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Abstract

The risk minimizing problem E[l((H − X
x,π
T )+)]

π−→ min in the Black-Scholes
framework with correlation is studied. General formulas for the minimal risk function
and the cost reduction function for the option H depending on multiple underlying
are derived. The case of a linear and a strictly convex loss function l are examined.
Explicit computation for l(x) = x and l(x) = xp, with p > 1 for digital, quantos,
outperformance and spread options are presented. The method is based on the quantile
hedging approach presented in [4], [5] and developed for the multidimensional options
in [1].
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1 Introduction

The paper is devoted to the stochastic control problem arising in the risk analysis of

financial markets. Let H be a random variable representing future random payoff which is

traded on the market. Denote its price determined by the no arbitrage method by p(H).

If the initial capital x of the writer exceeds p(H) then he is able to hedge H perfectly,

i.e. he can follow some trading strategy π such that the wealth process at the final time

is greater than H, i.e.

P (Xx,π
T ≥ H) = 1.

If x < p(H) then the above equality fails for each π and as a consequence a shortfall risk

appears. The aim of the trader is to find a strategy which is optimal in a sense. Let

l : [0,+∞) −→ [0,+∞) be a loss function which describes the attitude of the trader to

the hedging losses. The goal is to minimize the shortfall risk defined as

E[l((H −X
x,π
T )+)].

This problem was studied with various model settings in many papers. The ones men-

tioned below do not form a complete list. Existence of the optimal strategy for the case

when l(x) = x in the context of complete market with the stock prices modeled by the

diffusion processes was shown in [3]. These results were generalized to incomplete markets
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in [2] where the existence of solution with the use of dual methods was shown. Existence

of the optimal strategy in a general semimartingale model was shown in [10]. More explicit

results were presented in [5], where the quantile hedging methods, which were introduced

in [4], enabled to obtain a more precise description of the solution. This paper is con-

ceptually close to the latter approach and is based on the results obtained in [4], [5] and

their adaptation for the multidimensional market presented in [1]. We work with the mul-

tidimensional Black-Scholes model with a correlated Wiener process. A great advantage

of such a model is its tractability - all parameters can be easily estimated from data, see

[6], p. 104. It is also complete and one can find explicit formula for the density of the

martingale measure, see for instance [1]. This enables us to apply the quantile hedging

methods from [4], [5], [1] which are based on the Neyman-Pearson technique.

In this paper we study two aspects of the risk minimizing problem for derivatives based

on multiple underlying. The first is to minimize the risk for a given initial capital x ≥ 0.

If x ≥ p(H) then the risk can be eliminated by a replicating strategy and thus the minimal

risk function Φl
1, which will be specified later, equals zero, i.e. Φl

1(x) = 0. In the opposite

case Φl
1(x) is strictly positive and the problem is to find a precise value of Φl

1(x) and the

corresponding risk minimizing strategy. The second aspect of the problem is to minimize

initial costs for the investor who accepts some level of risk v ≥ 0. If v = 0 then the cost

minimizing function Φl
2 equals to the price of H, i.e. Φl

2(v) = p(H) but can be strictly

smaller if v > 0. The problem is thus to determine Φl
2(v) and find the cost minimizing

strategy. Let us stress the fact that both functions Φl
1,Φ

l
2 reflect the interplay between

hedging risk and trading costs and thus serve as important tools for applications. The aim

of this paper is to present explicit computing methods for the functions Φl
1,Φ

l
2 so that to

be close to the practitioners’ needs.

The idea of the paper is motivated by the formulas presented in Section 6 of [5] which

concern the call option in a one dimensional Black-Scholes model. The key observation is

that the solution to the risk minimizing problems can be formulated with the use of two

real valued deterministic functions. We generalize this concept to the multidimensional

setting and show that the risk minimizing problems can be solved in the same way as

well provided regularity of the auxiliary functions. For the linear case we introduce real

valued functions Ψ1,Ψ2, see formulas (3.4), (3.5), and show that they are continuous if

the Wiener process is not degenerate, see Lemma 3.1 and Corollary 3.3. Moreover, for

many derivatives Ψ1,Ψ2 are strictly monotone, see Lemma 3.1, Example (c) and comments

proceeding formulation of Theorem 3.4. Thus Ψ−1
1 ,Ψ−1

2 exist and roughly speaking

Φl
1 = Ψ1 ◦Ψ−1

2 , Φl
2 = Ψ2 ◦Ψ−1

1 ,

up to the discounting factor and the shift parameter, for precise formulation see Theorem

3.4. For the general case of a strictly convex loss function l we introduce the functions

Ψl
1,Ψ

l
2, see (3.22), (3.23). They are regular and Theorem 3.5 , which is actually a refor-

mulation of Theorem 3.2 in [5], yields

Φl
1 = Ψl

1 ◦ (Ψl
2)

−1.

The characterization of the function Φl
2 requires proving of the auxiliary result which is

formulated as Theorem 3.6. That result can not be proved with the same method as in

[5] since the constraints in the associated problem (3.26) are not linear and this excludes

possibility of applying the Neyman-Pearson lemma. We present the proof which is based
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on the Lagrange multipliers. Finally, in Theorem 3.7 we show that

Φl
2 = Ψl

2 ◦ (Ψl
1)

−1.

To summarize, if one is able to find the auxiliary functions Ψ1,Ψ2, Ψ
l
1,Ψ

l
2, then he is able

to find the corresponding functions Φl
1,Φ

l
2. We present explicit computation of the auxil-

iary functions for several derivatives which are widely traded like digital option, quantos,

outperformance and spread options. For these examples the auxiliary functions are ex-

pressed as integrals of the normal densities with appropriate parameters and can effectively

be applied in practice.

The paper is organized as follows. In Section 2 we describe the model settings and

strictly formulate the problem. Section 3 contains the main results which consist of two

parts concerning a linear and a convex loss function respectively. Section 4 is devoted to

presenting explicit calculations for two dimensional model when l(x) = x and l(x) = xp

p

with p > 1.

2 Problem formulation

We work with a multidimensional stock price model with dynamics of d stocks given by a

standard Black-Scholes model

dSi
t = Si

t(αidt+ σidW
i
t ), i = 1, 2, ..., d, t ∈ [0, T ],

where αi ∈ R, σi > 0, i = 1, 2, ..., d. Above Wt = (W 1
t ,W

2
t , ...,W

d
t ), t ∈ [0, T ], is a

sequence of correlated standard Wiener processes. The correlation matrix Q of W , which

is assumed to be positive definite, is of the form

Q =




1 ρ1,2 ρ1,3 . . . ρ1,d
ρ2,1 1 ρ2,3 . . . ρ2,d

...
...

...
...

...
ρd,1 ρd,2 ρd,3 . . . 1


 ,

where

ρi,j = cor
{
W i

1,W
j
1

}
, i, j = 1, 2, ..., d.

The process W as above is called a Q-Wiener process. The dynamics the a money market

account is given by

dBt = rBtdt, t ∈ [0, T ],

where r stands for a constant interest rate. It is known that such a market is complete

and that the unique martingale measure P̃ is given by the density

dP̃

dP
= Z̃T := e−(Q−1[

α−r1d
σ

],WT )− 1
2
|Q−

1
2 [

α−r1d
σ

]|2T , t ∈ [0, T ], (2.1)

with the notation

Q−1

[
α− r1d

σ

]
:= Q−1




α1−r
σ1

α2−r
σ2

...
αd−r
σd


 , t ∈ [0, T ],
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for more details see, for instance, [1]. Moreover,

W̃t := Wt +
α− r1d

σ
t, t ∈ [0, T ],

is a Q- Wiener process under P̃ . The dynamics of the prices under the measure P̃ can be

written as

dSi
t = Si

t(rdt+ σidW̃
i
t ), i = 1, 2, ..., d, t ∈ [0, T ].

The wealth process corresponding to the initial endowment x and the trading strategy π

is given by

X
x,π
0 = x, X

x,π
t := π0

tBt +

d∑

i=1

πi
tS

i
t , t ∈ [0, T ].

