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We introduce a generalisation of the well-known ARCH process, widely used for

generating uncorrelated stochastic time series with long-term non-Gaussian distributions and

long-lasting correlations in the (instantaneous) standard deviation exhibiting a clustering

profile. Specifically, inspired by the fact that in a variety of systems impacting events are

hardly forgot, we split the process into two different regimes: a first one for regular periods

where the average volatility of the fluctuations within a certain period of time W is below a

certain threshold, φ, and another one when the local standard deviation outnumbers φ. In the

former situation we use standard rules for heteroscedastic processes whereas in the latter case

the system starts recalling past values that surpassed the threshold. Our results show that

for appropriate parameter values the model is able to provide fat tailed probability density

functions and strong persistence of the instantaneous variance characterised by large values of

the Hurst exponent (H > 0.8), which are ubiquitous features in complex systems.

PACS: 05.90.+m, 05.40.-a, 89.65.Gh, 89.65.-s

Keyword(s): Heteroscedastic processes, Fat-tail distributions, Perpetual memory

http://arxiv.org/abs/1102.4819v2


Minding impacting events in a model of stochastic variance 2

I. Introduction

For the last years the physical community has broaden its subject goals to matters

that some decades ago were too distant from the classical topics of Physics. Despite

being apparently at odds with the standard motivations of Physics, this new trend

has given an invaluable contribution toward a more connected way of making Science,

thus leading to a better understanding of the world surrounding us [1]. Within this

context, the major contribution of physicists is perhaps the quantitative procedure,

reminiscent of experimental physics, in which a model is proposed after a series of studies

that pave the way to a reliable theory. This path has resulted in a series of findings

which have helped such diverse fields as physiology, sociology and economics, among

many others [2, 3, 4]. Along these findings, one can mention the determination of non-

Gaussian distributions and long-lasting (power-law like) correlations [5, 6, 7]. Actually,

by changing the observable, the conjunction of the two previous empirical verifications is

quite omnipresent. For this reason and regardless the realm of the problem very similar

models have been applied with particular notoriety to discrete stochastic processes of

time-dependent variance based on autoregressive conditional heteroscedastic models [8].

That is to say, most of these models are devised taking basically into account the general

features one aims at reproducing, rather than putting in elements that represent the

idiosyncracies of the system one is surveying. For instance, many of the proposals cast

aside the cognitive essence prevailing on many of these systems, when it is well known

that in real situations this represents a key element of the process [9]. On the other

hand, intending to describe long-lasting correlations, long-lasting memories are usually

introduced thus neglecting the fact that we do not traditionally keep in mind every

happening. As a simple example, we are skilled at remembering quotidian events for

some period. However, we will discard that information as time goes by, unless the

specific deed either created an impact on us or has to do with something that has really

touched us somehow. In this case, it is likely that the fact will be remembered forever

and called back in similar or related conditions, which many times lead to a collective

memory effect [10].

In this work, we make use of the celebrated heteroscedastic model, the ARCH

process [11] and modify it by pitching at accommodating cognitive traits that lead to

different behavior for periods of high agitation or impact. Particularly, we want to

stress on the fact that people tend to recall important periods, no matter when they

took place. To that end, we introduce a measure of the local volatility, as well as a

volatility threshold, so that the system changes from a normal dynamics, in which it

uses the previous values of the variable to determine its next value, to a situation in

which it recalls the past and compares the current state with previous states of high

volatility, even if this past is far.
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I.1. Standard models of heteroscedasticity

The Engle’s formulation of an autoregressive conditional heteroscedastic (ARCH) time

series [11] represents one of the simplest and effectual models in Economics and Finance,

for which he was laureated the Nobel Memorial Prize in Economical Sciences in 2003 [12].

