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1. Introduction

Empirical Likelihood (EL), introduced by Owen (1988), is a powerful semi-parametric
method. It can be used in a very general setting and leads to effective estimation, tests
and confidence intervals. This method shares many good properties with the conven-
tional parametric log-likelihood ratio: both statistics have χ2 limiting distribution and
are Bartlett correctable, meaning that the error can be reduced from O(n−1) to O(n−2)
by a simple adjustment. An additional property of EL is that the corresponding confi-
dence intervals and tests do not rely on an estimator of the variance. This last property
is specially noticeable for dependent data, since estimating the variance is then a chal-
lenging issue.
Owen’s framework has been intensively studied in the 90’s (see Owen 2001, for an

overview), leading to many generalizations and applications, but mainly for an i.i.d. set-
ting. Some adaptations of EL for dependent data have been introduced, such as the Block
Empirical Likelihood (BEL) of Kitamura (1997) for weakly dependent processes or the
subject-wise and elementwise empirical likelihoods of Wang et al. (2010) for longitudinal
data. BEL is inspired by similarities with the bootstrap methodology. Kitamura proposed
to apply the empirical likelihood framework not directly on the data but on blocks of
consecutive data, to catch the dependence structure. This idea, known as Block Bootstrap
(BB) or blocking technique (in the probabilistic literature, see Doukhan and Ango Nze
2004, for references) goes back to Kunsch (1989) in the bootstrap literature and has been
intensively exploited in this field (see Lahiri 2003, for a survey). However, the BB perfor-
mance has been questioned, see Götze and Kunsch (1996) and Horowitz (2003). Indeed
it is known that the blocking technique distorts the dependence structure of the data
generating process and its performance strongly relies on the choice of the block size.
From a theoretical point of view, the assumptions used to prove the validity of BB and
BEL are generally strong: it is assumed that the process is stationary and satisfies some
strong-mixing properties (some non-stationary processes can nevertheless be handled,
see Synowiecki (2007) for example). In addition to having a precise control of the cov-
erage probability of the confidence intervals, we have to assume that the strong mixing
coefficients are exponentially decreasing (see Kitamura 1997; Lahiri 2003). Moreover, the
choice of the tuning parameter (the block size) may be quite difficult from a practical
point of view.
In this paper, we focus on generalizing empirical likelihood to Markov chains. Ques-

tioning the restriction implied by the Markovian setting is a natural issue. It should
be mentioned that homogeneous Markov chain models cover a huge number of time se-
ries models. In particular, a Markov chain can always be written in a nonparametric
way: Xi = h(Xi−1, · · · ,Xi−p, εi), where (εi)i≥0 is i.i.d. with density f and, for i > 0,
εi is independent of (Xk)0≤k<i (see Kallenberg 2002). Note that both h and f are un-
known functions. Such representations explain why, provided that p is large enough,
any process of length n can be generated by a Markov chain, see Knight (1975). Note
also that a Markov chain may not be necessarily strong-mixing. For instance, the sim-
ple linear model Xi = 1

2(Xi−1 + εi) with P(εi = 1) = P(εi = 0) = 1
2 is not strong-

mixing (see Doukhan and Ango Nze 2004, for results on dependence in Econometrics).
Doukhan and Ango Nze (2004) gives many classical econometric models that can be seen
as Markovian: ARMA, ARCH and GARCH processes, bilinear and threshold models.
Our approach is also inspired by some recent developments in the bootstrap literature

on Markov chains: instead of choosing blocks of constant length, we use the Markov
chain structure to choose some adequate cutting times and then we obtain blocks of
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various lengths. This construction, introduced in Bertail and Clémençon (2004), catches
the dependence structure. It is originally based on the existence of an atom for the chain
i.e. an accessible set on which the transition kernel is constant (see Meyn and Tweedie
2009, chapter 1.5). The existence of an atom allows us to cut the chain into regeneration
blocks, separated from each other by a visit to the atom. These blocks (of random
lengths) are independent by the strong Markov property. Once these blocks are obtained,
the Regenerative Block-Bootstrap (RBB) consists in resampling the data blocks to build
new regenerative processes. The rate of convergence of the pivotal statistic obtained
by resampling these blocks (O(n−1+ε)) is better than the one obtained for the Block
Bootstrap (O(n−3/4)) and is close to the classical rate O(n−1) obtained in the i.i.d. case,
see Götze and Kunsch (1996) and Lahiri (2003).
These improvements suggest that a version of the empirical likelihood (EL) method

based on such blocks could yield improved results in comparison to the method presented
in Kitamura (1997). Indeed it is known that EL enjoys somehow the same properties in
terms of accuracy as the bootstrap but without any Monte-Carlo step. The main idea is
to consider the renewal blocks as independent observations and to follow the empirical
likelihood method. Such a program is made possible by transforming the original problem
based on moments under the stationary distribution into an equivalent problem under
the distribution of the observable blocks (via Kac’s Theorem). The advantages of the
method proposed in this paper are at least twofold: first the construction of the blocks
is automatic and entirely determined by the data: it leads to a unique version of the
empirical likelihood program. Second there is not need to ensure stationarity nor any
strong mixing condition to obtain a better coverage probability for the corresponding
confidence regions.
Assuming that the chain is atomic is a strong restriction of this method. This hypoth-

esis holds for discrete Markov chains and queuing (or storage) systems returning to a
stable state (for instance the empty queue): see chapter 2.4 of Meyn and Tweedie (2009).
However this method can be extended to the more general case of Harris chains. Indeed,
any chain having some recurrent properties can be extended to a chain possessing an
atom which then enjoys some regenerative properties. Nummelin gives an explicit con-
struction of such an extension that we recall in Section 4 (see Athreya and Ney 1978;
Nummelin 1978). In Bertail and Clémençon (2006), an extension of the RBB procedure
to general Harris chains based on the Nummelin’ splitting technique is proposed (the Ap-
proximate Regenerative Block-Bootstrap, ARBB). One purpose of this paper is to prove
that these approximatively regenerative blocks can also be used in the framework of
empirical likelihood and lead to consistent results.
The outline of the paper is the following. In Section 2, notations are set out and key

concepts of the Markov atomic chain theory are recalled. In Section 3, we present how to
construct regenerative data blocks and confidence regions based on these blocks. We give
the main properties of the corresponding asymptotic statistics. In Section 4 the Nummelin
splitting technique is shortly recalled and a framework to adapt the regenerative empirical
likelihood method to general Harris chains is proposed. We essentially obtain consistent
results but also briefly discuss test and higher order properties. In Section 5, we present
some moderate sample size simulations.
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2. Preliminary statement

2.1. Framework

For the sake of simplicity, we use the same notations as Bertail and Clémençon (2004)
when possible. We consider a chain X = (Xi)i∈N on a state space (E, E), with initial
distribution ν and transition probability Π. For a set B ∈ E and i ∈ N, we thus denote

X0 ∼ ν and P(Xi ∈ B | X0, ..., Xi−1) = Π(Xi−1, B) a.s. .

