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ARBITRAGE HEDGING STRATEGY AND ONE MORE

EXPLANATION OF THE VOLATILITY SMILE

MIKHAIL MARTYNOV 1, OLGA ROZANOVA 2

Abstract. We present an explicit hedging strategy, which enables to prove
arbitrageness of market incorporating at least two assets depending on the
same random factor. The implied Black-Scholes volatility, computed taking
into account the form of the graph of the option price, related to our strategy,
demonstrates the ”skewness” inherent to the observational data.

1. Introduction

This work is an extension of the paper [1], where the arbitrage strategy was
constructed for a market with pure correlated assets.

Assume that on a market there exist at least two assets with prices S1(t) and
S2(t) which are random processes dependent on the same Brownian motion. It is
known that the market with the asset cannot be arbitrage-free. In [2] the principle
is formulated that the market is arbitrage-free if and only if the number of traded
assets (excluding the riskless one) does not exceed the number of sources of ran-
domness. In the same book it is shown by means of the martingale approach that
the market including several risky assets with prices given by the Itô processes is
arbitrage-free if and only if the number of independent Wiener processes is equal
or greater then the number of the risky assets.

This theoretical result correlates with well known condition for arbitrage: two
assets with identical cash flows do not trade at the same price (e.g.[3]).

In the present paper we prove arbitrageness of the market with assets dependent
on the same random factors in an alternative way and construct an explicit hedging
strategy using a mathematical tool, describing a formation of contrast structures
of step type in solutions of semi-linear parabolic equations.

For the sake of definiteness we consider the call option.

2. Initial-boundary problem for an analog of the Black- Scholes

equation

Let us consider a financial instrument with the price V = V (S1, S2, t) dependent
on prices S1, S2 of two different assets and assume that the market is arbitrage-free.

Assume that the prices of the assets are given as follows:

dS1 = µ1S1dt+ σ1S1dW, dS2 = µ2S2dt+ σ2S2dW.

Key words and phrases. step-like contrast structure, semi-linear parabolic equation, arbitrage,
option, hedging strategy, volatility smile.
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We mean that the assets are different if their prices satisfy geometrical Brownnian
motions having at least different parameters of volatility ( σ1 and σ2 in our case).

Consider a portfolio consisting from this financial instrument, (−δ1) units of the
first asset and (−δ2) units of the second asset. The price of the portfolio Π(t) at a
moment t is

Π(t) = V − δ1S1 − δ2S2.

In this case, using the Itô formula, one can find the law for the price of the
financial instrument V (S1, S2, t):

dV =

(

V
′

t + µ1S1V
′

S1
+ µ2S2V

′

S2
+

1

2
σ2
1S

2
1V

′′

S1S1
+

1

2
σ2
2S

2
2V

′′

S2S2
+ σ1σ2S1S2V

′′

S1S2

)

dt+

+
(

σ1S1V
′

S1
+ σ2S2V

′

S2

)

dW.

A change of the portfolio price is written as dΠ = dV − δ1dS1 − δ2dS2, the
arbitrage-free condition leads to the condition dΠ = r(t)Πdt = r(t) (V − δ1S1 − δ2S2) dt,
where r(t) - is the spot interest rate. In what follows we set r(t) ≡ r = const. We
equate the right hand sides of both expressions for dΠ and substitute the expression
for dV . Thus, we get

(V
′

t +µ1S1V
′

S1
+µ2S2V

′

S2
+
1

2
σ2
1S

2
1V

′′

S1S1
+
1

2
σ2
2S

2
2V

′′

S2S2
+σ1σ2S1S2V

′′

S1S2
−δ1µ1S1−δ2µ2S2)dt

+
(

σ1S1V
′

S1
+ σ2S2V

′

S2
− δ1σ1S1 − δ2σ2S2

)

dW = r (V − δ1S1 − δ2S2) dt.

Equate coefficients at dt and dW with zero, we get two equations:

(V
′

t + µ1S1V
′

S1
+ µ2S2V

′

S2
+

1

2
σ2
1S

2
1V

′′

S1S1
+

1

2
σ2
2S

2
2V

′′

S2S2
+ σ1σ2S1S2V

′′

S1S2
−

−δ1µ1S1 − δ2µ2S2) = r(V − δ1S1 − δ2S2),

σ1S1V
′

S1
+ σ2S2V

′

S2
− δ1σ1S1 − δ2σ2S2 = 0.