Explicitly, the ARCH corresponds to a discrete time, t, process associated with a

variable, zt,

zt = σt ωt, (1)

with ωt being an independent and identically distributed random variable with zero mean

and standard deviation equal to one. The quantity σt represents the time-dependent

standard deviation, which we will henceforth name instantaneous volatility for mere

historical reasons. Traditionally, a Gaussian is assigned to the random variable ωt,

but other distributions, namely the truncated α-stable Lévy distribution and the q-

Gaussian (Student-t) have been successfully introduced as well [13, 14]. In his seminal

paper, Engle suggested that the values of σ2
t could be obtained from a linear function

of past squared values of zt,

σ2
t = a +

s∑

i=1

bi z
2
t−i, (a, bi ≥ 0) . (2)

In financial practice, viz., price fluctuations modelling, the case s = 1 (b1 ≡ b) represents

the very most studied and applied of all the ARCH (s)-like processes. The model has

been often applied in cases where it is assumed that the variance of the observable

(or its fluctuation) is a function of the magnitudes of the previous occurrences. In a

financial perspective, Engle’s proposal has been associated with the relation between

the market activity and the deviations from the normal level of volatility a, and the

previous price fluctuations making use of the impact function [8]. Alternatively, recent

studies convey the thesis that leverage can be responsible for the volatility clustering

and fat tails in finance [15]. Nonetheless, the heteroscedastic ARCH-like processes has

been repeatedly used as a forecasting method. In other words, one makes use of the

magnitude of previous events in order to indicate (or at least to bound) the upcoming

event (see e.g. [16, 17]). In respect of its statistical features, although the time series

is completely uncorrelated, 〈zt zt′〉 ∼ δt t′ , it can be easily verified that the covariance

〈|zt| |zt′ |〉 is not proportional to δt t′ . As a matter of fact, for s = 1, it is provable that

〈z2t z2t′〉 decays according to an exponential law with a characteristic time τ ≡ |ln b|−1.

This dependence does not reproduce most of the empirical evidences, particularly those

bearing on price fluctuations studies. In addition, the introduction of a large value of s

used to give rise to implementation problems [18]. Expressly, large values of s augment

the difficulty of finding the appropriate set of parameters {bi} for the problem under

study as it corresponds to the evaluation of a large number of fitting parameters. Aiming

to solve this short-coming of the original ARCH (1) process, the GARCH (s, r) process
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was introduced [19] (where G stands for generalised), with Eq. (2) being replaced by,

σ2
t = a +

s∑

i=1

bi z
2
t−i +

r∑

i=1

ci σ
2
t−i (a, bi, ci ≥ 0) . (3)

In spite of the fact that the condition, b + c < 1, guarantees that the GARCH (1, 1)

process exactly corresponds to an infinite-order ARCH process, an exponential decay

for 〈z2t z2t′〉, with τ ≡ |ln (b+ c)|−1 is found.

Although the instantaneous volatility is time dependent, the ARCH(1) process is

actually stationary with the stationary variance given by,
〈
σ2
〉
= σ̂2 =

a

1− b
, (b < 1), (4)

(herein 〈. . .〉 represents averages over samples at a specified time and .̂ . . denotes averages

over time in a single sample). Moreover, it presents a stationary probability density

function (PDF), P (z), with a kurtosis larger than the kurtosis of distribution P (ω).

Namely, the fourth-order moment is,

〈
z4
〉
= a2

〈
ω4

〉 1 + b

(1− b) (1− b2 〈σ4〉) .

This kurtosis excess is precisely the outcome of the dependence of σt on the time (through

z). Correspondingly, when b = 0, the process is reduced to generating a signal with the

same PDF of ω, but with a standard variation equal to
√
a. At this point, it is convenient

to say that, for the time being and despite several efforts, there are only analytical

expressions describing the tail behaviour of P (z) or the continuous-time approximation

of the ARCH(1) process with the full analytical formula still unknown [14, 20].

In order to cope with the long-lasting correlations and other features such as the

asymmetry of the distribution and the leverage effect, different versions of the ARCH

process have been proposed [8, 18]. To the best of our knowledge, every of them

solve the issue of the long-lasting correlations of the volatility by way of introducing

an eternal dependence on z2i in Eq. (2), bi ≡ bK (i), with K (.) representing a slowly

decaying function [21, 22]. Most of these generalisations can be encompassed within the

fractionally integrated class of ARCH processes, the FIARCH [23, 24, 25]. The idea

supporting the introduction of a power-law for the functional form of K (.) is generally

based on the assumption that the agents in the market make use of exponential functions

K (.) with a broad distribution of relaxation times related to different investment

horizons [26, 27]. This type of model has achieved a huge popularity in the replication

of non-Gaussian time series in several areas, such as biomedicine, climate, engineering,

and physics (a few examples can be found in [28, 29, 30, 31, 32, 33]).