Recurrence properties will be important in the following. An irreducible chain is said
positive recurrent when it admits an invariant probability :

∃µ probability measure on E, µΠ = µ, where µΠ(·) =
∫

x∈E
µ(dx)Π (x, ·) .

We assume that the chain is aperiodic (i.e. X is not cyclic) and that there exists a
measure ψ such as the chain is ψ-irreducible. This simply means that for any starting
state x in E and any set A of positive ψ-measure, the chain visits A with probability 1.
A ψ-irreducible chain is said Harris recurrent if every measurable set with positive ψ-
measure visited once is visited infinitely often with probability 1.
In what follows, Pν and Px (for x in E) denote respectively the probability measure

when X0 ∼ ν and X0 = x. The indicator function of an event A is denoted by 1lA. The
corresponding expectations are denoted Eν(·), Ex[·] and EA[·]. For further details and
traditional properties of Markov chains, we refer to Revuz (1984) or Meyn and Tweedie
(2009).
Notice that the chain X is not supposed stationary (since ν may differ from µ) nor

strong-mixing. To simplify the exposition, we do not treat in this paper the fully non-
stationary case corresponding to null recurrence. Results in that direction may be found
in Tjostheim (1990).

2.2. Atomic Markov chains

Assume that the chain is ψ-irreducible and possesses an accessible atom, i.e. a set A with
ψ(A) > 0 such that Π(x, .) = Π(y, .) for all x, y in A. The class of atomic Markov chains
contains not only chains defined on a countable state space but also many specific Markov
models used to study queuing systems and stock models (see Asmussen 2003, for models
involved in queuing theory). In the discrete case, any recurrent state is an accessible
atom: the choice of the atom is thus left to the statistician who can for instance use the
most visited point. In many other situations the atom is determined by the structure of
the model (for a random walk on R+, with continuous increment, 0 is the only possible
atom).
Denote by τA = τA(1) = inf {k ≥ 1, Xk ∈ A} the hitting time of the atom A (the

first visit) and, for j ≥ 2, denote by τA(j) = inf {k > τA(j − 1), Xk ∈ A} the successive
return times to A. The sequence (τA(j))j≥1 defines the successive times at which the
chain forgets its past, called regeneration times. Indeed, the transition probability being
constant on the atom, XτA+1 only depends on the information that XτA is in A and not
any more on the actual value of XτA itself.
For any initial distribution ν, the sample path of the chain may be divided into blocks
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of random length corresponding to consecutive visits to A:

Bj = (XτA(j)+1, ..., XτA(j+1)).

The sequence of blocks (Bj)1≤j<∞ is then i.i.d. by the strong Markov property
(Meyn and Tweedie 2009, page 73). Notice that the block B0 = (X1, ..., XτA) is inde-
pendent of the other blocks, but does not have the same distribution, because it depends
on the initial distribution ν.
Let m : E × Rp → Rr be a measurable function and θ0 be the true value of some

parameter θ ∈ Rp of the chain, given by an estimating equation on the invariant measure
µ:

Eµ[m(X, θ0)] = 0. (1)

Dimensions are of importance: the number of constraints r must be at least equal to
the number of parameters p, for identification reasons. The estimation of the mean is a
just-identified case (r = p): θ0 = Eµ[X] and m(X, θ) = X − θ.
In this framework, Kac’s Theorem, stated below (Meyn and Tweedie 2009, Theo-

rem 10.2.2) allows us to write functionals of the stationary distribution µ as functionals
of the distribution of a regenerative block.

Theorem 2.1 Kac: Let X be an aperiodic, ψ-irreducible Markov chain with an accessible
atom A. X is positive recurrent if and only if EA[τA] <∞. In such a case, X admits an
unique invariant probability distribution µ, the Pitman’s occupation measure given by

µ(F ) = EA

[
τA∑

i=1

1lXi∈F

]
/EA[τA], for all F ∈ E .

In the following we denote

M(Bj , θ) =

τA(j+1)∑

i=τA(j)+1

m(Xi, θ)

so that we can rewrite the estimating equation (1) as:

EA[M(Bj , θ0)] = 0. (2)

Kac’s Theorem allows us to use the decomposition of the chain into independent blocks
to obtain limit theorems for atomic chains. See for example Meyn and Tweedie (2009) for
the Law of Large Numbers (LLN, page 415), Central Limit Theorem (CLT, page 416),
Law of Iterated Logarithm (page 416), Bolthausen (1982) for the Berry-Esseen Theorem
and Bertail and Clémençon (2004) for Edgeworth expansions. These results are estab-
lished under hypotheses related to the distribution of the Bj ’s :
Return time conditions:

H0(κ) : EA[τ
κ
A] <∞,

H0(κ, ν) : Eν [τ
κ
A] <∞,
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where κ > 0 and ν is the initial distribution of the chain. When the chain is stationary
and strong mixing, these hypotheses can be related to the rate of decay of α-mixing
coefficients α(p), see Bolthausen (1982). In particular, the hypotheses are satisfied if∑

j≥1 j
κα(j) <∞.

Block-moment conditions:

H1(κ, m) : EA

[(
τA∑

i=1

||m(Xi, θ0)||
)κ]

<∞,

H1(κ, ν, m) : Eν

[(
τA∑

i=1

||m(Xi, θ0)||
)κ]

<∞.

The assumptions on ν allow to control the first block B0. Equivalence of these assump-
tions with easily checkable drift conditions may be found in Meyn and Tweedie (2009),
Appendix A.

3. The regenerative case

3.1. Regenerative Block Empirical Likelihood algorithm

Let X1, · · · , Xn be an observation of the chain X. If we assume that we know an atom
A for the chain, the construction of the regenerative blocks is then trivial. Consider the
empirical distribution of the blocks:

Pln =
1

ln

ln∑

j=1

δBj
,

where ln is the number of complete regenerative blocks, and the multinomial distributions

Q =

ln∑

j=1

qjδBj
, with 0 < qj and

ln∑

j=1

qj = 1,

dominated by Pln. To obtain a confidence region, we will apply Owen (1990)’s method
to the blocks Bj: we are going to minimize the Kullback discrepancy between Q and Pln

under the condition (2). More precisely, the Regenerative Block Empirical Likelihood is
defined in the next 4 steps:

Algorithm 1 ReBEL - Regenerative Block Empirical Likelihood construction:

(1) Count the number of visits to A up to time n: ln + 1 =
∑n

i=1 1lXi∈A.

