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Abstract
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This paper investigates dividend optimization of an insurance corporation under a
more realistic model which takes into consideration refinancing or capital injections. The
model follows the compound Poisson framework with credit interest for positive reserve,
and debit interest for negative reserve. Ruin occurs when the reserve drops below the
critical value. The company controls the dividend pay-out dynamically with the objective
to maximize the expected total discounted dividends until ruin. We show that that the
optimal strategy is a band strategy and it is optimal to pay no dividends when the reserve
is negative.

Key words Absolute ruin, dividend optimization, stochastic control, value function, viscosity
solution.

Mathematics Subject Classification (2000) 91B30; 93E20; 49125
JEL Classification C61; C02

1 Introduction

Dividend optimization problems for financial and insurance corporations have attracted ex-
tensive attention over the last few decades. One of this type of problems is to find the optimal
dividend pay-out scheme, i.e. choosing the times and amounts of dividend payments to max-
imize the objective function - the expected total discounted dividend pay-outs until the time
of ruin.

In the area of non-life insurance, a well established model for the cash reserve is the
Cramér-Lundberg model (also called the compound Poisson model or the classical risk model),
which is based on Poisson claim-arrivals and linear premium income. [Embrechts and Schmidli
(1994) claimed that “many of the ‘rules of thumb’ used in practice can be traced back
to the classical Cramér-Lundberg model”. However, starting from the middle of 1990’s,
a large number of papers dealing with optimization problems for insurance companies, use
the diffusion process - a limiting process of the Cramér-Lundberg model, to model the reserve
in the absence of the dividends, e.g. \Jeanblanc-Picque and Shiryaev (1995), (Cadenillas et al.
(2006) and [Paulsen (2007). Diffusion process modeling of the reserve process allows the use
of optimal diffusion control techniques and is therefore more mathematically tractable. A
survey of optimal dividend control for diffusion processes can be found in [Taksaz (2000).

There have been a few attempts to study the dividend optimization problem under the
Cramér-Lundberg model. |Gerber (1969) considered the dividends optimization problem for a
classical Cramér-Lundberg model and proved that the corresponding optimal dividend strat-
egy is a band strategy. |Azcue and Muler (2005) considered the Cramer-Lundberg model
with reinsurance and dividend payments and proved the optimal dividend payment pol-
icy maximizing the expected total discounted dividend pay-outs is also a band strategy.
Albrecher and Thonhauser (2008) studied the dividend optimization problem in the Cramer-
Lundberg setting including constant force of interest and pointed out that the optimal strat-
egy is also of band type. Kulenko and Schmidli (2008) found that the optimal dividend
strategy for the Cramer-Lundberg model with capital injections is a barrier strategy. For
applications of stochastic control in insurance, please refer to [Schmidli (2008) and references
therein. A list of literature on dividend optimization problems under the Cramér-Lundberg
model can be found in|Albrecher and Thonhauser (2009). For a review of dividend strategies
in the actuarial literature, see |Avanzi (2009).

There has been extensive work dedicated to the generalization of the classical risk model to
suit more realistic situations. One way of generalization is to allow the company to refinance



when the company is in deficit and the deficit is not too large. The idea was developed by
Borch (1969), where he proposed that ruin (negative reserve) does not mean the end of game
but only the necessity of raising additional money. He argued that “insurance companies get
into difficulties fairly regularly and rescue operations are considered in the insurance world,
if not daily, at least annually” and that it will be a good investment to rescue a company
when the situation is not too serious, and concluded that a company should be rescued if the
benefits exceed the cost of the new financing required, e.g. when the deficit is not too large.
Since then the “absolute ruin model” has been developed, where the company is allowed to
borrow money to settle the claims if the reserve is negative but still above the critical level so
that it can continue its business. The company will need to pay interest (debit interest) on the
loan and pay back debt interest continuously from the received premiums. The critical level
is the value of reserve below which the premiums received are insufficient to cover interest
payments on the debt. Absolute ruin occurs when the reserve reaches or drops below the
critical level for the first time.

The absolute ruin problem has received considerable attention. |Gerben (1971)) studied the
absolute ruin probability in the compound Poisson model. [Embrechts and Schmidli (1994)
considered the absolute ruin probability when the reserve process is a piecewise-deterministic
Markov process. [Dickson and Egidio dos Reis (1997) used simulation to study the Cramér-
Lundberg model with absolute ruin. |Cai et all (2006) studied an Ornstein-Uhlenbeck type
model with credit and debit interest. |(Cai (2007) discussed the Gerber-Shiu function in the
classical risk model with absolute ruin. |Gerber and Yang (2007) investigated the absolute
ruin probability based on the classical risk model perturbed by diffusion with investment.
Zhu and Yang (2008) studied the asymptotic behavior of the absolute ruin probability in the
Cramér-Lundberg model with credit and debit interest. Some other related references are
Yuen et all (2008) and (Wang and Yin (2009).

In this paper, we consider the dividend optimization under the the compound Poisson
model with credit interest for positive reserve, and debit interest for negative reserve. The
paper is organized as follows. Section 2 presents the model and formulates the dividend
optimization problem. In section 3, we derive some basic and important properties of the value
function, and characterize the value function as the unique nonnegative and nondecreasing
viscosity super-solution of the associated Hamilton-Jacobi-Bellman equation that satisfies a
linear growth condition and a boundary condition. In section 4, we prove the existence of
the optimal dividend strategy and identify the optimal dividend payout scheme as a band
strategy. It is shown that the optimal strategy is to pay no dividends when the reserve is
negative. A conclusion is provided in section 5.

2 The model and the optimization problem

Consider a continuous time model for the surplus of an insurance company where claims arrive
according to a Poisson process with intensity rate A and premiums are collected continuously
at the rate p. The amount of each claim is independent of its arrival time, and is also
independent of any other claims. Let .S; denote the arrival epoch of the ith claim and U;
its size. Let N(t) = #{i : S; < t}. Then N(t) is the number of claims up to time ¢
and follows a Poisson process with rate A\. The sequence {U;} is assumed to be identically
and independently distributed with distribution function F(-) and independent of {N(¢)}.
Moreover, the insurance company earns credit interest under a constant force r (r > 0) when
the surplus is positive, and when the surplus drops below 0, the insurer could borrow money
with the amount equal to the deficit under force of debit interest o > r. In the mean time, the
insurer will repay the debts and the debt interest continuously from the premium incomes.
This leads to the following dynamics for the risk reserve process {X;}+>o in the absence of



dividend payments:

dX; = (p+rXi-IH{Xi— >0} + aX;_I{X;— < 0})dt — dY,
where X, represents the surplus at time ¢ and Y; = Zi]i(f) U, is the aggregate claim up to
time t.
Now suppose the company pays dividends to its shareholders with the accumulative
amount of dividends paid up to time ¢ being denoted by L;. Let RtL denote the controlled
reserve at time t. Then

N(1)
dR; = (p+ Ry I{R, >0} +aR, I{R, <0h)dt—d | > Ui | —dL. (2.1)
i=1

The company controls dynamically the dividend pay-outs: the times and the amounts of
dividends to be paid out. A control strategy is described by a dividend distribution process
L = {L}>o0-

Notice from the above dynamics that the premium incomes will no longer be able to cover
the debts when the surplus is less than or equal to —g. That is, the surplus process will not
be able to return to a positive amount whenever the process hits —£ or any level below that.

We call —2 the critical value and define the time of ruin as TX = inf{t > 0 : R{J < —-E3
The time of ruin defined above is also called the time of absolute ruin in the sense that the
surplus will no longer be able to return to a positive level.

All our random quantities are defined on the complete probability space (2, F,P). Let
N denote the class of null sets in Q and define F; = o(Xy,Ys,0 < s < t)\/ N. Throughout
the paper, we base our study on the filtered probability space (Q, F, {F; }+>0,P).

A control strategy is admissible if the process {L;}+>0 with Lo = 0, is predictable, nonde-
creasing, left continuous with right limits (cdglad) and satisfies the requirement that paying
dividends would not cause ruin immediately. We use II to denote the set of all admissible
strategies.

Define E,| - | = E[ - |[Rg = z]. Let § be the force of discount with § > r. Given the initial
reserve x, the performance of a dividend strategy L is measured by the expectation of the
cumulative discounted dividends until ruin, i.e.

/T e5SdLS] . (2.2)
0

The integral here is interpreted path-wise in a Lebesgue-Stieltjes sense. The function Vi, ()
is called the return function. Obviously, Vp(z) =0 for z < -2,

The objective of the company is to find an optimal dividend payout scheme L in the set
of admissible strategies II such that the expectation of total discounted dividend pay-outs
until the time of ruin is maximized.

Define the value function (also called the optimal return function) by V(z) = suprcry Vi(z).
If there exists a control strategy L* such that V(z) = Vi«(x), then L* is called the optimal
dividend distribution process (the optimal dividend strategy).

It can be seen that T is a stopping time. In the paper, we will consider the stopped
process RF = RtLl{t <TE}—BI{t>T"}.

To simplify the notation we will omit the superscripts L in 7% and R”.

Since the reserve process in the absence of the control variable is a Markov process, the
problem here is the optimization problem for a controlled Markov process. As the cumulative
dividend process L may not be continuous with respect to time, the optimization problem
is a singular control problem. In the context of stochastic control theory, the optimization
problem can be associated with a Hamilton-Jacobi-Bellman (HJB) equation derived by us-
ing the Dynamic Programming Principle. In this case, the HJB equation is a first-order

Vi(z) =E,;




integro-differential equation. However, the differentiability of the value function is a ques-
tion. Actually, even under a specificly predetermined dividend strategy, the differentiability
of the corresponding return function can not be guaranteed. It was shown in [Zhu and Yang
(2009) that the differentiability of the return function under a barrier or threshold dividend
strategy depends on the level of smoothness of the claim size distributions. In this paper, we
show that the value function is absolutely continuous but may not be differentiable. So we
resort to the concept of viscosity solutions.

Based on techniques of probability and Stochastic Control theory, we show that the
value function is a viscosity solution of the associated HJB equation and it is the unique
solution satisfying certain regularity and boundary conditions. We also prove that the optimal
dividend payment strategy exists and is of a band type, an and that it is optimal to pay no
dividends at all when the surplus is negative. Proofs of some lemmas and theorems are
relegated to the appendix.

3 The value function

In this section, we derive some analytical properties of the value function V' (z). We show
that V(x) is not necessarily differentiable everywhere, but almost everywhere, and that the
value function is the viscosity solution to the associated HJB equation but not necessarily
the classical solution. It will also be proven that the value function is the unique solution
satisfying certain conditions.

Theorem 3.1 Ifr <4, V(z) > 2+ £ forz € R, and V(z) < %—i—%farw > 0.

Proof. To prove the lower bound, consider a dividend payout scheme such that the part of
initial reserve in excess of the critical value —2 is paid out immediately as dividends. Then
ruin occurs immediately. In this case, the return function given the initial reserve x, is x4 £.
So the optimal return function V' (z) is always greater than or equal to = + g.

