtained from perfect simulation (red curve)

and independent runs of Gibbs sampling (black curve).
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galaxy. The second data concerns an acidity index measured in a sample of 155 lakes in north-central

Wisconsin. The third data set concerns the distribution of enzymic activity in the blood, for an enzyme

involved in the metabolism of carcinogenic substances, among a group of 245 unrelated individuals.

5.1 Perfect sampling for Galaxy data

5.1.1 Determination of appropriate ranges of the parameters

We implemented a Gibbs sampler withM = 10, s = 4; S = 1; µ0 = 20; aα = 10; bα = 0.5;

ψ = 33.3; and obtained results quite similar to that reported in SB, who usedM = 30. Using the results

obtained in our experiments, we set the following bounds on the parameters: forj = 1, . . . ,M(= 10),

9.5 ≤ µj ≤ 34.5, 0.01 ≤ λj ≤ 5 and0.08 ≤ α ≤ 35.5. The fit to the data obtained with this set up

turned out to be similar to that obtained by SB.

5.1.2 Computational issues

We implemented our perfect sampling algorithm with the above-mentioned hyperparameter values and

parameter ranges. Our experiments suggested that 500 simulated annealing iterations for each optimiza-

tion step are adequate, since further increasing the numberof iterations did not significantly improve the

optima. The terminal chains coalesced after 32,768 steps. The reason for the coalescence of the bounding

chains after a relatively large number of iterations may perhaps be attributed to the inadequate amount

of information contained in the relatively sparse 82-pointdata set required to reduce the gap between

the bounding chains (recall the discussion in Section 4.5).In fact, as it will be seen, perfect sampling

with the other two data sets containing much more data pointsand showing comparatively much clear

evidence of bimodality (particularly the Acidity data set)coalseced in much less number of steps. How-

ever, compared to the number of steps needed to achieve coalescence, the computation time needed to

implement the steps turned out to be more serious. In this Galaxy data, withM = 10, the computation

time taken by a workstation to implement 32,768 backward iterations turned out to be about 11 days! We

discuss in Section 6 that parallel computing is an effectiveway to drastically reduce computation time.

In Section 5.1.4 we consider another experiment withM = 5 that took just 13 hours for implementation,

yielding results very similar to those withM = 10.
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5.1.3 Results of implementation

After coalescence, we ran the chain forward to timet = 0, thus obtaining a perfect sample. We then

further generated 15,000 samples using the forward Gibbs sampler. The red curve in Figure 2 stands for

the posterior predictive density, and the overlapped greencurve is the the Gibbs sampling based posterior

predictive density corresponding to the unbounded parameter space. The figure shows that the difference

between the posterior predictive distributions with respect to bounded and unbounded parameter spaces

are negligible, and can perhaps be attributed to Monte Carloerror only. The posterior probabilities of

the number of distinct components being{1, . . . , 10} turned out to be{0, 0, 0.000067, 0.0014, 0.0098,

0.044133, 0.1358, 0.265133, 0.3436, 0.200067}, respectively.

5.1.4 Experiment to reduce computation time by settingM = 5

As a possible alternative to reduce computation time, we decided to further reduce the value ofM to 5.

The ranges of the parameters whenM = 5 turned out to be somewhat larger compared to the case of

M = 10: for j = 1, . . . , 5, 9.5 ≤ µj ≤ 34.5, 0.01 ≤ λj ≤ 20 and0.08 ≤ α ≤ 100. Now the two terminal

chains coalesced in 2048 steps taking about 13 hours. As before, once the terminal chains coalesced, we

ran the chain forward to timet = 0, and then further generated 15,000 samples using the forward Gibbs

sampler. The posterior predictive density is shown in Figure 3. As before, the figure shows that the

differences between the posterior predictive densities with respect to bounded and unbounded parameter

spaces are negligible enough to be attributed to Monte Carloerror. Moreover, when compared to Figure

2, Figure 3 indicates that the fitted DP-based mixture model with M = 5 is not much worse than that

withM = 10. Here the posterior probabilities of the number of distinctcomponents being{1, 2, 3, 4, 5},

respectively, are{0.000067, 0.001467, 0.026667,0.229733, 0.742067}.