(2) Divide the observed trajectory X(n) = (X1, ....,Xn) into ln+2 blocks corresponding
to the pieces of the sample path between consecutive visits to the atom A,

B0 = (X1, ..., XτA(1)), B1 = (XτA(1)+1, ..., XτA(2)), ...,

Bln = (XτA(ln)+1, ..., XτA(ln+1)), B
(n)
ln+1 = (XτA(ln+1)+1, ..., Xn),
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with the convention B
(n)
ln+1 = ∅ when τA(ln + 1) = n.

(3) Drop the first block B0 and the last one B
(n)
ln+1 (possibly empty

when τA(ln + 1) = n).
(4) Evaluate the empirical log-likelihood ratio rn(θ) (practically on a grid of the set

of interest):

rn(θ) = − sup
(q1,··· ,qln)



 log




ln∏

j=1

lnqj



∣∣∣∣∣∣

ln∑

j=1

qj ·M(Bj , θ) = 0,

ln∑

j=1

qj = 1



 .

Using Lagrange arguments, this can be more easily calculated as

rn(θ) = sup
λ∈Rp





ln∑

j=1

log
[
1 + λ′M(Bj , θ)

]


 .

Remark 1 Small samples: Possibly, if the chain does not visit A, ln = −1. Of course
the algorithm cannot be implemented and no confidence interval can be built. Actually,
even when ln ≥ 0, the algorithm can be meaningless and at least a reasonable number
of blocks are needed to build a confidence interval. In the positive recurrent case, it is
known that ln ∼ n/EA[τA] a.s. and the length of each block has expectation EA[τA]. Many
regenerations of the chain should then be observed as soon as n is significantly larger
than EA[τA]. Of course, the next results are asymptotic, for finite sample consideration
on empirical likelihood methods (in the i.i.d. setting), refer to Bertail et al. (2008).

The next theorem states the asymptotic validity of ReBEL in the case r = p (just-
identified case). For this, we introduce the ReBEL confidence region defined as follows:

Cn,α =
{
θ ∈ Rp

∣∣∣ 2 · rn(θ) ≤ F−1
χ2

p
(1− α)

}
,

where Fχ2

p
is the distribution function of a χ2 distribution with p degrees of freedom.

Remark 2 Scaling factor: Block empirical likelihood methods usually need a scaling

factor to compensate the eventual overlap of the blocks, denoted A−1
N in Kitamura (1997),

page 2089. The regenerative perspective used here forbid any overlap and therefore avoid
such a factor.

Theorem 3.1 : Let µ be the invariant measure of the chain, let θ0 ∈ Rp be the param-
eter of interest, satisfying Eµ[m(X, θ0)] = 0. Assume

Σ = EA[τA]
−1EA[M(B, θ0)M(B, θ0)

′]

is of full-rank. If H0(1, ν), H0(2) and H1(2,m) hold, then

2rn(θ0)
L−−−→

n→∞
χ2
p

and therefore

Pν (θ0 ∈ Cn,α) −−−→
n→∞

1− α.
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The proof relies on the same arguments as the one for empirical likelihood based on
i.i.d. data. This can be easily understood: our data, the regenerative blocks, are i.i.d.
(Owen 1990, 2001). The only difference with the classical use of empirical likelihood is
that the length of the data (i.e. the number of blocks) is a random value ln. However, we
have that n/ln → EA(τA) a.s. (Meyn and Tweedie 2009, page 425). The proof is given in
the appendix.

Remark 3 Convergence rate : Let’s make some very brief discussion on the rate of
convergence of this method. Bertail and Clémençon (2004) shows that the Edgeworth
expansion of the mean standardized by the empirical variance holds up to Oν(n

−1) (in
contrast to what is expected when considering a variance built on fixed length blocks).
It follows from their result that

Pν (2rn(θ0) ≤ u) = F−1
χ2

p
(u) +Oν(n

−1)

This is already (without Bartlett correction) better than the Bartlett corrected empirical
likelihood when fixed length blocks are used (Kitamura 1997). Actually, we expect, in
this atomic framework, that a Bartlett correction would lead to the same result as in the
i.i.d. case: O(n−2). However, to prove this conjecture, we should establish an Edgeworth
expansion for the likelihood ratio (which can be derived from the Edgeworth expansion
for self-normalized sums) up to order O(n−2) which is a very technical task. This is left
for further work.

Remark 4 Change of discrepancy : Empirical likelihood can be seen as a contrast
method based on the Kullback discrepancy. To replace the Kullback discrepancy by some
other discrepancy is an interesting problem which has led to some recent works in the i.i.d.
case. Newey and Smith (2004) generalized empirical likelihood to the family of Cressie-
Read discrepancies (see also Guggenberger and Smith 2005). The resulting methodology,
Generalized Empirical Likelihood, is included in the empirical ϕ-discrepancy method
introduced by Bertail et al. (2008) (see also Bertail et al. 2007; Kitamura 2006).
In the dependent case, it should be mentioned that the constant length blocks proce-

dure has been studied in the case of empirical Euclidean likelihood by Lin and Zhang
(2001). A method based on the Cressie-Read discrepancies for tilting time series data has
been introduced by Hall and Yao (2003). Our proposal, stated here for the Kullback dis-
crepancy only, is straightforwardly compatible with these generalizations (Cressie-Read
and ϕ-discrepancy).

An important issue is the behavior of the empirical log-likelihood ratio under a local
alternative, i.e. if the moment equation (1) is misspecified : Eµ[m(X, θ0)] = δ/

√
n. The

result states as follows.

Theorem 3.2 : Let µ be the invariant measure of the chain, let θ0 ∈ Rp be the pa-
rameter of interest, satisfying Eµ[m(X, θ0)] = δ/

√
n. Assume that Σ is of full-rank.

If H0(1, ν), H0(2) and H1(2,m) hold, then the empirical log-likelihood ratio has an
asymptotic noncentral chi-square distribution with p degrees of freedom and noncentral-
ity parameter δ′Σ−1δ

2rn(θ0)
L−−−→

n→∞
χ

′2
p (δ

′Σ−1δ).

