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Abstract: In this paper we consider a group sequentially monitored trial
on a survival endpoint, monitored using a weighted log-rank (WLR) statis-
tic with deterministic weight function. We introduce a summary statistic in
the form of a weighted average logged relative risk and show that if there
is no sign change in the instantaneous logged relative risk, there always ex-
ists a bijection between the WLR statistic and the weighted average logged
relative risk. We show that this bijection can be consistently estimated at
each analysis under a suitable shape assumption, for which we have listed
two possibilities. We indicate how to derive a design-adjusted p-value and
confidence interval and suggest how to apply the bias-correction method.
Finally, we document several decisions made in the design of the NLST
interim analysis plan and in reporting its results on the primary endpoint.
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62N022.
Keywords and phrases: Weighted Logrank Statistic, Group Sequential,
Interim Analysis, Estimation.

1. Introduction

Time to event, e.g. disease specific mortality, is the primary endpoint in many
clinical trials. The use of group sequential boundaries in monitoring the trial is
not only commonplace, but ethically mandated in all trials of human subjects.
The logrank statistic is often the monitoring statistic of choice due to its natural
connection with the relative risk, which is often the parameter of inference. This
natural connection, which is based upon the assumption of proportional hazards,
admits a one-to-one correspondence between the inferential procedure based
upon the usual standard normal scale and that based on the scale of the natural
parameter. However, the assumption of proportional hazards is not always a
reasonable assumption. In many subject areas, e.g. in disease-prevention trials,
one expects that the hazard ratio will not be constant. Much of the prior work
on the use of the weighted logrank statistic in a sequential design is confined
to the use a weighting function from the Gρ,γ(t) = Sρ(t)(1 − S(t))γ family, of
Fleming and Harrington, [2]. They suggest two major types of problems which
can arise. First, they argue that use of the weighted logrank statistic does not
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reproduce the single point analysis in the way that is desired. Most notably,
they argue, there is no clinically meaningful parameter that allows the values
of the monitoring statistic and sequential boundaries to be cast into a clinically
meaningful scale. They believe that this problem is further aggrivated when the
range of the weighting function over the duration of the trial is quite large, such
as is the case with theG0,1 weight function (Gillen and Emerson, [4]) and suggest
a re-weighting scheme whereby the most weight is given to the most recent data
collected at each analysis. Secondly, they argue that if the chosen weighting
function is non-deterministic or trial-specific then it is impossible to compare
results from different clinical trials, (Gillen and Emerson, [3, 5]). While the bulk
of these cautious remarks are useful to know in their own right, several important
points have been omitted from the discussion. Firstly, as we will show, there is
a natural, clinically meaningful parameter, the weighted average logged relative
risk, that is connected bijectively to the weighted logrank statistic when there
is no change in sign in the instantaneous logged relative risk. Under suitable
shape assumptions, the bijection can be estimated at each analysis. We will
show that the asymptotic distribution of the WLR statistic, suitably normalized
is a Brownian motion plus drift under nothing but boundeness conditions. In
two corollaries, we demonstrate how each of two presented shape assumptions
translates into a form of the drift function and consequently, into an estimator of
the weighted average logged relative risk. We then demonstrate how the usual
results concerning monitoring and end of trial estimation follow. Finally, we
note that this bijection between the weighted logrank statistic and the weighted
average logged relative risk allows the values of the monitoring statistic, efficacy
and futility boundaries, and reported point estimate and confidence interval to
be cast into a clinically meaningful scale.

2. Terminology and framework

We consider a two armed randomized trial of the effect of an intervention upon
a time to event that is run until time τ . Let T̃i be the possibly unobserved
time to event and let Ci a right censoring time. We assume non-informative
censoring for simplicity. Let Ti = T̃i ∧ Ci be the observed time on study and
let δi = I(T̃i ≤ Ci) be the event indicator. Let Xi indicates membership in the
intervention arm (Xi = 1) or control arm (Xi = 0). We assume, conditional upon
Xi, that individuals, i = 1, . . . , n are distributed independently and identically.
Let dH0(t) and dH1(t) be the trial arm specific cumulative hazard increments.
We assume throughout thatH0(t) is finite for all t on [0, τ ]. For the instantaneous
logged hazard ratio, we write

β(t) = log

{
dH1(t)

dH0(t)

}
. (2.1)

Let Ni(t) = I(Ti ≤ t, δi = 1) and dNi(t) = Ni(t) − Ni(t−) be the subject
level counting process and its increments, respectively. Let Nn(t) =

