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Approximate Bayesian computation (ABC) have become a essential
tool for the analysis of complex stochastic models. Earlier, Gre-
laud et al. (2009) advocated the use of ABC for Bayesian model
choice in the specific case of Gibbs random fields, relying on a inter-
model sufficiency property to show that the approximation was le-
gitimate. Having implemented ABC-based model choice in a wide
range of phylogenetic models in the DIY-ABC software (Cornuet
et al., 2008), we now present theoretical background as to why a
generic use of ABC for model choice is ungrounded, since it de-
pends on an unknown amount of information loss induced by the
use of insufficient summary statistics. The approximation error of
the posterior probabilities of the models under comparison may thus
be unrelated with the computational effort spent in running an ABC
algorithm. We then conclude that additional empirical verifications
of the performances of the ABC procedure are necessary to conduct
model choice. 1
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Abbreviations: ABC, approximate Bayesian computation; ABC-MC, ABC model
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Monte Carlo

Inference on population genetic models such as coalescent
trees is one representative example of cases when statistical

analyses like Bayesian inference cannot easily operate because
the likelihood function associated with the data is not com-
pletely known, i.e. cannot be computed in a manageable time
(Tavaré et al., 1997; Beaumont et al., 2002; Cornuet et al.,
2008). The fundamental reason for this impossibility is that
the statistical model associated with coalescent data needs to
integrate over trees of high complexity.

In such settings, traditional approximation tools based on
Monte Carlo simulation (Robert and Casella, 2004) from the
Bayesian posterior distribution are unavailable for all prac-
tical purposes. Indeed, due to the complexity of the latent
structures defining the likelihood (such as the coalescent tree),
simulation of those structures is too unstable to be trusted to
bring a reliable approximation in a manageable time. Such
complex models call for a practical if cruder approximation
method, the ABC methodology (Tavaré et al., 1997; Pritchard
et al., 1999). This rejection technique bypasses the computa-
tion of the likelihood function via simulations from the cor-
responding distribution (see Beaumont, 2010 and Lopes and
Beaumont, 2010 for recent surveys). The wide and success-
ful array of applications based on implementations of ABC in
genomics and ecology is covered by Csillèry et al. (2010a).

In the following, we argue that ABC is a valid approx-
imation method for conducting Bayesian inference in com-
plex stochastic models, barring the limitation that it cannot
be trusted to discriminate between those complex stochastic
models when based on summary statistics. In essence, we
highlight the fact that, since ABC is conducting model choice
based on insufficient statistics, the resulting inference is flawed
in that the loss of information may be severe to the point of
inconsistency: ABC model selection may easily fail to recover
the true model, even with an infinite amount of observation
and of computation. We demonstrate this inconsistency in a
limiting (and most favourable) case.

Our conclusion are to opt for a cautionary approach when
using ABC in model choice. The level of approximation result-
ing from this algorithm cannot be evaluated, except via Monte
Carlo evaluations of the performances of the method. More
empirical measures such as those proposed in the DIY-ABC
software (Cornuet et al., 2008), in Ratmann et al. (2009) and
in Drovandi et al. (2011) thus seem to be the only available
solution at the current time for conducting model comparison.

We stress here that, while Templeton (2008, 2010) repeat-
edly expressed reservations about the formal validity of the
ABC approach in statistical testing, those criticisms were ad-
dressed at the Bayesian paradigm per se rather than at the
approximation method. Quite clearly, Templeton’s criticisms
got rebutted in Beaumont et al. (2010); Csillèry et al. (2010b);
Berger et al. (2010) and are not relevant for the current paper.

Methods
The ABC algorithm. The setting in which ABC operates is the
approximation of a simulation from the posterior distribution
π(θ|y) ∝ π(θ)f(y|θ) when distributions associated with both
the prior π and the likelihood f can be simulated (the later
being unavailable in closed form). The first ABC algorithm
was introduced by Pritchard et al. (1999) as follows: given
a sample y from a sample space D, a sample (θ1, . . . , θM ) is
produced by

Algorithm 1: ABC sampler

for i = 1 to N do
repeat

Generate θ′ from the prior distribution π(·)
Generate z from the likelihood f(·|θ′)

until ρ{η(z), η(y)} ≤ ε
set θi = θ′,

end for

The parameters of the ABC algorithm are the statistic
η, the distance ρ{·, ·}, and the tolerance level ε > 0. The ap-
proximation of the posterior distribution provided by the ABC
sampler is such that it instead samples from the marginal in
θ of the joint distribution

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y (z)∫

Aε,y×Θ
π(θ)f(z|θ)dzdθ

,

where IB(·) denotes the indicator function of B and

Aε,y = {z ∈ D|ρ{η(z), η(y)} ≤ ε} .