Each strategy is assumed to be admissible, i.e. X
x,π
t ≥ 0 for each t ∈ [0, T ] almost surely

and self-financing, i.e.

dX
x,π
t = π0

t dBt +
d∑

i=1

πi
tdS

i
t , t ∈ [0, T ].

A contingent claim is represented by an FT - measurable random variable H which is

assumed to be nonnegative, i.e. H ≥ 0. As the market is complete, the price of H defined

by

p(H) := inf
{
x : ∃π s.t. P (Xx,π

T ≥ H) = 1
}

is given by p(H) = Ẽ[e−rTH], where the expectation is calculated under the measure P̃ .

The aim of the trader is to minimize the shortfall risk defined by

E[l((H −X
x,π
T )+)],

where l : [0,+∞) −→ [0,+∞) is a loss function which is assumed to be increasing with

l(0) = 0. It is clear that if x ≥ p(H) then the risk equals zero for the replicating strategy.

In the opposite case the risk is strictly positive and the question under consideration is to

find a strategy such that

E[l((H −X
x,π
T )+)] −→

π
min .

We will refer the corresponding function Φ1 : [0,+∞) −→ [0,E[l(H)]] given by

Φl
1(x) := min

π
E[l((H −X

x,π
T )+)], (2.2)

as the minimal risk function. The strategy π̂ such that E[l((H − X
x,π̂
T )+)] = Φl

1(x) will

be called the risk minimizing strategy for x. If x ≥ p(H) then Φl
1(x) = 0 and Φl

1(x) > 0

otherwise.

We also consider the cost reduction problem. Let v ≥ 0 be a fixed number describing

the level of shortfall risk accepted by the trader. We are searching for a minimal initial

cost such that there exists a strategy with the risk not exceeding v, i.e.

x −→ min; ∃ π s.t. E[l((H −X
x,π
T )+)] ≤ v.
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The cost reduction function Φl
2 : [0,+∞) −→ [0, p(H)] is thus defined by

Φl
2(v) := min

{
x : ∃π s.t. E[l((H −X

x,π
T )+)] ≤ v

}
. (2.3)

The strategy π̂ such that E[l((X
Φ2(r),π̂
T − H)+)] ≤ v will be called the cost minimizing

strategy for v. Notice that Φl
2(0) = p(H).

In the sequel we examine two cases of the loss functions, i.e. l(x) = x and l a gen-

eral strictly convex function. The aim is to provide explicit computing methods for the

functions Φl
1,Φ

l
2.

3 Main results

3.1 Linear loss function

In this section we examine the case when l(x) = x and denote the corresponding functions

Φl
1,Φ

l
2 by Φ1,Φ2 respectively. It turns out that the functions Φ1,Φ2 can be characterized

in terms of two auxiliary functions

Ψ1(c) := E(H1Ac), (3.4)

Ψ2(c) := Ẽ(H1Ac), (3.5)

where

Ac := {Z̃−1
T ≥ c}, c ≥ 0,

and Z̃T is given by (2.1).

Let us start with an auxiliary result which establishes regularity properties for the

functions Ψ1,Ψ2.

Lemma 3.1 Let X ≥ 0, Y ≥ 0 be random variables such that EX < +∞. Then the

function g : [0,+∞) → [0,+∞) given by

g(c) := E[X1{Y≥c}]

a) is left continuous on (0,+∞) with right limits on [0,+∞),

b) is right continuous on [0,+∞) if the distribution function of Y is continuous,

c) is strictly decreasing if for any 0 ≤ a < b < +∞ holds

P (X > 0, Y ∈ [a, b)) > 0. (3.6)

Proof: The function g is decreasing and thus it has right and left limits. Let us consider

the auxiliary probability measure P̂ defined by

dP̂

dP
=

X

E[X]
dP,

which is absolutely continuous wrt. P , i.e. P̂ ≪ P .

a) For any c > 0 we have

⋂

n

{
c− 1

n
≤ Y < c

}
= ∅,
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and thus

| g(c− 1

n
)− g(c) |= E

(
X1{c− 1

n
≤Y <c}

)
= E[X]P̂

(
c− 1

n
≤ Y < c

)
−→
n

0.

b) For any c ≥ 0 we have

⋂

n

{
c ≤ Y < c+

1

n

}
= {Y = c} ,

and thus

| g(c) − g(c+
1

n
) |= E

(
X1{c≤Y <c+ 1

n
}

)
= E[X]P̂

(
c ≤ Y < c+

1

n

)
−→
n

E[X]P̂ (Y = c) = 0,

as P̂ ≪ P and P (Y = c) = 0.

c) Let us notice that (3.6) is equivalent to the condition

∃ε > 0 s.t. P (X > ε, Y ∈ [a, b)) > 0,

and thus for 0 ≤ a < b < +∞ we have

| g(a)− g(b) | = E
(
X1{a≤Y <b}

)
= E

(
X1{a≤Y <b}1{X=0}

)
+E

(
X1{a≤Y <b}1{X>0}

)

≥ E
(
X1{a≤Y <b}1{X>ε}

)
≥ εP (X > ε, a ≤ Y < b) > 0.

�

Remark 3.2 Let us notice that the condition (3.6) implies that Y has a strictly increasing

distribution function. Indeed, in the opposite case (3.6) is not satisfied for some 0 ≤ a <

b < +∞.

Corollary 3.3 If the distribution function of Y is continuous then the function g(c) in

Lemma 3.1 is continuous on (0,+∞) and right continuous at 0.

Examples The condition (3.6) is satisfied in the following cases.

a) X > 0 and Y has strictly increasing distribution function.

b) X,Y are independent, Y has strictly increasing distribution function and P (X > 0) >

0.

c) Let (Z1, Z2) be a random vector with nondegenerate normal distribution on a plane.

Let f, g be functions such that

f : R2 −→ (0,+∞),

g : R −→ (0,+∞) is strictly monotone.

Let α, β, γ, δ ∈ R be such that the vectors (α, β), (γ, δ) are not parallel, i.e. (α, β) ∦

(γ, δ). Then

X := f(Z1, Z2)1{αZ1+βZ2>k}, Y := g(γZ1 + δZ2),

where k is some constant, satisfy (3.6). Indeed, we have

P (X > 0, Y ∈ [a, b)) = P
(
αZ1 + βZ2 > k, g−1(a) ≤ γZ1 + δZ2 < g−1(b)

)

6



for the case when g is strictly increasing. The probability above is positive because the

set
{
(x, y) : (αx+ βy) > k, g−1(a) ≤ γx+ δy < g−1(b)

}

is of positive Lebesgue measure and (Z1, Z2) has nondegenerate distribution. �

Let us notice that due to the fact that Q is nonsingular the random variable

Z̃−1
T := e(Q

−1[
α−r1d

σ
],WT )+ 1

2
|Q−

1
2 [

α−r1d
σ

]|2T (3.7)

has a continuous distribution function wrt. P and P̃ . Thus it follows from Corollary 3.3

that the functions Ψ1, Ψ2 are continuous. As they are decreasing with images [0,E[H]],

[0, erT p(H)], the equations

Ψ1(c) = x, x ∈ [0,E[H]],

Ψ2(c) = x, x ∈ [0, erT p(H)],

have solutions. Moreover, the solution of the first (resp. second) equation is unique if

P
(
H > 0, Z̃−1

T ∈ [a, b)
)
> 0, (3.8)

resp.

P̃
(
H > 0, Z̃−1

T ∈ [a, b)
)
> 0. (3.9)

It follows from Example (c) above that (3.8) and (3.9) are satisfied, for instance, when

d = 2 and

a) H is a digital option, i.e. H = K1{S1
T
≥S2

T
} and (σ1,−σ2) ∦ Q−1[α−r1d

σ
] ,

b) H is a quanto domestic option, i.e. H = S2
T (S

1
T −K)+ and (σ1, 0) ∦ Q−1[α−r1d

σ
],

c) H is a quanto foreign option, i.e. H = (S1
T − K

S2
T

)+ and (σ1, σ2) ∦ Q−1[α−r1d

σ
].

Below we present the description of the functions Φ1, Φ2.