The second equation gives

δ1 = V
′

S1
+

σ2S2

σ1S1
V

′

S2
− δ2

σ2S2

σ1S1
(1)

Substitute this expression for δ1 in the first equation. We get

V
′

t +µ1S1V
′

S1
+µ2S2V

′

S2
+

1

2
σ2
1S

2
1V

′′

S1S1
+

1

2
σ2
2S

2
2V

′′

S2S2
+ σ1σ2S1S2V

′′

S1S2
− δ2µ2S2−

−µ1S1

(

V
′

S1
+

σ2S2

σ1S1
V

′

S2
− δ2

σ2S2

σ1S1

)

= r

(

V − S1

(

V
′

S1
+

σ2S2

σ1S1
V

′

S2
− δ2

σ2S2

σ1S1

)

− δ2S2

)

.

It can be readily shown that

V
′

t +
1

2
σ2
1S

2
1V

′′

S1S1
+

1

2
σ2
2S

2
2V

′′

S2S2
+ σ1σ2S1S2V

′′

S1S2
+ rS1V

′

S1

+ S2

(

µ2 − µ1
σ2

σ1
+ r

σ2

σ1

)

V
′

S2
+ δ2S2

(

µ1
σ2

σ1
− µ2 − r

σ2

σ1
+ r

)

− rV = 0. (2)

Let us note that for the construction of the arbitrage hedging strategy it is
important that the coefficient at δ2 in equation (2) does not vanish. Thus, proving
the arbitrageness of the market we show by contradiction that for an arbitrage-free
market µ1

σ2

σ1
− µ2 − r σ2

σ1
+ r = 0. This means that at a arbitrage-free market the

costs of risk µi−r
σi

for assets S1 and S2 coincide. This unobvious fact can be proved

differently by means of martingale approach [2].
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We note that if one sets δ2 = 0 (excluding a dependence of Π on S2), than (2)
takes the form of the standard Black-Scholes equation ([4]).

Assume that a buyer of the option does not know that the seller is going to
get an additional asset to take part in hedging and therefore he is oriented to
the option price, found by the standard Black-Scholes formula. Therefore we set
an initial-boundary problem for equation (2), imitating the Cauchy problem for
the standard Black-Scholes equation. We denote the solution of the latter one as
V̄ (t, S1) and set the ”‘final”’ equation V̄ (S1, T ) = (S1 −X)

+
, where (S1 −X)

+
=

max (S1 −X, 0) , X = const > 0. As follows from explicit formula for the solu-
tion of this problem, at any moment of time t ∈ [0, T ] we have V̄ (0, t) = 0, and
V̄ (S1, t) = S1−Xe−r(T−t)(1− o( 1

S1
)), at S1 → +∞. Let us choose a large positive

number K+ and large by modulus negative number K−. We denote

S± = e
K±
α

−c(T−t), (3)

where α > 0 and c are constants, which will be chosen later, t ∈ [0, T ]. It is clear that
S− → 0 and S+ → +∞ as |K±| → ∞. We choose functions g±(S±, t) = V̄ (S±, t).
Thus, g−(S−, t) = o(S−), as S− → 0 and V̄ (S+, t) = S+ −Xe−r(T−t)(1− o( 1

S+
)),

as S+ → +∞.
So, for any how many large by modulus positive number K+, negative number

K− and any S2 > 0 we get the initial-boundary problem for equation (2):

V (S1, S2, T ) = (S1 −X)+ , (4)

V (S−, S2, t) = g−(S−, t), V (S+, S2, t) = g+(S+, t). (5)

We can justify the change from the semi-axis S1 > 0 to the segment [S−, S+] by
including in the terms of contract a condition on cancelation of the contract if the
price oversteps the limits specified beforehand within a time t ∈ [0, T ] (the price
corridor can be arbitrary large).

3. Reducing (2) to semi-linear parabolic equation

Let us perform several changes of independent and dependent variables of prob-
lem (2)-(5) and reduce it to an initially-boundary problem for the heat equation.
We do not write the respective initial-boundary problem at every step, only list the
changes performed. We note that these change analogous in outline to the changes
that reduce the Black-Scholes equation to the heat equation. Nevertheless, there
are some distinctions.