As described above, the statistical features of the macroscopic observables are the

result of the nature of the interactions between the microscopic elements of the system

and the relation between microscopic as well as the macroscopic observables. In the case

of the “financial” ARCH process, it was held that z2i bears upon the impact of the price

fluctuations on the trading activity. On the one hand, it is understood that the impact

of the price fluctuations (or trading activity) on the volatility does not merely come from
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recent price fluctuations and it does actually involve past price fluctuations. In finance,

upgraded versions of heteroscedasticity models use multi-scaling, i.e., it is assumed

that the price will evolve by modulating the volatility according to the volatility over

different scales (days, weeks, months, years, etc.) [34] in order to smooth their possible

misjudgement about the volatility. However, in practice, these models do not differ much

from FIARCH-like proposals at the level of the results we are pointing at. Alternately,

it is worthwhile to look upon the ARCH proposal as a mechanism of forecast [16, 17].

In this way, the simplest approach, the ARCH(1), represents an attempt to foresee

future values just taking into account recent observations, whereas models like the

FIARCH bear in mind all the history weighting each past-value according to some

kernel functional.

I.2. Minding impacting events

In our case, we want to emphasise the fact that people tend to recall periods of high

volatility (i.e., impact) in the system, no matter when they took place, by changing the

surrounding conditions as agent-based models suggested [35, 36]. Hence, we introduce

a measure of the local volatility,

vt =
1

W

W−1∑

i=0

z2t−i, (5)

and a threshold, φ, so that instead of Eq. (2), the updating of σ2
t goes as follows:

σ2
t =





a+
t∑

i=1

bi z2t−i if vt−1 < φ,

a+
t∑

i=1

b′i z
2
t−i if vt−1 ≥ φ,

(6)

where bi = bK (i) = b exp [− i / τ ] [37]. Therefore, if we assume the financial market

perspective, we are implicitly presuming that the characteristic time, τ , is Dirac delta or

at least narrow distributed, so that the exponential functional is a valid approximation.

This approach is confirmed by recent heuristic studies in which it has been verified that

the largest stake of the market capitalisation is managed by a small number of companies

that apply very similar strategies [38]. With the second branch equation we intend to

highlight the difference in behaviour of the “normal” periods of trading and the periods

of significant volatility, in which the future depends on the spells of significant volatility

in the past as well. The values b′i are defined as,

b′i = b piΘ [vt−i − φ] , (7)

with Θ [. . .] being the Heaviside function and pi is a factor that represents a measure of

the similarity (in the volatility space) between the windows of size W with upper limits

at zt and zt−W+1, respectively. Analytically, this is equivalent to mapping segments in



Minding impacting events in a model of stochastic variance 6

the form
{
z2i , . . . , z

2
i−W+1

}
into vectors in R

+W
0 and afterward computing a normalised

internal product-like weight,

pi =
1

N
W∑

j=1

z2t−j z
2
i−j , (8)

where, for the sake of simplicity, we set aside the time dependence of pi and b′i in the

equations, while N represents the normalisation factor such that
∑

i pi = 1 for all i

(with fixed t).

We are therefore dealing with a model characterised by 5 parameters, namely: a (the

normal level of volatility) and b (the impact of the observable in the volatility), which

were both first introduced by Engle in [11]; τ , put forward in exponential models [37];

and two new parameters W (representing the volatility spell) and φ that we will reduce

to a single extra parameter. If we think of trading activities, our proposal introduces a

key parameter, the volatility threshold, φ, which signals a change in behaviour of the

agents in the market. At present, significant stake of the trading in financial markets

is dominated by short-term positions and thus a good part of the dynamics of price

fluctuations can be described by Eq. (2), or by functions with an exponential kernel. As

soon as the market fluctuates excessively, i.e., the volatility soars beyond the threshold,

the market changes its trading dynamics. The main forecast references are obviously

the periods where the volatility has reached high levels and afterward, the periods of

those which are most similar; this is the rationale described by our Eq. (8). Thence,

our proposal is nothing but the use of simple mechanisms that in a coarse-grained way

master a good part of our decisions.