∑
iNi(t)
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and dNn(t) = Nn(t)−Nn(t−) be the aggregated counting process and its incre-
ments, respectively. Note that the following difference is a compensated counting
process martingale:

dMi(t) = dNi(t)− I(Ti ≥ t) exp(Xiβ(t))dH0(t) (2.2)

Let En(t, 0) =
∑

iXiI(Ti ≥ t)/
∑

i I(Ti ≥ t) denote the proportion of the popu-
lation at risk at time t in the intervention arm, and let e(t, 0) = lima.s.n→∞En(t, 0)

and let G(t) = lima.s. dNn(t)/n. Let IFn(t) =
∫ t

0
En(ξ, 0)(1−En(ξ, 0)) dNn(ξ)/n

and let IF (t) =
∫ t

0 e(ξ, 0)(1−e(ξ, 0)) dG(ξ). We introduce the following notation
for cross moment integrals against dIF over (0, t):

〈ψ1|IF |ψ2〉t =
∫ t

0

ψ1(ξ)ψ2(ξ)dIF (ξ) . (2.3)

For reasons that will become clear below, we consider the target of our investi-
gation to be the following weighted average logged relative risk:

β⋆ =
〈Q|IF |β〉τ
〈Q|IF |1〉τ

. (2.4)

Let q(t) = β(t)/β⋆. This provides a representaton of the instantaneous logged
relative risk function, β(t) = β⋆ q(t) as the product of its weighted average
value, β⋆ times a shape function, q. Note it follows that the shape function has
weighted average value equal to 1:

1 =
〈Q|IF |q〉τ
〈Q|IF |1〉τ

. (2.5)

At follow-up time t, the
√
n normalized score statistic with weighting function

Q is:

Un(t) =
1√
n

n∑

i=1

∫ t

0

Q(ξ) {Xi − En(ξ, 0)} dNi(ξ) . (2.6)

Its estimated variance is:

Vn(t) =
1

n

∫ t

0

Q2(ξ)En(ξ, 0) (1− En(ξ, 0)) dNn(ξ) = 〈Q|IFn|Q〉t . (2.7)

Let v(t) = lima.s. Vn(t). Note that v(t) = 〈Q|IF |Q〉t. Let fn(t; τ) = Vn(t)/Vn(τ)
and f(t; τ) = v(t)/v(τ). We will on occasion use the shorthand fn,j and fj
for fn(t; τ) and f(t; τ), respectively. Also, let mn(t) = 〈Q|IFn|Q〉t and m(t) =
〈Q|IF |Q〉t. We consider the weighted log-rank (WLR) statistic at time t on
several “scales”

(i) The standard normal scale: Zn(t) = Un(t)/
√
Vn(t)

(ii) The “Brownian scale”: Xn(t) = Un(t)/
√
Vn(τ)
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3. Main Result

Condition 3.1. The instantaneous logged relative risk function, β, is bounded
on [0, τ ].

Condition 3.2. The chosen weighting function, Q, is bounded on [0, τ ] and
deterministic.

Recall that a weighting functions is always non-negative. The stipulated
boundedness in conditions 3.1 and 3.2 above can be relaxed to being of class L2

with respect to the measure dIF , as this is all that is really required.
While the context will involve monitoring the statistic at a sequence of interim
analyses, for the time being, we suppress this aspect and consider instead the
following more general and generic result which holds under the weakest set of
assumptions:

Theorem 3.1. Under conditions 3.1 and 3.2, then under the family of local
alternatives, β⋆

n = b⋆/
√
n, the score statistic, normalized to the “Brownian scale”

is asymptotically a Brownian motion on [0, 1] plus a drift.

Xn(t)
D−→ W (f(t; τ)) + µ(t) (3.1)

where the “time scale” for the Brownian motion is the variance ratio or infor-
mation fraction, f(t; τ) = v(t)/v(τ), and the drift, parameterized by t is

µ(t) =
〈Q|IF |q〉t√
〈Q|IF |Q〉τ

b⋆ . (3.2)

The proof of 3.1 is given in appendix 8.1. Notice, first, that from equations
2.5 and 3.2, it follows that the value of the drift function at the scheduled end
of the trial is

µ(τ) =
〈Q|IF |1〉τ√
〈Q|IF |Q〉τ

b⋆ . (3.3)

Thus, without any additional assumptions on the shape function, q, we have the
following corollary:

Corallary 3.1. At the planned conclusion of the trial, τ , an estimate of β⋆ is
given by the following:

β̂⋆ = Xn(τ)

√
〈Q|IFn|Q〉τ√
n 〈Q|IFn|1〉τ

. (3.4)

(i) β̂⋆ is unbiased
(ii) An estimate of its variance is given by

var
[
β̂⋆

]
=

〈Q|IFn|Q〉τ
n 〈Q|IFn|1〉2τ

. (3.5)
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4. Estimates of β⋆ in a Trial Stopped Early

Obtaining an estimate of β⋆ at a trial stopped early due to an efficacy boundary
crossing will require more assumptions on the shape function, q. At a minimum
in order to have a monotone drift function which is necessary for propper mon-
itoring, we require the following.