We make the change of the time direction τ = T − t; the change of independent

variables x1 = α1 lnS1, x2 = α2 ln
S

σ1
2

S
σ2
1

, where α1, α2 > 0 are arbitrary constants;

the change of dependent variable V (x1, x2, τ) = e−rτU(x1, x2, τ); the shift y1 = x1+
c1τ, y2 = x2+c2τ, where c1 = α1

(

r − 1
2σ

2
1

)

c2 = α2

(

µ2σ1 − µ1σ2 +
1
2σ1σ2(σ1 − σ2)

)

.
If in (3) we choose α = α1 and c = c1/α, then we obtain the following initial-

boundary problem

1
2σ

2
1α

2
1U

′′

y1y1
+ δ2e

rτ+
y2−c2τ

α2σ1
+

(y1−c1τ)σ2
α1σ1

(

µ1
σ2

σ1
− µ2 − r σ2

σ1
+ r

)

= U
′

τ ,

U(y1, y2, 0) =

(

e
y1|τ=0

α1 −X

)+

, y1 ∈ [K−,K+], y2 ∈ R,

U(K−, y2, τ) = erτg−(S−, τ), U(K+, y2, τ) = erτg+(S+, τ).

(6)
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We note that we can consider the variable y2 as a parameter, since in equation
(6) there is not derivatives with respect to it, but the dependence of y2 remains.

We introduce the notations ε2 = 1
2σ

2
1α

2
1, U0(y1, ε) =

(

e
y1|τ=0

α1 −X

)+

,

F (y1, τ, ε) = −e
rτ+

y2−c2τ

α2σ1
+

(y1−c1τ)σ2
α1σ1

(

µ1
σ2

σ1
− µ2 − r σ2

σ1
+ r

)

. Since the variable δ2,

corresponding to a share of the second asset in the riskless portfolio, can be chosen

arbitrary, then we set δ2 = U(U − A)(U − B) (F (y1, τ, ε))
−1

, where A and B are
certain constants to be defined below. Such choice of δ2 leads to a problem

ε2U
′′

y1y1
− U

′

τ = f(U),
U(y1, 0, ε) = U0(y1, ε), y1 ∈ R,
U(K−, y2, τ) = erτg−(S−, τ), U(K+, y2, τ) = erτg+(S+, τ).

(7)

where f(U) = U(U −A)(U −B).
Let us approximate the boundary conditions taking into account the fact that

the value of K is large and τ is bounded. Note that erτg−(S−, τ) → 0 as |K−| → ∞

and erτg+(S+, τ) = e
K
α
+σ2τ

2 −X. Then under additional assumption σ2T ≪ 1 we
exclude the dependence on time in the boundary conditions:

U(K−, y2, τ) = 0, U(K+, y2, τ) = e
K+
α1 −X. (8)

Since in the expression ε2 = 1
2σ

2
1α

2
1 the parameter α1 is arbitrary, we can make ε

as small as we want.

4. Conditions for formation of the step-like contrast structure

Let us outline known results on conditions of formation of the step-like contrast
structure [6]. Consider the following initial-boundary problem

ε2u
′′

xx − u
′

t = f(u, x, ε), (x, t) ∈ D × (0, +∞),
u(a, t, ε) = ga, u(b, t, ε) = gb, t ∈ (0, +∞),
u(x, 0, ε) = u0(x, ε), x ∈ D̄,

(9)

where ε > 0 is a small parameter, D ≡ (a, b), ga gb are constants.
Assume that the function f satisfies the following conditions.

(A1). There exist functions ω̄ and ω̂ from C2(D̄) such that ω̄ < ω̂, x ∈ D̂, and in

the domain Ω = {(u, x) : ω̄ 6 u 6 ω̂, x ∈ D̂} the function f(u, x, 0) vanishes only
on the curves u = ϕi(x), i = 0, 1, 2, moreover,

ω̄ < ϕ1(x) < ϕ0(x) ≡ 0 < ϕ2(x) < ω̂, x ∈ D̂,

fu(ϕi(x), x, 0) > 0, i = 1, 2; fu(ϕ0(x), x, 0) < 0, x ∈ D̂;

Assume that f(u, x, ε) is sufficiently smooth function in the domain Ω1 × [0, ε0],
where Ω1 contains Ω and ε0 > 0 is an arbitrary number.
We set ϕ0 ≡ 0 for the sake of simplicity only. It is not difficult to reformulate all
results for the case ϕ0 6≡ 0.