II. Results

II.1. General results

In this section we present the results obtained by the numerical implementation of the

model. For comparison, we will use the results of a prior model that can be enclosed in

the class of FIARCH processes [25]. There, the adjustment of the parameters comes

from the delicate balance between the parameter b, which is responsible for introducing

deviations of the volatility from its normal level a, and the parameter controlling the

memory. On the one hand, large memory has the inconvenient effect of turning constant

the instantaneous volatility, so that after a seemly number of time steps the value of

σ becomes constant, hence leading to a Gaussian (or close to it) distribution of the

variable z, independently of how large b is. On the other hand, short memory is unable

to introduce long-range correlations in the volatility, although it enhances larger values

of kurtosis excess. The model we introduce herein is rather more complex. In order

to deal with the change of regime, we define a parameter establishing this alteration

and we need to specify W and τ . Henceforth, we have assumed W = τ , which is very

reasonable as it imposes that the volatility and the time scale that the agents in the
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market use to assess the evolution of the observable are the same. In order to speed up

our numerical implementation, we have imposed a cut-off of 10W in the computation

of the first line in Eq. (6). This approximation turns the numerical procedure much

lighter with a negligible effect because the influence of the discarded past is not much

relevant in numerical terms (within standard numerical implementation error). In all

of our realisations, we have used a normalised level of expected volatility, a = 1, and

we have defined the volatility threshold in units of a/ (1− b), following a stationary

approach, as well.

We have adjusted the probability distributions of z by means of the distribution,

P (z) = Z−1
(
1 +B z2 ν

) 1

1−q′ , (9)

the behaviour of which follows a power-law distribution for large |z| with an exponent

equal to 2 ν
q′−1

and where (using Ref. [39], sec. 3.194),

∫
zn(1 +B z2 ν)

1

1−q′ dz =
1 + (−1)n

1 + n

Γ
[
2 ν+n+1

2 ν

]
Γ
[
2 ν+(n+1)(1−q′)

2 ν(q′−1)

]

B
1+n

2 ν Γ
[

1
q′−1

] , (10)

(
2 ν
q′−1

> 1 + n
)
, and Z represents the previous integral with n = 0. The fittings for the

probability density distribution (9) were obtained using non-linear and maximum log-

likelihood numerical procedures and the tail exponents double-checked with the value

given by the Hill estimator [40]. As a matter of fact, values of ν different from 1 have

only been perceived for large values of b and small values of φ (slightly larger) or large

values of φ (slightly smaller). For ν = 1 and q′ 6= 1, the PDF corresponds to a q′-

Gaussian distribution (or Student-t distribution) [41] and when q′ = 1 we have either

the Gaussian (ν = 1) or the stretched distribution (ν 6= 1). Since that in the majority

of the applications one is interested in the tail behaviour, we have opted for following

the same approach by defining the tail index as,

2

q − 1
=

2ν

q′ − 1
⇔ q = ν−1 (q′ + ν − 1) . (11)

In spite of the fact that other functional forms could have been used, we have decided

on Eq. (9) because of its statistical relevance and simplicity (in comparison with

other candidates involving special functions, namely the hypergeometric). Moreover,

the q-Gaussian (t-Student) is intimately associated with the long-term distribution of

heteroscedastic variables since it results in the exact distribution when the volatility

follows an inverse-Gamma distribution [33, 42, 43].

