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Abstract: We study statistical detection of grayscale objects in noisy im-

ages. The object of interest is of unknown shape and has an unknown inten-

sity, that can be varying over the object and can be negative. No boundary

shape constraints are imposed on the object, only a weak bulk condition for

the object’s interior is required. We propose an algorithm that can be used

to detect grayscale objects of unknown shapes in the presence of nonpara-

metric noise of unknown level. Our algorithm is based on a nonparametric

multiple testing procedure.

We establish the limit of applicability of our method via an explicit,

closed-form, non-asymptotic and nonparametric consistency bound. This

bound is valid for a wide class of nonparametric noise distributions. We

achieve this by proving an uncertainty principle for percolation on finite

lattices.
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1. Introduction

Object detection and image reconstruction for noisy images are two of the cor-
nerstone problems in image analysis. In this paper, we continue our work on an
efficient method for quick detection of objects in noisy images. Our approach
uses mathematical percolation theory.

Detection of objects in noisy images is the most basic problem of image analy-
sis. Indeed, when one looks at a noisy image, the first question to ask is whether
there is any object at all. This is also a primary question of interest in such
diverse fields as, for example, cancer detection (Ricci-Vitiani et al. (2007)), au-
tomated urban analysis (Negri et al. (2006)), detection of cracks in buried pipes
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1

imsart-generic ver. 2007/04/13 file: Realistic_Pictures_and_Uncertainty.tex date: February 24, 2011

http://arxiv.org/abs/1102.4820v1
mailto:langovoy@eurandom.tue.nl
mailto:o.wittich@tue.nl


M. Langovoy and O. Wittich/Realistic pictures and uncertainty. 2

(Sinha and Fieguth (2006)), and other possible applications in astronomy, elec-
tron microscopy and neurology. Moreover, if there is just a random noise in the
picture, it doesn’t make sense to run computationally intensive procedures for
image reconstruction for this particular picture. Surprisingly, the vast majority
of image analysis methods, both in statistics and in engineering, skip this stage
and start immediately with image reconstruction.

The crucial difference of our method is that we do not impose any shape
or smoothness assumptions on the boundary of the object. This permits the
detection of nonsmooth, irregular or disconnected objects in noisy images, under
very mild assumptions on the object’s interior. This is especially suitable, for
example, if one has to detect a highly irregular non-convex object in a noisy
image. This is usually the case, for example, in the aforementioned fields of
automated urban analysis, cancer detection and detection of cracks in materials.
Although our detection procedure works for regular images as well, it is precisely
the class of irregular images with unknown shape where our method can be very
advantageous.

We approached the object detection problem as a hypothesis testing problem
within the class of statistical inverse problems in spatial statistics. We were able
to extend our approach to the nonparametric case of unknown noise density in
Davies et al. (2009) and Langovoy and Wittich (2010a). In Langovoy and Wittich
(2009a) and Davies et al. (2009), this density was not assumed smooth or even
continuous. It is even possible that the noise distribution is heavy-tailed, see
Langovoy and Wittich (2009a), Davies et al. (2009) and Langovoy and Wittich
(2010a).

In Langovoy and Wittich (2010b), we gave an algorithmic implementation of
our nonparametric hypothesis testing procedure. We also provided a program
that can be used for statistical experiments in image processing. This program
was written in the statistical programming language R.

We have shown that there is a deep connection between the spatial structure
chosen for the discretisation of the image, the type of the noise distribution on
the image, and statistical properties of object detection. These results seem to
be of independent interest for the field of spatial statistics.

In our previous papers, we considered the case of square lattices in Langovoy and Wittich
(2009a) and Langovoy and Wittich (2009b), triangular lattices in Davies et al.
(2009) and Langovoy and Wittich (2010a) and even the case of general periodic
lattices in Langovoy and Wittich (2010a). In all those cases, we proved that our
detection algorithms have linear complexity in terms of the number of pixels
on the screen. These procedures are not only asymptotically consistent, but on
top of that they have accuracy that grows exponentially with the ”number of
pixels” in the object of detection. All of our detection algorithms have a built-in
data-driven stopping rule, so there is no need in human assistance to stop the
algorithm at an appropriate step.

In view of the above, our method can be considered as an unsupervised
learning method, in the language of machine learning. This makes our results
valuable for the field of machine learning as well. Indeed, we do not only propose
an unsupervised method, but also prove the method’s consistency and even go
as far as to prove the rates of convergence.

In our previous papers we assumed that the original image was black-and-
white and that the noisy image was grayscale. In the present paper, we consider
the general case where the signal intensity is completely unknown. This intensity
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is only assumed to be bounded, but otherwise can vary from pixel to pixel and
can be negative.

We propose a multiple testing procedure for detection of grayscale objects of
unknown varying intensity in grayscale pictures corrupted by a nonparametric
noise that has an unknown distribution. Instead of using a single fixed thresh-
old, we choose a set of thresholds and perform the maximum cluster test from
Langovoy and Wittich (2010a) for each of those thresholds. We show in this
paper that, under mild model assumptions, if there is an object in the picture,
then it is possible to choose a set of thresholds such that we will consistently
detect this object, whenever the object can be even in principle detected on
the basis of sizes of percolation clusters. This is one of the two parts that are
necessary to prove consistency of the new test.