The proof is postponed to the appendix. It is a classical result that the log-likelihood
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ratio is asymptotically noncentral chi-square and that the critical order is n−1/2. The
interesting quantity to study the efficiency of the method in this context is the noncen-
trality parameter. Newey (1985) gives the asymptotic distribution of the pivotal statistic
based on optimally weighted GMM which is a standard tool for dependent data. Unfor-
tunately, Newey’s results are stated in a parametric context and it is therefore impossible
to compare them with Theorem 3.2.
Nevertheless, ReBEL can easily be compared with the Continuously updated GMM

(CUE-GMM) which is very close to the optimally weighted GMM. CUE-GMM estimators
have been shown to coincide with empirical Euclidean likelihood (EEL), see Antoine et al.
(2007). The difference between the EL and EEL being just a change of discrepancy (see
Note 4), it is then straightforward to adapt the proof of Theorem 3.2 to the case of
the EEL. The developments of the pivotal statistics coincide for the two first order and
therefore they lead to the same asymptotic distribution in the case of misspecification.
EL is thus as efficient as the optimally weighted GMM.

3.2. Estimation and the over-identified case

The properties of empirical likelihood proved by Qin and Lawless (1994) can be extended
to our Markovian setting. In order to state the corresponding results respectively on
estimation, confidence region under over-identification (r > p) and hypotheses testing, we
introduce the following additional assumptions. Assume that there exists a neighborhood
V of θ0 and a real positive function N with Eµ [N(X)] <∞, such that:

H2(a) ∂m(x, θ)/∂θ is continuous in θ and bounded in norm by N(x) for θ in V ,
H2(b) D = Eµ[∂m(X, θ0)/∂θ] is of full rank,
H2(c) ∂2m(x, θ)/∂θ∂θ′ is continuous in θ and bounded in norm by N(x) for θ in V ,
H2(d) ‖m(x, θ)‖3 is bounded by N(x) on V .

Notice that H2(d) implies in particular the block moment condition H1(3,m) since
by Kac’s Theorem

Eµ

[
‖m(X, θ)‖3

]
=

EA

[∑τA
i=1 ‖m(Xi, θ)‖3

]

EA[τA]
≤ EA [

∑τA
i=1N(Xi)]

EA[τA]
= Eµ [N(X)] <∞.

Empirical likelihood provides a natural way to estimate θ0 in the i.i.d. case
(Qin and Lawless 1994). This can be straightforwardly extended to Markov chains. The
estimator is the maximum empirical likelihood estimator defined by

θ̃n = arg inf
θ∈Θ

{rn(θ)}.

The next theorem shows that, under natural assumptions on m and µ, θ̃n is an asymp-
totically Gaussian estimator of θ0.

Theorem 3.3 : Assume that the hypotheses of Theorem 3.1 holds. Under the addi-
tional assumptions H2(a), H2(b) and H2(d), θ̃n is a consistent estimator of θ0. If in
addition H2(c) holds, then θ̃n is asymptotically Gaussian:

√
n(θ̃n − θ0)

L−−−→
n→∞

N
(
0,
(
D′Σ−1D

)−1
)
.
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Notice that both D and Σ can be easily estimated by empirical sums over the blocks.

The corresponding estimator for
(
D′Σ−1D

)−1
is straightforwardly convergent by the

LLN for Markov chains.

Remark 5 Asymptotic covariance matrix : Our asymptotic covariance matrix(
D′Σ−1D

)−1
is to be compared with the asymptotic covariance matrix Vθ of Kitamura

(1997)’s estimator, which coincide with the asymptotic covariance matrix of the opti-
mally weighted GMM estimator. Both matrix are very similar: Vθ = (D′S−1D)−1, where
S is the counterpart of our Σ for weakly dependent processes:

S = lim
n→∞

n−1

(
n∑

i=1

m(Xi, θ0)

)(
n∑

i=1

m(Xi, θ0)

)′

.

For a process being both weakly dependent and Markovian (and in particular in the i.i.d.

case), S = Σ and therefore Vθ =
(
D′Σ−1D

)−1
.

The case of over-identification (r > p) is an important feature, specially for econometric
applications. In such a case, the statistic 2rn(θ̃n) may be considered to test the moment
equation (1):

Theorem 3.4 : Under the assumptions of Theorem 3.3, if the moment equation (1)
holds, then we have

2rn(θ̃n)
L−−−→

n→∞
χ2
r−p.

We now turn to a theorem equivalent to Theorem 3.1. In the over-identified case, the
likelihood ratio statistic used to test θ = θ0 must be corrected. We now define

W1,n(θ) = 2rn(θ)− 2rn(θ̃n).

The ReBEL confidence region of nominal level 1 − α in the over-identified case is now
given by

C1
n,α =

{
θ ∈ Rp

∣∣∣W1,n(θ) ≤ F−1
χ2

p
(1− α)

}
.

Theorem 3.5 : Under the assumptions of Theorem 3.3, the likelihood ratio statistic
for θ = θ0 is asymptotically χ2

p:

W1,n(θ0)
L−−−→

n→∞
χ2
p

and C1
n,α is then an asymptotic confidence region of nominal level 1− α.

To test a sub-vector of the parameter, we can also build the corresponding empirical
likelihood ratio (Guggenberger and Smith 2005; Kitamura 1997; Kitamura et al. 2004;
Qin and Lawless 1994). Let θ = (γ, β)′ be in Rq × Rp−q, where γ ∈ Rq is the parameter
of interest and β ∈ Rp−q is a nuisance parameter. Assume that the true value of the
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parameter of interest is γ0. The empirical likelihood ratio statistic in this case becomes

W2,n(γ) = 2 ·
(
inf
β
rn((γ, β)

′)− inf
θ
rn(θ)

)
= 2 ·

(
inf
β
rn((γ, β)

′)− rn(θ̃n)

)
,

and the empirical likelihood confidence region is given by

C2
n,α =

{
γ ∈ Rq

∣∣∣W2,n(γ) ≤ F−1
χ2

q
(1− α)

}
.

Theorem 3.6 : Under the assumptions of Theorem 3.3,

W2,n(γ0)
L−−−→

n→∞
χ2
q

and C2
n,α is then an asymptotic confidence region of nominal level 1− α.

4. The case of general Harris chains

4.1. Algorithm

As explained in the introduction, the splitting technique introduced in Nummelin (1978)
allows us to extend our algorithm to general Harris recurrent chains. The idea is to extend
the original chain to a “virtual” chain with an atom. The splitting technique relies on
the crucial notion of small set. Additional definitions are needed: a set S ∈ E is said to
be small if there exist δ > 0, a positive integer q and a probability measure Φ supported
by S such that, for all x ∈ S, A ∈ E ,

Πq(x,A) ≥ δΦ(A), (3)

Πq being the q-th iterate of the transition probability Π. Note that an accessible small
set always exists for ψ-irreducible chains (Jain and Jamison 1967).
In the case q > 1, a first step is typically to reduce the order to 1 by stacking lagged

values (an example in given in section 5.2). Nevertheless, this complicates the exposition
and the demonstrations since the resulting transition probability has no density and since
the splitting technique leads to 1-dependence instead of independence. See Bertail et al.
(2009) and Adamczak (2008) on that issues. For simplicity, we assume in the following
that q = 1 and that Φ has a density φ with respect to some reference measure λ(·).
The idea to construct the split chain X̃ = (X,W ) is the following:

• if Xi /∈ S, generate (conditionally to Xi) Wi as a Bernoulli random value, with prob-
ability δ.