From (21 we can see that given that the initial reserve is nonnegative, the inequality
dR; < (p + rR;—)dt holds. As a result, given Ry = = we have R; < 1 (e"(p+rz) — p) for

x > 0. Hence, by integration by parts, Ly < R; + £ for any L € II and the definition (2.2))

«

we can obtain Vi (xz) = E, UOT e_‘sdes} <E, UOOO 5Lse_53ds] = ‘Sg%f’ + L for z > 0. O
Define
Flog (7448) y>z>0
to(z,y) = { 3 log("o2) + S log(hy) y>0>a> L. (3.3)
élog(gzig) 0>y>x>-2

The quantity ¢o(z,y) is equivalent to the time it takes for the surplus process with initial
value = to reach y (y > x) for the first time given that there are no claims and no dividends
paid out.

Theorem 3.2 The value function V satisfies the following inequalities

(H2)% 1) y>w20
A+6 A+S
y-o V() - Vi) S V@) (L) ()% —1) y20>a>-L.
(L) 1) 0>y>az>—L

Proof. (i) We first prove the lower bound. For any € > 0, let L¢(z) denote an admissible
e-optimal strategy given the initial reserve z, i.e. Vi (z) > V(z) —e.



For y > 2 > —2 given the initial reserve Ry =y we use L(y, ) to denote a strategy that
pays an amount y — x as dividends immediately and then pays dividends according to the
strategy L¢(x). Then given the initial reserve Ry = y > x, under the strategy L(y,x) we have
Vi) ¥) =y —2+Vp (2)(2). So forany € >0, V(y) >y -2+ Vi y(z) >y -2+ V(2) e
Consequently, V(y) — V(z) >y — x.

(ii) Now, we proceed to prove the upper bounds. For y > x > —2 for the surplus process
with initial reserve x, let 7(z,y) denote the time it will take for the surplus process to reach

A

up to y for the first time, and define the strategy L(z,y) as follows:

e pay out no dividends until the reserve reaches y,

e then at the moment that the reserve reaches y for the first time (7(x,y)), treat the
reserve process as a New process thaAt starts at this moment with initial capital y, and
apply the strategy Le(y), i.e. 0., L(2,y) = Le(y).

Note that starting from the initial value > —£, ruin will not occur before the arrival of
the first claim (S7), and the reserve will reach y (y > x) at time tg(x,y) if no claims arrive
before time to(z,y), that is 7(x,y) = to(x,y) on {S1 > to(z,y)}. Then for y >z > —L and
for € > 0, by noticing that Vi, (y) > V(y) — € we have

V() > Vi@ =Ele DV ) (9)i7(2,y) < T
> Bule TV () () St > to(a,y)] = e OTIREN (Y (y) — ).

Hence, V(y) — V(z) < V(z)(ePtDP@y) _ 1), This combined with (&3 gives the upper

bounds. 0

Theorem 3.3 The value function V (x) is nonnegative, nondecreasing, continuous on [—£,c0)

and locally Lipschitz continuous on (—%,00). Therefore, V'(x) exists almost everywhere on

(—£,00). Furthermore, V'(x) > 1, if V'(x) exists.
Proof. All the stated properties of V(z) are direct results of Theorem [B.I] and Theorem
except for the right continuity of V(z) at z = —£.

To prove the right continuity, it is sufficient to show that limsup, _» V(x) = 0. If this is
not true, then we can find a sequence {z,} with x,, | —g such that lim,_,c V(x,) > 0, that

is, there exists an ¢y > 0 and N such that V(z,,) > ¢ for all n > N. Let L@3) denote a 2-

optimal strategy for the reserve process with initial reserve x, that is, VL(% <0, () > V(x)—2.
Then, we have

€0 _ €0
VL(zn,%))(wn) > V(zn) — 5 > D) for n > N. (3.4)

Consider a stochastic process {R;} with dynamics dR} = (p+rRI{R; > 0} + aR,I{R} <
0})dt. Given R{, = x, integration yields
(e(p+rz)—p) x>0
(e*(p+ax)—p) x<0,t<to(z,0) . (3.5)
1 (ert=to@0p —p) 2 <0, t >to(x,0)

Note that R; < R; given that Ry = Rj > —Z. Using the fact that Ly < R; + 2 < R + £
and (3.3), by integration by parts it follows from (2.2)) that for 2 € (-=2£,0)

Ql— 3

R; <

Vi(z) < Eu / 6Lge™%%ds]
0

to(z,0) 1
< 5/ — (e*(p + ax) — p) e %ds
0 «
1
r

(er(s—to(m))p _p) 95 ds & g‘ (3.6)



Notice that the expression on the right-hand side of (8.6) has limit 0 as # | —2 and does not
depend on L. So we can find an N’ such that for all n > N’, Vi(x,) < £ holds for all admis-

sible strategy L. Therefore, setting L to be L@n3) gives VL(M%M () < ¢ foralln >N,

which is a contradiction to (3.4]). Hence, the value function V() is right continuous at —£. [J

Applying standard arguments from stochastic control theory (e.g. [Fleming and Soner
(1993)) or an approach similar to that in |Azcue and Muler (2005), we can show that the
optimal value function fulfils the Dynamic Programming Principle:

TAT
V(x) = sup E, {/ e AL, 4+ e NV (R.ar)|  for any stopping time 7,
Lell 0

and the associated Hamilton-Jacobi-Bellman (HJB) equation is
max{1 — V'(z), Ly (x)} =0, (3.7)
where L is a generator defined by
Ly(x) = (p+rzl{x>0}+axl{zr <0})V'(x)

x4+ 2
—A+0)V(x)+ )\/0 V(zx —u)dF(u). (3.8)

Although from the last section we know that V’(z) exists almost everywhere, we have
no guarantee that V(z) is differentiable for all x > —Z£. Therefore, we can not expect
V(z) to be a classical solution to the HJB equation. In the following we will show that the
value function V' (z) is a viscosity solution to the HIJB equation (3.1), and that V(x) is the
unique nonnegative, nondecreasing and locally Lipschiz continuous viscosity solution of (3.7])

satisfying a linear growth condition and the boundary condition V(—£) = 0.

Definition 3.1 (i) A continuous function u : [-£,00) = R is said to be a viscosity sub-
solution of B.) on (—£,00) if for any x € (—£,00) each continuously differentiable function
¢ (—2,00) = R with ¢(x) = u(z) such that u — ¢ reaches the mazimum at = satisfies

max{1l — ¢'(z), Ls(z)} > 0.

(i) A continuous function : [—£,00) = R is said to be a viscosity super-solution of B.1) on

(=2, 00) if for any x € (—£,00) each continuously differentiable function ¢ : (—£,00) = R
with ¢(x) = u(x) such that w — ¢ reaches the minimum at = satisfies

max{1 - ¢'(2), L(2)} < 0.

(iii) A continuous function u : [-£,00) = R is a viscosity solution of B.1) on (—£,00) if it
P

is both a viscosity sub-solution and a viscosity super-solution on (=%, 00).

For any continuously differentiable function ¢ and any continuous function v, define an
P
operator Ly 4(z) = (p+ral{r > 0} + axl{z < 0}) ¢'(z)—(A+)v(x)+A fom+a v(z—u)dF(u).
As has been shown in (Sayahl (1991) and Benth et al/ (2001)), the definition of viscosity sub
and super solutions has the following alternative version.

Definition 3.2 (i) A continuous function u : [—£,00) — R is said to be a viscosity sub-

_57

solution of B.Q) on (—£,00) if for any x € (=2, 00) each continuously differentiable function

¢:(—£,00) = R with ¢(x) = u(x) such that u — ¢ reaches the maximum at x satisfies

max{1 — ¢'(x), Lys(x)} > 0.



(i) A continuous function T : [-£,00) = R is said to be a viscosity super-solution of ([B.1)
on (=2, 00) if for any (—£,00) each continuously differentiable function ¢ : (—=£,00) — R

with ¢(x) = u(x) such that w — ¢ reaches the minimum at x satisfies
max{1 - ¢/(2). Lz 4(a)} < 0.

The following remarks are standard in the context of viscosity theory (eglCapuzzo-Dolcetta and Lions
(1990) and |Crandall et all (1984)), which will be useful in the proof of our main results.

Remark 3.1 (i) For any viscosity sub-solution u on (=%, 00), there exists a contz’nuously
differentiable function ¢ : (—£,00) = R such that uw — ¢ reaches a mazimum at x > —2 with

¢ (x) = q if and only if

u(y) — u(z) u(y) — ufz)

lim inf > ¢ > limsup
ylx Yy—x yla Yy—x
11) For any viscosity super-solution w on (—£, 00 ere exists a continuously differentiable
43) Fi Y Vi ity Sup luti P oo), th st ti ly d tiabl

unction ¢ : (—£,00) — R such that w — ¢ reaches a minimum at v > —L2 with ¢'(z) = q 14
« «

and only if
ylx Yy—x ytx Yy—x

For any t > 0, define a functional My by

Mt((ﬁ) - Z (¢(Rs) - ¢(Rs—)) 6753

s<t,Rs_#Rs
— te_‘ss s ~ _—qy) = _ . .
A /0 a /0 (G(Re — ) — (Re)) dF (y) (3.9)

Then {M;(¢)} is a local martingale. If ¢(-) is bounded by a linear function, then M;(¢) is
bounded below and therefore a super-martingale by applying Fatou’s Lemma.

Consider any nonnegative and nondecreasing function ¢ and any stopping time 7 such
that ¢'(Ry) exists for all ¢ < 7 and

¢'(R) > 1forall t <. (3.10)

Let {L¢} denote the continuous part of {L;}. It can be seen that

OB~ olro) = [ a (o(re™)

= /T ¢'(Rt)e_6tht — 5/T ¢(Rt)€_6tdt

= / (;5 6 p + T’RtI{Rt > 0} + OZRtI{Rt < 0})

- /0 GR)eALE+ Y (G(R) — B(Ri))e ™

t<7,R¢_#Ry

£ S @) —o(R))e =5 [ ome (3.11)

t<T,Rt#R¢ v

where the last equality follows from the fact that L; is left-continuous and nondecreasing.
Since R; # Ryt only occurs at the jumps of L; and L; is left-continuous in ¢, then Ry, — Ry =
_(Lt+ — Lt) and

_ 5t _ _ P e
> ($(Rey) — d(Ry))e Yo ¢ (R — u)du. (3.12)

t<T,Rt#R¢ t<T,Rt#R¢ v 0

8



Then by (B12)) and [B.I0) we have

- [tz S (@R - o(R)

t<7T,Rt#Ri+

/ T st st < Lot —bs
— e 'dL§ — e / du>
0 ¢ Z 0

t<T,Rt#R+

= — / e dL. (3.13)
0

Using (3.8), 39), (311 and (3.I3) and noting that ¢(x) > 0 for z < —£, we have

IN

d(R-)e T — ¢(Ry)
/ & (R )= (p+ 1Ry I{R,_ >0} +aRy_I{R_ < 0})dt
0

IN

- [Cetar e Me@) 4 [Tt [ @R —0) - o) aF )
0 0 0
—0t

— /T£¢(Rt_)e5tdt—/Te5tst+MT(¢). (3.14)
0 0

In the next theorem, we show that the value function V is a viscosity solution of the HJB

equation (B.1).

Theorem 3.4 (i) V(x) is a viscosity solution of B.1) on (—£,+00).