5.2 Perfect sampling for Acidity data

Following the procedure detailed in Section 5.1 we set the following bounds: forj = 1, . . . ,M(= 10),

4 ≤ µj ≤ 6.9, 0.08 ≤ λj ≤ 25, and0.08 ≤ α ≤ 50. We implemented our perfect sampler with these

ranges, and with hyperparameterss = 4, S = 0.7, µ0 = 5.02, aα = 15, bα = 0.5, andψ = 33.3. As in

the Galaxy data, here also 500 iterations of simulated annealing for each optimization step turned out to

be sufficient. The terminal chains took about 4 hours to coalesce in 128 steps.

The posterior predictive distribution is shown in Figure 4.Again, as before, the figure demonstrates
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Figure 2: Histogram of the Galaxy data and the posterior predictive density corresponding to perfect

simulation withM = 10 (red curve). The green curve stands for the Gibbs sampling based posterior

predictive density assuming unbounded parameter space.
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Figure 3: Histogram of the Galaxy data and the posterior predictive density corresponding to perfect

simulation withM = 5 (red curve). The green curve stands for the Gibbs sampling based posterior

predictive density assuming unbounded parameter space.
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Figure 4: Histogram of the Acidity data and the posterior predictive density corresponding to perfect

simulation withM = 10 (red curve). The green curve stands for the Gibbs sampling based posterior

predictive density assuming unbounded parameter space.
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that the posterior predictive density remains virtually unchanged whether or not the parameter space

is truncated. Figure 4 also indicates that the posterior predictive distribution matches closely with that

of the histogram of the data. The posterior probabilities ofthe number of distinct components being

{1, . . . , 10} are {0, 0, 0.000067, 0.0024, 0.012, 0.0556, 0.159867, 0.303133,0.323067, 0.143867},

respectively.

5.3 Perfect sampling for Enzyme data

Following the procedures detailed in Sections 5.1 and 5.2 wefix M = 10; the bounds on the parameters

are: for j = 1, . . . ,M(= 10), 0.15 ≤ µj ≤ 3, 0.08 ≤ λj ≤ 150.5 and 0.08 ≤ α ≤ 50. The

hyperparameters in this example are given bys = 4; S = 0.33; µ0 = 1.45; aα = 20; bα = 0.5 and

ψ = 33.3.

We implemented our perfect sampler with these specifications, along with 500 iterations of simulated

annealing for each optimization step. The terminal chains coalesced in 2048 steps taking about 4 days.

As to be expected from the previous applications, here also,as shown in Figure 5, truncation of the

parameter space virtually makes no difference to the resulting posterior predictive density associated

with unbounded parameter space. Good fit of the model to the data is also indicated. The posterior

probabilities of the number of distinct components being{1, . . . , 10}, respectively, are{0, 0.000933,

0.012067, 0.0634, 0.179, 0.2782, 0.219867, 0.1454, 0.075333, 0.0258}.

6 Summary, discussion and future work

We have proposed a novel perfect sampling methodology that works for mixtures where the number of

components are either known or unknown, and the set-up is either conjugate or non-conjugate. We have

first developed the method for mixtures with known number of components, then extending it to the

more important case of mixtures with unknown number of components. Our methodology hinges upon

exploiting the full conditional distributions of the discrete random variables of the problem, optimizing

the corresponding distribution functions with respect to the conditioned random variables, obtaining

upper and lower bounds of the corresponding Gibbs samplers.One particularly intriguing aspect of this

strategy is perhaps the fact that even though perfect samples of continuous random variables will also

be generated, simulation of the latter is not at all requiredbefore coalescence of the discrete bounding
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Figure 5: Histogram of the Enzyme data and the posterior predictive density corresponding to perfect

simulation withM = 10 (red curve). The green curve stands for the Gibbs sampling based posterior

predictive density assuming unbounded parameter space.
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chains. We have shown that the gaps between the upper and the lower bounds of the Gibbs sampler can

be narrowed, making way for fast coalescence. Further advantages over the existing perfect sampling

procedures are also discussed in detail. It is also easy to see that our current methodology need not be

confined to univariate data, and the same methodology goes through for handling multivariate instances.