We introduce a function J(x) =
ϕ2(x)
∫

ϕ1(x)

f(u, x, 0)du and make the following assump-

tion.
(A2). There exists a point x0 ∈ D such that J(x0) = 0, dJ

dx
(x0) < 0.
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(A3). The following inequalities take place: ϕ1(a) < ga < ϕ2(a), ϕ1(b) < gb <
ϕ2(b),

y
∫

ϕ1(a)

f(u, a, 0)du > 0, y ∈ (ϕ1(a), ga],

y
∫

ϕ2(b)

f(u, b, 0)du > 0, y ∈ (gb, ϕ2(b)].

Under conditions (A1) − (A3) for sufficiently small ε there exists a stationary
solution us(x, ε) to the boundary problem having an internal transition layer in a
neighborhood of a point x0 such that

lim
ε→0

us(x, ε) =

{

ϕ1(x), x ∈ (a, x0)
ϕ2(x), x ∈ (x0, b).

(10)

The solution of this kind are called contrast step-like structure (CSLS).

It is known that under conditions (A1)− (A3) the CSLT solution us(x, ε) is an
asymptotically stable solution to the boundary problem. There arises a question
on a set of initial values u0(x, ε), which lead to a formation of the contrast struc-
ture us(x, ε) as t → +∞. In other words, which is a domain of influence of this
solution? Let us give the definition of the global domain of influence according to [6].

Let the boundary problem have a stationary solution uε(x) ∈ C2(D̄) at ε ∈ (0, ε′],
where ε′ > 0 is a certain number.

Definition 1. We call G(uε) the global domain of influence of a stationary solu-

tion uε(x) of the boundary problem if G(uε) contains functions u0(x, ε) having the

following property: there exists ε′′ ∈ (0, ε′] such that at ε ∈ (0, ε′′] there is a solution

uε(x, t) ∈ C1,0(D̄ × [0,+∞)) ∩ C2,1(D̄ × (0,+∞)) of the initial-boundary problem

and limt→+∞ ||uε(x, t)− uε(x)||C(D̄) = 0.

Let f satisfy additional conditions:
(A4). The set of all points x such that J(x) = 0 consists of finite number of
segments or points.
(A5). u0(x, ε) ≡ u0(x) ∈ C2

B(D̄) ≡ {v(x) ∈ C2(D̄) : v(a) = ga, v(b) = gb}

ϕ1(x) 6 u0(x) 6 ϕ2(x), x ∈ D̄.

(A6). ∃x(−) ∈ (a, x0) and ∃x(+) ∈ (x0, b) such that

u0(x
(−)) < ϕ0(x) u0(x) < ϕ0(x) x ∈ [a, x0), J(x) 6 0,

u0(x
(+)) > ϕ0(x) u0(x) > ϕ0(x) at all points x ∈ (x0, b], where J(x) > 0.

The main result of [6] is the following theorem.

Theorem 1. Let conditions (A1)− (A3) hold. Then for sufficiently small ε there

exists a stationary solution us(x, ε) of the boundary problem (9) from C2(D̄), having
form of the contrast step-like structure, satisfying limit equation (10).

Moreover, let condition (A4) hold. Then the following is true:

1. If a function u0(x, ε) ≡ u0(x) satisfies (A5), (A6), then it falls in G(us).
2. If ∃ε1 > 0 such that at ε ∈ (0, ε1] a function u0(x, ε) satisfies condition (A5)
and there exist functions ū0(x) and û0(x), satisfying (A5), (A6) and such that

ū0(x) < u0(x, ε) < û0(x), x ∈ D̄, ε ∈ (0, ε1],
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then u0(x, ε) belongs to G(us).

5. Formation of SLCS in problem (7)

We re-formulate problem (7) with boundary conditions, changed to (8) (we write
x instead of y1 and u instead of U):

ε2u
′′

xx − u
′

t = f(u),

u(x, 0) =
(

e
x
α1 −X

)+

,

u(a, t) = 0,

u(b, t) = e
K+
α1 −X,

(11)

where f(u) = u(u−A)(u−B), 0 < A < B, t ∈ [0, T ], x ∈ [a, b], a = K−, b =
K+.