(ii) Define Dy (x, h,) = %2,‘/(1) If for some {h,} with hy, >0 for all n or h, <0 for
all n and limy,_,o0 hy, = 0, limy, oo Dy (x, hy,) exists, then

max {1 — nh_)r{)lo Dy (z, hy), nh_)rrgo Dy (z,hy)(p+ rel{x > 0} + axl{z < 0})
z+2
—A+0)V(x)+ /0 V(z—y)dF(y)} <0. (3.15)

Proof. We employ a standard technique in the controlled Markov process theory, which has
also been used inBenth et all (2001),|Albrecher and Thonhauser (2008) and|Azcue and Muler
(2005).

First, we show that V(x) is a viscosity super-solution of the HJB equation (3.7)) on
(=2,400). For any fixed z € (—£,00). Let ¢ be a continuously differentiable function with
¢(z) =V (x) and V — ¢ attaining a minimum at z. For any h > 0, define

alw, 1, h) = xerh+(p—l)f0her(h—8)ds, z>0andl>0orxz=0and 0 <[ <p,
)by xeah_{_(p—l)fohea(h—S)ds, —§<x<0andl200rx20andl>p.

For any [ > 0, choose an h small enough such that a(z,l,h) € (—=£,0) U (0,00). Consider
a dividend strategy L’ that the insurer pays out dividends continuously at rate [ until time
S1Ah. Then under the strategy L', ruin will not occur before the earlier of the arrival time of
the first claim S7 and time h. Notice that given the initial reserve Ry = x, under the strategy
L' we have Ry = a(x,l,t) for t < Sy A h and Rg, = (a(x,1,51) — U1) V (=2) on {S1 < h}.
By the Dynamic Programme Principle, distinguishing two cases S1 > h and S; < h and then



conditioning on .S7 we have

S1A\h
V(l') = supkE, |:/ ei5des + 65(51Ah)V(R51/\h):|
Lell 0

h
S oM (/ e~ 951ds + e5hV(a(m,l7h))>

0
h t a(x,lt)+L2
+/ )\e_)‘tdt{/ le % ds + e_&/ V(a(z,1,t) —u) dF(u)}.(3.16)
0 0 0

By subtracting V' (z) from the last inequality and noting that V(z) = ¢(z) and V(a(z,l, h)) >
¢(a(z,l,h)), we obtain

1 h t
0 > Se_)‘h(l — e +/ )\e_’\tdt/ le~%%ds
0 0

+e” O (6 (a(x, 1, ) — d(@)] + (- M — 1)V (x)
+ / " e Oty / O (1) — u) dF (). (3.17)
0 0 Y

Dividing by h > 0 and then letting h | 0 yields

z+Z
0 > I(1—¢ (@) - N+6)V(x)+ )\/O V(z — u)dF(u)
+(rel{z >0} U{x =0,l <p} +azl{z <0} U{z =0,l > p} +p) ¢ ().

Letting [ = 0 shows (p + rzl{z > 0} + azl{z < 0})¢'(z) — (A + )V (z) + )\fom+§ V(z —
u)dF(u) <0, and letting [ be large enough indicates ¢/(x) > 1.

Next, we will show that V() is a viscosity sub-solution of (B7) on (-2, +00). To this
end, we employ the proof by contradiction. Assume that V is not a viscosity sub-solution of

B0 at some point . Then we can find a constant n > 0 and a continuously differentiable
function ¢y with ¢o(z) = V(z), ¥o(y) > V(y) for all y and

1

max{1 — h(2), 5 Lyo(2)} < ~2n. (3.18)
Define
2
Y1(y) = Yoly) +n (fj:;;) : (3.19)

Then 1 (y) is continuously differentiable with ¢ (z) = ¢o(z) = V(x) and ¢} (x) = ¢{(x), and

z+2 u 2
by B8) and (£.62) we have %Ewl (x) = %EW(JU) + [y “m <m> dF(u) < —2n+n = —n,

which along with the fact that ¢ is nonnegative and continuously differentiable, and Ly, ()
is continuous, indicates that there exists an h > 0 such that

1
max{1 - ¥ (y), 3L (4)} < —g for y € [z — 2h, = + 2A). (3.20)

Let k be an continuously differentiable and nonnegative function with support included
in (—1,1) such that fil k(s)ds = 1. Define a function v,(y) : R — [0,00) as the convolution

un(y) = /l (V(y -4+ L) k(s)ds,

n’ 2z +2L)2

h2 ' h2 .
z(le_w, Since V(y — ) + Tag—@ 15

continuous with respect to (y,s) on [—£, 24 h; —1,1], then we conclude that v,(y) is contin-
uous on [—2, 2+ h]. Moreover, v,(y) is a monotone sequence and by dominated convergence

and another function v: R — [0,00) by v(y) = V(y) +

10



theorem, it converges to v(y). Therefore, it follows by Dini’s theorem that v,(y) — v(y)
uniformly on [—£,2 + h]. Hence, there exists an ng such that for all y € [-2, 2 + h],

nh?

s () = V() +
D) _Uno y) = ) 4($+2§)2

V(y) + @2

(3.21)

Define fp,(y,s) = <V(y — )+ %) Ek(s). It can be seen that f,,(y, s) is continuous
on[—2 2+h;—1,1]. Let D = {y : V(y) is differentiable} and ng(y—D) = {no(y—s) : s € D}.
As V is differentiable almost every where, the complement of D is a null set. Noting that
a%fno (y,s) = B%V(y — 7-)k(s) on [=E, x4+ h] x no(y — D) and that V'(y), if exists, is greater

than or equal to 1, it follows that for y € [—g, x + hl,

1

)
s = | s b sids > [ k(s)ds =1, (322)
—1<s<1, seng(y—D) 9Y -1

Construct a continuously differentiable function w : R — [0, 1] such that w(y) =1 for y €
[x—h,xz+h], w(y) =0for y € (—o0,z—2h)U(x+2h,0), and w'(y) > 0 for y € [x—2h,x—h].
Consider a function ¢ defined by

YY) = w@)1(y) + (1 — w(y)) vny (y)- (3.23)

Obviously, ¢ (z) = ¢1(z) = V(x). Noting that ¢y > V, it follows by B.19), B3.20), 3.21]),
(B22) and (3:23) that

W) = w1+ )+ W) — vy (1) + (1 w(y)
> 1+w/(y)@((x—y)2—h2) >1forye[-Laz—h.  (3.24)

The last inequality follows by noticing w’(y) > 0 and (z —y)? — h? > 0 when —2<y<z—h
By .19) and [B.21)), using the fact that that V' < 1)y we obtain that for —2 <y—u < z+h

2

and h € (0, 5% ), Vno(y —u) —1(y —u) < 77( Jf:p)Q —n (”;ry;“) < 1, which along with the
T -~ [

definitions for £ in (3.8)) and ¢ in [B.23]), and the fact that ¢ = ¢ on [x — h, z + h] indicates

that for y € [z — h,x + h],

y+2
Lo0) = Lo+ [ (1=ly =) (g ly =) = (s~ w) dF()
An
2

< Ly + (3.25)

Write A =1+ %. For any positive

nh? ",
(x+2§)2’8(A—1) ’

e < min{ B (3.26)

it follows by (3.20) and (3.25]) that
1
A

From the definitions ([B:23]) and BI9) for ¢ and 1y, respectively, by noting 0 < w(y) < 1
and using ([B.21)) it follows that for any y satisfying |y — x| > h, we have

v 2 2
w(y) (%(y) +1 (w " 2y£> ) + (1 —w(y)) (V(y) + 4(9517}32)2>
V(y) + 3e, (3.28)

Ly(y) < —g < —2(A—1)e fory€ [z —h,z+h (3.27)

A\

Y(y)

v

11



where the last inequality follows by the fact ¥y > V and (3.20)).

From the definition ([B.23]) for the function v, and the fact that all the functions ¢, w and
Up, are continuously differentiable, we can see that L, is continuous. Therefore, there exist
a constant K > 0 such that

1
TLu(y) <K fory € [-Ra+] (3.29)

For any fixed o with

€ 1 1 z+2-1
i —log [ —2—2 :
0<0<mm{2AK’4A(A—1)’aOg<x+§—h>}’ (3.30)
define 7 =inf{t >0: Ry >z +h},r=inf{t >0: Ry <z —h},and 7 =T A (r+0). By

[B28)) we have

V(R:+) <9Y(Rs+) — 3¢ on {w: R — x| > h}. (3.31)

Note that Rz = x + h, as the surplus process has only downward jumps. Then given the
initial reserve Ry = xz, we have on the set {w : |[R;» — x| < h},

x + h > RT* = RI+0’ >x—h > RI = RI/\?‘ (332)

Then it follows by 3.30), (3.32) and noticing that Ry, < Rie® 4 £2(e® — 1) from the
dynamics (2.1), that given Ry = =z,

p

P P h
(e70a 1 < (670 . . .
(e —=1)<(x—h+>)e ——<x——2 on {w: R — x| < h}

R = RT+0' < Rpe® + =

. - e
which implies that given Ry = @, R;«—z < —% on {w : |R;«—x| < h}. Hence, (z—R,+)? > %2
on the set {w : |R;« — x| < h}. Using this and noticing that 99 > v and that from (B.26) we

have m > 1% by the definitions (319) and (B:23), we can show that given the initial

2
value Ry = z, Y(R:+) = Yo(R+) + 1 <ZI§T£) > V(R:+)+ 3¢ on {w:|R~ — x| < h}. This
along with ([B.31]) shows :

V(Ry) < ¥(R.) — 3¢ given Ry = . (3.33)

Note that from ([B.24) we have ¢'(R;) > 1 for R; € [-2,2 — h] and that from ([B.20) and
B:23) we have ¥'(R;) = ¥{(R;) > 1 for [x — h,z+ h]. Then by noticing that R; € [-£, x4 A
for ¢ € [0,7*], we conclude that ¢/(R;) > 1 for t € [0,7*]. Then by setting ¢ and 7 in (B.14])
to be ¢ and 7%, respectively, we have

*

Y(Re)e ™ — (R < / ' Ly(Ry-)e *dt — / AL+ Mo (). (3.34)
0 0

Note that given Ry = x, we have R, € [t —h,z+h] fort € [0,7Az] and Ry € [-2,2+]
for t € [T A z,7*]. From (827) and (3.29), it follows that

Ly(Ry—)e %t

TAT

T* TAT
/ ﬁw(Rt_)eiétdt = / ﬁw(Rt_)ei(Stdt +
0 0

TAT T*
< —(A- 1)26)\/ e Ot + )\K/ e Oldt
0 TAT
= —(4- 1)26)\/ e Odt + A((A —1)2e + K)/ e Odt
0 TAT
< —(A- 1)26)\/ e dt + A(A—1)2e+ K)o
0
< —(A- 1)26)\/ e Odt + e, (3.35)
0

12



where the second last inequality follows by noticing 7* — 7 A 7 < ¢ and the last inequality

follows by (3.30).
Given the initial reserve Ry = z, it follows from [B3:33)), (3:34) and (335]) that

V(R)e ™ < (Rm)e ™ —2ee™T
= (Y(R)e " —¢( )) + (P(x) = 2ee7)

—(A —1)2eA / e odt — / " e 0%dLy + Mo« (1)
+((x) — 2ee707) + €. (3.36)

IN

As fOT* e %%ds = 1_6(;67 and A =1+ 3, from (B:36) we obtain
7_*

V(R )e=S + / e AL, < Mo (1) + () — €. (3.37)
0
Noting that Mq(v)) is a super-martingale with zero-expectation, we have E[M «(¢)] < 0.
As a result, taking conditional expectation on (337) yields V(2) = suppep Eo[ [y e 9%dL; +
V(R:+)e ~or* ] < ¢(x) — €, which contradicts the fact V(z) = ¢ (x).
(ii) By Theorem B2} it follows that for any h,, with lim,_,~ hy, =0,
lim Dy (z, hn) > 1. (3.38)

n—oo

V(a(x,l,h’ )—V(x)

Consider a sequence h!, with hl, | 0 as n — oo such that lim, . exists.