The basic justification of the ABC approximation is that,
when using a sufficient statistic η and a small (enough) toler-
ance ε, we have

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|y) ,

the genuine posterior distribution.
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In practice, the statistic η is insufficient and the approxi-
mation then converges to π(θ|η(y)) when ε goes to zero. This
loss of information is a necessary price to pay for the access to
computable quantities. While acknowledging the gain brought
by ABC in handling Bayesian inference in complex models, we
demonstrate here that the loss due to the ABC approxima-
tion may be arbitrary in the specific setting of Bayesian model
choice.

ABC model choice.The standard Bayesian tool for model
comparison is the marginal likelihood (Jeffreys, 1939)

w(y) =

∫
Θ

π(θ)f(y|θ) dθ ,

which leads to the Bayes factor for comparing the evidences
of models with likelihoods f1(y|θ1) and f2(y|θ2),

B12(y) =
w1(y)

w2(y)
=

∫
Θ1
π1(θ1)f1(y|θ1) dθ1∫

Θ2
π2(θ2)f2(y|θ2) dθ2

.

As detailed in Beaumont et al. (2010); Berger et al. (2010),
this ratio provides a valid criterion for model comparison that
is naturally penalised for model complexity.

Bayesian model choice proceeds by creating a probability
structure across M models (or likelihoods). It introduces the
model index M as an extra unknown parameter, associated
with its prior distribution, π(M = m) (m = 1, . . . ,M), while
the prior distribution on the parameter is conditional on the
value m of the M index, denoted by πm(θm) and defined on
the parameter space Θm. The choice between those models is
then driven by the posterior distribution of M,

P(M = m|y) =
π(M = m)wm(y)∑
k π(M = k)wk(y)

where wk(y) denotes the marginal likelihood for model k.
While this posterior distribution is well-defined and

straightforward to interpret, it offers a challenging computa-
tional conundrum in Bayesian analysis. When the likelihood
is not available, ABC represents the almost unique solution.
Pritchard et al. (1999) describe the use of model choice based
on ABC for distinguishing between different mutation models.
The justification behind the method is that the average ABC
acceptance rate associated with a given model is proportional
to the posterior probability corresponding to this approxima-
tive model, when identical summary statistics, distance, and
tolerance level are used over all models. In practice, an esti-
mate of the ratio of marginal likelihoods is given by the ratio of
observed acceptance rates. Using Bayes formula, estimates of
the posterior probabilities are straightforward to derive. This
approach has been widely implemented in the literature (see,
e.g., Estoup et al., 2004, Miller et al., 2005, Pascual et al.,
2007, and Sainudiin et al., 2011).

A highly representative illustration of the use of an ABC
model choice approach is given by Miller et al. (2005) which
analyses the European invasion of the western corn rootworm,
which is North America’s most destructive corn pest. Because
this pest was initially introduced in Central Europe, it was
believed that subsequent outbreaks in Western Europe origi-
nated from this area. Based on this ABC model choice anal-
ysis of the genetic variability of the rootworm, the authors
conclude that this belief is false: There have been at least
three independent introductions from North America during
the past two decades.

An improvement to the above estimate is due to Fagun-
des et al. (2007), via a regression regularisation. In this ap-
proach. model indices are processed as categorical variables
in a formal multinomial (polychotomous) regression. For in-
stance, when comparing two models, this leads to a standard

logistic regression. Rejection-based approaches were lately in-
troduced by Cornuet et al. (2008), Grelaud et al. (2009) and
Toni et al. (2009), in a Monte Carlo perspective simulating
model indices as well as model parameters. Those more recent
extensions are already widely in use by the population genet-
ics community, as exemplified by Belle et al. (2008); Cornuet
et al. (2010); Excoffier et al. (2009); Ghirotto et al. (2010);
Guillemaud et al. (2009); Leuenberger and Wegmann (2010);
Patin et al. (2009); Ramakrishnan and Hadly (2009); Verdu
et al. (2009), or Wegmann and Excoffier (2010). Another il-
lustration of the popularity of this approach is given by the
availability of three softwares implementing an ABC model
choice methodology:

• ABC-SysBio, which relies on a SMC-based ABC for infer-
ence in system biology, including model-choice (Toni et al.,
2009).