Concerning the persistence of the volatility, we have settled on the Detrended

Fluctuation Analysis (DFA) [44], which describes the scaling of a fluctuation function

related to the average aggregated variance over segments of a time series of size ℓ,

F (ℓ) ∼ ℓH , (12)

where H is the Hurst exponent. Although it has been shown that Fluctuation Analysis

methods can introduce meaningful errors in the Lévy regime [45], we have verified that



Minding impacting events in a model of stochastic variance 8

W φ P∗
KS W φ P∗

KS

10 0.25 0.9997 75 0.25 0.9865

0.5 0.9998 0.5 0.9898

0.6 0.9998 0.6 0.9902

0.75 0.9998 0.75 0.9908

1.25 0.9999 1.25 0.9918

2.5 0.9999 2.5 0.9925

5 1 5 0.9943

25 0.25 0.9985 125 0.25 0.9749

0.5 0.9989 0.5 0.9761

0.6 0.999 0.6 0.976

0.75 0.9991 0.75 0.9767

1.25 0.9992 1.25 0.9780

2.5 0.9994 2.5 0.9817

5 0.9996 5 0.9870

Table 1: Critical values P∗

KS = 1−αcrit from the Kolmogorov-Smirnov test for typical

pairs (W,φ) used for adjustments.

for our case, which stands within the finite second-order moment domain, the results of

DFA are so reliable as other scaling methods.

Let us now present our results for b = 0.5, which is able to depict the qualitative

behavior of the model for small b. This case corresponds to a situation of little deviation

from the Gaussian, when long-range memory is considered. In accordance, we can

analyse the influence of the threshold φ and W . Overall, we verify a very sparse

deviation from the Gaussian. Keeping W fixed and varying φ, we understand that

for small values of φ the distribution of zt is Gaussian and the Hurst exponent of |zt|
is 1/2. It is not hard to grasp this observation if we take into account that, by using

small values of φ, we are basically employing almost all of the past values which limits

the values of instantaneous volatility to a constant value after a transient time. As

we increase the value of φ, we let the dynamics be more flexible and therefore the

volatility is able to fluctuate, resulting in a kurtosis excess. For small values of W ,

the Hurst exponent is slenderly different from 1/2 and the value of the Hurst exponent

increases with W . However, because of the small value of b, the rise of W turns out the

distribution of z barely undistinguishable from a Gaussian. This behaviour is described

in Fig. 1. We have obtained a Gaussian distribution and a Hurst exponent H = 0.5

for small values of φ (φ = 0.1) and W (W = 5). When we augment the value of

the threshold, φ = 5, the system is loose and the instantaneous volatility is able to

fluctuate leading to the emergence of tails (q = 1.09) and a subtle increase of the Hurst

exponent (H = 0.52 ± 0.01). Hiking up both W and φ (W = 75 and φ = 2), we have

achieved large values of the Hurst exponent (H = 0.58± 0.02), but the small value of b

is not sufficient to induce relevant fluctuations, bringing on a distribution that is almost
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Gaussian (q = 1.02). The distribution fittings were assessed by computing the critical

value P∗
KS = 1 − αcrit from the Kolmogorov-Smirnov test [46] that are equal to 0.9634

and 0.9454, respectively.

Figure 1: Left column: Probability density functions P (z) vs z in a log-linear scale;

Right column: Fluctuation function F (ℓ) vs ℓ for |z| in a log-log scale. The values of

the model parameters are: φ = 0.1,W = 5 yielding q = 1 and H = 0.5 ± 0.01 (upper

panels); φ = 5,W = 5 yielding q = 1.09± 0.01 and H = 0.52± 0.01 (middle panels);

φ = 2,W = 75 yielding q = 1.02±0.01 and H = 0.58±0.02 (lower panels). The results

have been obtained from series of 4 × 105 elements and the numerical adjustment of

P (z) gave values of χ2/n never greater than 0.00003, with R never smaller than 0.998.

As we increase the value of b, we favour the contribution of the past values of the

price dynamics, thus, for the same value of W we are capable of achieving larger values
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of the kurtosis excess, that we represent by means of the increase of the q index. The

same occurs for the Hurst exponent. This general scenery is illustrated in Fig. 2 for

the value b = 0.998, where we present the dependence of q and H with φ, for different

choices of W . Again, the higher W , the lower the tail index q, because the extension of

the memory surges a weakening of the fluctuations in the volatility. The opposite occurs

with the Hurst exponent, which increases towards unit (ballistic regime) as we consider

W larger, for obvious reasons. In all the cases of (b,W ) investigated, we verified that

both q and H augment with φ. The assessment of the numerical adjustments is provided

in Tab. 1 in the form of the P∗
KS critical values from the Kolmogorov-Smirnov test [46].