Following the same lines as in the proof for (i), it can be shown that (3.17]) also holds when h
and ¢(-) there being replaced by hl, and V(-), respectively. Dividing both sides of the newly
obtained inequality by k!, and then letting n — oo yields for [ > 0,

n—oo

0>1(1— lim Dy(z,a(x,l,h,)—x)) —(A+6)V(z) + )\/0”5 V(z —u)dF(u) + [p+

(rl{z >0} U{z =0,l < p}+al{z <0} U{z =0, > p})z] JLI%OD\/(x,a(x I,h)—x).

17y Pn
By letting [ = 0 we have

(p+rzl{z >0} + azx({z < 0}) nll)ngo Dy (z,a(x,0,h)) —x) — (A + )V (z)
z+Z
—l—)\/ V(z —u)dF(u) <0. (3.39)
0

For any {h,, } with h,, > 0 such that lim, o h,, = 0, and lim,,_,~, Dy (x, h;,) exists, we can find
a subsequence {h,, } C {a(z,l,h],)—x}. Therefore, lim,_,oc Dy (x, hy) = limg_,o Dy (2, by, ) =

PR 0}

limy, 00 Dy (z,a(z,0,hl) — x). It follows by (3.38) and (3.39) that

max {1 — lim Dy (z,hy), lim Dy (x,h,)(p+ rel{z > 0} + axl{z < 0})
n—o0 n—oo

z+2
—A+0)V(x)+ /0 V(z —y)dF(y)} <O0. (3.40)

For any sequence {h,} with h,, < 0 such that lim,, o, h, = 0, and lim,_, Dy (x, hy,)
exists, by repeating the above argument by replacing all x there by = — ¢(z,l, h) (i.e., condi-
tioning on the initial reserve Ry = = — ¢(z,[, h)), where

(.1, 1) z(1—e ™)+ (p—1) Ohe_”)ds x>0andl>0orz=0and 0<1<p
x’? =
r(l—e M+ (p-1) Oh e~ )ds —2 <rx<O0andl>0orz=0and!l>p,

13



and noticing that a(x — ¢(x,l,h),l,h) = z, we can show that (3.40]) is also true. O

Next we will show that the value function V() is the unique nonnegative, nondecreasing
and locally Lipschitz continuous viscosity solution of (B.7]) satisfying a linear growth condition
and the boundary condition V(—2£) = 0. We start with the following comparison principle.

Lemma 3.5 Let u(x) and u(x) be a nonnegative viscosity super-solution and sub-solution,
respectively. Assume that for both u = u(x) and u(x), the function u is continuous on [—£ 00)
and locally Lipschitz continuous on (—£,00), and satisfies u(—2) = 0 and u(z) < 1z + ¢
for some constants ¢y and ca . Then u(x) <T(x) for all z > 2.

From Theorem B.1], Theorem 3.3 and Theorem B.4] we know that the value function V (z)
is a nondecreasing and nonnegative viscosity solution of the HJB equation (8.7)) that is locally
Lipschitz continuous on (—g, 00), satisfies a linear growth condition, and fulfills the boundary
condition V(=2) = 0. Consider any other viscosity solution W (z) of (B.1) that fulfils the
same conditions. Since V' (z) is also a super-solution and and W (x) is also a sub-solution,
by Lemma we conclude that V(z) > W(x) for all 2 > —Z. This leads to the following

theorem stating the uniqueness of the value function as a viscosity solution of (3.7)).

Theorem 3.6 The value function V(x) is the unique nondecreasing and nonnegative vis-
cosity solution of the HJB equation [B.1) that

i) is locally Lipschitz on (=%, 00),

ii) satisfies a linear growth condition, and

i41) fulfills the boundary condition V(—=2) = 0.

As an immediate result of Lemma [3.5] we arrive at the Verification Theorem as follows.

Theorem 3.7 For any strateqgy L € 11, if Vi, is an locally Lipshcitz continuous viscosity
super-solution of HJIB equation [B.1), then Vi, =V, i.e. L is an optimal dividend strategy.

Proof. Obviously, V7, is nonnegative and nondecreasing and VL(—g) =0. Since V;, <V,
it is true that V7, also satisfies the linear growth condition. Therefore, by Lemma 3.5 we know
that Vz, > V. Consequently, Vi, = V. O

Lemma 3.8 Let Iz be the set of admissible strategies such that the controlled reserve Ry is
less than or equal to T for allt > 0. If for some T > 0, u(x) is a nonnegative, nondecreasing
and locally Lipshcitz continuous super-solution of the HJB equation B.1) on (=2,z), then
u(x) > supper. Vi(x) for all x € [-2,7).

Proof. i) We can prove this by showing that for any dividend strategy L € Iz, Vi(z) <
u(x) for x € [-£,7). For any continuous super-solution @ of the HJB equation (3.7) on
(=2,7), consider a function 7(z) with v(x) = 0 for x < —Z, 5(x) = w(x) for x € [-2,7)
and v(z) = u(7) for 2 > T. Consider a sequence of nonnegative functions v,(z) = [*_v(x —
y)ne(ny)dy for x € [-L2, 7], where ¢(x) is a nonnegative, even and continuously differentiable

function with its support included in (—1,1) such that f_ll ¢(x)ds = 1. It can be seen that
vp(z) is nonnegative and nondecreasing, and satisfies

vn(z) < A(T), for = € [—g,f]. (3.41)

Using the standard techniques in real analysis (eg Wheeden and Zygmund (1977)), we can

show that v, is continuously differentiable on [—2,7],
vn(z) converges to u(x) uniformly on [—2,7]; and (3.42)
v),(z) converges to @' (x) almost everywhere. 3.43)
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Noting from Definition B] (ii), 1 < @/(z) < p+r:v[{m>i\)}£a:vl{m<0} u(x) for z such that @'(z)
exists, we can obtain

A+0
1<
<, (z) < p+rel{z >0} +axl{x < O}

vn(z) for z € [—g,f]. (3.44)

From now on in the proof of this lemma, we assume x € [-£,T). By setting v and 7 in
BI4) to be T, and t A T, respectively, and then taking expectation, we obtain

tAT tAT
Eulvn(Rinr)e D] < v, (2) + B, [ / e“ssﬁvn(Rs_)ds} —E, [ / e—édes} . (3.45)
0 0

Notice that under any strategy L € II; the controlled reserve is below or at . Then by (341])
P
we have fORS_JFO‘ vn(Rs— —y)dF (y) < u(x). Hence, by (B3.8), (8.41) and (3.44]), we can obtain

1Ly, (Rs_)| < (p+rRs_I{R,_ >0} +aR, I{R,_ <0})v (R, )

R +"
+(\ + 0)vn (R +A/ s— —y)dF(y)
< (26 4 3M\)u(@). (3.46)

Then it follows by dominated convergence that

tA\T T
lim E, [/ e L, (Rs)ds} =E, [/ e5s£vn(Rs)ds] .
t—o00 0 0

As L, is nondecreasing, by monotone convergence we obtain

tAT T
lim E, [/ e‘sdeS] =E, [/ e‘sdeS] = Vi(x).
t—o00 0 0

Letting t — oo on both sides of (3.43]) yields

0 < vp(x) + B, [ /0 ' e %L, (Rs)ds] —Vi(z). (3.47)

Since under any strategy L € IIz, the controlled reserve Ry < T, by (3.42) and (8:43]) it can
be shown that £, (Rs—) — Lz(Rs—) a.e. —P. Using this and (3.40), by dominated conver-

gence taking limit n — oo on (3.47)) yields 0 < w(x [fT e La( )ds} —Vi(z). Asu
is a supersolution, so Ly(Rs—) < 0 a.e.—P. Then it follows that Vg (z ) < @(x). Consequently,
Viz) = SUP el Vi(z) <u(x). O

Define an operator G by
Gu(z) = p+ral{z >0} +axl{z <0} — (A4 d)u(x)

+A /0$+E u(z —y)dF(y). (3.48)

Theorem 3.9 If for somez € (—£,00), Gy (Z) =0, then V(z) = suppep, Vi(x) on [-£, 7],

where Iz is defined same as in Lemma [3.8.

Theorem 3.10 Let II; be defined same as in Lemma[3.8. If there exists an T € (—Z,00)
such that V'(z) =1, then V(z) = suppep, Vo(x) for x € [-£,7].

15



As an immediate consequence of Theorem 3.8, Theorem [3.9 and Theorem3. 10, we obtain
the following theorem.

Theorem 3.11 If for some T > —2 with either Gy(Z) = 0 or V'(Z) = 1, then for any
nonnegative, nondecreasing and locally Lipschitz continuous super-solution u(x) of the HJB
equation B1) on (—Z,z] which satisfies u(x) < c1 + cox for some constants ¢y and ca, and
the boundary condition u(—2£) = 0, we have u(x) > V(x) on (=£,z]. Furthermore, if for
some strategy L € 1z the function Vi is an absolutely continuous super-solution to the HJB
equation B1) on (—£,z], then V(x) = Vi (x) for all x € (—£,z].

For any y > —2 define Gy(z) = V(z) if <y and Gy(z) = V(y) + =z —y if x > y.

Theorem 3.12 i) If Gy is a super-solution to the HJB equation ) on (y,o00), then
Gy =V on[-£ 00).

ii) If for some & > —L with either Gy (Z) = 0 or V'(Z) = 1, and for some y < z, Gy is a
super-solution of the HJB equation 1) in (y,Z], then Gy(z) = V(x) on [-£,z].

_57

Proof. First we show that G, is a viscosity super-solution to the HJB equation (B.7)) on
(=2,y]. For any fixed z € [-2,y], let ¢ be any continuously differentiable function with
¢(x) = Gy(r) and Gy — ¢ reaches minimum at x. Then by Remark B.I]ii) we obtain

G —Gylx—h G h) -G
lirlesoup () hy(ﬂU ) < nh_)rrgo Dy (z,a(z,h)) — ) < hrfrzlfonf u(@F })L y(x).(3.49)
Notice that lim supy,g w = lim supy,+g W and that lim infy, | 7Vy(x+h}3_‘/y(x)

equals liminfy o w if v € [-2,y) and equals 1 if x = y. As a result, using (3.49)

and lim infy, o w > 1yields lim supy, W < ¢'(x) < liminfy w,
which by Remark [3.1]ii) again implies that V' — ¢ reaches minimum at z. Since V is a vis-
cosity super-solution of (B7), we have max{l — ¢'(z), Ly 4(x)} < 0. Hence, by noticing
Lyg(x) = La,¢(x) for x € (=£,y], we have max{l — ¢/(x), Lg, ¢()} < 0 for z € (-£,y].
Consequently, G, is a viscosity super-solution on (—g, y].

i) If G is a viscosity super-solution on (y,00), then it is a super-solution on (—2£,00). Also
note that G, satisfies the linear growth condition. Then by Theorem B8 i), we have G, >V
on (—£,00). Noticing that G, <V, therefore, G, =V on [-£, 00).

ii) If G, is a viscosity super-solution on (y,Z], then it is a super-solution on (—£,z]. By
Theorem B.IT], we have Gy > V on (—2,z]. Noticing by definition that G, <V, therefore,
Gy =V on (—£, 7| 0

_a’

4 The optimal dividend strategy

In this section, we show that there exists an optimal dividend strategy and the optimal
strategy is a band strategy, that is, the optimal strategy at any time is to pay no dividends,
pay out at a rate same as the premium incoming rate or a positive lump sum, depending
on the current reserve at that time. We also show that under certain condition, when the
reserve is negative, the optimal strategy is to pay no dividends.