With simulation studies we have validated our methodology for mixtures with known, as well as with

unknown, number of components. However, application to real data sets revealed substantial computa-

tional burden, and obtaining a single perfect sample took several hours with our limited computational

resources. Thus, even though the convergence (burn-in) issue is completely eliminated, obtainingiid

realizations from the posteriors turned out to be infeasible. As discussed in Section 5.1, the difficulties

are likely to persist in problems where large values of the maximum number of components are plau-

sible, and in sparse data sets. Computational challenges are also likely to appear in massive data sets,

since then the number of allocation variables for perfect sampling will increase manifold. In multivariate

data sets too, the computation can be excessively burdensome—here the number of discrete simulations

necessary remains the same as in the corresponding univariate problem, but optimization with respect

to the continuous variables may be computationally expensive because of increased dimensionality. In

such situations, parallel computing can be of great help. Indeed, in a parallel computing environment the

upper and lower bounding chains can be simulated in different parallel processors, which would greatly

reduce the computation time. Moreover, quite importantly,iid simulations from the posteriors can also

be carried out easily by simulating perfect samples independently in separate parallel processors. This

can be done most efficiently by utilizing two processors for each perfect realization, so that, say, with

16 parallel processors 8 perfectiid realizations can be obtained in about half the time a single perfect

realization is generated in a stand-alone machine. The parallel computing procedure can be repeated to

obtain as manyiid realizations as desired within a reasonable time. Increasing the number of parallel

processors can obviously speed up this procedure many times, which would make implementation of our

algorithm routine. Although the authors have the expertisein parallel computing, they are yet to have ac-

cess to parallel computing facilities, which is the reason why we could not obtain perfectiid realizations

in our real data experiments and could not experiment with largeM or massive data. In the near future,

however, such access is expected, and then it will be easier for us to elaborate on these computational

issues.

Supplementary Material
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Throughout, we refer to our main manuscript as MB.

7 Proof that F L
i andF U

i are distribution functions

Letting X−i denote all unknown variables other thanzi we need to show that for almost allX−i the

following holds:

(i) limh→−∞ FL
i (h) = limh→−∞ FU

i (h) = 0.

(ii) limh→∞ FL
i (h) = limh→∞ FU

i (h) = 1.

(iii) For anyx1 ≥ x2, FL
i (x1) ≥ FL

i (x2) andFU
i (x1) ≥ FU

i (x2).

(iv) limh→x+ F
L
i (h) = FL

i (x) andlimh→x+ F
U
i (h) = FU

i (x).

Proof: Let X−i denote all unknown variables other thanzi. To prove (i), note that for allh < 1,

Fi(h | X−i) = 0 for almost allX−i. Hence, by (8) of MB and by definition, bothFL
i (h) andFU

i (h) are

0 with probability 1. Hence,limh→−∞ FL
i (h) = limh→−∞ FU

i (h) = 0 almost surely.

To prove (ii) note that for allh > p, Fi(h | X−i) = 1 for almost allX−i. Hence, forh > p,

FL
i (h) = FU

i (h) = 1, that is,limh→∞ FL
i (h) = limh→∞ FU

i (h) = 1 for almost allX−i.

To show (iii), leth1 > h2. Then, sinceFi(· | X−i) is a distribution function satisfying monotonicity,

it holds thatFL
i (h2) = infX−i

Fi(h2 | X−i) ≤ Fi(h2 | X−i) ≤ Fi(h1 | X−i) for almost allX−i. Hence,

FL
i (h2) ≤ infX−i

Fi(h1 | X−i) = FL
i (h1). Similarly,FU

i (h1) = supX−i
Fi(h1 | X−i) ≥ Fi(h1 | X−i) ≥

Fi(h2 | X−i) for almost allX−i. Hence,FU
i (h1) ≥ supX−i

Fi(h2 | X−i) = FU
i (h2).

To prove (iv), first observe that due to the monotonicity property (iii), the following hold for anyx:

lim
h→x+

FL
i (h) ≥ FL

i (x) (42)

lim
h→x+

FU
i (h) ≥ FU

i (x) (43)

Then observe that, due to discreteness,Fi(· | X−i) is constant in the interval[x, x + δ) for someδ > 0.

Since the supports ofFL
i , FU

i andFi(· | X−i) for almost allX−i are same,FL
i andFU

i must also be

constants in[x, x+ δ). This implies that equality holds in (42) and (43).