To establish this result, we need to find out when a signal is too weak so
that it cannot be detected by our approach. We achieve this goal by proving
the so-called uncertainty relation for percolation on finite lattices. This is the
main probabilistic result of the present paper. An important distinction of our
uncertainty result is that it can be formulated as an explicit condition on the
noise distribution and the lattice size. Results of this type are very rare both in
statistical literature and in image analysis research. To the best of or knowledge,
explicit uncertainty bounds were proved only for Gaussian errors (for example,
in research on wavelets by Donoho and coauthors). Our uncertainty relation is
much stronger, because it holds uniformly over a wide class of nonparametric
error distributions.

Since the problem of detection of greyscale objects cannot be solved in com-
plete generality, we might also provide a set of necessary conditions on the image
that makes the object detection possible. We plan to give a possible set of those
conditions, as well as the full proof of the consistency theorem for our multiple
testing method, in our forthcoming paper on the subject.

The paper is organized as follows. Section 2 gives a necessary minimal in-
troduction into the mathematical percolation theory. In Section 3, we review
our previous results on detection of black-and-white objects in noisy images. In
Section 4, we develop an appropriate model for detection of greyscale objects
of unknown varying intensity in greyscale pictures corrupted by nonparametric
noise. We prove consistency of the basic building blocks of our multiple testing
procedure in Theorem 3. The new uncertainty relation for percolation on finite
lattices is proved in Section 5. Theorem 4 of this section is the main mathemat-
ical result of the present paper. A new multiple testing procedure for statistical
image analysis is proposed in Section 6. Some important results from percola-
tion theory are reviewed in Section 7 of Appendix; this section also contains the
proof of the uncertainty relation. Section 8 in Appendix contains the discussion
of bounded detector devices.

2. Percolation theory

We start with some basic notions of percolation theory. Let G be an infinite
graph consisting of sites s ∈ G and bonds between sites. The bonds determine
the topology of the graph in the following sense: We say that two sites s, s′ ∈ G
are neighbors if there is a bond connecting them. We say that a subset C ⊂ G
of sites is connected if for any two sites s, s′ ∈ C there are sites s1, ..., sn such
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that s and s1, sn and s′, and sk and sk+1 are neighbors for all k = 1, ..., n− 1.
Considering site percolation on the graph G means that we consider random
configurations ω ∈ {0, 1}G where the probabilites are Bernoulli

P (ω(s) = 1) = p, P (ω(s) = 0) = 1− p

independently for each s ∈ G where 0 ≤ p ≤ 1 is a fixed probability. If ω(s) = 1,
we say that the site s is occupied.

Then, under mild assumptions on the graph, there is a phase transition in the
qualitative behaviour of cluster sizes. To be precise, there is a critical percolation
probability pc such that for p < pc there is no infinite connected cluster and for
p > pc there is one.

This statement and the very definition pc being the location of this phase tran-
sition are only valid for infinite graphs. We can not even speak of an infinite
connected cluster for finite graphs. However, a qualitative difference of sizes of
connected clusters of occupied sites can already be seen for finite graphs, say
with |G| = N sites. In a sense that will be made precise below, the sizes of
connected clusters are typically of order logN for small p and of order N for
values of p close to one. This will yield a criterion to infer whether p is close
to zero or close to one from observed site configurations. Intuitively, for large
enough values of N the distinction between the two regimes is quite sharp and
located very near to the critical percolation probability of an associated infinite
lattice.

3. Maximum cluster test, consistency and rates of convergence

The signal in our previous papers Langovoy and Wittich (2009a), Davies et al.
(2009) and Langovoy and Wittich (2010a) was assumed to be zero-one which
corresponds to images with only black and white pixels. In this paper, we will
show that the consistency result can be modified to cover also the detection of
grayscale objects of unknown intensity. However, first we have to describe our
constructions for the basic case.

Let G denote a planar graph. We think of the sites s ∈ G as the pixels of a
discretized image and of the graph topology as indicating neighboring pixels. In
our aforementioned papers, we considered noisy signals of the form

Y (s) = 1G0
(s) + σǫ(s) (1)

where 1G0
denotes the indicator function of a subset G0 ⊆ G, the noise is given

by independent, identically distributed random variables {ǫ(s), s ∈ G} with
Eǫ = 0 and V ǫ = 1, and σ > 0 is the noise variance. Thus, σ−1 was a mea-
sure for the signal to noise ratio. We refer to Langovoy and Wittich (2009a) or
Langovoy and Wittich (2010a) for a more detailed introduction.

Definition 1. (The detection problem) For signals of the form (1), we con-
sider the detection problem meaning that we construct a test for the following
hypothesis and alternative:

H0: G0 = ∅, i.e. there is no signal.
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H1: G0 6= ∅, i.e. there is a signal.

In our previous work, we constructed tests for the detection problem given in
Definition 1 above and computed explicit upper bounds for the type I and type II
errors under some mild condition on the shape of G0, called the bulk condition.
We refer to Langovoy and Wittich (2009a) and Langovoy and Wittich (2010a)
for proofs.
The setup is as follows: T (N) ⊂ T denotes the finite triangular lattice consisting
of the N2 sites s ∈ T and bonds which are contained in the subset

{z ∈ C : ℜ(z) ≤ N +
1

2
,ℑ(z) ≤

√
3

2
N}.

By consistency we mean that the test will deliver the correct decision, if the
signal can be detected with an arbitrarily high resolution. To be precise, we
think of the signal as a subset G0 ⊂ [0, 1]2 and write

G
(N)
0 := {(N + 1/2)x+ iN

√
3y/2 : (x, y) ∈ G0} ⊂ C.

The model from equation (1) is now depending on N , and given by

Y (N)(s) = 1G(N)
0

(s) + σ ε(s) (2)

where the sites of the subgraph are given by G(N)
0 = {s ∈ T : s ∈ G

(N)
0 } and

the bonds of the subgraph are all bonds in T that connect two points in G(N)
0 .