We start with the following definition for three sets.
Definition 4.1 Define A = {x € [-2,00) : Gy(z) = 0}, B = {zr € [-£,00) : V/(z) =

o’

1 and Gy (z) < 0}, and C = (AU S)°.

The sets defined above will play a crucial role in proving the existence of and characterizing
the optimal dividend strategy. we can prove the following useful properties of these sets.
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Lemma 4.1 The following properties hold.
(a) A is nonempty and closed.
(b) B is nonempty and left-open. And there exists a y such that (y,o0) C B.
(c) If (zo,z1] C B and xo ¢ B, then xp € A.
(d) C is right-open.

Based on the above three sets and their characteristics, we define the following dividend
strategy, which will be shown to be the optimal one.

Definition 4.2 Let L* be a dividend strategy defined as follows:

(a) If RF" € A, the insurer pays out dividends at the same rate as the premium incoming
rate, 1.e.

dLf =p+ 7R I{R,~ >0} +aR, I{R; <0} if RF € A.

(b) If RE" € B, then by Lemma[f-1] (c) there exists an vo € A with vg < RE" such that
(zg, RE'] € B. At time t, the insurer pays out a lump sum RF — xq as dividends, ie

Li — L} = RF — o if RE € B, where xo = inf{x : (v, RF'] C B}.

(c) If RE" € C, then the insurer pays out no dividends at the moment.

In the following, we prove that the strategy L* constructed above is the optimal dividend
strategy.

Theorem 4.2 The strategy L* defined in Definition [£2) is optimal, i.e. V(x) = Vi«(z)
for all z > —£.

Proof. By Lemma [AT]it follows that there exists some z = inf{z : (z,00) C B}.

Let H be a set of continuous functions f : [-£,00) — [0,00) with f(z) =z — 2z + f(z)
for x > .

Define the distance p(fi, f2) = max,~_» |fi(x) — fo(z)| for fi, fo € H.

Define an operator T as follows: -

St
Ti(z) = E, { / e %%dL} + e 9 f(RE, )] : (4.50)
0
Since S7 is an exponential random variable, by Markov property it follows that for any ¢t > 0,
S1 . t .
Ti(z) = E, [ / e AL + e f(RE); 81 < t] +E, [ / e AL 4+ e 'T;(RET); Sy > t|(4.51)
0 0

Note that

Ty, (2) = Tp,(2)] = [Ele™** (f1(RE,) — f2(RE,)]|

A

< - .
Noting that for any = > z, we have (z,00) C B and z € A , by setting g = z in ([{L52) we
get

Ti(x) =2 —x+ Ty(zx) for xz € B. (4.52)

As a result, Ty € H for all f € H. Obviously, Ty € [0,00) for all f € H. Therefore, by ({52
it follows that 7 is a contraction and has a unique fixed point. By the dynamic programming
principle and ([@50), it is obvious that Vi is a fixed point. So to prove V' = V- it is sufficient
to show that V € H and V is also a fixed point.

Obviously, V' € [0,00). Moreover,since (z,00) C B, then V/(z) =1 for all z > z. As a
result, V(x) = V(z) + z — z for all x > z. Consequently, we can conclude that V' € H.
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Assume = € A. By the definition of L* , we can see that dL} = (p+rzl{z > 0}+azl{zr <
0})dt for all time ¢ before the arrival S; of the fist claim. Therefore, by (A50]) we obtain that

Ti(z) = E;,;[/OS1 (p+ rel{z > 0} + axl{z < 0})e *ds + e 251V (z — U})]

rl{x al{z > oty
p+rliz 2 AO i Jg fe<0) /0 Ae Me 0t /0 V(z —y)dF(y)
(p+rl{z>0}+al{x <0})+ )\foﬁ_% V(z —y)dF(y)

= O forz e A.  (4.53)

It follows by (£53) and the equality Gy (z) = 0 that

Tv(z) = V(x) for x € A. (4.54)

For any = € B, we can find an zy < x such that (xg,x] C B and g € A, which implies
V'(y) =1 for y € (xg,z]. Therefore, V(z) = x — x¢ + V(z0). By the definition of L*, we
know that a lump sum of x — zy will be paid out as dividends immediately. Then it follows

from (£50) and (4.54)) that
Tv(x) =2 —x0+ Tv(x0) =2 — 20 + V(20) = V() for = € B. (4.55)

Now we look at the case x € C. Since C is right open, there exists an x; such that
(r,z1) C C and x1 ¢ C. As B is left open, so z; € A. By the definition for L* we know
that given the initial reserve, the insurance company pays out no dividends until the reserves
x1 or the arrival (S7) of the fist claim. Consider a function a(-) which satisfies da(t) =
(p+ra(t)l{a(t) > 0} + aa(t)I{a(t) < 0}dt and a(0) = =. Recall that to(x,z1) is the time it
will take for this dynamics to reach x;. It can be seen that given Ry = x, Ry = a(t) for all
x < Sy Ato(x,x1), and Rg, = a(S1) — Uy if S; < to(x, x1). Then by setting ¢t and f (L51]) by
to(z,z1) and V, respectively, and by noting Ty (x1) = V(x1) because x; € A, it follows that

Tv(m) = Ex [67551‘/(&(51) — Ul)I(Sl < t0($,$1)) + 675t0(m’ml)7dv($1)[(51 > to(x,xl))
to(z,z1) a(t)+2
= / Ae~Mem0tdt / V(a(t) — y)dF (y) + e~ OH0@z)y () (4.56)
0 0

Let D= {z > 0:V/(x) exists } and t € D := {y : a(y) € D}. As V(z,) is differentiable
almost everywhere, the Lebesgue measure of D€ is 0. Noting that V' (a(t)) is differentiable for
a(t) € D, the complement of D has a zero Lebesgue measure, too.

Notice that for any = € C, if V'(y) exists, then

y+2
(p+raxl{z >0} +axl{x < O0}HV'(y) — A+ )V (y) + )\/O V(y—z)dF(z) =0.
(4.57)
It follows from (4.50]) and (4.57) that

T = [ O (A4 8)V (alt)

DN(0,to(x,x1))
—(p +ra(t)I{a(t) > 0} + aa(t)I{a(t) < 0})V'(a(t)))dt
+€_(>\+6)t0($’$1)‘/(1’1)

_ / d(e= OV (a(t)) + e~ O Do)y (z,)
50(0,t0($,$1))

_ V(m) _ ef()\Jré)to(:v,:vl)V(xl) + 67()\+5)t0(m,11)v(x1)
= V(z), forzxeC. (4.58)
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Combining ([4.54), (£55) and ([A58) shows that V(-) is a fixed point. This completes the
proof. O

Now we have shown that like the Cramér-Lundberg cases respectively with and without
interest, the optimal strategy is also a band strategy in the absolute ruin case. Intuitively,
we would think that under the optimal strategy, there should be no dividends if the company
is in deficit. In the following we will prove this rigorously.

Lemma 4.3 For any fized xo € (—£,00), there exists a unique in (xq,00) differentiable,
strictly increasing and positive solution u on [xg,00) to the equation

0 = (p+rzl{z >0} +axl{z <0} (z) — (A + a)u(z)
z+ 2

T—T0 >
—i—)\/ u(x —y)dF(y) + )\/ V(z —y)dF(y) (4.59)
0 T—T0
with boundary condition u(zg) = V(xo).
Proof. First we show that there is a such solution on [zg,xo + h) for h = Z%W)

Let H[xo, xo+h) denote the set of continuous, increasing and positive functions on [zg, zg+h).
Define an operator T that for any u € H[xo, zo + h),

To(a) :/ A+ 0Juls) = A Jg v [ Vs~ y)aF(y Y s + V(o) (4.60)

p—i—?“s[{s ZO}—l—asI{s <0}

We will show that 7 is a contraction on H[zg, zo + h).
For any u € H[zg,zo + h), as both u and V are increasing and u(xg) = V (z0), we get

A /OHCO u(x — y)dF(y) + A /Ha V(z —y)dF(y)

T—x0

x—1x0 z+2
< ) /0 w(@)dF(y) + A / w(@)dF(y) < Mu(z).

o
Define [[u]| = Sup,e(zq zo1n) [u(2)]-
It follows by (4.60) that for any x € [z, x0 + h) and u1,ug € Hlxo, zo + h),

‘7;11('%') - 7;2(1')’ < ds

A+ O)[Jur — ua]|20H" 4+ X|uy — ug|[Z0"
/m p+rsl{s >0} + asl{s < 0}
(2)\+5)h||u1 —UQ||x0+h 1
p+axol{xog <0}

Therefore, T is a contraction on H[zg,zo + €). As a result, there exists a unique u €
Hlxo, xo + €) such that u(x) = T, (x), i.e.,

_ A+ 9d)u )\fs Y )\fs ;Vs— y)dF(y)
ul) = /mo P+ rsI{s > 0} + asI{s <0} ds +V(zo),
which implies
O Bule) = A e — () = A [ Ve = )R ()

p—i—mc[{x >0} + axI{x < 0}
for x € [xg,z0 + h).

This completes the proof of the existence and uniqueness of an positive,increasing and differ-
entiable solution to (6) on [zg,xo + h).
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Similarly, we can prove the existence and uniqueness of a solution to (6) on [zo+h, xo+2h)
fulfilling the required properties. Repeating the above process, we can prove the existence of
a unique solution to (6) on [zg,c0), which is differentiable, increasing and positive. O

Theorem 4.4 (i) For any x € A, V(z) is differentiable and V'(x) = 1.
(it) For any (zg,x1) C C, V(x) is differentiable on (xo,x1), and V'(x) > 1 for x € (xg,x1).

Proof. (i) Consider any = € A. Choose sequences k" > 0 and h;, < 0 with lim,, .o, hi¥ =
V(z+hi)—V(z) V(:erh) V(z) V(zt+hg)—V(z) _
ha s a
lim supy, o W As x € A, L,(x) = 0. Then it follows by (3.8)) and Theorem B.4] (ii)
that lim,_,c Dy (z, hif) < 1, which implies lim sup,q W < 1 and limsupy, W <
1. As liminf;_,q w > 1, we conclude that limy_ w = 1.
(ii) Use proof by contradiction. Note that for any x € C N (—Z£,0), if V() is differentiable,
then 0 = (p + rzl{z > 0} + cwl{z < 0})V'(x) — (A + )V (2) + A [ V(z — y)dF(y), which

can be rewritten as

0, such that lim,, = limsupy and lim,, o

0= (p+razl{z >0} +axl{zx <0})V'(z) = A+ )V +)\/ y)dF (y)
z+2
+A / V(z —y)dF(y). (4.61)

Then by (A6I) and Lemma 3] we conclude that V(x) is equal to the unique solution of
#359) on (zp,zp + h) and therefore is differentiable on (xg,x1).