• if Xi ∈ S, generate (conditionally to Xi) Wi as a Bernoulli random value, with prob-
ability δφ(Xi+1)/p(Xi,Xi+1),

where p is the transition density of the chain X with respect to λ. This construction
essentially relies on the fact that under the minorization condition (3), Π(x,A) may be
written on S as a mixture: Π(x,A) = (1 − δ)(Π(x,A) − δΦ(A))/(1 − δ) + δΦ(A), which
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is constant (independent of the starting point x) when the second component is picked
(see Bertail and Clémençon 2006, for details).
When constructed this way, the split chain is an atomic Markov chain, with marginal

distribution equal to the original distribution of X (see Meyn and Tweedie 2009,
page 427). The atom is then A = S × {1}. In practice, we will only need to know
when the split chain visits the atom, i.e. we only need to simulate Wi when Xi ∈ S.
Those visits to the atom are therefore the date of regeneration of the chain, and the

number of visits acts as a sample size. In practice, the choice of the small set is then
decisive for the performance of the algorithm. A balance needs to be achieved: if S were
chosen too large, it would be visited very often, but the minorization condition (3) would
likely be poor and therefore δ would be small. This would lead to many realizationWi = 0
and few Wi = 1. Most of the visits of Xi to the small set would then be wasted since
they would not give a regeneration time. This balance is not a curse: it gives a natural
data-driven tuning of the small set and prevent from the difficulties rising in the choice
of kernel bandwidth for example. For a discussion on the practical choice of the small
set, see Bertail and Clémençon (2006).
The return time conditions are now defined as uniform moment condition over the

small set:

H0(S, κ) : sup
x∈S

Ex[τ
κ
S ] <∞,

H0(S, κ, ν) : Eν [τ
κ
S ] <∞.

The Block-moment conditions become

H1(S, κ, m) : sup
x∈S

Ex

[(
τS∑

i=1

‖m(Xi, θ0)‖
)κ]

<∞,

H1(S, κ, ν, m) : Eν

[(
τS∑

i=1

‖m(Xi, θ0)‖
)κ]

<∞.

Unfortunately, the Nummelin technique involves the transition density of the chain,
which is of course unknown in a nonparametric approach. An approximation pn of this
density can however be computed easily by using standard kernel methods. This leads
us to the following version of the empirical likelihood program.

Algorithm 1 Approximate regenerative block EL construction:

(1) Find an estimator pn of the transition density (for instance a Nadaraya-Watson
estimator).

(2) Choose a small set S and a density φ on S and evaluate δ = minx,y∈S

{
pn(x,y)
φ(y)

}
.

(3) When X visits S, generate Ŵi as a Bernoulli with parameter

δφ(Xi+1)/pn(Xi,Xi+1). If Ŵi = 1, the approximate split chain (Xi, Ŵi) = X̂i

visits the atom A = S × {1} and i is an approximate regenerative time. These
times define the approximate return times τ̂A(j).

(4) Count the number of visits to A up to time n: l̂n + 1 =
∑n

i=1 1lX̂i∈A
.

(5) Divide the observed trajectory X(n) = (X1, ....,Xn) into l̂n+2 blocks corresponding
to the pieces of the sample path between approximate return times to the atom
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A,

B̂0 = (X1, ..., Xτ̂A(1)), B̂1 = (Xτ̂A(1)+1, ..., Xτ̂A(2)), ...,

B̂l̂n
= (Xτ̂A(l̂n)+1, ..., Xτ̂A(l̂n+1)), B̂

(n)

l̂n+1
= (Xτ̂A(l̂n+1)+1, ..., Xn),

with the convention B̂
(n)

l̂n+1
= ∅ when τ̂A(l̂n + 1) = n.

(6) Drop the first block B̂0, and the last one B̂
(n)

l̂n+1
(possibly empty when

τ̂A(l̂n + 1) = n).
(7) Define

M(B̂j , θ) =

τ̂A(j+1)∑

i=τ̂A(j)+1

m(Xi, θ).

Evaluate the empirical log-likelihood ratio r̂n(θ) (practically on a grid of the set
of interest):

r̂n(θ) = − sup
(q1,··· ,ql̂n)



 log




l̂n∏

j=1

l̂nqj



∣∣∣∣∣∣

l̂n∑

j=1

qj ·M(B̂j , θ) = 0,

l̂n∑

j=1

qj = 1



 .

Using Lagrange arguments, this can be more easily calculated as

r̂n(θ) = sup
λ∈Rp





l̂n∑

j=1

log
[
1 + λ′M(B̂j , θ)

]


 .

4.2. Main theorem

The practical use of this algorithm crucially relies on the preliminary computation of a
consistent estimator of the transition density. We thus consider some conditions on the
uniform consistency of the density estimator pn. These assumptions are satisfied for the
usual kernel or wavelets estimators of the transition density.

H3 For a sequence of nonnegative real numbers (αn)n∈N converging to 0 as n → ∞,
p(x, y) is estimated by pn(x, y) at the rate αn for the mean square error when error
is measured by the L∞ loss over S × S:

Eν

[
sup

(x,y)∈S×S
|pn(x, x′)− p(x, x′)|2

]
= Oν(αn), as n→ ∞.

H4 The minorizing probability Φ is such that infx∈S φ(x) > 0.
H5 The densities p and pn are bounded over S2 and infx,y∈S pn(x, y)/φ(y) > 0.

Since the choice of Φ is left to the statistician, we can use for instance the uniform
distribution overs S, even if it may not be optimal to do so. In such a case, H4 is
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automatically satisfied. Similarly, it is not difficult to construct an estimator pn satisfying
the constraints of H5.
Results of the previous section can then be extended to Harris chains:

Theorem 4.1 : Let µ be the invariant measure of the chain, and θ0 ∈ Rp be the
parameter of interest, satisfying Eµ[m(X, θ0)] = 0. Consider A = S × {1} an atom of
the split chain, τA the hitting time of A and B = (X1, · · · ,XτA). Assume the hypotheses
H3, H4 and H5, and suppose that EA[M(B, θ0)M(B, θ0)

′] is of full rank.