Hence, bothFL
i andFU

i satisfy all the properties of distribution functions.
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Remark: The right continuity property formalized by (iv) not be truefor continuous variables. Suppose

X ∼ U(0, θ), θ > 0. Here the distribution function isF (x | θ) = x
θ
, 0 < x < θ <∞. But

lim
x→0+

sup
θ

x

θ
= lim

x→0+
1 = 1

and,

sup
θ

lim
x→0+

x

θ
= sup

θ

0 = 0

As a consequence of the above problem, attempts to constructsuitable stochastic bounds for the continu-

ous parameters(Πp,Θp) may not be fruitful. In our case such problem does not arise since we only need

to construct bounds for the discrete random variables to achieve our goal.

8 Proof of validity of our CFTP algorithm

Theorem: The terminal chains coalesce almost surely in finite time andthe value obtained at timet = 0

is a a realization from the target distribution.

Proof:

Let zLit denote the realization obtained at timet by invertingFU
i , that is,zLit = FU

i

−

(Rzi,t), where

{Rzi,t; i = 1, . . . , n; t = 1, 2, . . .} is a common set ofU(0, 1) random numbers which areiidwith respect

to bothi andt. used to simulateZ = (z1, . . . , zn)
′ at timet for Markov chains starting at all possible

initial values. Similarly, letzUit = FL
i

−

(Rzi,t). Clearly, for anyzit = F−

i (Rzi,t | X−i) started with any

initial value and for anyX−i, zLit ≤ zit ≤ zUit for all i andt.

For i = 1, . . . , n and forj = 1, 2, . . ., we denote bySji the event

zLi,−2j (−2j−1) = zUi,−2j (−2j−1),

which signifies that the terminal chains and hence the individual chains started att = −2j will coalesce

at t = −2j−1. It is important to note that bothFL
i andFU

i are irreducible which has the consequence

that the probability ofSji , P (S
j
i ) > ǫi > 0, for some positiveǫi. Since, for fixedi, {Sji ; j = 1, 2, . . .}

depends only upon the random numbers{Rzi,t; t = −2j , . . . ,−2j−1}, {Sji ; j = 1, 2, . . .} are independent

with respect toj. Moreover, for fixedj, Sji depends only upon theiid random numbers{Rzi,−2j ; i =

1, . . . , n}. Hence,{Sji ; i = 1, . . . , n; j = 1, 2, . . .} are independent with respect to bothi andj.
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Let ǫ = min{ǫ1, . . . , ǫn}. Then due to independence of{Sji ; i = 1, . . . , n}, it follows that for

j = 1, 2, . . ., S̄j = ∩ni=1S
j
i are independent, and

P
(

S̄j
)

≥ ǫn (44)

The rest of the proof resembles the proof of Theorem 2 of Casella et al. (2001). In other words,

P (No coalescence after T iterations) ≤
T
∏

j=1

{

1− P (S̄j)
}

(45)

= {(1− ǫn)}T → 0 as T → ∞. (46)

Thus, the probability of coalescence is 1. That the time to coalesce is almost surely finite follows from

the Borel-Cantelli lemma, exactly as in Casellaet al. (2001).

The realization obtained at timet = 0 after occurrence of the coalescence eventS̄j for somej yields

Z = Z0 exactly from its marginal posterior distribution. Given this Z0, drawingΠp0 from the full

conditional distribution (11) of MB and then drawingΘp0 sequentially from (9) and (10) of MB givenZ0

andΠp0, yields a realization(Z0,Πp0,Θp0) exactly from the target posterior. The proof of this exactness

follows readily from the general proof (see, for example, Propp and Wilson (1996), Casellaet al. (2001))

that if convergent Markov chains colasece in a CFTP algorithm during timet ≤ 0, then the realization

obtained at timet = 0 is exactly from the stationary distribution.

9 Uniform ergodicity

Let P (·, ·) denote a Markov transition kernel whereP (x,A) denotes transition from the statex to the

setA ∈ B, B being the associated Borelσ-algebra. If we can show that for allx in the state space the

following minorization holds:

P (x,A) ≥ ǫQ(A), A ∈ B,

for some0 < ǫ ≤ 1 and for some probability measureQ(·), thenP (·, ·) is uniformly ergodic.