Theorem 3.4 a) Let c = c(x) be a solution of the equation

Ψ2(c) = erTx, x ∈ [0, p(H)). (3.10)

Then

Φ1(x) =

{
Ψ1(0)−Ψ1(c) for x ∈ [0, p(H)),

0 for x ≥ p(H).

Moreover, the replicating strategy for the payoff H1Ac(x)
is a risk minimizing strategy

for x.

b) Let c = c(v) be a solution of the equation

Ψ1(c) = Ψ1(0)− v, v ∈ [0,E[H]). (3.11)

Then

Φ2(v) =

{
e−rTΨ2(c) for v ∈ [0,E[H]),

0 for v ≥ E[H].

Moreover, the replicating strategy for the payoff H1Ac(v)
is a cost minimizing strategy

for v.

7



Proof: For any admissible strategy (x, π) let us define the success function

ϕx,π := 1{Xx,π
T

≥H} +
X

x,π
T

H
1{Xx,π

T
<H}.

One can check the following identity

(H −X
x,π
T )+ = H −X

x,π
T ∧H = H −Hϕx,π,

which implies that

E[(H −X
x,π
T )+] = E[H]−E[Hϕx,π]. (3.12)

a) In view of (3.12) the problem (2.2) of finding Φ1(x) is equivalent to that of finding the

strategy π satisfying

E[Hϕx,π] →
π

max .

If x ≥ p(H) then ϕx,π = 1 for the replicating strategy and Φ1(x) = 0, so consider the case

0 ≤ x < p(H). Let us formulate an auxiliary problem of determining ϕ ∈ R solving




E[Hϕ]→max,

Ẽ[e−rTHϕ] ≤ x,

(3.13)

where

R := {ϕ : 0 ≤ ϕ ≤ 1 and ϕ is FT −measurable}. (3.14)

It is clear that if ϕ̂ such that Ẽ[e−rTHϕ̂] = x is a solution of (3.13) then the replicating

strategy π̃ for the payoff Hϕ̂ is a risk minimizing strategy for x and

Φ1(x) = E[(H −X
x̃,π̃
T )+] = E[H]−E[Hϕ̂]. (3.15)

Thus now let us focus on determining solution ϕ̂ of (3.13). To this end introduce two

probability measures P1, P2 with densities

dP1

dP
=

H

E[H]
,

dP2

dP
=

e−rT Z̃TH

E[e−rT Z̃TH]
.

Then (3.13) reads as




EP1 [ϕ]−→max,

EP2 [ϕ] ≤ x
p(H) ,

(3.16)

which is a standard problem in the theory of statistical tests. One should try to search

for the solution in the class of 0− 1 valued functions of the form 1Ac ; c ≥ 0, where

Ac :=
{dP1

dP2
≥ c
}
=
{dP1

dP

dP

dP2
≥ c
}
=
{ H

E[H]

E[Z̃TH]

Z̃TH
≥ c
}
=
{
Z̃−1
T ≥ c

E[H]

E[Z̃TH]

}
.

For the sake of simplicity we can reparametrize Ac by denoting the constant c E[H]

E[Z̃TH]
above

just by c. Then Ac is of the form

Ac :=
{
Z̃−1
T ≥ c

}
.

8



It is known by the Neyman-Pearson lemma that if there exists c = c(x) such that

EP2 [1Ac ] = P2(Ac) =
x

p(H)
, (3.17)

then the solution of (3.16), or equivalently (3.13), is given by ϕ̂ = 1Ac(x)
. But let us notice

that (3.17) is equivalent to the following

Ψ2(c) = erTx,

and the existence of the required constant c follows from (3.10). Finally, coming back to

(3.15) and using definition of Ψ1, we obtain

Φ1(x) = E[H]−E[Hϕ̂] = E[H]−E[H1Ac ] = Ψ1(0)−Ψ1(c).

b) If v ≥ E[H] then the cost minimizing strategy is trivial, i.e. (x = 0, π = 0) and thus

Φ2(v) = 0. Let us focus on the case when v ∈ [0,E[H]). In view of (3.12) the risk

minimizing strategy is the one which solves the problem




E[Hϕx,π] ≥ E[H]− v

Ẽ[e−rTHϕx,π] −→ min .

We are thus looking for a solution ϕ̂ ∈ R of the problem




E[Hϕ] ≥ E[H]− v

Ẽ[e−rTHϕ] −→ min .
(3.18)

If (3.18) has a solution satisfying E[Hϕ̂] = E[H]− v then the cost minimizing strategy is

the one which replicates Hϕ̂ and the cost minimizing function equals

Φ2(r) = e−rT Ẽ[Hϕ̂]. (3.19)

Let us focus on determining the solution ϕ̂ of (3.18). Using notation from the part (a) we

can reformulate (3.18) to the form




EP1 [ϕ] ≥ E[H]−v

E[H]

EP2 [ϕ] −→ min .
(3.20)

It can be shown in the same way as in the proof of Neyman-Pearson lemma that the

solution should be searched in the 0− 1 valued functions of the form 1Bc ; c ≥ 0, where

Bc :=
{dP2

dP1
≤ c
}
=
{dP2

dP

dP

dP1
≤ c
}
=
{
Z̃−1
T ≥ 1

c

E[H]

E[Z̃TH]

}
.

Denoting, for simplicity, the constant 1
c

E[H]

E[Z̃TH]
above by c, we have

Bc = {Z̃−1
T ≥ c}.

If there exists constant c = c(v) satisfying

EP1 [1Bc ] = P1(Bc) =
E[H]− v

E[H]
(3.21)

9



then ϕ̂ = 1Bc is a solution of (3.20) or, equivalently, (3.18). Let us notice that (3.21) can

be written as

Ψ1(c) = Ψ1(0)− v

and existence of the required constant c(v) follows from (3.11). Coming back to (3.19) we

obtain

Φ2(v) = e−rT Ẽ[H1Bc ] = e−rTΨ2(c).

�

3.2 Convex loss function

In this section we study the case when l : [0,+∞) −→ [0,+∞) is an increasing, strictly

convex function such that l(0) = 0. We assume that l ∈ C2(0,+∞) and that l′ is strictly
increasing with l′(0+) = 0, l′(+∞) = +∞. The inverse of the first derivative will be

denoted by I, i.e.

I = (l′)−1.

The functions Φl
1,Φ

l
2 can be characterized in terms of the functions

Ψl
1(c) := E[l((1− ϕc)H)] (3.22)

Ψl
2(c) := Ẽ[Hϕc]. (3.23)

where ϕc is defined by

ϕc :=

{
1−

(
I(cZ̃T )

H
∧ 1

)}
1{H>0}, c ≥ 0. (3.24)

It was shown in [5], Theorem 5.1, that the problem of determining Φl
1 is equivalent to

finding the solution ϕ̃ of the problem



E[l((1 − ϕ)H)] −→

ϕ∈R
min

Ẽ[e−rTHϕ] ≤ x,

(3.25)

where R is defined in (3.14). Then Φl
1(x) = E[l((1 − ϕ̃)H)] and the risk minimizing

strategy is the one which replicates Hϕ̃. Moreover, since the function Ψl
2 is continuous

with the image [0, erT p(H)], see the proof of Theorem 5.1 in [5], it follows that for any

x ∈ [0, erT p(H)] there exists constant c such that Ψl
2(c) = Ẽ[Hϕc] = erTx. Such ϕc solves

the auxiliary problem (3.25) and thus

Φl
1(x) = E[l((1− ϕc)H)],

and the minimal risk strategy is that replicating the payoff Hϕc, see Theorem 3.2 in [5].

Thus the results from [5] can be expressed in our notation as follows.

Theorem 3.5 Let c = c(x) be a solution of the equation

Ψl
2(c) = erTx, x ∈ [0, p(H)).

Then

Φl
1(x) =

{
Ψl

1(c) for x ∈ [0, p(H)),

0 for x ≥ p(H).
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Although Theorem 3.5 is only a reformulation of Theorem 3.2 in [5], it provides an

effective method for practical applications if one is able to derive the functions Ψl
1, Ψ

l
2 for

concrete derivatives.