Condition 4.1. The shape function, q, is non-negative.

Since the drift’s function’s dependence on t is through an integral of a non-
negative function, we have the following corollary:

Corallary 4.1. If conditions 3.1, 3.2 and 4.1 are true then the conclusion of
theorem 3.1 holds and the drift function is monotone increasing or decreasing
in t, depending upon the sign of b⋆.

Note also that as the inverse of an increasing function is also increasing,
the drift function can also be considered a monotone function of the informa-
tion fraction. This would, of course, lead to a natural estimate of β⋆ in a trial
stopped early except for the fact that we have no knowledge of q. In order to
have a more useful estimator for β⋆ in trials stopped early, we opt for a semi-
parametric model. In the following, we list two possibilities. The most natural
shape condition to impose is true if our choice of weight function was the optimal
one among all possible choices.

Condition 4.2. The shape function, q, is proportional to our chosen weighting
function, q(t) = K Q(t).

Note that as the weighted average of the shape function must equal 1 as in
equation 2.5 it follows that the constant of proportionality, K, must be

K =
〈Q|IF |1〉τ
〈Q|IF |Q〉τ

. (4.1)

Corallary 4.2. If conditions 3.1, 3.2 and 4.2 are true then

(i) Xn is asymptotically a Brownian motion with a drift that is linear in the
information fraction:

µ(t) =
〈Q|IF |1〉τ√
〈Q|IF |Q〉τ

f(t; τ) b⋆ . (4.2)

(ii) If the trial is stopped at an analysis number J at calender time tJ due to
an effacacy boundary crossing, then we have the following estimate of β⋆

β̂⋆ =
Xn(tJ )

fn(tJ ; τ)

√
〈Q|IFn|Q〉τ√
n 〈Q|IFn|1〉τ

(4.3)

(iii) An estimate of the mean-squared error is given by:

mse
[
β̂⋆

]
=

〈Q|IFn|Q〉τ
n fn(tJ ; τ) 〈Q|IFn|1〉2τ

(4.4)
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Another natural shape condition is true when we have opted for a weighted
statistic but the true shape is constant.

Condition 4.3. The shape function, q, is identically 1.

Corallary 4.3. If conditions 3.1, 3.2 and 4.3 are true then

(i) Xn is asymptotically a Brownian motion the following drift:

µ(t) =
〈Q|IF |1〉τ√
〈Q|IF |Q〉τ

r(t, τ) b⋆ , (4.5)

where r(t; τ) = 〈Q|IF |1〉t/〈Q|IF |1〉τ , which is an increasing function of t
and takes the values 0 at t = 0 and 1 at t = τ .

(ii) If the trial is stopped at an analysis number J at calender at time tJ due
to an effacacy boundary crossing, then we have the following estimate of
β⋆

β̂⋆ =
Xn(tJ)

rn(tJ ; τ)

√
〈Q|IFn|Q〉τ√
n 〈Q|IFn|1〉τ

, (4.6)

where rn(t; τ) = 〈Q|IFn|1〉t/〈Q|IFn|1〉τ
(iii) An estimate of the mean-squared error is given by:

mse
[
β̂⋆

]
=

fn(tJ ; τ) 〈Q|IFn|Q〉τ
n rn(tJ ; τ)2 〈Q|IFn|1〉2τ

(4.7)

5. Application to Monitoring and Final Reporting in a Clinical Trial

The relationship between the drift of the WLR statistic and the weighted average
logged relative risk parameter provided by theorem 3.1 and its corallaries can
be used in the monitoring and final reporting of a clinical trial.