The only case we obtained a value 1 (within a five-digit precision) was for the pair

W = 10 and φ = 5, which results in a value quite close to the limit of finite second-order

moment (a fat-tailed distribution with q = 5/3). At this point it is worth saying that

we have investigated the likelihood of other well-known continuous distributions, such

as the stretched-exponential, the simple t-Student, Lévy, and Gaussian. Nonetheless,

the fittings carried with Eq. (9) outperformed every other analysed distribution.

Concerning the instantaneous volatility, σt, we verified that the Dirac delta

distribution, p (σ) = δ (σ − 1), starts misshaping and short tails appear as we depict in

Fig. 4 (upper panel) for the case b = 0.998, W = 75 and φ = 0.25. Considering this

particular case, we can present relevant evidence of the effectiveness of our proposed

probability distribution approach. The empirical distribution function in the upper

panel of Fig. 4 may be simply approximated by

p (σ) =





f 1
2 c

if σ 6= 1

(1− f) δ (σ − 1) otherwise

, (13)

with c ≥ 0, f ≤ 1, and σ ∈ (1− c, 1 + c); when f = 0 we recover the homoscedastic

process distribution as a particular case. Reminding that at each time step the

distribution is a Gaussian (conditioned to a time-dependent value of σ) the long-term

distribution is,

P (z) =

∫ 1+c

1−c

p (σ)
1√
2 πσ

exp

[
− z2

2 σ2

]
dσ, (14)

which gives (Ref. [39], sec. 3.351),

P (z) =
f

4
√
2 π c

(
Ei

[
− z2

2 (1− c)2

]
− Ei

[
− z2

2 (1 + c)2

])
+
1− f√
2 π

exp

[
−z2

2

]
(15)

where Ei [.] is the Exponential Integral function (see e.g. Ref. [48]). Considering c = 1/2

(which is appropriate to the case shown) and taking for the sake of simplicity f = 1/2,

we obtain the function presented in Fig. 3‡, the kurtosis of which is κ = 10854
3125

≈ 3.47

(making use of Ref. [39], sec. 5.221). The accordance between this distribution and the

empirical distribution is quite remarkable since it emerges from no numerical adjustment

‡ Actually, this curve is represented in the scaled variable z/σ so that the standard deviation, which

is originally equal to
(c+1)3+(c−1)3+6c

12c , becomes equal to one, like in other depicted distributions.
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Figure 2: Upper panel: Value of the tail index q vs parameter φ for several values

of W and b = 0.998 according to the adjustment procedures mentioned in the text.

Lower panel: Hurst exponent H vs φ. The results have been obtained from series

of 4 × 105 elements and the numerical adjustment of P (z) gave values of χ2/n never

greater than 0.00003 with R2 never smaller than 0.9998. Regarding the values of the

Hurst exponent, the absolute error has never been greater that 0.015 and a linear

coefficient R > 0.999.

and can be further improved by tuning the values of f and c. Regardless, this kurtosis

value is only 2.2% larger than our numerical adjustment (see Table 1 for the goodness

of fitting). Furthermore, comparing the distributions by means of the symmetrised

Kullback-Leibler divergence KL = 1
2

(∫
P (z) ln P (z)

P ′(z)
dz +

∫
P ′ (z) ln P ′(z)

P (z)
dz

)
, we obtain

a value of 0.00014 that is 19 times smaller than the distance between our fitting and
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a Gaussian. These results show that the PDF of Eq. (9) not only provides a good

description of the data, but it is much more manageable as well.

Figure 3: The points represent the empirical distribution function for b = 0.998,

φ = 0.25 and W = 75; the dashed red line is our adjustment with Eq. (9) with

q = 1.1 ± 0.01, ν = 1 and B = (q − 1)/(5 − 3 q) [χ2/n = 0.00003 and R2 = 0.9986];

the green line is PDF (15) with f = c = 1/2 and the dotted cyan line is the Normal

distribution.