In the sequel we will show that the function Φl
2 can be characterized in terms of the

functions Ψl
1,Ψ

l
2 as well. It is easy to show that the cost reduction problem is equivalent

to that of finding ϕ ∈ R such that




E[l((1− ϕ)H)] ≤ v

Ẽ[e−rTHϕ] −→ min .
(3.26)

Let us notice that (3.26) can not be solved with the same method as (3.25). In (3.25) the

constraints are linear and thus the solution could be found via Neyman-Pearson approach

to the variational problem, see the proof of Theorem 5.1 in [5] and p.210 in [9]. The

constraints in (3.26) are no longer linear and the method above fails. Below we present

the proof based on the Lagrange multipliers.

Theorem 3.6 The solution of the problem (3.26) is of the form

ϕ̃ :=

{
1−

(
I(cZ̃T )

H
∧ 1

)}
1{H>0}

where c is such that E[l((1 − ϕ̃)H)] = v.

Proof: First let us notice that if ϕ ∈ R is a solution to (3.26) then necessarily E[l((1 −
ϕ)H)] = v. Indeed, assume to the contrary that ϕ is a solution to (3.26) with E[l((1 −
ϕ)H)] < v and consider a family of random variables ϕα := ϕ ∧ α;α ∈ [0, 1]. Then the

function α → E[l((1 − ϕα)H)] is continuously decreasing from E[l(H)] to 0. Thus there

exists α̃ ∈ [0, 1] such that E[l((1− ϕα̃)H)] = r. Then ϕα̃ ≤ ϕ and thus Ẽ[Hϕα̃] < Ẽ[Hϕ],

which is a contradiction.

Let ϕ 6= ϕ̃ be any element of R such that E[l((1 − ϕ)H)] = v. We need to show that

Ẽ[Hϕ̃] ≤ Ẽ[Hϕ]. Let us define ϕε by

ϕε := (1− ε)ϕ̃ + εϕ, ε ∈ [0, 1],

and the function

Fϕ(ε) := Ẽ(Hϕε) = E(Z̃THϕε).

We need to show that Fϕ(0) ≤ Fϕ(1). We will show that Fϕ has minimum at 0. Let us

define the auxiliary function

Gϕ(ε) := E[l((1− ϕε)H)],

and notice that due to the convexity of l we have Gϕ(ε) ≤ v for each ε ∈ [0, 1]. Thus the

problem of minimizing Fε on [0, 1] is equivalent to the following





Fϕ(ε) −→ min

Gϕ(ε) ≤ v,

ε ≥ 0,

1− ε ≥ 0.

(3.27)
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Both functions Fϕ, Gϕ are smooth with

F ′
ϕ(ε) ≡ E[Z̃T (ϕ− ϕ̃)H],

G′
ϕ(ε) = E[l′((1− ϕε)H) · (ϕ̃− ϕ)H],

G′′
ϕ(ε) = E[l′′((1− ϕε)H) · (ϕ̃− ϕ)2H2],

and thus the Lagrange function for (3.27) is of the form

L(ε, λ1, λ2, λ3) = Fϕ(ε)− λ1(v −Gϕ(ε))− λ2ε− λ3(1− ε).

As the function Fϕ is linear, it attains its minimal value at 0 or 1. We will show that the

first and the second order differential conditions are satisfied for ε = 0.

The first order conditions are

L′
ε(ε, λ1, λ2, λ3) = E[Z̃T (ϕ− ϕ̃)H] + λ1E[l′((1 − ϕε)H) · (ϕ̃− ϕ)H]− λ2 + λ3 = 0

(3.28)

λ1, λ2, λ3 ≥ 0, λ1(v −Gϕ(ε)) = 0, λ2ε = 0, λ3(1− ε) = 0. (3.29)

By the definition of ϕ̃ we have

ϕ̃ = 1− I(cZ̃T )

H
and cZ̃T = l′((1 − ϕ̃)H) on A

ϕ̃ = 0 on Ac,

where A := {cZ̃T < l′(H)} and Ac stands for the compliment of A. For ε = 0 it follows

from (3.29) that λ3 = 0 and the equation (3.28) is of the form

E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃T (ϕ− ϕ̃)H1Ac ] + cλ1E[Z̃T (ϕ̃− ϕ)H1A]

+ λ1E[l′((1− ϕ̃)H)(ϕ̃− ϕ)H1Ac

= (1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃TϕH1Ac ]− λ1E[l′(H)ϕH1Ac ] = λ2. (3.30)

The left side of (3.30) satisfies the following estimation

(1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃TϕH1Ac ]− λ1E[l′(H)ϕH1Ac ]

≥ (1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A] +E[Z̃TϕH1Ac ]− λ1cE[Z̃TϕH1Ac ]

≥ (1− cλ1)E[Z̃T (ϕ− ϕ̃)H1A + Z̃TϕH1Ac ].

If E[Z̃T (ϕ − ϕ̃)H1A + Z̃TϕH1Ac ] > 0 then we take λ1 such that (1 − cλ1) > 0, in the

opposite case, such that (1− cλ1) < 0. In both cases λ2 given by (3.30) is nonnegative.

The second order condition for ε = 0 is

L′′
ε(ε, λ1, λ2, λ3) = λ1E[l′′((1− ϕ̃)H) · (ϕ̃− ϕ)2H2] ≥ 0,

and thus the solution of (3.27) is ε = 0.

�

The Theorem 3.6 and the definitions of Ψl
1,Ψ

l
2 lead us to the following result.

Theorem 3.7 Let c = c(v) be a solution of the equation

Ψl
1(c) = v, v ∈ [0,E[l(H)]).

Then

Φl
2(v) =

{
e−rTΨl

2(c) for v ∈ [0,E[l(H)]),

0 for v ≥ E[l(H)].
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4 Two dimensional model

In this section we determine explicit formulas for the functions Ψl
1, Ψ

l
2 when l(x) = x and

l(x) = xp

p
, p > 1. In the latter case we use the notation Ψp

1 = Ψl
1,Ψ

p
2 = Ψl

2. We examine

several examples of popular options.

For l(x) = xp

p
we have I(x) = x

1
p−1 and in view of (3.24) the following holds

Ψp
1(c) =

1

p
E
[
Hp1Ac

c

]
+

1

p
E
[
(cZ̃T )

p
p−11Ac

]
, (4.31)

Ψp
2(c) = Ẽ

[(
H −

(
cZ̃T

) 1
p−1

)
1Ac

]
. (4.32)

where

Ac := {cZ̃T ≤ Hp−1}, (4.33)

and Ac
c stands for the compliment of Ac.

Since our formulas are expressed in terms of integrals of normal densities, at the

beginning we recall basic properties of the multidimensional normal distribution. They

can be found in standard textbooks on probability theory or statistics, see for instance [7].

A random vector X taking values in Rd has a multidimensional normal distribution if its

density is of the form

fX(x) =
1

(2π)
d
2 (detΣ)

1
2

· e− 1
2
(x−m)TΣ−1(x−m), x ∈ Rd, (4.34)

where m ∈ Rd is a mean of X and Σ is a symmetric positive definite d × d covariance

matrix of X. The fact that X has a density (4.34) will be denoted by X ∼ Nd(m,Σ) or

L(X) = Nd(m,Σ). If d = 1 then the subscript is omitted and N(m,σ) denotes the normal

distribution with mean m and variance σ. If X ∼ Nd(m,Σ) and A is a k× d matrix then,

AX ∼ Nk(Am,AΣAT ); (4.35)

in particular if a ∈ Rd then

aTX ∼ N(aTm,aTΣa). (4.36)

Let X be a random vector taking values in Rd and fix an integer 0 < k < d. Let us divide

X into two vectors X(1) and X(2) with lengths k, d− k respectively, i.e.

X(1) = (X1,X2, ...,Xk)
T , X(2) = (Xk+1,Xk+2, ...,Xd)

T .