We apply now the threshold in the following way. First, we let τ = 1/2, and
then define

Y (N)
τ (s) =

{

1 , Y (N)(s) > 1/2

0 , Y (N)(s) ≤ 1/2
.

We consider the following collection of black pixels

Ĝ(N)
0 := {s ∈ T (N) : Y (N)

τ (s) = 1}. (3)

As a side remark, note that one can view Ĝ(N)
0 as an (inconsistent) pre-estimator

of G(N)
0 . Now recall that we want to construct a test on the basis of Ĝ(N)

0 , for

the hypotheses H
(N)
0 : G(N)

0 = ∅ against the alternative H
(N)
1 : G(N)

0 6= ∅.
Definition 2. (The Maximum-Cluster Test) Let φ(N) be a suitably chosen
threshold depending on N . Let the test statistic T be the size of the largest

connected black cluster C ⊂ Ĝ(N)
0 . We reject H

(N)
0 if and only if T ≥ φ(N).

For this test, we have the following consistency result under the assumption
that the support of the indicator function satisfies the following very weak type
of a shape constraint.

Definition 3. (The Bulk Condition) We say that the support G(N)
0 of the

signal contains a square of side length ρ(N) ≤ N if there is a site s ∈ G(N)
0 such

that s+ T (ρ(N)) ⊂ G(N)
0 .

The following consistency result was proved in Langovoy and Wittich (2010a).

Theorem 1. For the maximum cluster test, we have
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1. There is some constant K0 > 0 such that for φ(N) = K0 logN , we have
for the type I error

lim
N→∞

α(N) = 0.

2. Let φ(N) be as above. Let the support G(N)
0 of the signal contain squares

of side length ρ(N). If ρ(N) ≥ K0 logN , we have for the type II error

lim
N→∞

β(N) = 0.

In particular, in the limit of arbitrary large precision of sampling, the test will
always produce the right detection result.

The next Theorem strengthens Theorem 1 and delivers the actual rates of
convergence for both types of testing errors. It is a remarkable fact that both
types of errors in our method tend to zero exponentially fast in terms of the
size of the object of interest. See Davies et al. (2009) or Langovoy and Wittich
(2010a) for the proof.

Theorem 2. Suppose assumptions of Theorem 1 are satisfied. Then there are
constants C1 > 0, C2 > 0 such that

1. The type I error of the maximum cluster test does not exceed

α(N) ≤ exp(−C2φ(N))

for all N > φ(N).

2. The type II error of the maximum cluster test does not exceed

β(N) ≤ exp(−C1ρ(N))) .

for all N > ρ(N).

4. Realistic pictures

Instead of the above idealized model, in the present paper we consider the non-
distorted signal of interest to be a bounded function f ∈ L∞(G), i.e. f(s), s ∈ G
is a collection of pixel intensities and there exists a c > 0 such that |f(s)| < c
for all s ∈ G. In the sequel, we will call these functions realistic pictures.

The underlying model for the noisy signal is now as in the indicator signal case
given by

Y (s) = f(s) + σǫ(s) (4)

and we assume the same properties of the noise as before in Langovoy and Wittich
(2010a). More precisely, we assume the following

Noise Properties. For a given graph G, the noise is given by random variables
{ε(s) : s ∈ G} such that

1. the variables ε(s) are independent, identically distributed with Eε = 0
and V ε = 1,
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2. the noise distribution is symmetric,
3. the distribution of the noise is non-degenerate with respect to a critical

probability pc meaning that if F denotes the cumulative distribution func-
tion of the noise and we define

m+
c = inf{x ∈ R : F (x) ≥ 1− pc}, m−

c = sup{x ∈ R : F (x) ≤ 1− pc}

then we have m+
c = m−

c where we denote the common value by m, and
either

F (m) > lim
h→0,h>0

F (m− h), (5)

or

F ′(m) > 0. (6)

Furthermore, we assume a bounded detector device meaning that only signal
intensities |Y | ≤ r can be properly displayed, and we assume that this is actually
sufficient, i.e. that |Y | < r for the incoming signal. This is explained more closely
in the appendix.
The test that has to be performed now reads asH0 : f = 0 versus the alternative
H1 : f 6= 0 where we assume in an analogous way as before, that f : [0, 1]2 →
R is a bounded continuous function. Thus, in a a similar fashion as before,

we construct tests for different resolutions, namely for the hypotheses H
(N)
0 :

f (N) = 0 against the alternatives H
(N)
1 : f (N) 6= 0 where the discretized function

f (N) : T (N) → R is given by

f (N)(s) = f(x, y), s =
(

N + 1
2

)

x+ i
√
3
2 Ny. (7)

and the corresponding signal is given by

Y (N)(s) = f (N)(s) + σ ε(s).

We now have to slightly modify the test, in particular since we do not have any
information about the signal strength. This is the main difference to the situa-
tion with the indicator function and also the main reason to introduce a bounded
detector device. By that property (and assuming as explained before that the
intensity scale provided by the detector is actually sufficient to properly display
the signal, or – likewise – if we condition on that event) we have a compact scale
of thresholds that has to be explored.

Let now τ > 0 and G(N)
τ,+ ⊂ T (N) denote the super level set

G(N)
τ,+ := {s ∈ T (N) : Y (N)(s) ≥ τ}

and G(N)
τ,− ⊂ T (N) denote the sub level set

G(N)
τ,− := {s ∈ T (N) : Y (N)(s) ≤ −τ}.