Let us apply the results of the CSLS theory outlined in Sec. 4 to problem (11).
Condition (A1) holds evidently. From condition (A2) we get a relation between

constants A and B. Since
B
∫

0

f(u)du =
B
∫

0

u(u−A)(u −B)du = 0 , then B = 2A.

Thus, the condition (A4) holds since J(x) ≡ 0 for all segment [a, b]. It remains

to find A to satisfy (A3). We take A = u(K+, t)
2 = e

K+
α1 −X

2 .
The point of transfer can be found as

x0 = a+(b−a)

√

fu(ϕ2)
√

fu(ϕ2) +
√

fu(ϕ1)
= K−+(K+−K−)

√

fu(2A)
√

fu(2A) +
√

fu(0)
=

K− +K+

2

(see Butuzov, Vassilieva).
Thus, the contrast structure in the stationary problem has a form

lim
ε→0

u(x, ε) =











0, K− < x < 0,

e
K+
α1 −X, 0 < x < K+.

Condition (A5) holds due to the relation u(x, 0) ≡ (ϕ2(x), 0)
+, and condition

(A6) holds due to u(x, 0) ≡ 1
2ϕ0(x). Since all conditions of Theorem 1 take place,

then in the problem (11) a contrast step-like structure arises.

6. Arbitrage hedging strategy

We note that we can choose the values K−, K+ arbitrary. Therefore, increasing

S+ one can always shift the transition point S0 =
√

S+S− a little to the right of
the strike price X . This means that we can chose such hedging strategy (δ1, δ2),
that the option price can be negligibly small initially.

The option price, found by the classical Black-Scholes formula, it is greater
initially than at the moment T . But if we apply the hedging strategy involving
the second asset, then we get that the initial option price (at S < S0) is negligible
comparing with its price at the moment of exercise. This gives evidently a possibility
of arbitrage upon conclusion of contract. Thus, we get a contradiction with the
assumption with a non-arbitrageness of the market.
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The hedging strategy (δ1, δ2) has a form:

δ1 = V
′

S1
+
σ2S2

σ1S1
V

′

S2
−δ2

σ2S2

σ1S1
, δ2 = V (V −(S+−X)/2)(V−(S+−X))

1

S2(µ2 − µ1
σ2

σ1
)
.

7. Numerical solution of problem (11)

Let us construct the contrast structure in our problem numerically. In partic-
ular, we understand how quick the structure forms. We use the Crank - Nicolson
method and the marching. Recall that we seek for the solution to the problem (11)
in the domain [K−,K+]× [0, T ].

We choose the following parameters: S− = 0.1, S+ = 100, N = 100, τ =
2 · 10−4, α1 = 1, σ1 = 0.02, X = 20. Then the transfer point is S0 = 31.6, the size
of the step is A = 40.

Pic.1 presents the ”final ” function V (S1, S2, T ) (solid line), and the numerical
solution V (S1, S2, t) at t = 0 (dashed line). Even at T = 0.25 (the exercise time
equal to 3 months) the graph of solution is step-like.
Pic.2 presents the graph of the same function V = V (S1, t) t = 0 (points) and
at t = T (solid line) by hedging without using the second asset (.g. δ2 = 0) as in
classical Black-Scholes model.

S0

8. ”Volatility smile” as a manifestation of arbitrageness of market

Below we present the graphs of the option price in dependence on the strike
price X (fixed spot price and the time of exercise) for the arbitrage-free Black-
Scholes hedging strategy and arbitrage hedging strategy considered in this paper
(Pic.3). Pic.4 presents the graphs for the dependence of volatilities on the strike
price computes basing on the Black-Scholes formula for different times of exercise.
The graphs clearly demonstrate the ”skew smile”, moreover, the skew increases as
the exercise time gets smaller, as is in compliance with observational data (e.g.
[7]). It is interesting that for explanation of this phenomenon we do not need
to engage the idea of stochastic volatility as they usually do. We note that the



8 MARTYNOV, ROZANOVA

phenomena of ”smile” of volatility near the strike price is observed since 1987,
where the amendment to the Glass-Steagall Act allowed to invest the bank capitals
in derivatives. Since the asset and its derivative are correlated, it inevitably gives
an arbitrage possibility and therefore the main conditions for the Black-Scholes
formula can not be satisfied.
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