Analogously, divide the mean vector m and the covariance matrix Σ

m =

(
m(1)

m(2)

)
; Σ =

[
Σ(11) Σ(12)

Σ(21) Σ(22)

]
,

so that EX(1) = m(1), EX(2) = m(2), CovX(1) = Σ(11), CovX(2) = Σ(22), Cov(X(1),X(2)) =

Σ(12) = Σ(21)T . Denote by L
(
X(1) | X(2) = x(2)

)
the conditional distribution of X(1) given

X(2) = x(2) ∈ Rd−k. If Σ(22) is nonsingular then

L
(
X(1) | X(2) = x(2)

)
= Nk(m

(1)(x(2)),Σ(11)(x(2))), (4.37)
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where

m(1)(x(2)) = m(1) +Σ(12)Σ(22)−1
(x(2) −m(2)),

Σ(11)(x(2)) = Σ(11) − Σ(12)Σ(22)−1
Σ(21). (4.38)

Actually the conditional variance Σ(11)(x(2)) does not depend on x(2) but we keep the nota-

tion for the sake of consistency. The conditional density will be denoted by fX(1)|X(2)=x(2)(x(1)),

where x(1) ∈ Rk. In particular if (X,Y ) is a two dimensional normal vector with parame-

ters

m =

(
m1

m2

)
; Σ =

[
σ11 σ12

σ21 σ22

]
,

then

L(X | Y = y) = N(m1(y), σ1(y)),

where

m1(y) := m1 +
σ12

σ22
(y −m2), σ1(y) := σ11 −

σ2
12

σ22
. (4.39)

If X is a random vector then its distribution wrt. the measure P̃ will be denoted by L̃(X)

and its density by f̃X . Analogously, f̃X(1)|X(2)=x(2)(x(1)) stands for the conditional density

with respect to the measure P̃ .

Below we simplify the multidimensional notation to the case d = 2. The correlation

matrix is of the form

Q =

[
1 ρ

ρ 1

]
,

and thus we have

Q−1 =
1

ρ2 − 1

[
−1 ρ

ρ −1

]
, Q− 1

2 =
1

2




1√
1+ρ

+ 1√
1−ρ

1√
1+ρ

− 1√
1−ρ

1√
1+ρ

− 1√
1−ρ

1√
1+ρ

+ 1√
1−ρ


 .

Hence the density of the martingale measure (2.1) can be written as

Z̃T = e−A1W
1
T
−A2W

2
T
−BT = e−A1W̃

1
T
−A2W̃

2
T
−B̃T , (4.40)

where

A1 :=
1

ρ2 − 1

(
−α1 − r

σ1
+ ρ

α2 − r

σ2

)

A2 :=
1

ρ2 − 1

(
ρ
α1 − r

σ1
− α2 − r

σ2

)

B :=
1

8

((( 1√
1 + ρ

+
1√
1− ρ

)α1 − r

σ1
+
( 1√

1 + ρ
− 1√

1− ρ

)α2 − r

σ2

)2

+

(( 1√
1 + ρ

− 1√
1− ρ

)α1 − r

σ1
+
( 1√

1 + ρ
+

1√
1− ρ

)α2 − r

σ2

)2
)

B̃ := B −A1
α1 − r

σ1
−A2

α2 − r

σ2
.

14



In the following subsections we will use the universal constants: A1, A2, B, B̃ defined

in (4.40) as well as a1, a2, b, ã1, ã2, b̃ introduced below.

Fix numbers K > 0, c ≥ 0. One can check the following

{
S1
T ≥ K

}
=
{
W 1

T ≥ a1
}
=
{
W̃ 1

T ≥ ã1

}
, (4.41)

{
S2
T ≥ K

}
=
{
W 2

T ≥ a2
}
=
{
W̃ 2

T ≥ ã2

}
, (4.42)

{
S1
T ≥ S2

T

}
=
{
σ1W

1
T − σ2W

2
T ≥ b

}
=
{
σ1W̃

1
T − σ2W̃

2
T ≥ b̃

}
, (4.43)

{
Z̃−1
T ≥ c

}
=
{
A1W

1
T +A2W

2
T ≥ ln c−BT

}
=
{
A1W̃

1
T +A2W̃

2
T ≥ ln c− B̃T

}
, (4.44)

where

a1 :=
1

σ1

(
ln

K

S1
0

− (α1 −
1

2
σ2
1)T

)
, ã1 :=

1

σ1

(
ln

K

S1
0

− (r − 1

2
σ2
1)T

)
,

a2 :=
1

σ2

(
ln

K

S2
0

− (α2 −
1

2
σ2
2)T

)
, ã2 :=

1

σ2

(
ln

K

S2
0

− (r − 1

2
σ2
2)T

)
,

b := ln

(
S2
0

S1
0

)
+ (α2 − α1 −

1

2
(σ2

2 − σ2
1))T, b̃ := ln

(
S2
0

S1
0

)
− 1

2
(σ2

2 − σ2
1)T.

In all the formulas appearing in the sequel it is understood that ln 0 = −∞ and Φ stands

for the distribution function of N(0, 1).

4.1 Digital option

Digital option is a contract with the payoff function of the form

H = K · 1{S1
T
≥S2

T
}, where K > 0. (4.45)

Let (X,Y ), (X̃, Ỹ ) be random vectors defined byX := σ1W
1
T−σ2W

2
T , Y := A1W

1
T+A2W

2
T ,

X̃ := σ1W̃
1
T − σ2W̃

2
T , Ỹ := A1W̃

1
T +A2W̃

2
T . They are normally distributed under P , resp.

P̃ and their parameters are given by (4.35).

Linear loss function

Using (4.40) and (4.43) we obtain

Ψ1(c) = KE(1{S1
T
≥S2

T
}1{Z̃−1

T
≥c}) = KP (σ1W

1
T − σ2W

2
T ≥ b,A1W

1
T +A2W

2
T ≥ ln c−BT ),

and thus

Ψ1(c) = K

∫ +∞

b

∫ +∞

ln c−BT

fX,Y (x, y)dydx.

Analogous computation yields

Ψ2(c) = KP̃ (σ1W̃
1
T − σ2W̃

2
T ≥ b̃, A1W̃

1
T +A2W̃

2
T ≥ ln c− B̃T ) = K

∫ +∞

b̃

∫ +∞

ln c−B̃T

fX,Y (x, y)dydx.
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Power loss function

In view of (4.43) and (4.40) we have

Ac := {cZ̃T ≤ Hp−1} = {cZ̃T ≤ Kp−11{σ1W
1
T
−σ2W

2
T
≥b}} = {σ1W 1

T − σ2W
2
T ≥ b, cZ̃T ≤ Kp−1}

= {σ1W 1
T − σ2W

2
T ≥ b,A1W

1
T +A2W

2
T ≥ ln

(
Kp−1

c

)
−BT} (4.46)

= {σ1W̃ 1
T − σ2W̃

2
T ≥ b̃, A1W̃

1
T +A2W̃

2
T ≥ ln

(
Kp−1

c

)
− B̃T}, (4.47)

and thus

Ψp
1(c) =

1

p
E[Kp1{σ1W

1
T
−σ2W

2
T
≥b}1Ac

c
] +

1

p
c

p
p−1E[Z̃

p
p−1

T 1Ac ],

Ψp
2(c) = Ẽ[K1{σ1W̃

1
T
−σ2W̃

2
T
≥b̃}1Ac ]− c

1
p−1 Ẽ[Z̃

1
p−1

T 1Ac ].

In view of (4.46) and (4.47) we have

Ψp
1(c) =

Kp

p
P

(
σ1W

1
T − σ2W

2
T ≥ b,A1W

1
T +A2W

2
T < ln

(
Kp−1

c

)
−BT

)
+

1

p
c

p
p−1E[Z̃

p
p−1

T 1Ac ]

=
Kp

p

∫ +∞

b

∫ ln
(

Kp−1

c

)
−BT

−∞
fX,Y (x, y)dydx +

1

p
c

p
p−1

∫ +∞

b

∫ +∞

ln
(

Kp−1

c

)
−BT

e
− p(y+BT )

p−1 fX,Y (x, y)dydx,

and

Ψp
2(c) = KP̃ (Ac)− c

1
p−1 Ẽ[e−A1W̃

1
T
−A2W̃

2
T
−B̃T1Ac ]

= K

∫ +∞

b̃

∫ +∞

ln
(

Kp−1

c

)
−B̃T

f̃X̃,Ỹ (x, y)dydx − c
1

p−1

∫ +∞

b̃

∫ +∞

ln
(

Kp−1

c

)
−B̃T

e
− y+B̃T

p−1 f̃X̃,Ỹ (x, y)dydx.