Assume furthermore, that the bounded detector device under consideration has
range r > 0. As a threshold, we use the same φ(N) = K0 logN as in Theorem 1.
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We attempt to do signal detection using the following test statistics

T
(N)
+ (a) := max {|C| : C ⊂ G(N)

a,+ black cluster},

T
(N)
− (a) := max {|C| : C ⊂ G(N)

a,− black cluster}
(8)

where a ∈ [0, r/2]. It is immediate that we have the following properties as in
the case of indicator functions.

Lemma 1. Under the null hypothesis, the probabilities that a pixel is erroneously
marked black are

1. pE = P (s ∈ G(N)
a,+ ) = P (ε ≥ a/σ) < 1/2 = pc,

2. pE = P (s ∈ G(N)
a,− ) = P (ε ≤ −a/σ) < 1/2 = pc

and hence subcritical.

Lemma 2. (i) Let Q
(N)
+ ⊂ {f (N) ≥ a} be a square. Then we have for all

s ∈ Q
(N)
+ that

pB = P (s ∈ G(N)
a/2,+) = P (ε ≥ −a/2σ) > 1/2 = pc.

(ii) Let Q
(N)
− ⊂ {f (N) ≤ −a} be a square. Then we have for all s ∈ Q

(N)
− that

pB = P (s ∈ G(N)
a/2,−) = P (ε ≤ a/2σ) > 1/2 = pc.

By these two lemmas, we see that for the test statistics considered above,
we are essentially in the same situation as we were in Davies et al. (2009)
and Langovoy and Wittich (2010a). Both previous lemmas were valid without
change if we would consider the respective models

Y
(N)
+ = 1{f(N)≥a} +

σ

a
ε,

Y
(N)
− = 1{f(N)≤−a} +

σ

a
ε

for suitably chosen indicator functions. That implies, we may draw the following
conclusion by applying exactly the same proof as in Theorem 1.

Theorem 3. For the test statistics considered above, we have:

1. There is some constant K0 > 0 such that for φ(N) = K0 logN , we have
under the null hypothesis

lim
N→∞

P (T
(N)
+ (a) ≥ φ(N)) = lim

N→∞
P (T

(N)
− (a) ≥ φ(N)) = 0.

For K0, we may use the same choice as in Theorem 1.

2. Let φ(N) be as above. Let Q
(N)
+ ⊂ {f (N) ≥ a} contain squares of side

length ρ(N). If If ρ(N) ≥ K0 logN , we have

lim
N→∞

P (T
(N)
+ (a/2) ≤ φ(N)) = 0.
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3. Let φ(N), ρ(N) be as above. Let Q
(N)
− ⊂ {f (N) ≤ −a} contain squares of

side length ρ(N). Then we also have

lim
N→∞

P (T
(N)
− (a/2) ≤ φ(N)) = 0.

In particular, the test statistic associated to the correct scale parameter a/2 will
asymptotically always produce the right detection result.

At first sight, the situation seems rather similar as for indicator functions in
Theorem 1. However, it is completely different in the sense that the consistency
result only holds if we pick the right signal strength in advance. We might be
able to overcome this problem by considering a scale of tests for some positive
a > 0.

5. Uncertainty

It is intuitively clear that, for principal reasons, it is not possible to detect
a signal with arbitrarily small signal to noise ratio on a lattice of finite size,
no matter which method is used for detection. However, for every particular
method, it is very difficult to provide a ”horizon of consistency” in explicit form.
Results of this type a very rare in hypothesis testing, image analysis or machine
learning. Typically, one proves those results in special cases like Gaussian errors.

In this section, we provide an explicit, closed-form, non-asymptotic and non-
parametric consistency bound for our method. This bound is valid for a wide
class of nonparametric noise distributions and is given in Theorem 4.

Recall from the proof of Theorem 1 that the constant K0 in the threshold
was given by the inequality

K0 = 2C > λ(pE)
−1

where pE is the (subcritical) probability under the null hypothesis that a pixel
is erroneously marked black and λ(pE) is the constant from the Aizenman -
Newman theorem, see Langovoy and Wittich (2010a). Thus, we have to begin
by finding a proper estimate of λ(p) for a subcritical p.

The classical Aizenman-Newman theorem reads as follows.

Proposition 1. (Aizenman-Newman Theorem) Consider percolation with
subcritical probability p < pc = 1/2 on the infinite triangular lattice T . Then
there is a constant λ(p) > 0 depending on p such that

P (|C| ≥ n) ≤ e−nλ(p) (9)

for all n ≥ 1 where C denotes the black cluster containing the origin.

Remark. Please note that we use asymptotics-oriented estimates to prove state-
ments about finite lattices. For instance in the case of (10) below, these estimates
are not the best possible. So we can by no means expect that the bound in The-
orem 4 is sharp. But it is good enough to serve as an illustration of the basic
principle.
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In the sequel, χ(p) denotes the expected size of the cluster containing 0 ∈ T in
the infinite lattice depending on the subcritical occupation probability p < pc =
1/2.

Lemma 3. For the infinite triangular lattice, we have

χ(p) ≤ 1

18
|p− pc|−1. (10)

Proof: See Appendix 7.3.

By the Aizenman - Newman Theorem (Proposition 1), we obtain an upper
bound for this expectation value by

χ(p) =
∑

n≥1

P (|C| ≥ n) ≤
∑

n≥1

e−nλ(p) =
e−λ(p)

1− e−λ(p)
.