By Theorem B.2] we know that for any = € C, if V/(x) exists, then V'(z) > 1. By the
definition of the set C, we know that V’(x), if exists, can not be 1. If V'(z) = 1, then =
belongs to either A or B. Therefore, V'(z) # 1 for all x € (zg,21). O

Theorem 4.5 Assume o > X+ . The following statements hold.
(i)AN (=£,0) consists of isolated points only.
(ii) For any xo € AN (—=£,0), we can find an h > 0 such that (xo, 20+ h) C B.
(iii) BN (=2,0) = 0.
Proof. Consider any z1 and zp with —£ < x; < 25 <0 and [z1,22) C A such that V(x)

is differentiable on [x1,22), V'(z1) = 1 and

(p+ax)V'(z) = A+ )V )\/ y)dF (y) for z € [z, z2). (4.62)

By setting x in the above equality to be x1 and 1 + €, respectively, and using the newly
obtained equations, we can obtain that for any ¢ € (0,22 — x1),

(p+ ax)(V'(z1 +¢) = V'(21))

= —aV'(x1+e)+(A+9)

Vi + 52 — V) (o), (4.63)

z1+5+a zyk% -
where I(z1,¢) = £ Vi fe- y)dF(g —fo " V(@1=y)dF @) By noticing that V'(z1) = 1, V'(z1+

e) > 1, I(x1,e) > 0 and A+ 6 < «, from (LG3) we obtain (p—i—axl)w <
—a+ (A+0)(1+ ole )) < 0 for small . As a result,

V'(x1+¢) < V'(z1) =1 for € (¢ > 0) small enough. (4.64)
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(i) Use proof by contradiction. Assume that 29 € AN (—£,0) and it is not isolated. Then,
as A is closed, we can find an h > 0 such that either [z, zo+ h] C A or [xg— h,zo] C A. Use
[1, z2] to denote [xg— h, xo] if [xo—h, o] C A, and [zg— h, z¢], otherwise. Then [z1,x2] C A.
It follows by Theorem [4.4] (i) that

V'(z) =1 for x € [z, za]. (4.65)

Therefore, according to the definition for A, we have Ly (x) = Gy (x) = 0 for all x € [z, x9],
which is equivalent to (p + az)V'(z) = A+ )V (z) — A foﬁg V(z —y)dF(y) for z € [x1,x2].
Then by (L64) it follows that V'(z1 +¢) < V'(z1) = 1 for small positive &, which is a
contradiction to (4.65)).

(ii) Assume that there exists an zg € AN (—2,0), such that we can find an i > 0 satisfying
(zo,x0+ h) € B. Then (z,zo + h) C C, because A consists of isolated points only and both
B and C are half open. Hence, it follows by Theorem 4] (ii) that V' (x) is differentiable on
(xo,20 + h) and V'(z) > 1 for x € (x9,z¢ + h). Hence, V is a solution to the HIB equation
B7) and therefore, (£62) holds for x € (zg,zo + h). As z9 € A, we have V'(zo) = 1, which
along with the definition for A implies that (4.61]) also holds for = . Then by setting x;
and 9 in ([L64]) as x¢ and x¢ + h, respectively, it follows that V'(zg +¢) < V'(zg) = 1 for
small positive e, which is a contradiction to the fact that V'(xg +¢) > 1.

(iii) Assume BN (—£,0) # ¢. Then there exist zg and x;, such that —2 < 29 < z1 < 0,
[x0,21) C B and zy € A. Therefore, by Theorem [£4] (i) and the definition for B, we get
V/(xz) =1 for x € [xg,x1), which implies V(z) = 2 — z¢ + V (x0) for z € [xg,21). Note that
Gy (zo) = 0. Then for z € (zg, z1),

Gv(z) = Gy(x)— Gy(xo)
a+8 zo+2
= a(r—20) — (A +8)(x — 70) + A /0 V(e — y)dF(y) — A /0 V(2o — y)dF(y)
> 0, (4.66)

where the last inequality follows by a > A+ and the fact that V is nonnegative and increas-
ing. Since x € (xg,z1) C B, we have Gy (z) < 0, which contradicts the inequality (£66). O

Theorem 4.6 Ifa > \X+4, (-£,0) CC.

Proof. By Theorem (iii), it follows that
(—g, 0)N B = 0. (4.67)

So it is sufficient to show that (—£,0) N4 = (. If this is not true, then we can find

«

an zg € AN (—£,0). By Theorem 3] it follows that there exist an h > 0 such that

a’

(wo, 20 + h) C B, which contradicts (@87) by noting zo + h € (—£,0) for small i > 0. O

Remark 4.1 Theorem [{.3 and Theorem [[.6] together imply that if o« > X+ §, under the
optimal strategy L* the company will pay no dividends when the reserve is negative. In other
words, if a > XA+ 9 it is optimal to pay no dividends when the reserve is negative.

5 Conclusion

We studied the dividend optimization problem of an insurance corporation, of which the sur-
plus is modeled by a compound Poisson model with credit and debit interest. The company
earns interest when the reserve is positive, and can refinance to settle its claims when the
reserve is negative but above the critical level. The company controls the dividend pay-out
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dynamically and seeks to maximize the expected total discounted dividends until ruin. We
proved that the value function is the unique viscosity solution satisfying certain conditions of
the associated Hamilton-Jacob-Bellman equation, that the optimal strategy is a band strat-
egy, and that it is optimal to pay no dividends when the reserve is negative. This result
provides theoretical justification to the regulation of no dividend payments when the surplus
is in deficit.
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APPENDIX

In this appendix, we present the proofs to Lemma [35] Theorem [3.9], Theorem B.I0 and
Lemma (4.1

Proof of Lemma We employ a proof by contradiction.
Assume that there exists a xg € (—£,00) such that u(zg) > w(xzo).
For any constant v > 0, define functions for z > -2,

Uy(7) = e ""u(r) and w,(z)=e "u(z).

By the fact that both the functions @ and w are locally Lipschitz continuous and bounded by

a linear function, it can be easily shown that %, (r) and w. (x) are both bounded and Lipschitz

continuous on (—g, 00), too, which implies that there exists some constant m > 0 such that

T - u —u.(x

T(Y) — (@) <m and _—V(y) 1y (@) <m forxz,y€ (—B,oo). (A-1)

y—x y—x o'

For p > 0, consider a function ¢, : [-£,00) x [-£,00) — R given by

— 1% 2 2m
Y) = - —=(r—y) ' - . A-2
¢p(m y) Qy(x) uﬁ(y) 2($ y) pg(y —-$)2<+-p ( )
Note that we can find a v1 > 0 such that . (zo) — @y (z¢) > 0 for all v € (0,71], and that
w(—L2)=u(-2) =0 and lim, o0 u(x) = lim,;_,oc u(x) = 0. Then we can define

M = max (u,(z) —Uy(z)) and M, = max ¢,(z,y). (A-3)

m
r>-2 zy>—2
[e3 [e3

Then 0 < M < oo and M has a maximizer denoted by x*, and M, also has a maximizer,
denoted by (z,,y,) here.
Noting that

M, > ¢pp(z*,2*) = M — —, (A-4)

then it follows that

liminf M, > M > 0. (A-5)

p—00

Let (pn)nen be a sequence tending to oo as n — oo such that (z,,,¥,,) converges as
n — 0o. Use (Z,7) to denote the limit of (z,,,,,). We will show in the following that

T=7q. (A-6)
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If this is not true, then |z — y| > 0. By noticing

2m
p%(ypn - xpn)Q + pn’

_ p

which is a contradiction to (A=H).
Next, we will show that for large n, z,,,¥,, € (=%, 00). For any constant & > —2 with

u () <y (2), we have ¢,(2, %) = ., (T) — Uy (2) — 27m < 0, which indicates T = § # &. Note

4

that u(—2) =u(—£) = 0. We can conclude immediately that
_ p
T=9y#——. (A-8)

By observing that

lim ¢,(z,y) = lim (gv(x) — Uy (y) — g(x —y)? - 22—m> = —o0,

y—00 y—>00
we conclude that
y < oo. (A-9)
Combining (A=@)), (A-8) and (A-9) yields z =7 € (- £, c0).

As z,, and y,, converge to T and ¥, respectively, we can find an N such that for all
n Z Nl,

Tpos Yo € (—2,00). (A-10)

Now we introduce two more functions

2m

Gola) =T () + 50 = o) + =t Gyl i),
and 5
p m
SDp(y) = Q»y(yp) - §(xp - y)2 - pQ(xp — y)2 i - ¢p($p,?/p)-

It can be easily shown that for all n > Ny, (,, and ¢,, are both continuously differentiable.
Furthermore, u. () — (p, () = ¢p, (T, Yp,) = Pp, (Tp,,, Yp,) attains its maximum 0 at z,,, , and
Uy (Y) — Ppn (YY) = —bp, (Xpns ¥) + Gp, (XpnsYp,) reaches its minimum 0 at y,,. Since u and
u are respectively viscosity sub and super-solutions of (8.7]), by the definition for viscosity
solutions we can see that u, and wu, are respectively viscosity sub and super-solutions of the
following equation

max {1 — €7 (yu(z) + u'(z)), (p + ral{z > 0} + axl{z < 0}) x
(yu(z) +u'(2)) — (A + du(z) + A /0HZ u(z —y)e WdF (y)} = 0.
Therefore, by Definition we can obtain that for n > Ny,
max {1 — e (v, (z,,) + C;)n (xp,)), 0+ r2p, I{x), >0} 4+ ax,, [{z,, <0}) X
S
) + G ) = O ) 42 [ (a, — ) HaE @) 2 0,

(A-11)
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and
max {1 — €% (Y, (yp,,) + €, Upa))s (P + 190, H{Yp, > 0} + ayp, I{y,, < 0}) x

2
(Vy Ypn) + 2, Wpn)) — A+ 0)T4 (yp,) + A /0 ’ Uy (Y, —y)e WdAF(y)} <O0.
(A-12)

Use By, By to represent the first and second terms in the curly brackets on the left-hand side
of (A=), respectively, and Dy, Dy to represent the first and second terms on the left-hand
side of ([A=12)), respectively. Then max{Bj, Bo} > 0 > max{Di, D2}. x So at least one of the
inequalities By > Dy and By > Dy holds.

(i) First, assume that By > Dy is true. Noticing that

4m(ypn - xpn)
(pn(ypn - xpn)2 + 1)2

by substitutions for (; (z,,) and ¢/, (y,,) by (A=13), it follows immediately that

Con (@) = P Upa) = Pu(@p, = Ypo) + (A-13)

(2 +1Yp H{Yp, = 0} + ayp, I{y,, < 0}) X

4m(ypn - 'Ipn)
(pn(ypn - xpn)2 + 1)2
- (p + rxpn]—{xpn Z O} + axpnj{xpn < O}) X

Am(y,, — xp,) )
(Pn(?/pn - $pn)2 + 1)2

<7ﬂ’y(ypn) + on(Tp, — Yp,) +

<wv(fﬂpn) + Pn(Tpn = Ypn) +
+(A+9) (ﬂy(xpn) - ﬂv(?/pn))

xﬁn"'% yﬂn+§
< A /O u,(,, —y)e WdF(y) — /O Uy(Yp, —y)e WdF(y) | . (A-14)

Notice that ¢, (., Zp,) + Gpp Ypns Ypn) < 200, (TpnsYp, ), 1.