4.2 Quantos

4.2.1 Quanto domestic

The contingent claim is of the form

H = S2
T (S

1
T −K)+, K > 0. (4.48)

Linear loss function

Using (4.41) we obtain

Ψ1(c) = E[S2
T (S

1
T −K)+1{Z̃−1

T
≥c}] = E

[
S2
T (S

1
T −K)1{Z̃−1

T
≥c} | S1

T > K
]
P (S1

T > K)

= E
[
S2
T (S

1
T −K)1{A1W

1
T
+A2W

2
T
≥ln c−BT} | W 1

T > a1

]
P (W 1

T > a1)

=

∫ +∞

a1

E
[
S2
0e

(α2− 1
2
σ2
2)T+σ2W

2
T (S1

0e
(α1− 1

2
σ2
1)T+σ1W

1
T −K)1

{W 2
T
≥ ln c−BT−A1W

1
T

A2
}
| W 1

T = x
]
fW 1

T
(x)dx

= S2
0e

(α2− 1
2
σ2
2)T

∫ +∞

a1

(S1
0e

(α1− 1
2
σ2
1)T+σ1x −K)

∫ +∞

ln c−BT−A1x
A2

eσ2yfW 2
T
|W 1

T
=x(y)dyfW 1

T
(x)dx,
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and

Ψ2(c) = Ẽ[S2
T (S

1
T −K)+1{Z̃−1

T
≥c}] = Ẽ

[
S2
T (S

1
T −K)1{Z̃−1

T
≥c} | S1

T > K
]
P̃ (S1

T > K)

= Ẽ
[
S2
T (S

1
T −K)1{A1W̃

1
T
+A2W̃

2
T
≥ln c−B̃T} | W̃

1
T > ã1

]
P̃ (W̃ 1

T > ã1)

=

∫ +∞

ã1

Ẽ
[
S2
0e

(r− 1
2
σ2
2)T+σ2W̃

2
T (S1

0e
(r− 1

2
σ2
1)T+σ1W̃

1
T −K)1

{W̃ 2
T
≥ ln c−B̃T−A1W̃

1
T

A2
}
| W̃ 1

T = x
]
f̃
W̃ 1

T

(x)dx

= S2
0e

(r− 1
2
σ2
2)T

∫ +∞

ã1

(S1
0e

(r− 1
2
σ2
1)T+σ1x −K)

∫ +∞

ln c−B̃T−A1x
A2

eσ2yf̃
W̃ 2

T
|W̃ 1

T
=x

(y)dyf̃
W̃ 1

T

(x)dx.

Power loss function

The set (4.33) is of the form

Ac := {cZ̃T ≤ Hp−1} =





(
ce−A1W

1
T−A2W

2
T−BT

) 1
p−1

S2
0e

(α2− 1
2
σ2
2)T+σ2W

2
T

≤ (S1
T −K)+





=

{
c

1
p−1

S2
0

e
− A1

p−1
W 1

T−(
A2
p−1

+σ2)W 2
T−(B+α2− 1

2
σ2
2)T ≤ S1

T −K,S1
T ≥ K)

}
.

For simplicity we assume that A2
p−1 + σ2 > 0. In the opposite case one has to modify the

form of the set Ac and thus also the integration limits in the formulas below. We obtain

Ac =
{
W 2

T ≥ w(W 1
T ),W

1
T ≥ a1

}
=
{
W̃ 2

T ≥ w̃(W̃ 1
T ), W̃

1
T ≥ ã1

}
,

where

w(x) :=

A1
p−1x+ ln

(
S2
0 (S

1
0e

(α1−σ2
1)T+σ1x−K)

c
1

p−1

)
+ (B + α2 − 1

2σ
2
2)T

−( A2
p−1 + σ2)

,

w̃(x) :=

A1
p−1x+ ln

(
S2
0 (S

1
0e

(r−σ2
1)T+σ1x−K)

c
1

p−1

)
+ (B̃ + α2 − 1

2σ
2
2)T

−( A2
p−1 + σ2)

.

In view of this above, (4.31), (4.32) and using conditional densities we obtain

Ψp
1(c) =

(S2
0)

pe(α2− 1
2
σ2
2)pT

p

(∫ +∞

a1

∫ +∞

−∞
epσ2y(S1

0e
(α1− 1

2
σ2
1)T+σ2x −K)pfW 2

T
|W 1

T
=x(y)fW 1

T
(x)dydx

−
∫ +∞

a1

∫ +∞

w(x)
epσ2y(S1

0e
(α1− 1

2
σ2
1)T+σ2x −K)pfW 2

T
|W 1

T
=x(y)fW 1

T
(x)dydx

)

+
c

p
p−1 e

−BTp
p−1

p

∫ +∞

a1

∫ +∞

w(x)
e
−
(

A1p
p−1

x+
A2p
p−1

y
)

fW 2
T
|W 1

T
=x(y)fW 1

T
(x)dydx,

Ψp
2(c) = S2

0e
(r− 1

2
σ2
2)T

∫ +∞

ã1

∫ +∞

w̃(x)
eσ2y(S1

0e
(r− 1

2
σ2
1)T+σ2x −K)f̃

W̃ 2
T
|W̃ 1

T
=x

(y)f̃
W̃ 1

T

(x)dydx

− c
1

p−1 e
− BT

p−1

∫ +∞

ã1

∫ +∞

w̃(x)
e
− 1

p−1
(A1x+A2y)f̃

W̃ 2
T
|W̃ 1

T
=x

(y)f̃
W̃ 1

T

(x)dydx.
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4.2.2 Quanto foreign

The payoff is of the form

H =

(
S1
T − K

S2
T

)+

, K > 0.

Linear loss function

First let us notice that
{
S1
T − K

S2
T

≥ 0

}
=
{
σ1W

1
T + σ2W

2
T ≥ d

}
=
{
σ1W̃

1
T + σ2W̃

2
T ≥ d̃

}
, (4.49)

where

d := ln
K

S1
0S

2
0

−
(
α1 + α2 −

1

2
(σ2

1 + σ2
2)

)
T, d̃ := ln

K

S1
0S

2
0

−
(
2r − 1

2
(σ2

1 + σ2
2)

)
T.

(4.50)

We have

Ψ1(c) = E
[(

S1
T − K

S2
T

)+

1{Z̃−1
T

≥c}

]

= E
[(

S1
T − K

S2
T

)
1
{W 2

T
≥ ln c−BT−A1W

1
T

A2
}
| σ1W 1

T + σ2W
2
T ≥ d

]
P (σ1W

1
T + σ2W

2
T ≥ d).

Denoting Z := σ1W
1
T+σ2W

2
T and taking into account conditional distribution L(W 1

T ,W
2
T | Z)

we obtain

Ψ1(c) =

∫ +∞

d

∫ +∞

−∞

∫ +∞

ln c−BT−A1x

A2

(S1
0e

(α1−
1

2
σ2

1
)T+σ1x −KS2

0e
(−α2+

1

2
σ2

2
)T−σ2y)f(W 1

T
,W 2

T
)|Z=z(x, y)dydxfZ(z)dz.

Using the same argument under the measure P̃ with Z̃ := σ1W̃
1
T + σ2W̃

2
T yields

Ψ2(c) = Ẽ
[(

S1
T − K

S2
T

)
1
{W̃ 2

T
≥

ln c−B̃T−A1W̃1
T

A2
}
| σ1W̃

1
T + σ2W̃

2
T ≥ d̃

]
P̃ (σ1W̃

1
T + σ2W̃

2
T ≥ d̃)

=

∫ +∞

d̃

∫ +∞

−∞

∫ +∞

ln c−B̃T−A1x

A2

(S1
0e

(r− 1

2
σ2

1
)T+σ1x −KS2

0e
(−r+ 1

2
σ2

2
)T−σ2y)f̃

(W̃ 1

T
,W̃ 2

T
)|Z̃=z

(x, y)dydxf̃Z̃(z)dz.