In our mixture model situation the Gibbs sampling transition kernel is

[

Z(t),Π(t)
p ,Θ

(t)
p | Z(t−1),Π(t−1)

p ,Θ(t−1)
p

]

=
[

Z(t) | Π(t−1)
p ,Θ(t−1)

p , Y
] [

Π(t)
p | Z(t), Y

] [

Θ(t)
p | Z(t),Π(t)

p , Y
]

≥
{

inf
Π

(t−1)
p ,Θ

(t−1)
p

[

Z(t) | Π(t−1)
p ,Θ(t−1)

p , Y
]

}

[

Π(t)
p | Z(t), Y

] [

Θ(t)
p | Z(t),Π(t)

p , Y
]

(47)
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The infimum in inequality (47) is finite since bothΠ(t−1)
p andΘ(t−1)

p are bounded.

Denoting the right hand side of inequality (47) byg(Z(t),Π
(t)
p ,Θ

(t)
p ), we put

ǫ =
∑

Z

∫

Πp

∫

Θp

g(Z,Πp,Θp)dΠpdΘp > 0. (48)

Sinceg(·) is bounded above by the Gibbs transition kernel which integrates to 1, it follows from (48)

that0 < ǫ ≤ 1. Hence, identifying the density of theQ-measure asg(·)/ǫ, the minorization condition

required for establishment of uniform ergodicity of our Gibbs sampling chain is seen to hold.

10 Proof that coalescence ofC implies the coalescence ofS

Let C = (c1, . . . , cM)′ be coalescent. For convenience of illustration assume thatafter simulating each

cj, followed by drawingθj depending upon the simulated value ofcj , the entire setS is obtained from the

updated set of parametersΘM . Note that in practice, onlysj will be obtained immediately after updating

cj andθj . Let S−j = {s1, . . . , sj−1, sj+1, . . . , sM}. Thencj+1 = ℓ denotes theℓ-th distinct element of

S−j. If {1, . . . , dj} are the distinct components inS−j , dj being the number of distinct components, and

ℓ ≤ sj, thensj+1 = ℓ. On the other hand, ifℓ < cj+1 ≤ dj + 1, thensj+1 = sj + 1.

Now note thats1 = 1, which is always coalescent. Ifc2 > 1, thens2 = 2, elses2 = 1, for all Markov

chains. Hence,s2 is coalescent. Ifc3 > s2, thens3 = s2 + 1, elses3 = c3. Sinces2 is coalescent, then

so iss3. In general, ifcj+1 > sj, thensj+1 = sj + 1, elsesj+1 = cj+1. Sinces1, . . . , sj are coalescent,

hence so issj+1, for j = 1, . . . ,M − 1. In other words,S must coalesce ifC coalesces.

S-11 Illustration of perfect simulation with a two-component nor-

mal mixture example

For i = 1, . . . , n, data pointyi has the following distribution:

[yi | π,Θ2] ∼ πN(yi;µ1, λ
−1
1 ) + (1− π)N(yi;µ2, λ

−1
2 ), (49)

where, for the sake of simplicity in illustration,λ1 andλ2 are assumed known. The reason for considering

this simplified model is two-fold. Firstly, it is easy to explain complicated methodological issues with

a simple example. Secondly, the bounds ofZ are available exactly in this two-component example;

33



the results can then be compared in the same example with approximate bounds obtained by simulated

annealing. This will validate the use of simulated annealing in our methodology.

The prior ofµj ; j = 1, 2, is assumed to be of the form (5) of MB. Fixing the true values at π = 0.8,

µ1 = 2.19 andµ2 = 2.73, we draw a sample of sizen = 3 from a normal mixture whereσ2
1 = λ−1

1 = 0.9,

σ2
2 = λ−1

2 = 0.5 are considered known. The hyperparameters are set to the following values:τ1 = 0.9,

τ2 = 0.8, ξ1 = 2.5 andξ2 = 3.5. We illustrate our methodology in drawing samples exactly from the

posteriorπ(π, µ1, µ2 | y1, y2, y3).