5.1. Futility Boundary

Our comments regarding monitoring a trial are made within the context of
boundaries constructed using the Lan-Demets procedure, [6]. Construction of
the efficacy boundary is done under the null hypothesis that the drift function is
identically zero and can be done without appealing to the results presented here.
If a futility boundary is specified in the design then under either of the shape
assumptions, one can apply the corresponding corollary 4.2 or corollary 4.3 to
calculate the drift function at each interim analysis which is required to compute
the futility boundary under the Lan-Demets approach [6]. Note that the shape
assumption being made must be part of the interim analysis plan design. In the
following discussion we will assume that the optimal weighting shape condition
4.2 was specified in the design so that the discussion focuses on the application
of corollary 4.2. In this case, β⋆ is the weighted average logged relative risk for
which the study is powered to detect and must also be specified in the interim
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analysis plan design. The values of v(τ) = 〈Q|IF |Q〉τ and m(τ) = 〈Q|IF |1〉τ at
the planned termination of the study, τ , must also be specified in the interim
analysis plan design. We demonstrate in appendix 8.2 when the only source
of censoring is administrative censoring or other cause mortality, how these
functionals can be projected for a specific choice of weighting function, Q, based
upon projected values of the cross-arm pooled cumulative hazard function at
several landmark times on study. We remark here that following consensus, we
recommend using a non-binding futility boundary which is constructed after
construction of an efficacy boundary which ignores the existence of the futility
boundary. This is preferred to the joint construction of efficacy and futility
boundaries as that approach results in a discounted efficacy criterion.

5.2. Prediction at End of Trial

When the trial is stopped at an efficacy or futility boundary crossing, or at the
scheduled end of the trial, and if the optimal weighting shape assumption 4.2
was specified in the design, then corollary 4.2 can be used to convert the value of
the WLR statistic on the Brownian scale, Xn(tj), to an estimate of the weighted

average logged relative risk, β̂⋆. Therefore, our point estimate is

β̂⋆ =
Xn(tj)

fn,j

√
〈Q|IFn|Q〉τ√
n 〈Q|IFn|1〉τ

(5.1)

We use the values of v(τ) = 〈Q|IF |Q〉τ and m(τ) = 〈Q|IF |1〉τ which are spec-
ified in the interim analysis plan design. As mentioned above, when it is ob-
tained at an efficacy boundary crossing, these type of estimates are known to
be biased away from the null (see e.g. Liu and Hall, [7]). The construction of
a design-adjusted confidence interval and adjustment of this estimate for the
above mentioned bias are standard results, especially under the optimal weight-
ing shape condition 4.2 which leads, in corollary 4.2, to a drift that is linear
in the information fraction. For sake of completeness, we outline below how to
compute a design adjusted p-value, construct a design-adjusted confidence in-
terval and how to calculate the bias adjusted estimate of the weighted average
logged relative risk. All three of these tasks involve the sampling density under
the null hypothesis of the sufficient statistic, (J,Xn(tJ )), where J and Xn(tJ )
are the analysis number and the value of the weighted logrank statistic at an
efficacy crossing. The sampling density of (J,Xn(tJ)) takes the following form.
First, for j = 1, π((1, x)) = IP{Xn(t1) = x}. For j > 1,

π((j, x) ; b1:(j−1), f1:j) (5.2)

=
d

dx
IPH0

{J = j and Xn(tℓ) <
√
fℓbℓ , ℓ = 1, . . . , j − 1, Xn(tj) = x}

Here b1:(j−1) is the sequence of efficacy boundary points at all prior analyses and
f1:j is the sequence of information fractions at all analyses prior and current. In
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the following b1:ℓ and f1:ℓ for ℓ < 1 denote the empty sequence. The construction
and form of this density is reviewed in appendix 8.3. Let

Π̄((j, x);b1:(j−1) , f1:j) =

∫ ∞

x

π((j, ξ);b1:(j−1), f1:j)dξ (5.3)

be the joint probability under π that J = j and Xn(tj) is in the right tail
(x,∞). In order to calculate a p-value and construct a confidence interval which
account for the sequential design, we must choose an ordering of the sample
space for the statistic (J,Xn(tJ )). Here we prefer to use the following ordering:
(j, x) > (k, y) if and only if (j = k and x > y) or j < k. This ordering is
applicable when the rejection region is convex, as is the case with Lan-Demets
boundaries constructed using a smooth spending function. The discussion of
the p-value and of the confidence interval is in the setting of symmetric 2-sided
boundaries and when sign of the alternative hypothesis is positive as it is a
simple matter to apply these results to the case where the sign of the alternative
hypothesise is negative.