Power loss function

Using (4.49) one can check the following

Ac :=
{
cZ̃T ≤

((
S1
T − K

S2
T

)+)p−1
, S1

T − K

S2
T

> 0
}

=
{
cZ̃T ≤

((
S1
T − K

S2
T

)+)p−1
, σ1W

1
T + σ2W

2
T > d

}

=
{ A1

p− 1
W 1

T +
( A2

p− 1
− σ2

)
W 2

T ≥ v(σ1W
1
T + σ2W

2
T ), σ1W

1
T + σ2W

2
T > d

}
(4.51)

=
{ A1

p− 1
W̃ 1

T +
( A2

p− 1
− σ2

)
W̃ 2

T ≥ ṽ(σ1W̃
1
T + σ2W̃

2
T ), σ1W̃

1
T + σ2W̃

2
T > d̃

}
, (4.52)
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where d, d̃ are given by (4.50) and

v(x) = ln

{
S1
0S

2
0e

(α1+α2− 1
2
(σ2

1+σ2
2))T+x −K

c
1

p−1S2
0e

(α2− 1
2
σ2
2− B

p−1
)T

}
,

ṽ(x) = ln




S1
0S

2
0e

(2r− 1
2
(σ2

1+σ2
2))T+x −K

c
1

p−1S2
0e

(r− 1
2
σ2
2− B̃

p−1
)T



 .

To calculate Ψl
1,Ψ

l
2 we use conditional distributions L(X | Y ), L(X̃ | Ỹ ), where X :=

A1
p−1W

1
T +

(
A2
p−1 −σ2

)
W 2

T , Y := σ1W
1
T +σ2W

2
T , Ỹ := A1

p−1W̃
1
T +

(
A2
p−1 −σ2

)
W̃ 2

T , Ỹ := σ1W̃
1
T +

σ2W̃
2
T . Denote by k1, k2, k3, k4 constants satisfying W 1

T = k1X + k2Y , W 2
T = k3X + k4Y ,

W̃ 1
T = k1X̃ + k2Ỹ , W̃ 2

T = k3X̃ + k4Ỹ . Then we have

Ψp
1(c) =

1

p

∫ ∞

d

∫ v(y)

−∞

(
S1
0e

(α1−
1

2
σ2

1
)T+σ1(k1x+k2y) − K

S1
0e

(α2−
1

2
σ2

2
)T+σ1(k3x+k4y)

)p

fX|Y=y(x)fY (y)dxdy

+
1

p
c

p
p−1 e−

pBT
p−1

∫ +∞

d

∫ +∞

v(y)

e−
pA1

p−1
(k1x+k2y)−

pA2

p−1
(k3x+k4y)fX|Y=y(x)fY (y)dxdy,

Ψp
2(c) =

∫ +∞

d̃

∫ +∞

ṽ(y)

(
S1
0e

(r− 1

2
σ2

1
)T+σ1(k1x+k2y) − K

S1
0e

(r− 1

2
σ2

2
)T+σ1(k3x+k4y)

)
f̃X̃|Ỹ=y(x)f̃Ỹ (y)dxdy

− c
1

p−1 e−
B̃T
p−1

∫ +∞

d̃

∫ +∞

ṽ(y)

e−
A1

p−1
(k1x+k2y)−

A2

p−1
(k3x+k4y)f̃X̃|Ỹ=y(x)f̃Ỹ (y)dxdy.

4.3 Outperformance option

The problem is studied for

H =
(
max{S1

T , S
2
T } −K

)+
, K > 0.

Linear loss function

By (4.41), (4.42) and (4.43) we get

Ψ1(c) = E
[
(S1

T −K)1{Z̃−1
T

≥c} | S1
T ≥ K,S1

T ≥ S2
T

]
P (S1

T ≥ K,S1
T ≥ S2

T )

+E
[
(S2

T −K)1{Z̃−1
T

≥c} | S2
T ≥ K,S1

T < S2
T

]
P (S2

T ≥ K,S1
T < S2

T )

= E
[
(S1

T −K)1{Z̃−1
T

≥c} | W 1
T ≥ a1, σ1W

1
T − σ2W

2
T ≥ b

]
P (W 1

T ≥ a1, σ1W
1
T − σ2W

2
T ≥ b)

+E
[
(S2

T −K)1{Z̃−1
T

≥c} | W 2
T ≥ a2, σ1W

1
T − σ2W

2
T < b

]
P (W 2

T ≥ a2, σ1W
1
T − σ2W

2
T < b)

=

∫ +∞

a1

∫ +∞

b

(S1
0e

(α1− 1
2
σ2
1)T+σ1x −K)1{A1x+A2

σ1x−z

σ2
≥ln c−BT}fW 1

T
,σ1W

1
T
−σ2W

2
T
(x, z)dzdx

+

∫ +∞

a2

∫ b

−∞
(S2

0e
(α2− 1

2
σ2
2)T+σ2y −K)1{A1

z+σ2y
σ1

+A2y≥ln c−BT}fW 2
T
,σ1W

1
T
−σ2W

2
T
(y, z)dzdy,
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Ψ2(c) = Ẽ
[
(S1

T −K)1{Z̃−1
T

≥c} | S1
T ≥ K,S1

T ≥ S2
T

]
P̃ (S1

T ≥ K,S1
T ≥ S2

T )

+ Ẽ
[
(S2

T −K)1{Z̃−1
T

≥c} | S2
T ≥ K,S1

T < S2
T

]
P̃ (S2

T ≥ K,S1
T < S2

T )

= Ẽ
[
(S1

T −K)1{Z̃−1
T

≥c} | W̃ 1
T ≥ ã1, σ1W̃

1
T − σ2W̃

2
T ≥ b̃

]
P̃ (W̃ 1

T ≥ ã1, σ1W̃
1
T − σ2W̃

2
T ≥ b̃)

+ Ẽ
[
(S2

T −K)1{Z̃−1
T

≥c} | W̃ 2
T ≥ ã2, σ1W̃

1
T − σ2W̃

2
T < b̃

]
P̃ (W̃ 2

T ≥ ã2, σ1W̃
1
T − σ2W̃

2
T < b̃)

=

∫ +∞

ã1

∫ +∞

b̃

(S1
0e

(r− 1
2
σ2
1)T+σ1x −K)1{A1x+A2

σ1x−z

σ2
≥ln c−B̃T}f̃W̃ 1

T
,σ1W̃

1
T
−σ2W̃

2
T

(x, z)dzdx

+

∫ +∞

ã2

∫ b̃

−∞
(S2

0e
(r− 1

2
σ2
2)T+σ2y −K)1{A1

z+σ2y
σ1

+A2y≥ln c−B̃T}f̃W̃ 2
T
,σ1W̃

1
T
−σ2W̃

2
T

(y, z)dzdy.

Power loss function

Taking into account (4.41), (4.42), (4.43) we can write

Ac = {cZ̃T ≤ (S1
T ∨ S2

T −K)p−1, S1
T ∨ S2

T −K > 0}

= {cZ̃T ≤ (S1
T −K)p−1, S1

T > K,S1
T ≥ S2

T } ∪ {cZ̃T ≤ (S2
T −K)p−1, S2

T > K,S1
T ≤ S2

T }.