• DIYABC, which relies on a regularised ABC-MC algorithm
on population history using molecular markers (Cornuet
et al., 2008).

• PopABC, which relies on a regular ABC-MC algorithm for
genealogical simulation (Lopes et al., 2009).

As exposed in e.g. Grelaud et al. (2009), Toni and Stumpf
(2010), or Didelot et al. (2011), onceM is incorporated within
the parameters, the ABC approximation to its posterior fol-
lows from the same principles as in regular ABC. The corre-
sponding implementation is as follows, using for the summary
statistic a statistic η(z) = {η1(z), . . . , ηM (z)} that is the con-
catenation of the summary statistics used for all models (with
an obvious elimination of duplicates).

Algorithm 2: ABC-MC

for i = 1 to N do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z),η(y)} ≤ ε
Set m(i) = m and θ(i) = θm

end for

The ABC estimate of the posterior probability π(M =
m|y) is then the frequency of acceptances from model m in
the above simulation

̂π(M = m|y) =
1

N

N∑
i=1

Im(i)=m .

This also corresponds to the frequency of simulated pseudo-
datasets from model m that are closer to the data y than the
tolerance ε. In order to improve the estimation by smooth-
ing, Cornuet et al. (2008) follow the rationale that motivated
the use of a local linear regression in Beaumont et al. (2002)
and rely on a weighted polychotomous regression to estimate
π(M = m|y) based on the ABC output. This modelling is
implemented in the DIYABC software.

The difficulty with ABC-MC
There is a fundamental discrepancy between the genuine
Bayes factors (or the corresponding) posterior probabilities)
and the approximations resulting from ABC-MC.

The ABC approximation to a Bayes factor, B12 say, re-
sulting from Algorithm 2 is

B̂12(y) =
π(M = 2)

π(M = 1)

∑N
i=1 Im(i)=1∑N
i=1 Im(i)=2

2 www.pnas.org/cgi/doi/10.1073/pnas.xxx Footline Author



An alternative representation is given by

B̂12(y) =
π(M = 2)

π(M = 1)

∑T
t=1 Imt=1 Iρ{η(zt),η(y)}≤ε∑T
t=1 Imt=2 Iρ{η(zt),η(y)}≤ε

,

where the pairs (mt, zt) are simulated from the (joint) prior
and T is the total number of simulations that are necessary for
N acceptances in Algorithm 2. In order to study the limiting
behaviour of this approximation, we first let T go to infinity.
(For simplification purposes and without loss of generality,
we choose a uniform prior on the model index.) The limit of

B̂12(y) is then

Bε12(y) =
P[M = 1, ρ{η(z),η(y)} ≤ ε]
P[M = 2, ρ{η(z),η(y)} ≤ ε]

=

∫∫
Iρ{η(z),η(y)}≤επ1(θ1)f1(z|θ1) dz dθ1∫∫
Iρ{η(z),η(y)}≤επ2(θ2)f2(z|θ2) dz dθ2

=

∫∫
Iρ{η,η(y)}≤επ1(θ1)fη

1 (η|θ1) dη dθ1∫∫
Iρ{η,η(y)}≤επ2(θ2)fη

2 (η|θ2) dη dθ2
,

where fη
1 (η|θ1) and fη

2 (η|θ2) denote the densities of η(z)
when z ∼ f1(z|θ1) and z ∼ f2(z|θ2), respectively. By
L’Hospital formula, if we let ε go to zero, the above converges
to

Bη
12(y) =

∫
π1(θ1)fη

1 (η(y)|θ1) dθ1∫
π2(θ2)fη

2 (η(y)|θ2) dθ2
,

which is exactly the Bayes factor for testing model 1 versus
model 2 based on the sole observation of η(y). This result
is completely coherent with the current perspective on ABC,
namely that the inference derived from the ideal ABC out-
put when ε = 0 only uses the information contained in η(y).
Thus, in the limiting case, i.e. when the ABC algorithm uses
an infinite computational power, the ABC odds ratio does not
take into account the features of the data besides the value of
η(y), which is why the limiting Bayes factor only depends on
the distribution of η under both models.