Cases for which the kurtosis excess is relevant (q > 5/4) stem from wider

distributions of σ (see the lower panel of Fig. 4). Actually, it is the emergence of larger

values of the instantaneous volatility that brings forth fat tails. Although we have not

been successful in describing the whole distribution, we have verified that, for values of

q > 5/4, the distribution p (σ) is very well described by a type-2 Gumbel distribution,

p (σ) ∝ exp
[
−β σ−ζ

]
σ−ζ−1, (16)

and after certain value of σ the distribution sharply decreases according to a power-law

with a large exponent. We credit this sheer fall to the threshold φ, which introduces a

sharp change in the dynamical regime of the volatility and thus in its statistics.

In finance, such a cut-off is more than plausible as real markets do suspend trading

when large price fluctuations occur. This also grants feasibility to descriptions based

on truncated power-law distributions [6]. Moreover, a fall off is also presented in the

quantity σe of Fig. 3 in Ref. [47]. It is known that for heteroscedastic models the tail

behavior of the long-term distribution is governed by the asymptotic limit of p(σ) when

σ tends to infinity. For the case of distribution (16), this limit is the power-law σ−ζ−1

and therefore we can verify that the asymptotic behaviour of the long-term distribution

of the variable z,

lim
|z|→∞

P (z) ∼
∫ [

lim
σ→∞

p (σ)
] 1√

2 πσ
exp

[
− z2

2 σ2

]
dσ (17)
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Figure 4: Probability density function of the instantaneous volatility p(σ) vs σ for two

different cases with b = 0.9998. Upper panel: φ = 0.25 and W = 75 which leads to a

sharply peaked distribution around σ = 1 and to a P (z) tail index q = 1.1. Lower panel:

φ = 2.5 and W = 25 that results in a broader distribution largely described by a type-2

Gumbel distribution with β = 0.421 ± 0.002 and ζ = 2.323 ± 0.006 (χ2/n = 0.00011

and R2 = 0.9982). For σ ∼ 5, p(σ) changes its behavior to a faster decay with an

exponent equal to 8.4± 0.2 represented by the gray symbols. The ANOVA test of the

type-2 Gumbel adjustment (up to σ ∼ 5) have yielded a sum of squares of 0.03553 (323

degrees of freedom) and 20.3684 (2 degrees of freedom) for the error and the model,

respectively. The uncorrected value of the sum of squares is 20.4039 (325 degrees of

freedom) and the corrected total is 12.5941 (324 degrees of freedom). The empirical

distribution function has been obtained from series of 4× 105 elements.

∼
∫

σ−ζ−2 exp

[
− z2

2 σ2

]
dσ,
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yields a power-law distribution (applying Ref. [39], sec. 3.326),

P (z) → |z|−ζ , (z → ∞) . (18)

For p(σ) following an exponential decay in the form exp[−γ σ], a similar procedure

yields,

P (z) → G

[
γ2

8
z2| − − −

0, 1
2
, 1

]
, (z → ∞) , (19)

where G [.] is the Meijer G-function [39, 48].§
It is worth saying that we can reduce the number of parameters to a, b and φ, i.e.,

apply the simple ARCH(1) process, and obtain fat tails and persistence still.

II.2. Comparison with a real system

Following this picture, we can now look for a set of parameters that enable us to replicate

a historic series such as the daily (adjusted‖) log-index fluctuations, {r (t)}, of the SP500
stock index, {S (t)}, between 3rd January 1950 and 12th April 2010 (14380 data points)

with,

r (t) = lnS (t+ 1)− lnS (t) . (20)

Inspecting over a grid of values of b, W and φ, we have noted that the values of 0.9998,

22 and 1.125, respectively, yield values of q and H for {zt} that are in good agreement

with a prior analysis of {r (t)} which gave q = 1.48 ± 0.02 (using a simple t-Student

distribution) and q = 1.51± 0.02 (q′ = 1.47± 0.003, ν = 0.92± 0.008) [χ2/n = 0.00003,