(a) If H0(S, 4, ν) and H0(S, 2) holds as well as H1(S, 4, ν,m) and H1(S, 2,m), then
we have in the just-identified case (r = p):

2r̂n(θ0)
L−−−→

n→∞
χ2
p

and therefore

Ĉn,α =
{
θ ∈ Rp

∣∣∣ 2 · r̂n(θ) ≤ F−1
χ2

p
(1− α)

}
.

is an asymptotic confidence region of level 1− α.
(b) Under the additional assumptions H2(a), H2(b) and H2(d),

θ̂ = arg inf
θ∈Θ

{r̂n(θ)}

is a consistent estimator of θ0. If in addition H2(c) holds, then
√
n(θ̂ − θ0) is

asymptotically normal.
(c) In the case of over-identification (r > p), we have:

Ŵ1,n(θ0) = 2r̂n(θ0)− 2r̂n(θ̂)
L−−−→

n→∞
χ2
p

and

Ĉ1
n,α =

{
θ ∈ Rp

∣∣∣Ŵ1,n(θ) ≤ F−1
χ2

p
(1− α)

}
,

is an asymptotic confidence region of level 1−α. The moment equation (1) can be
tested by using the following convergence in law:

2r̂n(θ̂)
under (1)−−−−−−→
n→∞

χ2
r−p.

(d) Let θ = (γ, β)′, where γ ∈ Rq and β ∈ Rp−q. Under the hypotheses γ = γ0,

Ŵ2,n(γ0) = 2 inf
β
r̂n((γ0, β)

′)− 2r̂n(θ̂)
L−−−→

n→∞
χ2
q

and then

Ĉ2
n,α =

{
γ ∈ Rq

∣∣∣Ŵ2,n(γ) ≤ F−1
χ2

q
(1− α)

}
,
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is an asymptotic confidence region of level 1− α for the parameter of interest γ.

5. Some simulation results

5.1. Illustrative example

We introduce here an example in order to illustrate the method in a very simple setting
and compare ReBEL with BEL (Kitamura 1997) in a situation that favor none.
We consider a AR(1), which is also a Markov chain of order 1, defined as follows:

X0 = 0, εi ∼ U([−
√
12,

√
12]) and Xi = 0.9Xi−1 + εi,

εt being i.i.d. uniformly distributed random variables of mean 0 and variance 1. Since
0.9 < 1, the chain is recurrent. The parameter of interest is the mean of the chain, µ = 0.
We choose in the simulations a small set S = [−a; a]. On each simulation, a is chosen

from a small grid in order to maximize the number of regeneration times as explained
in section 4.1. ReBEL algorithm is then implemented and coverage probabilities are
calculated for the nominative level 95%.
We also compute BEL coverage probabilities, using non-overlapping blocks of constant

length the integer part of n1/3, where n is the data set length.
We get the following results, for 10 000 replications:

table A.5 should approximatively here

On these simulations, ReBEL seems to be better fitted. This may be due to the fact
that ReBEL’ small set length is data driven whereas BEL’s blocks length is constant over
the replications. In the following section, we set the small set once for all the replication.

5.2. Estimation of the threshold crossing rate of a TGARCH

The aim of this section is to show that ReBEL can be adapted to complex data and can
outperform competing methods. Some applications of empirical likelihood to dependent
data have been carried out, such as Li and Wang (2003) on Stanford Heart Transplant
data or Owen (2001) on bristlecone pine tree rings. In his book, Owen motivates his use
of empirical likelihood to study the tree rings data set by its asymmetry: “we could not
capture such asymmetry in an AR model with normally distributed errors” (Owen 2001,
page 168).
To motivate the use of empirical likelihood, we propose here to generate data

sets with strong asymmetry properties to illustrate the applicability of the method.
For this, we consider a family of models introduced to study financial data, the
TGARCH (Rabemananjara and Zaköıan 1993). This model has been designed to han-
dle non symmetric data, such as stock return series in presence of asymmetry in the
volatility. We think in particular to applications on modeling electricity prices series
(Cornec and Harari-Kermadec 2008). These series are very hard to model because of
their very asymmetric behavior and because of the presence of very sharp peaks alter-
nating with periods of low volatility. Application of ReBEL to these series seems to be
promising, see Cornec and Harari-Kermadec (2008).
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The data generating process is the following:




Xi = 0.97Xi−1 + εi with X0 = 0,
εi = σiνi with νi ∼ NID(0, 1),
σi = 1 + 0.5|εi−1|+ 0.4ε+i−1 with ε0 = 0.

where the νi are standard normal random values independent of all other random
variables and x+ is the positive part of x: x+ = max{0, x}. Of course, in the following,
this generating mechanism is considered unknown. Retrieving the underlying mechanism
by just looking at the data is a difficult task and this motivates the use of a non parametric
approach in this context.
It is straightforward that (X, ε) is a Markov chain of order 1. As εi−1 = Xi−1−0.97Xi−2,

it is immediate thatX is a Markov chain of order 2. ReBEL algorithm can then be applied
to Xi = (Xi,Xi−1), which is a Markov chain of order 1.
In practice, the order k of the Markov chain is unknown and is therefore to be estimated.

We propose the following heuristic procedure to estimate the order:

(1) Suppose k = 1.
(2) Build the block according to Algorithm 1.

(3) Evaluate the moment condition over the blocks: Yj =M(B̂j , θ).
(4) Perform a test of independence (or at least of non correlation) of the (Y1, . . . , Yln−1),

for example by testing the nullity of ρ given by Yi = ρYi−1 + νi. Other tests may be
considered as well, such as tests based on kernel estimators of the density.

(5) If the independence (or non correlation) is rejected, set k = k+1 and restart at point
2.

In order to apply Kitamura (1997)’s Block Empirical Likelihood (BEL), X must be
weakly dependent. As the sum of the coefficients of |εi−1| and ε+i−1 is smaller than 1, the
volatility of the data generating process is contracting. Therefore one can easily check
the weak dependence of the process.

5.3. Confidence intervals

We are interested in estimating the probability of crossing a high threshold. This is an
interesting problem because of the asymmetry of the data and a problem of practical
interest for electricity prices. Indeed, production means are only profitable above some
level. The probability of crossing the profitability threshold is therefore essential to esti-
mate. The parameter of interest is defined here as:

θ0 = Eµ

[
1l{Xi≥10}

]
= Pµ (Xi ≥ 10) .

and its value (estimated on a simulated data set of size 106) is θ0 = 0.1479. A first
advantage of ReBEL is that such a parameter, defined with respect to the underlying
invariant measure µ, is naturally handled by this method, whereas no unbiased estimating
equation is available for BEL.
We simulate a data set of length 1000 and perform a test to estimate the order of the

chain. We build an estimator pn of the transition density p based on Gaussian kernels.
The hypothesis q = 1 is rejected whereas q = 2 is not. As the chain is then consid-
ered 2-dimensional, we consider a small set of the form S2 where S is an interval. The
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interval S has been chosen empirically to maximize the number of blocks and is equal
to [−1.3; 4.7]. It is set once and for all and is not updated at each replication. On the
graphic corresponding to one simulation, X is in the small set S2 when the trajectory of
X is in between the 2 plain black lines y = −1.3 and y = 4.7 for two consecutive times.
For i such that Xi visits S

2, we generate a Bernoulli Bi as in Algorithm 1, and if Bi = 1,
i is a approximate renewal time. On the simulation, S is visited 231 times, leading to 18
renewal times, marked by a vertical green line.