P-value
Under the ordering given above, the region further away from the null than
(J,Xn(tJ)) is the union of all prior rejection regions with the right tail atXn(tJ ).
Thus the design-adjusted or sequential p-value is:

Π̄((J,Xn(tJ ));b1:(J−1), f1:J) +

J−1∑

ℓ=1

Π̄((ℓ, bℓ);b1:ℓ−1, f1:ℓ) , (5.4)

Confidence Interval
If the probability of type one error that remained prior to analysis J is αtot −
αJ−1 then a two sided design-adjusted confidence interval for β̂⋆ is derived as
follows. If we denote by xu the solution in x of the equation

αtot − αJ−1 = Π̄((J, x);b1:(J−1), f1:J) +

J−1∑

ℓ=1

Π̄((ℓ, bℓ);b1:ℓ−1, f1:ℓ) , (5.5)

then the design-adjusted confidence interval is

β̂⋆ ± xu√
fn,J

√
mse

[
β̂⋆

]
, (5.6)

where mse
[
β̂⋆

]
is the estimated mean-squared error of β̂⋆ as given in part (iii)

of corollary 4.2. Note that when the efficacy boundary is one-sided one can still
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construct a 2-sided confidence interval by replacing αtot −αJ−1 above with 1/2
its value.

Bias Adjustment
As in Liu and Hall, [7], bias adjustment is done recursively as follows. First,

ζ̃(1, x) =
x

f1
(5.7)

Continuing,

ζ̃(j, x) =

∫ √
fjbj

−∞

ζ̃(j − 1, ξ)π((j − 1, ξ);b1:(j−1), f1:(j−1))φ∆j
(x− ξ) dξ (5.8)

The bias adjusted estimate, β̃⋆, of the weighted average logged relative risk,
β⋆, is obtained by replacing Xn(tJ )/fn,J in part (ii) of corollary 4.2 with

ζ̃(J,Xn(tJ )) to obtain the following:

β̃⋆ = ζ̃(J,Xn(tJ ))

√
〈Q|IFn|Q〉τ√
n 〈Q|IFn|1〉τ

(5.9)

The design-adjusted confidence interval is the same as given above, but now
centered about β̃⋆

β̃⋆ ± xu√
fn,J

√
mse

[
β̂⋆

]
, (5.10)

6. The NLST

The design of the National Lung Screening Trial (NLST) [8] interim analysis
plan stipulated a one-sided efficacy boundary constructed using the Lan-Demets
procedure with a total probability of type one error set to 0.05. The trial had
90% power to detect a relative risk of 0.79 at a sample size of 25,000 per arm,
accounting for contamination and non-compliance that could attenuate this ef-
fect to 0.85. The trial began randomization on August 5th, 2002 and concluded
randomization on April 26th, 2004. A non-binding futility boundary was used.
The drift was derived under the optimal weighting shape assumption, 4.2, and
incorporated the design alternative β⋆ = log(0.85). Initial estimates of v(τ) and
m(τ) were posed in the design. These were updated by using a least squares
quadratic curve to project required future values of H as data accumulated.
During the run of the trial, projected values of the end of trial functionals v(τ)
and m(τ) did not vary more than ±5%. Interim analyses occured starting in
Spring of 2006 and continued annually until the 5th analysis. The 6th analysis
occured 6 months after the 5th. Data on the primary endpoint was backdated
roughly 18 months to allow more complete ascertainment by the endpoint veri-
fication team. The efficacy boundary was crossed at the sixth interim analysis,
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using data backdated to January 15th 2009. Data on the primary endpoint was
collected only for events occurring through December 31, 2009 so this was used
as the scheduled termination date. The raw estimated weighted logged relative
risk and its design-adjusted confidence interval were derived. The bias adjusted
weighted logged relative risk was compared to the raw estimate. As the raw
estimate is asymptotically unbiased, and since the crude risk ratio is the most
straightforward and tangible summary of the trial results, the trial leadership
decided to report the crude risk ratio together with the exponentiated raw esti-
mate’s design-adjusted confidence interval.

7. Discussion

We have shown that there is a natural clinically meaningful parameter, the
weighted average logged relative risk, that is connected the weighted logrank
statistic. When β(t) does not change sign, the connection is a bijection. We
have shown that under suitable shape assumptions, this bijection can be esti-
mated at each analysis. We have shown how this bijection between the weighted
logrank statistic and the weighted average logged relative risk allows the values
of the monitoring statistic, efficacy and futility boundaries, and reported point
estimate and confidence interval to be cast into a clinically meaningful scale. We
have indicated how to derive a design-adjusted p-value and confidence interval
and how bias adjustment of the estimate may be done using known methods.
Finally, we have documented several decisions made in the design of the NLST
interim analysis plan and in reporting its results on the primary endpoint.
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8. Appendices

8.1. Proof of Theorem 3.1

We follow the usual method of adding and subtracting the differential of the
compensator, and thereby express Un as a sum of a term that is asymptotically
mean zero Gaussian process and a drift function which grows as

√
n.