_ _ dm
ﬂy(xpn) - u’Y(xPn) + @y(ypn) - u'Y(yPn) - P
n
— Pn 2 2m
(100) = 0) = G = 9 =

Rearranging terms gives

4m(ypn B xpn)z
pn(ypn - xpn)2 + 1

IN

Pn ('Ipn - ypn)2

S 2m‘ypn - xpn‘ + 4m(ypn - xpn)27

where the last inequality follows by (A-I]). As a result,

2
Yon = Tpn| < p_7m4m for pp, > 4m. (A-15)

n

As u, and %, are both bounded, taking limits on (A-14)) yields

v (p+rzl{z > 0} + azl{z < 0}) (u,(z) — u, (7))
+(A+0)(u (T) — Uy (T))

IN

+2
A (/ (u, (T —y) — Uy (T —y)) e_“/de(y)) for v >0 (A-16)
0

< MM for v € (0,7), (A-17)
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where the last inequality follows from (A-3]).
By choosing v < min {m, 'yl} , it follows immediately from (A-I7)) that

u (7) — Uy (7) < M < M. (A-18)

A+ 3

On the other hand, from (A-5) we get M < liminf, . M, < lim, o M,, = u, (%) — @, (T),
which contradicts (A-18]). Consequently, By > Do does not hold.

(ii) Now, we look at the case By > Dj. Then we have

€ (i (€p,) + €, (%)) < €79 (VY (Yp,) + 0, (Ypn))- (A-19)
It follows immediately from (A=13]) and (A=19]) that

4 —
QT () — YT (yp,) < %(ypn — @, ) (€W — €en). (A-20)

Let Ny(e) be a positive integer such that for all n > Na(e), p, > 4m.
Since (yp, — p, )(€"Yn — €"%n) is always nonnegative, then from (A-20) we can see that for
all n > Ny(e),

v, (xp,) — 1y (y,, ) <0, (A-21)

Recall that x,, — 7, y,, — ¥ and T = 3. There exists an integer N3(e) such that for all
n > Ns(e),

|e7%en — 1| <€, | — | <€ and [Uy(z),) — Uy(Yp,)| < €

Then for n > N3(e), we have

(2, ) (1 = €10 =, () (1 — €79)

= E«/(xpn)(l — ) =y (2, ) (1 = 797m) + (Wy (p,,) — Uy (Yp, ) (1 — €7¥0m)

< (7p,) (1 — € +€) =Ty (Tp, ) (1 =" —€) + ¢

< M@Q-e")+ (Hy(@)n) + Uy(2p,) + 1)e, (A-22)

where the lat inequality follows by (A-3)).

Since the functions u, and u, are bounded, it can be easily shown that

Me'®
sup, (u, (z) + 1y (2) + 1)

From <M), (E)a (m), (m) and (m)a it follows that for any € < sup,, (u (z)eJrz (z)+1)
z Uy v
and n > maX{NQ(E),]\fg(E)},

> 0. (A-23)

2m —
M < M,, + p— = Qy(xpn) — Uy(Yp,)
n

+u, (2p, ) (1 — €777 ) =Ty (yp, ) (1 — €7¥m)
< M1 =€)+ (uy(xp,) + Uy (2),) + 1)e < M,

which is an contradiction. So B; > D; does not hold.
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Combining (i) and (ii) shows that B; < D; and Bs < Dy. This is a contraction to the
fact that at least of the inequalities By > D; and By > Dj holds. As a result, u(z) < u(z)
for all x > —g. This completes the proof. ]

Proof of Theorem [3.9] Assume that z € (—£,7].

i) Let II(n) denote the set of admissible strategies such that if the initial reserve z < z,
the controlled reserve will always stay below or at Z until the arrival of the nth claim.

We will show that for any n € N and = € (=£,7], V(2) = suppeny,) Vi() by induction.

Noting that I1(0) = II, we get V(z) = suppcro) Vo (2)

Assume that V(z) = suppcry,—1) Vi (z) for some n > 1.

Let L(»—12) ¢ II(n — 1) be an §-optimal strategy for the reserve process with the initial
value x, that is

0< V() = Vitnorm(z) < = (A-24)

NN e

Let 77 denote the first time that the reserve process under strategy L reaches z, and 7~
the arrival time of the next claim occurring after time 7%.

Then given the initial reserve x (x < ), we can construct an §-optimal strategy L) ¢
II(n) as follows. Apply the strategy L(=12) until the first time the controlled reserve reaches
T, then pays out dividends at a rate equal to the premium incoming rate to keep the reserve at
the level Z until the arrival of the next claim. After that, we apply the strategy L LR L)
to the shifted process G%L(n,z)R.

Recall that S7 and Uy are respectively the arrival time and the amount of the first claim.
Note that for the case with initial reserve Ry = Z, under strategy L(™*) we have

L g, RSI:(T—Ul)\/(—g) and

R, =z, dL,ﬁ"’f) = (p+rzl{z > 0} + azl{z < 0})dt for t < 5.

Hence, by noticing the fact that ruin will not occur before the arrival of the first claim, i.e.
T > Sy, and that V(—2£) = 0, we obtain that given the initial reserve z,

S1
Vime(Z) = Ez [/0 e~ (p+rzl{z > 0} + azl{z < 0})ds

_ _ p
+e %% VL(n—l,(ifUl)\/(fg)) <($ -Up) v (_a)> }

1
= — rl{ix > rlix
>\+5(p+rxf{x_0}+axf{x<0})

Y T+2
+)\—+5 ; Vim-1,-4 (T — y)dF(y) (A-25)

It follows by [B3.48)), (A=24)), (A=25]) and assumption that Gy (Z) = 0 that
1
Vimn () > ——=@+rzl{z >0} + azl{z < 0})

A+
T+2 €
e g MUCEMES )
> V(z) - % (A-26)

Note that for any fixed 2 € [-£,z] and for k =n — 1 and n, we have

TL(kﬁC)

Vika(2) = Eo / e 0sqrka), 2L o
0

5 (k,x) (k,x)

FE e EYY < TV s () + Egle 00725 > 1 (A27)
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From the construction of the strategies, we can see that given the initial reserve x,
FLOD LR nd Lg"’l“) = Lg"*Ll“) for s < FLm (A-28)

By using (A=27) for k =n — 1 and n, and (A=2])), we obtain

7L p(ne) _ _
Vit (€) = Vi1 (2) = By |77 ol <T| (Via (&) = Vi1 (T)) .

(A-29)

Note that by the definition of L(®*~1%) and (A=26)) we have

V(Z) > Viorn (2) 2 V(@) — = and V() = Vion (2) > V(7) -

. (A-30)

DO ™

which implies

@)

[\)

Combining (A-24)), (A-29) and (A=31)) gives V} (n) (z) > V(z) — €. Therefore,

V(z) > sup Vi(z) > Vi (z) > V(z) —e.
LeIl(n)

Consequently, letting € — 0 gives us V(z) = supepy, Vo(z) for » € [-£,7].
ii) Now we try to find a strategy L € Iz such that it is e-optimal.
Noting that V(Z) > 0, we can find a ¢; large enough such that

pap— A-32
e < V) (A-32)

Then for this fixed ¢1, choose an n large enough such that

e*)\h k €
PN (1) 2m) =) k(!Atl) S W@

k>n

(A-33)

Define o to be the first time that the controlled reserve process under strategy L reaches
7 after the arrival of the nth claim (S,,).
Let L) be any S-optimal strategy in II(n) given the initial reserve x. Given the initial

reserve x, construct an dividend payout strategy f/(x) such that the strategy L(™*) is applied

before time JL(R’I), then at time ¢t = UL(n’z), a lump sum of T + £ is paid out immediately,
and thereafter no dividends will be paid out.

Then, we have

L(n,z)
7 n,r _ (n,@) n,r
Vi@ = E /0 e AL oM < T | 4 Byl oM )<T](f+§)
T (n,)
+E, [ / e~ 0L, o B > )| (A-34)
0

Note that for any initial reserve x < z, the strategy f/(x) is same as L% until both the
controlled reserve under the former strategy reaches z for the first time, which implies

oL@ = L™ and Li(z) = LE"’I) for t < o™
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Noting that (A=27) also holds for the strategy L) here, by (A=34)) we get, for = < Z,

_ O_L(n,x) (n,z) _ p _

> —E,le V(). (A-35)

As S, < o™ we have {JL(WC) <t1} S {Sn <t1} C {N(t1) > n} for x < z. Therefore,
for any = < z,

{o"" < 0o} c {oP™” > 1} U{N (1) > n}. (A-36)

Then by (A-32)) and (A-33]) we have

(n,x) n,r _
Eofe %" ot > 1] + Eyle

)

< e ™M 4 P(N(t) >n) <

(n,z)
Ex[e—éaLnx]

IN

It follows from (A-33]) and (A=37) that for = € [-2,7]

Vi (@) = Vina (2) — 5 > V(z) —¢ (A-38)

DO ™

€

where the last inequality is due to the fact that L(™%) is an s-optimal strategy.

Noting that f/(x) € Iz, the above inequality implies

sup Vi(z) > V(z), ze€[-2.7).
Lellz (e}

This concludes the proof. O

Proof of Theorem [3.10] It is sufficient to show that for any e > 0, there exists a strategy
7 (@) B
L € 1Ilz such that

Ve (z) 2 V(z) —eforall z € (—£,1). (A-39)
For a positive € < 4V (z), define

_ p+rZl{ZT > 0} + axI{T <0} In 4V (z)
N 5 e

Ae) (A-40)

AQ g g - Vi) V(@)

n Ty — X

~1. (A-41)

T, = T —
It can be shown that z,, < T and z,, — T. Since V/(Z) = 1, we have lim,_, hy, = 0.

Moreover, notice

on on
lim (_7%) I{mm(w) 17 < 0)
n—oo \ T + P ar +p

_ exp{ —0A(e) }
p+rzl{T >0} +axl{ZT <0} )

Hence we can choose a ng such that

Sng Sng
Txpo P\ 7 i QLp, + P\ @ i
R Hz >0 _— I 0
(TE—}—p) 7= }+<0z§+p> {7 <0}
—3A(e)
<

€
- eXp{p—i—?ﬁI{E >0} + aZl{T < 0}} * 4V (x)’

(A-42)
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and

€

8A(e)

Py < (A-43)

For any « > —g, let L) be a 5—-optimal strategy given the initial reserve x, that is
0

€

Viow (@) =2 V() - (A-44)

8no’
Let 7% denote the first time that the controlled reserve process under strategy L reaches
T starting from an initial reserve below Z.
For z < T, define a sequence of strategies {L("’x)}nzl recursively as follows: L) is
a strategy given the initial reserve x that the insurer pays dividends according to strategy

L(=1%) until the reserve reaches Z for the first time (TL(n_l’x))
L(n—1z

, pays out a lump sum of
T —Tp, at time 7 ), and thereafter employs the strategy L™~ 1%m0) to the shifted process
HTL("—LUC) R.