Figure A1 should be approximately here

The block length adapts to the local behavior of the chain: regions of low volatility lead
to small blocks (between 500 and 700) whereas regions with high values lead to larger
blocks (like the 142-484 block). It can be noticed that high values concentrate in few
blocks, because the dependence is well captured by Algorithm 1. BEL procedure leads
to constant length block which cannot adapt to the dependence structure. As suggested
by Hall et al. (1995), the BEL blocks used in the following are of length n1/3 = 10 and
then the chain is divided into 100 non overlapping blocks. The overlapping block perform
poorly and won’t be considered in the following.
Now that we have ReBEL approximately regenerative blocks, we can apply Theo-

rem 4.1(a) to obtain a confidence interval for θ. We give a BEL confidence interval as
well for comparison. We also consider two simpler methods as references for the perfor-
mances of ReBEL: the simple sample mean mean = n−1

∑
i 1l{Xi≥10} and the mean over

the regenerative blocks

trunc =

∑ln
k=1

∑τ̂k+1
i=τ̂(k)+1 1l{Xi≥10}

∑ln
k=1(τ̂ (k + 1)− τ̂(k))

=

∑ln
k=1

∑τ̂k+1
i=τ̂(k)+1 1l{Xi≥10}

τ̂(ln + 1)− τ̂(1))
.

The simple mean do not deal with the dependence and we expect it to perform poorly.
The second reference method trunc uses the splitting technique in its expression, but in
practice it only differs from mean by the fact that it discards the first and last blocks.
An important point here is that to build confidence intervals with these two methods,

an estimator of the variance is needed. In fact, if these estimators seem much simpler than
BEL and ReBEL, the difficulty is mainly transferred to the estimation of their variances.
This issue is difficult in a general dependence setting. In the applications, we used a
bootstrap estimator of the variance of mean and trunc according to Götze and Kunsch
(1996).
Having in mind that difficulty, it is important to stress that ReBEL and BEL confidence

intervals do not rely on an estimation of the variance of the estimator. This property
is well-known for methods based on empirical likelihood that automatically estimate
a variance at each point of the confidence interval, see for example the Continuously
updated GMM Antoine et al. (2007). Additional results on the self-normalized properties
of these methods have been investigated in Bertail et al. (2008).

Figure A2 should be approximately here

Mean and BEL estimators and confidence intervals appear biased to the right. This is
most likely due to the effect of data from the first and last blocks, discarded by ReBEL
and trunc. It can be noticed that BEL blocks being more numerous, the confidence
interval is tighter for BEL than for ReBEL.
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To compare the considered methods, we also compute coverage probabilities and type-II
errors (which is equivalent to power in terms of test) of confidence intervals with nominal
level 95%. To test the behavior under the alternative, we evaluate the statistics at the
erroneous points θ = θ0 + 5/

√
n and θ = θ0 + 10/

√
n and check if the null hypotheses if

rejected or not.
The 2 000 simulation results are summarized in Table A2, for n =1000, 5000 and 10000.

Table A2 should be approximately here

Globally, ReBEL’s coverage probabilities are better than BEL’s, whereas its type-II error
are bigger. This is coherent with Figure A2: ReBEL confidence interval leads to better
coverage probabilities but is larger than BEL’s (and therefore type-II errors are bigger for
ReBEL). Mean and trunc perform well for n = 1000 but show some limits for n = 5000
and 10000. It seems that ReBEL is the only method converging to the nominal level 95%.
Coverage probabilities at other nominal level can also be investigated, and we make

a Monte-Carlo experiment (10 000 repetitions) in order to confirm the adequacy to the
asymptotic distribution achieved by the ReBEL algorithm. Data sets length are 10 000.

Figure A3 should be approximately here

Figure A3 shows the adequacy of the log likelihood to the asymptotic distribution given
by Theorem 4.1. The QQ-plots is almost linear and is close to the 45◦ line.

6. Conclusion

This paper propose an alternative point of view on dependent data sets and a cor-
responding semi-parametric methodology. Random length blocks allow to adapt to the
dependence structure of the data. We have shown that ReBEL enjoys desirable properties
corresponding to that of optimal reference methods for strong-mixing series. Simulations
indicate that our algorithm at least competes with Kitamura’s BEL when both methods
can be applied.
This method seems to be a promising tool to handle dependent data when classical

parametric models do not perform well, for example in presence of asymmetry and non
normality of the innovations.
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Appendix A. Proofs

A.1. Lemmas for the atomic case

Denote Yj =M(Bj , θ0), Y = 1/ln
∑ln

j=1 Yj and define

S2
ln = 1/ln

ln∑

j=1

M(Bj , θ0)M(Bj , θ0)
′ = 1/ln

ln∑

j=1

YjY
′
j and S−2

ln
= (S2

ln)
−1.

To demonstrate Theorem 3.1, we need 2 technical lemmas.

Lemma A.1: Assume that EA[M(B, θ0)M(B, θ0)
′] exists and is full-rank, with ordered

eigenvalues σp ≥ · · · ≥ σ1 > 0. Then, assuming H0(1, ν) and H0(1), we have

S2
ln →ν EA[M(B, θ0)M(B, θ0)

′].
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Therefore, for all u ∈ Rp with ‖u‖ = 1,

σ1 + oν(1) ≤ u′S2
lnu ≤ σp + oν(1).

A.1.0.1. Proof:. The convergence of S2
ln

is a LLN for the sum of a random
number of random variables, and is a straightforward corollary of the Theorem 6
of (Teicher and Chow 1988, chapter 5.2, page 131).

Lemma A.2: Assuming H0(1, ν), H0(2) and H1(2,m), we have

max
1≤j≤ln

||Yj || = oν(n
1/2).

A.1.0.2. Proof:. By H1(2,m),

EA



(

τ1∑

i=1

‖m(Xi, θ0)‖
)2

 <∞,

and then,

EA[||Y1||2] = EA



∥∥∥∥∥

τ1∑

i=1

m(Xi, θ0)

∥∥∥∥∥

2

 <∞.