Un(t) =
1√
n

n∑

i=1

∫ t

0

Q(ξ) {Xi − En(ξ, 0)} dMi(ξ)

+
1√
n

n∑

i=1

∫ t

0

Q(ξ) {Xi − En(ξ, 0)} I(Ti ≥ ξ) exp(Xiq(ξ)β
⋆)dH0(ξ)

=
1√
n

n∑

i=1

∫ t

0

Q(ξ) {Xi − En(ξ, 0)} dMi(ξ)

+
√
n

∫ t

0

Q(ξ) {En(ξ, β
⋆)− En(ξ, 0)}Rn(ξ, β

⋆)dH0(ξ) , (8.1)

where in the above,Rn(ξ, β
⋆) = 1/n

∑
i I(Ti ≥ ξ) exp(Xiq(ξ)β

⋆), andEn(ξ, β
⋆) =

1/(nRn(ξ, β
⋆))

∑
iXiI(Ti ≥ ξ) exp(Xiq(ξ)β

⋆).
By linearizing the difference, En(ξ, β

⋆)− En(ξ, 0) about β
⋆ = 0 we obtain

Un(t) =
1√
n

n∑

i=1

∫ t

0

Q(ξ) {Xi − En(ξ, 0)} dMi(ξ)

+
√
nβ⋆

∫ t

0

Q(ξ)q(ξ)En(ξ, 0) {1− En(ξ, 0)}Rn(ξ, β
⋆)dH0(ξ) .

(8.2)

We normalize by
√
Vn(τ) and replace the differential Rn(ξ, β

⋆)dH0(ξ) with
dNn(ξ)/n. The latter is possible because integrals of bounded functions against
the difference of the differentials are consistent to zero.

Xn(t) =
1√

nVn(τ)

n∑

i=1

∫ t

0

Q(ξ) {Xi − En(ξ, 0)} dMi(ξ)

+

√
n

Vn(τ)
β⋆

∫ t

0

Q(ξ)q(ξ)En(ξ, 0) {1− En(ξ, 0)}
dNn(ξ)

n

= Wn(fn(t; τ)) +
〈Q|IFn|q〉t√
〈Q|IFn|Q〉τ

√
nβ⋆ . (8.3)
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The first term is easily recognized to be asymptotic in distribution to a standard
Brownian motion. The reader can either directly apply Robolledo’s martingale
central limit theorem, verifying that in the case that integrands and intensities
are bounded all conditions are satisfied, or apply a more direct result, such as
theorem (6.2.1) in Fleming and Harrington [2]. Under the family of local alter-
natives, β⋆

n = b⋆/
√
n, then by the comments following expression 8.2, the second

term is easily seen to be consistent to the drift function listed in expression 3.2.
Therefore the result follows by Slutzky’s theorem.

8.2. End of Trial Functionals

In this section we demonstrate how to project values of the variance v(τ) =
〈Q|IF |Q〉τ , and the “first moment” m(τ) = 〈Q|IF |1〉τ at the scheduled end
of study, τ . This is done in the specific case of the “ramp plateau” weighting
function which was used for interim monitoring and reporting in the NLST.
This is the function which takes the value 0 at t = 0, has linear increase to the
value 1 at t = tc and then maintains this constant value forward.

Q(t) =
t

tc
∧ 1 (8.4)

In the NLST, the value of tc = 4 years was used. Next, by imposing some mild
assumptions we will be able to express all quantities in the integrands in terms
of the cross-arm pooled cancer mortality cumulative hazard function, H and
thereby solve the integrals via a simple change of variables. The resulting ex-
pressions require only values of H(t) at t = tc, t = τ − ter and t = τ , where
ter is the calender time at which randomization was concluded. First we shall
list the required assumptions. In the following discussion, S, Slr and Soth are
survival functions corresponding to the cross-arm pooled cancer mortality, ad-
ministrative censoring or “live removal” and other cause mortality. The latter
two were the only sources of censoring in the NLST because complete ascertain-
ment with respect to mortality was possibly through the use of the matching
death certificates through the national death index.