In contrast with point estimation, the loss of informa-
tion resulting from considering solely η seriously impacts
the resulting inference on which model is best supported by
the data. Indeed, as exhibited in a special counterexam-
ple by Grelaud et al. (2009), the information contained in
η(y) is almost always lesser than the information contained
in y and this even in the case η(y) is a sufficient statis-
tic for both models. In other words, η(y) being sufficient
for both f1(y|θ1) and f2(y|θ2) does not usually imply that
η(y) is sufficient for {m, fm(y|θm)}. To see why this is the
case, consider the most favourable case, namely when η(y)
is a sufficient statistic for both models. We then have by
the factorisation theorem (Lehmann and Casella, 1998) that
fi(y|θi) = gi(y)fη

i (η(y)|θi) (i = 1, 2), therefore that

B12(y) =
w1(y)

w2(y)

=

∫
Θ1
π(θ1)g1(y)fη

1 (η(y)|θ1) dθ1∫
Θ2
π(θ2)g2(y)fη

2 (η(y)|θ2) dθ2

=
g1(y)

∫
π1(θ1)fη

1 (η(y)|θ1) dθ1

g2(y)
∫
π2(θ2)fη

2 (η(y)|θ2) dθ2

=
g1(y)

g2(y)
Bη

12(y) . [1]

Therefore, unless g1(y) = g2(y), the two Bayes factors differ
by this ratio, g1(y)/g2(y), which is only equal to one in a
very small number of known cases. This decomposition is a

straightforward proof that a model-wise sufficient statistic is
usually not sufficient across models, i.e. for model comparison.
An immediate corollary is that the ABC-MC approximation
does not converge to the exact Bayes factor.

The discrepancy between the limiting ABC inference and
the genuine Bayesian inference does not completely come as
a surprise, because ABC is indeed an approximation method.
Users of ABC algorithms are therefore prepared for some de-
gree of imprecision in their final answer, a point stressed by
Wilkinson (2008) or Fearnhead and Prangle (2010) when they
qualify ABC as exact inference on a wrong model. However,
the magnitude of the difference between B12(y) and Bη

12(y)
expressed by [1] is such that there is no direct connection
between both answers. In a general setting, if η has the same
dimension as one component of the n components of y, the
ratio g1(y)/g2(y) is equivalent to a density ratio for a sample
of size O(n), hence it can be arbitrarily small or arbitrarily
large when n grows. Contrastingly, the Bayes factor Bη

12(y) is
based on an equivalent to a single observation, hence does not
necessarily converge with n, as shown by the Poisson and nor-
mal examples below and in SI. The conclusion derived from
the ABC-based Bayes factor may therefore completely differ
from the conclusion derived from the exact Bayes factor and
there is no possibility of a generic agreement between both,
or even of a manageable correction factor.

For this reason, we warn the community of ABC users that
the ABC approach cannot be blindly used for model choice,
with the exception of Gibbs random fields as explained in the
next section. In all cases when g1(y)/g2(y) is different from
one, no inference on the true Bayes factor can be made based
on the ABC-MC approximation without further information
on the ratio g1(y)/g2(y), which is most often unavailable in
settings where ABC is necessary.

Didelot et al. (2011) also derived this relation between
both Bayes factors in their formula [18]. They surprisingly
conclude on advocating the use of ABC in complex models,
when there is no useful sufficient statistic. We disagree with
this perspective for the above reason that no garantee can be
given on the validity of the ABC approximation to the Bayes
factor.

As a final remark, we note that Sousa et al. (2009) re-
sort to full allelic distributions in an ABC framework, instead
of chosing summary statistics. They show that it is possible
to apply ABC using allele frequencies to draw inferences in
cases where it is difficult to select a set of suitable summary
statistics (and when the complexity of the model or the size
of dataset makes it computationally prohibitive to use full-
likelihood methods). In such settings, were we to consider a
model choice problem, the divergence exhibited in the current
paper would not occur because the measure of distance does
not rely on a reduction of the sample.

Results
The special case of Gibbs random fields. Grelaud et al. (2009)
showed that, for Gibbs random fields, the computation of the
posterior probabilities of the models under competition can be
operated by ABC techniques, since they enjoy a converging
approximation to the true Bayes factor. The reason for this
property is that, in the above ratio [1] and for this special
model, g1(y) = g2(y).