Thus, we have

λ(p) ≤ − log

(

χ(p)

1 + χ(p)

)

= log

(

1 +
1

χ(p)

)

. (11)

Combining these two results yields

Lemma 4. We have

λ(p)−1 ≥ 1

log (1 + 18 |p− pc|)
.

Proof: (10) together with (11) implies

λ(p) ≤ log

(

1 + χ(p)

χ(p)

)

= log

(

1 +
1

χ(p)

)

≤ log (1 + 18 |p− pc|) .

This implies that an intrinsic feature of the procedure is the following form of
uncertainty: By our procedure, we cannot – even in principle – detect signals
with arbitrary low signal to noise ratio on a finite lattice of fixed size.

Of course, it is clear that something like the above statement is valid for any
statistical testing procedure. Therefore, something similar is also valid for signal
detection. An important distinction of our uncertainty result is that we can
give an explicit condition on the noise level and the lattice size, such that this
condition implies that our test does not work. Results of this type are very rare
both in statistical literature and in image analysis research. To the best of or
knowledge, explicit uncertainty bounds were proved only for Gaussian errors (for
example, in research on wavelets by Donoho and coauthors). Our uncertainty
relation is much stronger, because it holds irrespectively of the actual noise
distribution, uniformly over a wide class of nonparametric error distributions.

To be precise, we consider again the threshold φ(N) = K0 logN and the fact
that in the proof of Theorem 1, we had to choose K0 = 2C > 2λ(pE)

−1. That
implies together with Lemma 4 that

φ(N) = K0 log(N) > λ(p)−1 logN2 ≥ logN2

log (1 + 18 |pE − pc|)
. (12)
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But that means, that for values of p which are very close to the critical probabil-
ity, the threshold φ(N) may exceed the lattice site N2 and our method breaks
down. To be precise, we have the following statement.

Proposition 2. If the lattice size N2 is fixed, the threshold φ(N) is larger than
the lattice size, and therefore, the null hypothesis will never be rejected, if we
have

|pE − pc| <
1

18

{

(

N2
)

1
N2 − 1

}

.

Proof: By (12), we have φ(N) > N2 if

logN2

log (1 + 18 |pE − pc|)
> N2.

Finally, we want to relate this statement directly to the signal strength. Thus,
if |f (N)| ≤ a we say that the signal to noise ratio is given by ρ = a/σ. Let us
now assume that the distribution function of the noise F is continuous at zero.
Then

|pE − pc| =
1

2
− pE = P (0 < ε < a/σ) = F (ρ)− F (0)

and we finally obtain

Theorem 4. (Uncertainty) Assume that the distribution function of the noise
is continuous at zero. A signal f (N) with |f (N)| ≤ a and signal to noise ratio
ρ = a/σ can only be detected by our method, if

P (0 < ε < ρ)

(N2)
1

N2 − 1
>

1

18

that means if either the lattice size is sufficiently large or the signal to noise
ratio is sufficiently small.

Remark. (i) Note that this statement only means that – as a matter of prin-
ciple – we can not detect signals of arbitrarily small strength on a finite lattice
of a given size. That does not at all mean that detection of signals that respect
the bound above is automatically possible in an effective way. Topics like type
I and type II error are not at all touched by the uncertainty bound. In other
words, from the uncertainty relation we can derive only a necessary condition
for the signal to be detectable via our method. Usually this condition will not
be sufficient.

(ii) From studying the behavior of the function

s(x) =
1

18

(

e−x ln x − 1
)

on the unit interval, we see that the bound is always fulfilled if P (0 < ε < ρ) >
0.25 ≈ maxx∈[0,1] s(x).

The proof of Theorem 4 consists of a simple reformulation of the preceding
proposition and is therefore omitted. However, we still have to justify why we
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use the word uncertainty in connection with this statement. This discussion can
only be purely informal. The analogy simply is that a function of the signal to
noise ratio times another function of the lattice size have to exceed a certain
value for a signal to be detectable. Otherwise, the signal is virtually not existing.
A weaker version of the statement might provide another argument: There is
some number M > 0 such that

s(x) ≤ M
√
x

for all x ∈ [0, 1]. If we assume now that F has a continuous and sufficiently
smooth density f with f ′′(0) < 0, we have the weaker statement that the signal
can be detected only if

f(0)ρ ≥ F (ρ)− F (0) > M
√

1/N2

or, if

N ρ >
M

f(0)
. (13)

Thus, for a signal to be detectable, the product of two conjugate parameters
may not exceed a bound given by the circumstances. Otherwise, the signal is
not detectable, even in principle.

6. Multiple testing for realistic pictures

By the uncertainty principle, we obtain a minimal threshhold value below which
it does not make any sense to try to detect a signal. So there is a natural lower
bound τ0 for a threshold. The upper bound is provided by the size r of the
bounded detector device. That means, the range of intensities of detectable sig-
nals is [−r,−τ0]∪ [τ0, r]. Thus, if f is the signal, and we assume bulk conditions
for the super-level sets as in Corollary 1, taking into account the the simple
monotonicity property that a > a′ implies 1{f(N)≥a} ≤ 1{f(N)≥a′}, we will cer-
tainly be able to consistently detect an object (if the object can be potentially
detected on the basis of percolation clusters), via the following scheme:

1. Consider the threshold scheme

ak = 2−kr, k = 1, ..., N.

2. Beginning with a = a1, calculate the test statistics T
(N)
− (a), T

(N)
+ (a).

Terminate, if either the null hypothesis is rejected (at a properly adjusted
level, if necessary) or if you reach ak with k ≥ log(r/τ0).