Condition 8.1. Other cause mortality is proportional to cancer mortality, i.e.
that θ = −dlog(Soth)/dH is constant.

Condition 8.2. Proportional allocation: e(ξ, 0) ≡ e(0, 0).

Condition 8.3. Accrual is uniform on the scale of H, so that

Slr(ξ) =
H(τ)−H(ξ)

H(τ) −H(τ − ter)
∧ 1, (8.5)

where τ is the time at which the required number of events are obtained, and ter
is the time at which randomization is completed.

Condition 8.4.

Q(ξ) =
ξ

tc
∧ 1 ≡ 1− exp(−H(ξ) ∧H(tc))

1− exp(−H(tc))
. (8.6)
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The other cause versus cancer proportionality assumption is perhaps the most
arguable. However, the extent to which it is violated in practice has little impact
upon our results as other cause mortality enters our results only through its sur-
vival function which maintains a value in excess of 0.95 throughout the trial.
The proportional allocation assumption approximates what we see in practice
quite closely, especially in the case of a large trial of a rare event. In the NLST
there was 1 to 1 randomization so that e(0, 0) = 1/2. The extent to which the
latter two assumptions 8.3 and 8.4 hold both depend upon the extent to which
pooled cancer specific mortality grows at a constant rate. In the case of the
NLST, the pooled cancer mortality cumulative hazard function did grow at an
approximately linear rate.

Variance at Planned Termination

v(τ) = 〈Q|IF |Q〉τ =

∫ τ

0

Q2(ξ)e(ξ, 0) (1− e(ξ, 0)) dG(ξ)

=

∫ τ

0

Q2(ξ)e(ξ, 0) (1− e(ξ, 0))Soth(ξ)Slr(ξ)S(ξ)dH(ξ) . (8.7)

Here, S, Slr and Soth are survival functions corresponding to the cross-arm
pooled cancer mortality, administrative censoring or “live removal” and other
cause mortality. The latter two were the only sources of censoring in the NLST
because complete ascertainment with respect to mortality was possibly through
the use of the matching death certificates through the national death index.
Therefore, we can express the differential, dG, in this way. Under assumptions
8.1, 8.2, 8.3, and 8.4, we apply the change of variables, η = H(ξ), to obtain

v(τ) =
1

4

∫ H(τ)

0

(
1− e−(η∧H(tc))

)2

e−θη

{
H(τ) − η

H(τ)−H(τ − ter)
∧ 1

}
e−ηdη

=
1

4

∫ H(tc)∧H(τ−ter)

0

(
1− 2e−η + e−2η

)
e−(θ+1)ηdη

+
I (tc < τ − ter)

4

(
1− e−H(tc)

)2
∫ H(τ−ter)

H(tc)

e−(θ+1)ηdη

+
I(τ − ter < tc)

4 (H(τ) −H(τ − ter))

∫ H(tc)

H(τ−ter)

(
1− 2e−η + e−2η

)
e−(θ+1)η (H(τ)− η) dη

+

(
1− e−H(tc)

)2

4 (H(τ) −H(τ − ter))

∫ H(τ)

H(τ−ter)∨H(tc)

e−(θ+1)η (H(τ) − η) dη

= I1 + I2 + I3 + I4 .
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These evaluate to:

I1 =
1

4

{
1− e−(θ+1)Hm

θ + 1
− 2

1− e−(θ+2)Hm

θ + 2
+

1− e−(θ+3)Hm

θ + 3

}
where Hm = H(tc) ∧H(τ − ter) ,

I2 = I(tc < τ − ter)
(
1− e−H(tc)

)2 e(θ+1)H(tc) − e−(θ+1)H(τ−ter)

4(θ + 1)
,

I3 =
I(τ − ter < tc)

4(H(τ)−H(τ − ter))

×
{(

e−(θ+1)H(τ−ter)

θ + 1
− 2

e−(θ+2)H(τ−ter)

θ + 2
+

e−(θ+3)H(τ−ter)

θ + 3

)
(H(τ) −H(τ − ter))

−
(
e−(θ+1)H(tc)

θ + 1
− 2

e−(θ+2)H(tc)

θ + 2
+

e−(θ+3)H(tc)

θ + 3

)
(H(τ)−H(tc))

−
(
e−(θ+1)H(τ−ter) − e−(θ+1)H(tc)

(θ + 1)2
− 2

e−(θ+2)H(τ−ter) − e−(θ+2)H(tc)

(θ + 2)2

+
e−(θ+3)H(τ−ter) − e−(θ+3)H(tc)

(θ + 3)2

)}
,

I4 =

(
1− e−H(tc)

)2

4(θ + 1)

×
{
H(τ)− (H(τ − ter) ∨H(tc))

H(τ) −H(τ − ter)
e−(θ+1)(H(τ−ter)∨H(tc)) − e−(θ+1)(H(τ−ter)∨H(tc)) − e−(θ+1)H(τ)

(θ + 1)(H(τ)−H(τ − ter)

}

respectively.