The property that validates an ABC resolution for the
comparison of Gibbs random fields is that, due to their specific
structure, there exists a sufficient statistic vector that runs
across models and that allows for an exact (when ε = 0) sim-
ulation from the posterior probabilities of the models. Each
Gibbs random field model has its own sufficient statistic ηm(·)

Footline Author PNAS Issue Date Volume Issue Number 3



and Grelaud et al. (2009) exposed the fact that the vector of
statistics η(·) = (η1(·), . . . , ηM (·)) is also sufficient for the joint
parameter (M,θ1, . . . ,θM ).

Didelot et al. (2011) point out that this specific property
of Gibbs random fields can be extended to any exponential
family (hence to any setting enjoying sufficient statistics, see
e.g. Casella and Berger, 2001). Their argument is based on
an encompassing property: by including all sufficient statis-
tics and all dominating measure statistics in an encompassing
model, models under comparison become submodels of the
encompassing model. They then conclude that the concate-
nation of those statistics is jointly sufficient across models.
While this encompassing principle holds in full generality, in
particular when comparing models that are already embed-
ded, we think it leads to a biased perspective about the merits
of ABC for model choice: in practice, most complex models do
not enjoy sufficient statistics (if only because they are not ex-
ponential families). As demonstrated in the next section and
in the normal example in SI, there is more than a mere loss
of information due to the use of insufficient statistics. Look-
ing at what happens in the limiting case when one relies on a
common model-wise sufficient statistic is a formal but useful
study since it brings light on the potentially huge discrepancy
between the ABC-based Bayes factor and the true Bayes fac-
tor. To develop a solution to the problem in the formal case
of the exponential families does not help in the understanding
of the discrepancy in non-exponential models.

Arbitrary ratios. The difficulty with the discrepancy between
B12(y) and Bη

12(y) is that this discrepancy is impossible to
evaluate in a general setting, while there is no reason to ex-
pect a reasonable agreement between both quantities. A first
illustration was produced by Marin et al. (2011) in the case
of MA(q) time series.

A simple illustration of the discrepancy due to the use of
a model-wise sufficient statistic is the setting when a sample
y = (y1, . . . , yn) could come from either a Poisson P(λ) dis-
tribution or from a geometric G(p) distribution, already intro-
duced in Grelaud et al. (2009) as a counter-example to Gibbs
random fields and later reprocessed in Didelot et al. (2011)
to support their sufficiency argument. In this case, the sum

Fig. 1. Comparison between the true log-Bayes factor (first axis) for the com-

parison of a Poisson model versus a negative binomial model and of the log-Bayes

factor based on the sufficient statistic
∑
i yi (second axis), for Poisson (left) and

negative binomial (left) samples of size n = 50, based on T = 104 replications

S =
∑n
i=1 yi = η(y) is a sufficient statistic for both models

but not across models. The distribution of the sample given
S is a multinomial M(S, 1/n, . . . , 1/n) distribution when the
data is Poisson, since S is then a Poisson P(nλ) variable, while
it is the uniform distribution with constant probability

1(
n+S−1

S

) I∑
i yi=S

=
S!(n− 1)!

(n+ S − 1)!
I∑

i yi=S

in the geometric case, since S is then a negative binomial
N eg(n, p) variable. The discrepancy ratio is therefore

g1(y)

g2(y)
=
S!n−S/

∏
i yi!

1
/(
n+S−1

S

)
When simulating n Poisson or geometric variables and using
prior distributions

λ ∼ E(1) , p ∼ U(0, 1) ,

on the respective models, the exact Bayes factor can be eval-
uated and the range and distribution of the discrepancy are
therefore available. Figure 1 gives the range of B12(y) versus
Bη

12(y), showing that Bη
12(y) is in this case absolutely un-

related with B12(y): the values produced by both approaches
have nothing in common. As noted above, the approximation
Bη

12(y) based on the sufficient statistic S is producing figures
of the magnitude of a single observation, while the true Bayes
factor is of the order of the sample size.

The discrepancy between both Bayes factors is in fact in-
creasing with the sample size, as shown by the following result:

Lemma 1. Consider model selection between model 1: P(λ)
with prior distribution π1(λ) equal to an E(1) distribution and
model 2: G(p) with a uniform prior distribution π2 when the
observed data y consists of iid observations with E[yi] = θ0 >
0. Then S(y) =

∑n
i=1 yi is the minimal sufficient statistic
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Fig. 2. Comparison of importance sampling and ABC estimates of the posterior

probability of scenario 1 in the first population genetic experiment, using 24 summary
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for both models and the Bayes factor based on the sufficient
statistic S(y), Bη

12(y), satisfies

lim
n→∞

Bη
12(y) =

(θ0 + 1)2

θ0
e−θ0 a.s.