It can be shown that, under certain conditions on f and σ, we would have to
repeat the maximum cluster test at most O(logN) times. Since each repetition
of the maximum cluster test takes O(N2) operations, the new multiple testing
procedure is going to take at most O(N2 logN) operations overall. Since the
input size is N2, this implies that under some conditions our initial procedure
(of linear complexity) slows down by a logarithmic factor. Asymptotically, this
is only slightly slower than the original test, but the new test is adaptive with
respect to the unknown image color intensity.
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A point that needs to be addressed carefully here is the probability of false
rejection of the null hypothesis. Indeed, we perform here not a single test, but a
collection of up to O(logN) tests, and results of those tests are not independent.
This is a basic question that always occurs in the field of multiple testing. Luckily
for us, for each of the thresholds ak the direct analog of Theorem 2 holds: the
type I error of any single test tends to zero exponentially fast, while the power
tends exponentially fast to one. Moreover, our tests are ”monotonous” with
respect to the threshold value (since the maximum cluster size is an increasing
event). This also implies that we have to pay attention only to those thresholds

ak where at least one of the level sets G(N)
τ,− and G(N)

τ,+ doesn’t contain black
clusters crossing the whole screen. Using those properties, we will be able to

combine the results of not more than O(logN) tests T
(N)
− (ak) and T

(N)
+ (ak)

and get a unique decision out of them, while keeping the type I error of the
multiple test controlled. We plan to present those results in succeeding papers.

Acknowledgments. The authors would like to thank the EURANDOM Re-
port Series reviewers for carefully reading this manuscript.
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Appendix.

7. Some facts from percolation theory

In this section, we collect some basic statements and techniques from the theory
of percolation. In particular, we are going to prove the inequality (10) which is
basic for the introduction of uncertainty principle.

7.1. FKG and BK inequality

Recall the partial ordering

ω1 � ω2 :⇐⇒ ω1(s) ≤ ω2(s) for all s ∈ T .

on the set Ω = {0, 1}T of all percolation configurations from Definition ?? and
that an event A ⊂ Ω is increasing if we have

1A(ω1) ≤ 1A(ω2)

for the corresponding indicator variable whenever ω1 � ω2.

The FKG inequality was already stated before and is just added here another
time for completeness.

Proposition 3. (FKG inequality) If A and B are both increasing (or both
decreasing) events, then we have

P (A ∩B) ≥ P (A)P (B).

Proof:Fortuin et al. (1971)

Let G ⊂ T be a finite subgraph and

FGσ({0, 1}G) ⊂ σ({0, 1}T ) =: FT

the sub sigma - algebra associated to the percolation configurations on G (in
the canonical version). Let now A,B ∈ FG be two increasing events. We define
the support of ω ∈ {0, 1}G to be

suppω := {s ∈ G : ω(s) = 1}.
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and for a subset H ⊂ suppω, we write

ω|H :=

{

1 s ∈ H
0 else

.

Definition 4. Let A, B be as above. The event A ◦ B that A and B occur
disjointly is given by

A ◦B := {ω ∈ {0, 1}T : ∃H(ω)∈suppω ω|H(ω) ∈ A,ω|suppω−H(ω) ∈ B}.

The BK inequality now reads as follows.

Proposition 4. (BK inequality) Let A,B ∈ FG be increasing events. Then

P (A ◦B) ≤ P (A)P (B).

Proof:Grimmett (1999), p. 38 ff.

7.2. Russo’s formula

Let s ∈ T be a site. We consider the involution js : {0, 1}T → {0, 1}T given by

js(ω)(s
′) :=

{

ω(s′) s′ 6= s
1− ω(s′) s′ = s

.

From this definition, we see that the configuration space is a disjoint union
{0, 1}T = Ω(s)+ ∪ jsΩ(s)

+, where

Ω(s)+ := {ω ∈ {0, 1}T : ω(s) = 1}.

Definition 5. (Pivotal sites) Let G ⊂ T be a finite subgraph and A ⊂ FG be
an increasing event. The event the site s is pivotal for A is given by

Piv(A, s) := {ω ∈ {0, 1}T : 1A(ω) 6= 1A ◦ js(ω)}.

Russo’s formula is a statement about how the probability of a certain event
changes if the individual site occupation probability p is changed. We denote by
Pp(A) the probability of the event A if this probability is p and by

NA :=
∑

s∈G
1Piv(A,s)

the number of pivotal elements for A.

Proposition 5. (Russo’s formula) Let G ⊂ T be a finite subgraph and A ⊂
FG be an increasing event. Then

d

dp
Pp(A) = EpNA. (14)

Proof: (i) First of all, since A is increasing and ω � js(ω) for all ω ∈ Ω(s)+,
we have on the set Ω(s)+

(1A − 1A ◦ js) (ω) =
{

1 ω ∈ Piv(A, s) ∩ Ω(s)+

0 else
= 1Piv(A,s)∩Ω(s)+ .
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(ii) In the sequel, we write Ω(s)− = jsΩ(s)
+. Let P|Ω(s)− denote the restriction

of the measure to Ω(s)−. Then, the image measure under js is a measure on
Ω(s)+ with density

dP|Ω(s)− ◦ js
dP

=
P(Ω(s)+)

P(Ω(s)−)
.

That implies

Ep

[

1A|Ω(s)−
]

=

∫

Ω(s)− 1A(ω)P(dω)

P(Ω(s)−
=

∫

Ω(s)+ 1A ◦ js(ω′)P ◦ js(dω′)

P(Ω(s)−)

= Ep

[

1A ◦ js|Ω(s)+
]

.