First Moment at Planned Termination

m(τ) =

∫ τ

0

Q(ξ)e(ξ, 0) (1− e(ξ, 0)) dG(ξ)

=

∫ τ

0

Q(ξ)e(ξ, 0) (1− e(ξ, 0))Soth(ξ)Slr(ξ)S(ξ)dH(ξ) . (8.8)

Under assumptions 8.1, 8.2, 8.3, and 8.4, we again apply the change of variables,
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η = H(ξ), to obtain

m(τ) =
1

4

∫ H(τ)

0

(
1− e−η∧H(tc)

)
e−θη

{
H(τ)− η

H(τ) −H(τ − ter)
∧ 1

}
e−ηdη

=
1

4

∫ H(tc)∧H(τ−ter)

0

(
1− e−η

)
e−θη e−ηdη

+
1

4
I(tc < τ − ter)

(
1− e−H(tc)

) ∫ H(τ−ter)

H(tc)

e−θη e−ηdη

+
1

4
I(tc > τ − ter)

∫ H(tc)

H(τ−ter)

(
1− e−η

)
e−θη H(τ)− η

H(τ)−H(τ − ter)
e−ηdη

+
1

4
I(tc < τ)

(
1− e−H(tc)

) ∫ H(τ)

H(tc)∨H(τ−ter)

e−θη H(τ)− η

H(τ) −H(τ − ter)
e−ηdη

= J1 + J2 + J3 + J4

These evaluate to

J1 =
1

4

{
1− e−(θ+1)(H(tc)∧H(τ−ter))

θ + 1
− 1− e−(θ+2)(H(tc)∧H(τ−ter))

θ + 2

}
,

J2 =
1

4
I(tc < τ − ter)

(
1− e−H(tc)

) e−(θ+1)H(tc) − e−(θ+1)H(τ−ter)

θ + 1
,

J3 =
I(tc > τ − ter)

4 (H(τ) −H(τ − ter))

×
{(

(H(τ)−H(τ − ter)) e
−(θ+1)H(τ−ter) − (H(τ)−H(tc)) e

−(θ+1)H(tc)

θ + 1

− (H(τ) −H(τ − ter)) e
−(θ+2)H(τ−ter) − (H(τ) −H(tc)) e

−(θ+2)H(tc)

θ + 2

)

−
(
e−(θ+1)H(τ−ter) − e−(θ+1)H(tc)

(θ + 1)2
− e−(θ+2)H(τ−ter) − e−(θ+2)H(tc)

(θ + 2)2

)}

J4 =
I(tc < τ)

(
1− e−H(tc)

)

4 (H(τ)−H(τ − ter))

×
{
(H(τ)−H(tc ∨ (τ − ter))) e

−(θ+1)H(tc∨(τ−ter))

θ + 1
− e−(θ+1)H(tc∨(τ−ter)) − e−(θ+1)H(τ)

(θ + 1)2

}

respectively.
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Duration of Trial
The duration the NLST was part of the design. In other situations in which the
design stipulates that the trial should run until required number of events is
attained, the above change of variables technique can be used to find a closed
form expression for

G(τ) =

∫ τ

0

Soth(ξ)Slr(ξ)S(ξ)dH(ξ) . (8.9)

in terms of the projected values of H at t = τ and t = τ − ter. Then using the
plug-in estimate IENn(τ)/n for G(τ) this expression can be inverted to solve for
τ , the duration of the trial.

8.3. Sampling density of (J,Xn(tJ ))

As in Armitage, McPherson and Rowe, [1], the sampling density of (J,Xn(tJ))
can be derived recursively as follows. Let ∆j = fn,j − fn,j−1 and let φv(x) =
φ(x/

√
v)/

√
v where φ is the density of the standard normal. First,

π((1, x)) = φ
f1
(x) . (8.10)

Next, for all j > 1,

π((j, x) ; b1:(j−1), f1:j)

=

∫ √
fj−1bj−1

−∞

π((j − 1, ξ);b1:(j−2), f1:(j−1))φ∆j
(x− ξ) dξ

(8.11)
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