Therefore, the Bayes factor based on the sufficient statis-
tic S(y) is not consistent; it converges to a non-zero, finite
value almost surely.

In this specific setting, Didelot et al. (2011) show that
adding P =

∏
i yi! to the sufficient statistic S induces a

statistic (S, P ) that is sufficient across both models. While
this is a mathematically correct observation, it is not help-
ful for the understanding of the behaviour of ABC-model
choice in realistic settings: outside formal examples as the
one above and well-structured although complex exponential
families like Gibbs random fields, it is not possible to come
up with completion mechanisms that ensure sufficiency across
models, It is therefore more fruitful to consider the diverging
behaviour of the ABC approximation as given, rather than
attempting at solving the problem in a specific case.

Population genetics. We recall that ABC has first been in-
troduced by population geneticists (Beaumont et al., 2002;
Marjoram et al., 2003; Pritchard et al., 1999) for statistical
inference about the evolutionary history of species, because
no likelihood-based approach existed apart from very simple
and hence unrealistic situations. This approach has since been
used in an increasing number of biological studies (Estoup
et al., 2004; Estoup and Clegg, 2003; Fagundes et al., 2007),
most of them including model choice. It is therefore crucial to
get insights in the validity of such studies, particularly when
they deal with species of economical or ecological importance
(see, e.g., Lombaert et al., 2010). To this end, we need to
compare ABC-based estimates of model posterior probabil-
ities to reliable likelihood-based estimates. Combining dif-
ferent modules based on Stephens and Donnelly (2000), it is
possible to approximate the likelihood of population genetic
data through importance sampling (IS) in complex scenarios
(Cornuet et al., 2009). In order to evaluate the potential dis-
crepancy between ABC-based and likelihood-based posterior
probabilities of evolutionary scenarios, we set up two experi-
ments using simulated data and choosing situations in which
the choice of a scenario can be problematic. This choice is
made in order to provide a wide enough set of intermediate
values of model posterior probabilities, so that we better eval-
uate the divergence between ABC and likelihood estimates.

In the first experiment, we consider two populations (1
and 2) having diverged at a fixed time in the past and a third
population (3) having diverged from one of those two popu-
lations (scenarios 1 and 2 respectively). Times are set to 60
generations for the first divergence and to 30 generations for
the second divergence. One hundred pseudo observed datasets
have been simulated, represented by 15 diploid individuals per
population genotyped at five independent microsatellite loci.
These loci are assumed to evolve according to the strict Step-
wise Mutation model (SMM), i.e. when a mutation occurs, the
number of repeats of the mutated gene increases or decreases
by one unit with equal probability. The mutation rate, com-
mon to all five loci, has been set to 0.005 and effective pop-
ulation sizes to 30. In this experiment, both scenarios have
a single parameter: the effective population size, assumed to
be identical for all three populations. We chose a uniform
prior U [2, 150] for this parameter (the true value being 100).
The IS algorithm was performed using 100 coalescent trees per
particle. The marginal likelihood of both scenarios has been
computed for the same set of 1000 particles and they provide
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Fig. 3. Same caption as Figure 2 when using 15 summary statistics

the posterior probability of each scenario. The ABC compu-
tations have been performed with DIYABC (Cornuet et al.,
2008). A reference table of 2 million datasets has been simu-
lated using 24 usual summary statistics (provided in SI, Table
S1) and the posterior probability of each scenario has been
estimated as their proportion in the 500 simulated datasets
closest to the pseudo observed one.
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Fig. 4. Comparison of importance sampling and ABC estimates of the posterior

probability of scenario 1 in the second population genetic experiment
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In the second experiment, we also considered two scenar-
ios including three populations, two of them having diverged
100 generations ago and the third one resulting of a recent
admixture between the first two populations (scenario 1) or
simply diverging from population 1 (scenario 2) at the same
time of 5 generations in the past. In scenario 1, the admix-
ture rate is 0.7 from population 1. Pseudo observed datasets
(100) of the same size as in experiment 1 (15 diploid individ-
uals per population, 5 independent microsatellite loci) have
been generated assuming an effective population size of 1000
and mutation rates of 0.0005. In contrast with experiment 1,
analyses have included the following 6 parameters (provided
with the corresponding priors): admixture rate (U [0.1, 0.9]),
three effective population sizes (U [200, 2000]), the time of ad-
mixture/second divergence (U [1, 10]) and the time of the first
divergence (U [50, 500]). To account for the higher complexity
of the scenarios, the IS algorithm has been performed with