(iii) Now let p′ > p and denote by Ep′,s the expectation with respect to the
product measure Ps with marginals

Ps(ω(s
′) = 1) =

{

p′ s′ = s
p else

.

Thus

Pp′,s(A)− Pp(A) = Ep′,s1A − Ep1A

= Pp′,s(Ω(s)
+)Ep′,s

[

1A|Ω(s)+
]

+ Pp′,s(Ω(s)
−)Ep′,s

[

1A|Ω(s)−
]

−Pp(Ω(s)
+)Ep

[

1A|Ω(s)+
]

− Pp(Ω(s)
−)Ep

[

1A|Ω(s)−
]

= (p′ − p)Ep

[

1A − 1A ◦ js|ω ∈ Ω(s)+
]

+ Ep′,s

[

1A|Ω(s)−
]

− Ep

[

1A|Ω(s)−
]

= (p′ − p)Ep

[

1Piv(A,s)∩Ω(s)+ |ω ∈ Ω(s)+
]

= (p′ − p)Ep

[

1Piv(A,s)

]

= (p′ − p)Pp(Piv(A, s)).

That implies finally
∂Pp(A)

∂p(s)
= Pp(Piv(A, s)).

(iv) By A ∈ FG , we have

Ep1A = Ep [1A|FG ] =
∑

ω∈{0,1}G

Πs∈G1A(ω)Πs∈GPp(ω(s))

that means, we may think of the distribution Pp as a distribution depending on
finitely many real parameters {p(s) : s ∈ G}. That implies together with (iii)

d

dp
Pp(A) =

∑

s∈G

∂Pp(A)

∂p(s)

∂p(s)

∂p
=

∑

s∈G
Pp(Piv(A, s)) =

∑

s∈G
Ep1Piv(A,s) = EpNA.

7.3. The proof of (10)

We follow closely the proof in Grimmett (1999), p. 263 ff. Let Pp(x, y) denote

the probability that there is a path connecting the sites x and y and P
(N)
p (x, y)

the probability that there is a path connecting x and y which lies entirely in
T (N). Now

χN (p, y) :=
∑

x∈T (N)

P (N)
p (x, y)
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is the expected size of the connected cluster around y in T (N) and

χ(p, y) :=
∑

x∈T
Pp(x, y)

the expected cluster size in T . Note that χ(p) = χ(p, 0). Furthermore, we write

χN (p) := max{χN (p, y) : y ∈ T (N)}.

(i) First of all,

χ(p) ≥ χN (p) ≥ χN (p, 0) =
∑

x∈T (N)

P (N)
p (x, 0) →

∑

x∈T
Pp(x, y) = χ(p)

implies that we have by bounded convergence

lim
N→∞

χN (p) = χ(p).

(ii) Denote by AN (x, y) the event that there is a path connecting x and y in
T (N). Then, by Russo’s formula,

d

dp
χN (p, y) =

∑

x∈T (N)

∑

s∈T (N)

Pp(Piv(AN (x, y), s)).

A site s ∈ T (N) is now pivotal for AN (x, y), if and only if

1. s is adjacent to two different and non - adjacent sites x′ and y′.
2. There is a path connecting x and x′.
3. There is a disjoint path connecting y and y′, meaning that no site in this

path is adjacent to any site in the path connecting x ans x′.

This means that switching s on or off will switch a connection between x and
y on or off (which changes the value of the corresponding indicator function).
Having disjoint paths between different pairs of sites is a typical example of a
disjointly occuring event and therefore we can write the three conditions above
shortly by saying that for all x, y 6= z ∈ T (N) and all x′ 6= y′ adjacent to and
different from s, we have

AN (x, x′) ◦AN (y, y′) ⊂ Piv(AN (x, y), s)

and that on the other hand

Piv(AN (x, y), s) =
⋃

x′ 6=y′ adjacent to s

AN (x, x′) ◦AN (y, y′).

That implies by BK inequality

Pp(Piv(AN (x, y), s)) ≤
∑

x′ 6=y′ adjacent to s

P (N)
p (x, x′)P (N)

p (y, y′).
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Finally inserting this into Russo’s formula yields

d

dp
χN (p, y) =

∑

x∈T (N)

∑

s∈T (N)

Pp(Piv(AN (x, y), s))

≤
∑

x∈T (N)

∑

s∈T (N)

∑

x′ 6=y′ adjacent to s

P (N)
p (x, x′)P (N)

p (y, y′)

=
∑

s∈T (N)

∑

x′ 6=y′ adjacent to s

χN (p, x′)P (N)
p (y, y′)

≤ χN (p)
∑

s∈T (N)

∑

x′ 6=y′ adjacent to s

P (N)
p (y, y′)

= 3χN (p)
∑

s∈T (N)

∑

y′ adjacent to s

P (N)
p (y, y′)

= 3× 6χN(p)
∑

s∈T (N)

P (N)
p (y, s)

= 18χN(p)χN (p, y) ≤ 18χN(p)2.

(iii) Integrating this differential inequality over the interval [p, pc] yields

1

χN (p)
− 1

χN (pc)
≤ 18 (p− pc)

(for details, see the above mentioned proof in Grimmett (1999)) and by (i)
χN → χ and the fact that χ(pc) = ∞ we finally obtain

χ(p) ≥ 1

18 (p− pc)
.

7.4. Matching graphs and pc = 1/2

In this subsection, we will shortly review the material from Sykes and Essam
(1964) about site percolation and matching graphs. We start with a finite graph
G with N sites. The probability that a site is marked active (or black) is given
by p, the probability that it is marked inactive (or white) is q = 1 − p. Denote
a connected cluster of black points by C and its boundary by

∂C := {s ∈ G − C : s is adjacent to some site s′ ∈ C}.