It can be shown that for all n, L TL(O’Z), and Lgn’x) = Lgo’x) for s < L0 Then

we have for z € (—2,7] and n =1,2,---,

TL(O@)

Vima (x) = Eg / e~034L(0), 7Lt

0,x)

<T

(STL(O,x) ) TL(O’I)

+El‘[e_ 9 < T] (VL(n—l,an) (xn()) + f - .%'no)

T
+E, [ / e0sqrin=Lta), L 5 (A-45)
0

Using (A-44)) for x = z,, and Z, (A-45) for n = 1 and the second equality in (A-41]), we get

Vi (@) = Vi ()]
_erL0®)  p0.) _ _
= |E.le 0T <T] (3: = Zng + V 0.n) (Tng) — V0 (m)) |
< |§ — Tng — V(E) + V($n0)| + V($n0) - VL(Ovzno) (xno) + V(E) - VL(O,E) (E)
€ < 3e

< P (T — ) + Ing = 8ng’ (A-46)
where the last inequality follows by the first equality in (A-41]) and (A-43).
Therefore, from (A=45)) we have for z € (—£,7] and n > 2,
_ L(O,z)
Vi) (@) = Vi (@) < Eule ™ )V, t0m10m0) (Tng) = Vi n=2.2m0) (Tng)]
3e
< Viteng) (Bng) = VE©wng) (Tng)| < Sng’ (A-47)
Consequently, by (A-44]) and (A-47])
no
V(@) = Vg (@) = V(@) = Viow (@) + D (Vi1 () = Vi (2)) |
n=1
€ n 3e < €
8ng 8ng — 2

Define 7 = inf{t > 0 : RF"” > 2}, where RE"™ represent the controlled reserve
process under strategy L(0:%).

Under strategy L(m0:) i order to exceed Z, the controlled reserve process with initial
reserve T, should go from z,, up to z for at least ny times. Note from the dynamics (2.1])
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that it will take at least to(zy,, %) (defined in ([B.3])) for this reserve process to reach z starting
from x,,. Therefore, T > ngto(zn,, Z). Consequently, it follows by [B.3) (A-40), (A-41) and
(AT2) that

EI 67 < E —6n0t0(l‘n 7j) < ¢ .
e < Ele ’ ]—QV(DZ)

(A-48)

Next, we construct a strategy L(z) through L(m0:%): pays dividends according to the
strategy L("0%) before time 7 (the time that the reserve process reaches 7 for the first time),
pays out a lump sum of z + £ at time 7, and thereafter pays no dividends.

Then we have

Vi) () = EI[/O 675sdljs(x); T<T)+ Ez[efﬁ; T<T)|(z+

—i—Ex[/OT e %dLy(z); 7 > T). (A-49)

RIS

)

Notice that

T T
Voo () = Egf / e AL 7 < T 4 By / e 5dLmo®). 7 < T
o )

T
+E, / e dLmo), 7 > 17, (A-50)
0

and

T
E.[ / e~ AL 7 < T) < Ele 7|V (z). (A-51)

Since Lg(z) = L") for s < 7, it follows from (A-49), (A-50)) and (A-51)) that for z € (=2, 7],

Vi) (1) = Vimow (2) = Exle™7] <az + g - V(f)) > —E,[e %V (z) > -5,

where the last inequality is due to (A=4S]).
So L(x) is the desired strategy. O

Proof of Lemma[4.T] Apply similar arguments as in|Azcue and Muler (2005) and |Albrecher and Thonhause
(2008).

(a) Since Ay (z) is continuous in z, A is closed.
(b) (i) To prove that B is left-open, it is sufficient to show that for any = € B we can find
an h > 0 such that for any y € (x — h,z), V/(y) =1 and Gy (y) < 0.

Note that V'(z) = 1 for x € B and G'(x_h) (y) = 1, and that that p+ryl{y > 0}+ayl{y <
0} is increasing in y. Therefore, it follows from ([B.8]) that for any y € (z — h, ),

La, ,(y) < Ly(x)=A+8)(V(z) - Genly)) +

y+2 z+2
A ( /O Gy — w)dF(w) /0 Vie— u)dF(u)) L (A52)

Noticing Ly (z) < 0, Go_p(y) = V(y) for y < x — h, and limy_,0 Gy—n(y) — V(x) for
y € (z — h,x), it follows from (A-52)) that

L, ,(y) < 0 for small h > 0. (A-53)
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This along with the fact that G/,_,(y) = 1 for y > x — h implies that G,_j, is a viscosity
super-solution to (B.1) on (z — h,z]. Then by Theorem B.12] (ii), we have V(y) = Go—n(y)
for all y € [—£,2]. As a result,

V'(y) = GL_,(y) =1, for y € (x — h,z]. (A-54)

Combining (A-53]) and (A-54]) implies (x — h,x] C B. Therefore, B is left-open.

(ii) To prove that there exist a y such that (y,o00) C B, it is sufficient to show that we
can find a large enough y > 0 such that Lg, (z) < 0 for all # > y, because if G, () of this
kind is a super-solution on (y,00) and therefore V'(x) = G () = 1 for = > y.

Noticing that Gy (z) is nondecreasing in x, and that Gy(z) = z—y+V(y) and V(y)—y > £
for x > y, we obtain that for x >y > 0,

z+2
Lo(@) = prra— (0G0 +A [ Gyla - n)AF)
0
< p—(5—r)x—5y—5£ < 0 for large y,
a

where the last inequality follow by noticing & > r.
The existence of y also indicates that B is not empty.

(c) Noticing that V(—2) = 0, by the definition of G [848]), we obtain Gy (—2) = 0, which
implies —£ € A,

Assume that x1 > xg > —2, (20, 21] C B and 2¢ ¢ B. We will show in the following that
g € A.

If V'(z9) = 1, then from the fact that o ¢ B and Ly < 0, we know Gy (z9) = 0.
Therefore, zg € A

Now assume, on the other hand, V'(zg) # 1. It follows form the fact (zg,z1] C B that
V/(xz) =0 for all x € (zg,x1], which implies

V(z) = V(zo)

lim =1. (A-55)
xlxo Tr — X0
Define v v
a = lim inf M.
zTxo Tr — X

By Lemma we know a > 1. We distinguish two cases: 1. a > 1 and 2. a = 1.
Case 1: Assume a > 1. Then for any b with 1 < b < a, we have

zlxo T — o ztxo xr — X

Since V' is a viscosity sub-solution, by Remark B3] (i), it follows that there exists a contin-

uously differentiable function ¢ : (—2,00) — R such that V — ¢ reaches a maximum at xq

with ¢/(x¢) = b. Therefore, by Definition B.2 (i) it follows that
max {1 — b, (p + rxol{xo > 0} + axel{xo < 0})b— (A + )V (z0)

zo+2Z
I / V(2o — y)dF(y) b >0,
0

which implies
xo+L
(p+raol{zy > 0} + axol{xg < 0})b — (A +0)V (zp) + )\/ V(xzg —y)dF(y) > 0.
0
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Taking limits b — 1 gives Gy (z9) > 0. Since Gy (z) is continuous in = and Gy (z) < 0 for
x € (xg, 1], it can be seen that Gy (x¢) = 0, which implies zy € A.

Case 2: Assume a = 1. then we can find a sequence {h,,} with h, | 0 such that
V(xO) - V(xO — hn)

hnrggf W =1. (A-56)
Define
— —h,
an = Viwo) = V(o ) _ 1, and A, = {z € [0,h,] : V() exists and V'(x) > 1 + 2a,}.

b,

By Theorem we know that a, > 0.
i) If there exists some n such that a,, = 0, then we have

V(zo) = V(z) =29 —z for z € [xg — hy, x0]. (A-57)
Otherwise, if for some = € [xg — hy, zo], V(zo) — V(x) > 29 — x, then

V(m'o) — V(m'o — hn) = V(.%'o) — V(.%') + V(m‘) — V(.%'o — hn)
> xo—x+1‘—(1‘0—hn)=hn,

which contradicts the assumption a,, = 0.

As a result of (A=55]) and (A=5T), we have V'(zg) = 1. Therefore, Gy (z) > 0 follows by
noticing xg € B. Notice that Gy (z9) < 0 due to the continuity of Gy. Therefore, Gy (z¢) = 0,
implying zo € A.

ii) Suppose a,, > 0 for all n. Since V(z) is differentiable almost everywhere, and V'(z), if
exists, is greater than 1, we have

foh” V' (z)dz B fAn V/(x)dx + f[O,hn]\An V/(x)dx
ha, ha,

[An| (1 + 2an) + (hn — |An|)
> I )
where |A,,| denotes the Lebesgue measure of the set A,. It follows from (A=58)) that |4, | <
hn 5 0. Therefore we can find a sequence x,, T 2o such that V'(x,) exist and 1 < V'(z,,) <
1 + 2a,. Consequently, lim,, . V'(z,) = 1.

If there exists a subsequence {xy;} with x,; T ¢ such that V'(z,;) > 1, then by B.1) we
have Gy (z,;) = 0. This implies z,; € A. Since A is a closed set, we conclude that z¢ € A.

Suppose that there is an integer ng > 0, such that for all n > ng, V'(z,) = 1. We will
show by Proof by Contradiction that Gy (zg) = 0. Assume Gy (xg) < 0. Let n be large enough
such that

an+1 =

V(zg) — V(zn) < =Gy (x0)/ (A +9). (A-58)

Note that V(y) > V(x,) +y — x5, = Gy, (x) for all y > x,,. Then for all z € [z, z¢],

p+rel{z >0} + axl{x <0} — (A + )Gy, (x) + )\/OQH_E Gy, (x —y)dF (y)

Gv(zo) + (A +6)(V(zo) — (V(zn) + 20 — 7))
Gv(zo) + (A +6)(V(zo) — V(zn)) <0, (A-59)

ga,, (v)

<
<

where the last inequality follows from (A-58]).

Noting that G, (z) = 1 for > z, and G,,(z) = V,,(z) for z € [0,2,], so by (A-59) it
follows L, (¢) = Ga,, (x) <0 for all z € [y, zg]. Therefore G, is a viscosity super-solution
on [Zn, xo].
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Recalling that Gy (zg) = 0, then by Theorem .12 (ii), we have V(z) = G, (x) for = € [0, z¢].
As a result, V (z) is differentiable at z¢ and

V/(m'o) = G;n (.%'0) =1. (A—60)

Combining (A=59)) and (A=60]) implies ¢ € B, which contradicts the fact that z¢ ¢ B. There-
fore Gy (zg) > 0.

Since V is a viscosity super-solution and V'(zg) = 1, from the definition of viscosity super-
solution we can see that Gy (z9) = Ly (zg) < 0.

Consequently, Gy (z9) = 0, which implies z¢ € A.

(d) For any = € C, we have Gy(x) < 0. Since Gy (z) is continuous, we can find a € small
enough such that

Gy(y) <0 forall y € [z,x +¢). (A-61)

If for all y € (z,z +¢€), y ¢ B, then [z,z +¢) CC.

If, on the other hand, there exist an z1 € (z,z + €) such that z; € B, then we can find
an xo and z1 with xg < x1 such that zo € A and (xg,z1] C B. As x < 21 and = ¢ B, we
conclude that z¢ € (x,21) C (z,z + €), which along with Gy (z¢) = 0 is a contradiction to
(A=GT)). This completes the proof. O
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