We consider the case when A1 > 0, A2 > 0:

Ac = {W 2
T ≥ −

(
A1W

1
T +BT + ln

(1
c
(S1

T −K)p−1)
))

,W 1
T > a1, σ1W

1
T − σ2W

2
T ≥ b}

∪ {W 1
T ≥ −

(
A2W

2
T +BT + ln

(1
c
(S2

T −K)p−1)
))

,W 2
T > a2, σ1W

1
T − σ2W

2
T ≤ b}

=

{
W 2

T ≥ v1(W
1
T ),W

1
T > a1,W

2
T ≤ σ1W

1
T − b

σ2

}

∪
{
W 1

T ≥ v2(W
2
T ),W

2
T > a2,W

1
T ≤ σ2W

2
T − b

σ1

}

=

{
W̃ 2

T ≥ ṽ1(W̃
1
T ), W̃

1
T > ã1, W̃

2
T ≤ σ1W̃

1
T − b̃

σ2

}

∪
{
W̃ 1

T ≥ ṽ2(W̃
2
T ), W̃

2
T > ã2, W̃

1
T ≤ σ2W̃

2
T − b̃

σ1

}
, (4.53)

where

v1(x) = − 1

A2

(
A1x+BT + ln

(1
c
(S1

0e
(α1− 1

2
σ2
1)T+σ1x −K)p

))
,

v2(x) = − 1

A1

(
A2x+BT + ln

(1
c
(S2

0e
(α2− 1

2
σ2
2)T+σ2x −K)p

))
,

ṽ1(x) = − 1

A2

(
A1x+ B̃T + ln

(1
c
(S1

0e
(r− 1

2
σ2
1)T+σ1x −K)p

))
,

ṽ2(x) = − 1

A1

(
A2x+ B̃T + ln

(1
c
(S2

0e
(r− 1

2
σ2
2)T+σ2x −K)p

))
.

Using the representation (4.53) and accepting the convention that the integral over the

empty set is zero, we obtain
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Ψp
1(c) =

∫ +∞

a1

∫ v1(x)∧σ1x−b

σ2

−∞
(S1

0e
(α1− 1

2
σ2
1)T+σ1x −K)pfW 2

T
|W 1

T
=x(y)dyfW 1

T
(x)dx

+
1

p
c

p
p−1 e

− pB
p−1

∫ +∞

a1

∫ σ1x−b

σ2

v1(x)
e
− pA1

p−1
x− pA2

p−1
y
fW 2

T
|W 1

T
=x(y)dyfW 1

T
(x)dx

+

∫ +∞

a2

∫ v2(x)∧σ2x−b

σ1

−∞
(S2

0e
(α2− 1

2
σ2
2)T+σ2x −K)pfW 1

T
|W 2

T
=x(y)dyfW 2

T
(x)dx

+
1

p
c

p
p−1 e

− pB
p−1

∫ +∞

a2

∫ σ2x−b

σ1

v2(x)
e
− pA1

p−1
x− pA2

p−1
y
fW 1

T
|W 2

T
=x(y)dyfW 2

T
(x)dx,

Ψp
2(c) =

∫ +∞

ã1

∫ σ1x−b̃

σ2

ṽ1(x)
(S1

0e
(r− 1

2
σ2
1)T+σ1x −K)f̃

W̃ 2
T
|W̃ 1

T
=x

(y)dyf̃
W̃ 1

T

(x)dx

− c
1

p−1 e
− B̃

p−1
T

∫ +∞

ã1

∫ σ1x−b̃

σ2

ṽ1(x)
e
− A1

p−1
x− A2

p−1
y
f̃
W̃ 2

T
|W̃ 1

T
=x

(y)dyf̃
W̃ 1

T

(x)dx

+

∫ +∞

ã2

∫ σ2x−b̃

σ1

ṽ2(x)
(S2

0e
(r− 1

2
σ2
2)T+σ2x −K)f̃

W̃ 1
T
|W̃ 2

T
=x

(y)dyf̃
W̃ 2

T

(x)dx

− c
1

p−1 e
− B̃

p−1
T

∫ +∞

ã2

∫ σ1x−b̃

σ1

ṽ2(x)
e
− A1

p−1
x− A2

p−1
y
f̃
W̃ 1

T
|W̃ 2

T
=x

(y)dyf̃
W̃ 2

T

(x)dx.

4.4 Spread option

The payoff is of the form

H =
(
S1
T − S2

T −K
)+

, K > 0.

One can check the following

{S1
T ≥ S2

T +K} = {W 1
T ≥ d(W 2

T )} = {W̃ 1
T ≥ d̃(W̃ 2

T )},

where

d(y) :=
1

σ1
ln

(
S2
0e

(α2− 1
2
σ2
2)T+σ2y +K

S1
0e

(α1− 1
2
σ2
1)T

)
, d̃(y) :=

1

σ1
ln

(
S2
0e

(r− 1
2
σ2
2)T+σ2y +K

S1
0e

(r− 1
2
σ2
1)T

)
.

Linear loss function
We have

Ψ1(c) = E
[
(S1

T − S2
T −K)+1{Z̃−1

T
≥c}

]
=

∫ +∞

−∞

E
[
(S1

T − S2
T −K)+1{Z̃−1

T
≥c} | W 2

T = y
]
fW 2

T
(y)dy

=

∫ +∞

−∞

∫ +∞

d(y)

(
S1
0e

(α1−
1

2
σ2

1
)T+σ1x − S2

0e
(α2−

1

2
σ2

2
)T+σ2y −K

)
1{A1x+A2y≥ln c−BT}fW 1

T
|W 2

T
=y(x)dxfW 2

T
(y)dy,

and

Ψ2(c) = Ẽ
[
(S1

T − S2
T −K)+1{Z̃−1

T
≥c}

]
=

∫ +∞

−∞

Ẽ
[
(S1

T − S2
T −K)+1{Z̃−1

T
≥c} | W̃ 2

T = y
]
f̃
W̃ 2

T

(y)dy

=

∫ +∞

−∞

∫ +∞

d̃(y)

(
S1
0e

(r− 1

2
σ2

1
)T+σ1x − S2

0e
(r− 1

2
σ2

2
)T+σ2y −K

)
1{A1x+A2y≥ln c−B̃T}f̃W̃ 1

T
|W̃ 2

T
=y

(x)dxfW 2

T
(y)dy.
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Power loss function
We have

Ac := {cZ̃T ≤ (S1
T − S2

T −K)p−1, S1
T − S2

T −K > 0}

=
{
c

1

p−1 e−
A1

p−1
W 1

T−
A2

p−1
W 2

T − B
p−1

T ≤ S1
0e

(α1−
1

2
σ2

1
)T+σ1W

1

T − S2
0e

(α2−
1

2
σ2

2
)T+σ2W

2

T −K,W 1
T ≥ d(W 2

T )
}

=
{
W 1

T ∈ A(W 2
T )
}
=
{
W̃ 1

T ∈ Ã(W̃ 2
T )
}
, (4.54)

where

A(y) := {x : c
1

p−1 e
− A1

p−1
x− A2

p−1
y− B

p−1
T ≤ S1

0e
(α1− 1

2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K,x ≥ d(y)},

Ã(y) := {x : c
1

p−1 e
− A1

p−1
x− A2

p−1
y− B̃

p−1
T ≤ S1

0e
(r− 1

2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K,x ≥ d̃(y)}.

Let us notice that the set Ac
c ∩ {H > 0} is of the form

Ac
c ∩ {H > 0} = {W 1

T ∈ B(W 2
T )}, (4.55)

where

B(y) := {x : c
1

p−1 e
− A1

p−1
x− A2

p−1
y− B

p−1
T
> S1

0e
(α1− 1

2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K,x ≥ d(y)}.

Taking into account (4.54) and (4.55) we obtain

Ψp
1(c) =

1

p

∫ +∞

−∞

∫

B(y)

(
S1
0e

(α1− 1
2
σ2
1)T+σ1x − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K

)p
fW 1

T
|W 2

T
=y(x)dxfW 2

T
(y)dy

+
1

p
c

p
p−1 e

− pBT
p−1

∫ +∞

−∞

∫

A(y)

(
e
− pA1

p−1
x− pA2

p−1
y
)
fW 1

T
|W 2

T
=y(x)dxfW 2

T
(y)dy,

Ψp
2(c) =

∫ +∞

−∞

∫

Ã(y)

(
S1
0e

(r− 1
2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K

)
f̃
W̃ 1

T
|W̃ 2

T
=y

(x)dxf̃
W̃ 2

T

(y)dy

+ c
1

p−1 e
− B̃T

p−1

∫ +∞

−∞

∫

Ã(y)

(
e
− A1

p−1
x− A2

p−1
y
)
f̃
W̃ 1

T
|W̃ 2

T
=y

(x)dxf̃
W̃ 2

T

(y)dy.
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[2] Cvitanić, J.: Minimizing expected loss of hedging in incomplete and constrained mar-

kets, SIAM J. Control Optim. (2000), 38, no. 4, 1050-1066,
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