Name Subset Definition

NAL1 yes average number of alleles in pop. 1
NAL2 yes average number of alleles in pop. 2
NAL3 yes average number of alleles in pop. 3
HET1 yes average heterozygothy n pop. 1
HET2 yes average heterozygothy n pop. 2
HET3 yes average heterozygothy n pop. 3
VAR1 yes average variance of the allele size in pop. 1
VAR2 yes average variance of the allele size in pop. 2
VAR3 yes average variance of the allele size in pop. 3
MGW1 no Garza-Williamson M in pop. 1
MGW2 no Garza-Williamson M in pop. 2
MGW3 no Garza-Williamson M in pop. 3
FST1 no average FST in pop. 1
FST2 no average FST in pop. 2
FST3 no average FST in pop. 3
LIK12 no probability that sample 1 is from pop. 1
LIK13 no probability that sample 1 is from pop. 3
LIK21 no probability that sample 2 is from pop. 1
LIK23 no probability that sample 2 is from pop. 3
LIK31 no probability that sample 3 is from pop. 1
LIK32 no probability that sample 3 is from pop. 2
DAS12 yes shared allele distance between pop. 1 and 2
DAS13 yes shared allele distance between pop. 1 and 3
DAS23 yes shared allele distance between pop. 2 and 3
DM212 yes distance (δµ)2 between pop. 1 and 2
DM213 yes distance (δµ)2 between pop. 1 and 3
DM223 yes distance (δµ)2 between pop. 2 and 2
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Fig. 5. Boxplots of the posterior probabilities evaluated over 10 independent Monte

Carlo evaluations, for five independent simulated datasets in the first population ge-

netic experiment

10,000 coalescent trees per particle. Apart from this change,
both ABC and likelihood analyses have been performed in the
same way as experiment 1.

Figure 2 shows a reasonable fit between the exact posterior
probability of model 1 (evaluated by IS) and the ABC approx-
imation in the first experiment on most of the 100 simulated
datasets, even though the ABC approximation is almost al-
ways biased towards 0.5. When using 0.5 as a boundary for
chosing between model 1 and model 2, there is hardly any dis-
crepancy between both approaches, demonstrating that model
choice based on ABC can be trusted in this case. Figure 3 con-
siders the same setting when moving from 24 to 15 summary
statistics (given in SI, Table S1): the fit degrades quite no-
ticeably. In particular, the number of opposite conclusions in
the model choice moves to 12%. In the more complex setting
of the second experiment, the discrepancy worsens, as shown
on Figure 4. The number of opposite conclusions reaches 26%
and the fit between both versions of the posterior probabili-
ties is considerably degraded, with an correlation coefficient
of 0.643 between those approximations.

The validity of the importance sampling approximation
can obviously be questioned in both experiments, however
Figures 5 and 6 in SI display a strong stability of the poste-
rior probability IS approximation across 10 independent runs
for 5 different datasets and gives proper confidence in this
approach.

Discussion
Since its introduction by Tavaré et al. (1997) and Pritchard
et al. (1999), ABC has been extensively used in several areas
involving complex likelihoods, primarily in population genet-
ics, both for point estimation and testing of hypotheses. In
realistic settings, with the exception of Gibbs random fields
that satisfy a resilience property with respect to their suffi-
cient statistics, the conclusions drawn on model comparison
cannot be trusted per se but require further analyses as to the
pertinence of the (ABC) Bayes factor based on the summary
statistics. This paper has only examined in details the case
when the summary statistics are sufficient for both models,
while practical situations imply the use of insufficient statis-
tics. We managed to present a realistic if costly comparison
of the ABC approximation to the exact Bayes factor in two
population genetic settings, showing once more the possibility
of significant discrepancies. While this is only a possibility, it
nonetheless appears to us an urgent duty to warn the ABC
community about the dangers of this approximation, espe-
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Fig. 6. Boxplots of the posterior probabilities evaluated over 10 independent Monte

Carlo evaluations, for five independent simulated datasets in the second population

genetic experiment
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cially when considering the rapidly increasing number of ap-
plications estimating posterior probabilities by ABC for con-
ducting model choice.