S-11.1 Construction of bounding chains

To obtainFL
i andFU

i ; i = 1, 2, 3, note that here we only need to minimize and maximize

Fi(1 | X−i) =
π
√
λ1 exp

{

−λ1
2
(yi − µ1)

2
}

π
√
λ1 exp

{

−λ1
2
(yi − µ1)2

}

+ (1− π)λ2 exp
{

−λ2
2
(yi − µ2)2

} (50)

with respect toµ1, µ2 andπ. Based on a pilot Gibbs sampling run we obtain the following bounds for

µ1 andµ2: M1 = 0.2 ≤ µ1 ≤ 4.12 = M2 andM3 = 1.0 ≤ µ2 ≤ 5.2 = M4. The minimizer and

the maximizer of (50) occur at co-ordinates of the form(a, b), wherea can take the valuesyi, M1 or

M2, andb can take the valuesyi, M3 or M4. Evaluating (50) at these co-ordinates yields the desired

minimum and the maximum. At timet, let θmin,t andθmax,t denote the minimizer and the maximizer,

respectively. Minimization and maximization of (50) with respect toπ (assuming that0 < a ≤ π ≤ b <

1 for somea, b obtained using Gibbs sampling) would have led to the independent distribution functions

FL
i andFU

i , but there exists a monotonicity structure in the the conditional distribution ofπ (see also

Robert and Casella (2004)) which can be exploited to reduce the gaps betweenFL
i andFU

i , by keeping

π fixed in the lower and the upper bounds. Moreover, since optimization with respect toπ is no longer

needed, truncation of the parameter space ofπ is not required. Details follow.

S-11.2 Monotonicity structure in the simulation ofπ

It follows from (11) of MB thatπ ∼ Beta(n1 + 1, n − n1 + 1). Then, at timet, π can be represented

asπt =
∑n1+1

k=1 Rπ,t,k

/
∑n+2

k=1 Rπ,t,k, where{Rπ,t,k; k = 1, . . . , n+ 2} is a random sample fromExp(1),

that is, the exponential distribution with mean 1. Thus,πt is increasing with respect ton1, since the

set of random numbers is fixed for all the Markov chains at timet. The form of (50) suggests that the
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distribution function is increasing withπ and hence withn1. Let n1t = #{i : zit = 1}, nL1t = #{i :
zLit = 1} andnU1t = #{i : zUit = 1}, and note thatnL1t ≤ n1t ≤ nU1t for anyt. Define

πLt =

∑nL
1t+1
k=1 Rπ,t,k
∑n+2

k=1 Rπ,t,k

(51)

πUt =

∑nU
1t+1
k=1 Rπ,t,k
∑n+2

k=1 Rπ,t,k

(52)

With these, the lower and upper bounds of the distribution function ofzi at timet are given by

FL
i (· | πLt ) = Fi(· | θmin,t, π

L
t ) (53)

FU
i (· | πUt ) = Fi(· | θmax,t, π

U
t ) (54)

S-11.3 Results of perfect simulation in the two-component mixture example

We first investigated the consequences of truncating the parameter space. Figure S-6 illustrates that in

this example, the exact posterior densities of(π, µ1, µ2) corresponding to bounded and full (unbounded)

supports are almost indistinguishable from each other.

We then implemented our perfect sampling algorithm by simulatingZ from the bounds (53) and (54)

and simulating the upper and lower chains forπ using the formulae (51) and (52). The histograms in

Figure S-7, corresponding to1, 00, 000 iid perfect samples match the exact posteriors almost perfectly,

indicating that our algorithm has worked really well.

S-11.4 Comparison with perfect sampling involving simulated annealing

In the same two-component normal mixture example, we considered two versions of our perfect sampling

algorithm: in the first version we considered exact optimization of the distribution function ofzi, and in

the second version we used simulated annealing for optimization. In both cases, we obtained10, 000 iid

samples of(π, µ1, µ2) at timet = 0, using the same set of random numbers. All10, 000 samples of the

second version turned out to be equal to the corresponding samples of the first version, suggesting great

reliability of simulated annealing.
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Figure S-6: Investigation of consequences of truncating the parameter space: the solid and the broken

lines (almost indistinguishable) correspond to the exact posterior densities with respect to unbounded

and bounded parameter spaces, respectively.
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Figure S-7: The histograms correspond to perfect samples drawn using our algorithm. The density lines

correspond to the exact posterior density.
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