R2 = 0.999 and P∗
KS = 0.9276](using the PDF of Eq. (9)) and persistence exponent

H = 0.86 ± 0.03 (see Fig. 4). Comparing the numerical distribution of our model with

the data we obtained DKS = 0.014 and a P∗
KS critical value equal to 0.991 from the two-

sample Kolmogorov-Smirnov test [46],while the comparison between the distribution

of the numerical procedure and the adjustment of the SP500 empirical distribution

function yielded P∗
KS = 0.9998. Once again we have tested other possible numerical

adjustments and the only other relevant distribution was the stretched exponential with

ν = 1.3 ± 0.02 (q′ = 1) which has given a P∗
KS different from 1 (P∗

KS = 0.9999), but a

significantly larger value of χ2 [χ2/n = 0.00009, R2 = 0.9963].

It is worthy to be mentioned that all the three values of the parameters are plausible.

First, within an application context, b is traditionally a value robustly greater than 0.9.

Second, W is close to the number of business days in a month and last, but not least,

φ is somewhat above the average level of the mean variance presented above. This

provides us with a very interesting picture of the dynamics. Specifically, at a relevant

§ In an effort to obtain a full description of p (σ) we also used a function such as f (x) =

Z exp
[
−β x− ζ

] (
1− A

B
+ A

B
exp

[
A
µ
x
])

− µ

which allows the appearance of a crossover from a power

law to an exponential decay. Nonetheless, it did not provide better results.

‖ The adjusted values of the index take into account dividend payments and splits occurred in a

particular day.
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approximation we can describe this particular system as monitoring the magnitude of its

past fluctuations with a characteristic scale of a month, from which it computes the level

of impact resulting in an excess of volatility. Actually one month moving averages are

established indicators in quantitative analyses of financial markets. When the volatility

in a period of the same order of magnitude of W surpasses the value φ/ (1− b), then the

system recalls previous periods of time, no matter how long they happened, in which a

significant level of volatility excess occurred. Those periods are then averaged in order

to determine the level of instantaneous volatility σ2
t .

Figure 5: Upper panels: On the left side, Probability density function P (z) vs z for

b = 0.998, W = 22 and φ = 1.125 (full line) [q = 1.49±0.01 with χ2/n = 0.000025 and

R2 = 0.9984] and the SP500 daily log-index fluctuations (symbols) [q = 1.48 ± 0.02

with χ2/n = 0.00004 and R2 = 0.996] in the log-linear scale and on the right side

the complementary cumulative distribution function D(x > z) vs z for case shown on

the left. Lower panel: Fluctuation function F (ℓ) vs ℓ for the same parameters above

[H = 0.85 ± 0.02, with R = 0.998] (red circles) and for the SP500 daily log-index

fluctuations [H = 0.86± 0.03, with R = 0.997] (black squares) in a log-log scale.

III. Discussion

We have studied a generalisation of the well-known ARCH process born in a financial

context. Our proposal differs from other generalisations, since it adds to heteroscedastic

dynamics the ability to reproduce systems where cognitive traits exist or systems
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showing typical cut-off limiting values. In the former case, when present circumstances

are close to extreme and impacting events, the dynamics switches to the memory of

abnormal events. By poring over the set of parameters of the problem, namely the

impact of past values, b, the memory scale, W , and the volatility threshold, φ, we have

verified that we are able to obtain times series showing fat tails for the probability density

function and strong persistence for the magnitudes of the stochastic variable (directly

related to the instantaneous volatility), as it happens in several processes studied within

the context of complexity. In order to describe the usefulness of our model we have

applied it to mimic the fluctuations of the stock index SP500, we verified that the best

values reproducing the features of its time series are W close to one business month and

φ greater that the mean variance of the process which is much larger than the normal

level of volatility for which trading is not taken into account. Concerning the volatility,

we have noticed that for the problems of interest (i.e., fat tails and strong persistence),

the distributions are very well described by a type-2 Gumbel distribution in large part

of the domain, which explains the emergence of the tails.
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