Further research is needed for producing trustworthy ap-
proximations to the posterior probabilities of models. At this
stage, unless the whole data is involved in the ABC approx-
imation as in Sousa et al. (2009), our conclusion on ABC-
based model choice is to exploit the approximations in an
exploratory manner as measures of discrepancies rather than
genuine posterior probabilities. This direction relates with
the analyses found in Ratmann et al. (2009) and in Drovandi
et al. (2011). Furthermore, a version of this exploratory anal-
ysis is already provided in the DIY-ABC software of (Cornuet
et al., 2008). An option in this software allows for the com-
putation of a Monte Carlo evaluation of false allocation rates
resulting from using the ABC posterior probabilities in select-
ing a model as the most likely. For instance, in the setting
of both our population genetic experiments, DIY-ABC gives
false allocation rates equal to 20% (under scenarios 1 and 2)
and 14.5% and 12.5% (under scenarios 1 and 2), respectively.
This evaluation obviously shifts away from the performances
of ABC as an aproximation to the posterior probability to-
wards the performances of the whole Bayesian apparatus for
selecting a model, but this nonetheless represents a useful and
manageable quality assessment for practitionners.
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Appendix

SI Results
A normal illustration. The following reproduces the Poisson
geometric illustration in a normal model. If we look at a fully
normal N (µ, σ2) setting, we have

f(y|µ) ∝ exp

{
−nσ−2(ȳ − µ)2/2− σ−2

n∑
i=1

(yi − ȳ)2/2

}
σ−n

hence

f(y|ȳ) ∝ exp

{
−σ−2

n∑
i=1

(yi − ȳ)2/2

}
σ−nI∑ yi=nȳ .

If we reparameterise the observations into u = (y1 −
ȳ, . . . , yn−1 − ȳ, ȳ), we do get

f(u|µ) ∝ σ−n exp
{
−nσ−2(ȳ − µ)2/2

}
× exp

−σ−2
n−1∑
i=1

u2
i /2− σ−2

[
n−1∑
i=1

ui

]2 /
2



since the Jacobian is 1. Hence

f(u|ȳ) ∝ exp

−σ−2
n−1∑
i=1

u2
i /2− σ−2

[
n−1∑
i=1

ui

]2

/2

σ−n

Considering both models

y1, . . . , yn
iid∼ N (µ, σ2

1) and y1, . . . , yn
iid∼ N (µ, σ2

2) ,

the discrepancy ratio is then given by

σn−1
2

σn−1
1

exp

σ−2
2 − σ−2

1

2

n−1∑
i=1

(yi − ȳ)2 +

[
n−1∑
i=1

(yi − ȳ)

]2


and is connected with the lack of consistency of the Bayes
factor:

Lemma 2. Consider model selection between model 1: N (µ, σ2
1)

and model 2: N (µ, σ2
2), σ1 and σ2 being given, with prior dis-

tributions π1(µ) = π2(µ) equal to a N (0, a2) distribution and
when the observed data y consists of iid observations with fi-
nite mean and variance. Then S(y) =

∑n
i=1 yi is the minimal

sufficient statistic for both models and the Bayes factor based
on the sufficient statistic S(y), Bη

12(y), satisfies

lim
n→∞

Bη
12(y) = 1 a.s.

Figure 7 illustrates the behaviour of the discrepancy ratio
when σ1 = 0.1 and σ2 = 10, for datasets of size n = 15 simu-
lated according to both models. The discrepancy (expressed
on a log scale) is once again dramatic, in concordance with
the above lemma.

If we now turn to an alternative choice of sufficient statis-
tic, using the pair (ȳ, S2) with

S2 =

n∑
i=1

(yi − ȳ)2 ,

we follow the solution of Didelot et al. (2011). Using a con-
jugate prior µ ∼ N (0, a2), the true Bayes factor is equal to
the Bayes factor based on the corresponding distributions of
the pair (ȳ, S2) in the respective models. However, this coin-
cidence does not bring any intuition on the behaviour of the
ABC approximations in realistic settings.

Fig. 7. Empirical distributions of the log discrepancy log g1(y)/g2(y) for

datasets of size n = 15 simulated from N (µ, σ2
1) (left) and N (µ, σ2

2) (right)

distributions when σ1 = 0.1 and σ2 = 10, based on 104 replications and a flat

prior
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