That means, the expected cluster size is a polynomial in p and q given by

K(p, q,G) = E |C| =
∑

C⊂G
|C| p|C|q|∂C|.

By reversing the roles of p and q, we obtain the expected numbers of white
clusters. To extend this concept to infinite graphs, we consider the mean cluster
size per site

k(p, q,G) = E(|C|/|G|) = 1

|G|
∑

C⊂G
|C| p|C|q|∂C|, (15)
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use a proper exhaustion G1 ⊂ G2 ⊂ ... ⊂ G of an infinite graph G and consider
the formal power series

k(p, q,G) = lim
k→∞

1

|Gk|
∑

C⊂Gk

|C| p|C|q|∂C|

which shows that we obtain in this case the expected finite cluster size per size,
taking into account only finite subclusters from G. By

kL(p,G) = k(p, 1− p,G), kH(q,G) = k(1− q, q,G), (16)

we clearly have kL(p,G) = kH(1 − p,G) and kH(q,G) = kL(1− q,G).
Definition 6. We call a (possibly infinite) graph G self - matching, if there is
a polynomial ϕG(p) such that

kL(p,G) = ϕG(p) + kH(p,G). (17)

ϕG is called the matching polynomial.

Theorem 5. The triangular lattice is self-matching with

ϕT (p) = p− 3p2 + 2p3.

Proof: See Sykes and Essam (1964).

When we assume that kL(p, T ) has precisely one pole at the critical percolation
probability pc for the triangular lattice (see for instance Kesten (1982)), we can
actually use the preceding theorem to determine pc. Here, the special form of
the matching polynomial does not play any role, only the fact that it is a poly-
nomial and hence bounded on p ∈ [0, 1] is important. Therefore kL(pc, T ) = ∞
implies kH(pc, T ) = kL(1− pc, T ) = ∞. The assumption that there is only one
pole immediately implies pc = 1− pc and thus pc = 1/2.

Remark. If the graph G is not self - matching, we can construct a so called
matching graph G∗ (for the construction, see again Sykes and Essam (1964), or
Kesten (1982)) with the same number of vertices such that instead of (17), we
have

kL(p,G) = ϕ(p) + kH(p,G∗), kL(p,G∗) = ϕ∗(p) + kH(p,G),

together with some relations between ϕ and ϕ∗ and these equations can be
used in a similar way as above to obtain some information about the critical
probability. (G,G∗) is called a matching pair. For self - matching graphs, we have
G∗ = G.

8. Bounded detector devices

In the discussion of realistic signals, we introduced the notion of a bounded
detector device. In statistical terminology, those devices from an instance of the
method of truncation. A bounded detector device of range r > 0 is only able
to display signal strengths Y (s) with intensities between −r and r. Thus, the
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effect of the detector device on a signal Y is that instead of the full information
about Y (s), s ∈ S, only the information contained in the cutoff signal

D(Y ) = max{min{Y, r},−r} (18)

is used for further analysis. Intensities of absolute value larger than r can simply
not be registered and all information about the behavior of the signal above and
below the cutoff is lost before the signal processing even starts.

The detection results in the present paper were proved for bounded signals.
What happens if this assumptions doesn’t hold? First of all, from a purely
mathematical point of view, the notion of bounded detector devices can be
equivalently reformulated by saying that all considerations are only valid as
statements that are obtained while conditioning on the event {|Y | < r}. In
other words, all results are still valid without any change if we understand them
as being obtained by conditioning on the event

D0 := {D(Y ) = Y }. (19)

Of course, the probability πD := P (D0) then yields an important characteristic
of the detector device, and it could be often desirable to have πD close to one.
However, a deeper analysis of biological, engineering and cybernetical aspects
of the problem leads us to the following extremely useful observation.

We think of signal processing as consisting of at least three different parts,

1. a filter which has the purpose to transform the incoming signal to fit in
an optimal way into the bounds of the detector device,

2. the bounded detector device as described above, and
3. the processor, which analyses the detected signal D(Y ) and determines

what is finally perceived.

We thus arrive at the following scheme

Signal → Filter → Detector → Processor → Perception

where the detector is the fixed component, the filter is chosen on the basis of
the incoming signal and the bounds of the detector and the processor algorithm
is chosen on the basis of knowledge about the detector and the chosen filter.
Choosing an appropriate filter for a given environment is thus another problem
of perception, a problem that we will not address in these notes.

Example. As an example, as the detector device of the human eye, we only
consider the photo receptors situated at the retina, the processor obviously is
the brain, and the filter is given by lens and iris which adapt to different light
intensities for instance in night vision, but can also be those parts together with
another device like, for instance, sun glasses.

For a visual perception of any system in biology or cybernetics, the meaning
of a good Filter is exactly to filter out (or to transform) the incoming information
in such a way that the Detector might still perceive a reasonable part of reality,
despite the fact that the Detector works with signals in the diapason [−r, r]
only. Say, in the above Example, a human eye doesn’t have to properly perceive
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ultraviolet and infrared light frequencies in order to be able to see trees. A
human brain doesn’t need to process any information that could come with
ultraviolet and infrared lights either.

This implies that our consideration of bounded detector devices fits many
important biological situations. Moreover, working with bounded detector de-
vices can be profitable for construction of artificial vision systems in robotics.
A robot needs to perceive and to process only signals and information within
the diapason that fits his tasks.
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