By Lemma A.1 of Antoine et al. (2007), the maximum of n i.i.d. real-valued random
variables with finite variance is o(n1/2). Let Zn be the maximum of n independent copies
of ||Y1||, Zn is then such as Zn = oν(n

1/2). As ln is smaller than n, max1≤j≤ln ||Yj || is
bounded by Zn and therefore, max1≤j≤ln ||Yj || = oν(n

1/2).

A.2. Proof of Theorem 3.1

The likelihood ratio statistic rn(θ0) is the supremum over λ ∈ Rp of
∑ln

j=1 log(1 + λ′Yj).
The first order condition at the supremum λn is then:

1/ln

ln∑

j=1

Yj
1 + λ′nYj

= 0. (A1)

Multiplying by λn and using 1/(1 + x) = 1− x/(1 + x), we have

1/ln

ln∑

j=1

(λ′nYj)

(
1− λ′nYj

1 + λ′nYj

)
= 0, and then λ′nY = 1/ln

ln∑

j=1

λ′nYjY
′
jλn

1 + λ′nYj
.
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Now we may bound the denominators 1 + λ′nYj by 1 + ||λn||maxj ||Yj|| and then

λ′nY = 1/ln

ln∑

j=1

λ′nYjY
′
jλn

1 + λ′nYj
≥

λ′nS
2
ln
λn

(1 + ||λn||maxj ||Yj||)

Multiply both sides by the denominator, λ′nY (1 + ||λn||maxj ||Yj||) ≥ λ′nS
2
ln
λn or

λ′nY ≥ λ′nS
2
lnλn − ||λn||max

j
||Yj ||λ′nY .

Dividing by ||λn|| and setting u = λn/||λn||, we have

u′Y ≥ ||λn||
[
u′S2

lnu−max
j

||Yj ||u′Y
]
. (A2)

Now we control the terms between the square brackets. First, by Lemma A.1, u′S2
ln
u is

bounded between σ1+oν(1) and σp+oν(1). Second, by Lemma A.2, maxj ||Yj || = oν(n
1/2).

Third, the CLT applied to the Yj’s gives Y = Oν(n
−1/2). Then, inequality (A2) gives

Oν(n
−1/2) ≥ ||λn||

[
u′S2

lnu− oν(n
1/2)Oν(n

−1/2)
]
= ||λn||(u′S2

lnu+ oν(1)),

and ||λn|| is then Oν(n
−1/2).

Using the first order condition (A1) as well as the equality 1/(1+x) = 1−x+x2/(1+x),
we get

0 = 1/ln

ln∑

j=1

Yj

(
1− λ′nYj +

(λ′nYj)
2

1 + λ′nYj

)
= Y − S2

lnλn + 1/ln

ln∑

j=1

Yj(λ
′
nYj)

2

1 + λ′nYj
.

The last term is oν(n
−1/2) by Lemma A.2 of Antoine et al. (2007) and then

λn = S−2
ln
Y + oν(n

−1/2).
Now, developing the log up to the second order,

2rn(θ0) = 2

ln∑

j=1

log(1 + λ′nYj) = 2lnλ
′
nY − lnλ

′
nS

2
lnλn + 2

ln∑

j=1

ηj,

where the ηi are such that, for some positive B and with probability tending to 1,
|ηj | ≤ B|λ′nYj|3. Since, by Lemma A.2, maxj ||Yj || = oν(n

1/2),

ln∑

j=1

‖Yj‖3 ≤ nmax
j

||Yj ||


 1

ln

ln∑

j=1

‖Yj‖2

 = noν(n

1/2)Oν(1) = oν(n
3/2)

from which we find

2

ln∑

j=1

ηj ≤ B‖λn‖3
ln∑

j=1

‖Yj‖3 = Oν(n
−3/2)oν(n

3/2) = oν(1).
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Finally,

2rn(θ0) = 2lnλ
′
nY − lnλ

′
nS

2
lnλn + oν(1) = lnY

′
S−2
ln
Y + oν(1)

L−−−→
n→∞

χ2
p.

This concludes the proof of Theorem 3.1.

A.3. Proof of Theorem 3.2

We keep the notations of the previous subsection. Note that instead of EA[Yj ] = 0, we
have

EA[Yj ] = δ
EA[τA]√

n
∼ δ

√
EA[τA]

ln
,

because ln ∼ n/EA[τA]. The beginning of the proof is similar to that of Theorem 3.1: the
misspecification is not significant at first order: Y remains Oν(n

−1/2). We obtain:

2rn(θ0) = lnY
′
S−2
ln
Y + oν(1).

Y−δ
√

EA[τA]/ln is asymptotically Gaussian with variance EA[M(B, θ0)M(B, θ0)
′], which

is the limit in probability of S−2
ln

. Therefore,

2rn(θ0)
L−−−→

n→∞
χ

′2
p (δ

′Σ−1δ).

A.4. Proof of Theorem 3.3

In order to prove Theorem 3.3, we use a result established by Qin and Lawless (1994).

Lemma A.3 Qin & Lawless, 1994: Let Z,Z1, · · · , Zn ∼ F be i.i.d. observations in Rd

and consider a function g : Rd × Rp → Rr such that EF [g(Z, θ0)] = 0. Suppose that the
following hypotheses hold:

(1) EF [g(Z, θ0)g
′(Z, θ0)] is positive definite,

(2) ∂g(z, θ)/∂θ is continuous and bounded in norm by an integrable function G(z) in
a neighborhood V of θ0,

(3) ||g(z, θ)||3 is bounded by G(z) on V ,
(4) the rank of EF [∂g(Z, θ0)/∂θ] is p,

(5)
∂2g(z, θ)

∂θ∂θ′
is continuous and bounded by G(z) on V .

Then, the maximum empirical likelihood estimator θ̃n is a consistent estimator and√
n(θ̃n − θ0) is asymptotically normal with mean zero.

Set

Z = B1 =
(
XτA(1)+1, · · · ,XτA(2)

)
∈
⋃

n∈N

Rn
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and g(Z, θ) = M(B1, θ). Expectation under F is then replaced by EA. Theorem 3.3 is a
straightforward application of the Lemma A.3 as soon as the assumptions hold.
By assumption, EA[M(B, θ0)M(B, θ0)

′] is of full rank. This implies (1).
By H2(a), there is a neighborhood V of θ0 and a function N such that, for all i

between τA + 1 and τA(2), ∂m(Xi, θ)/∂θ is continuous on V and bounded in norm by
N(Xi). ∂M(B1, θ)/∂θ is then continuous as a sum of continuous functions and is bounded

for θ in V by L(B1) =
∑τA(2)

i=τA(1)+1N(Xi). Since N is such that Eµ [N(X)] <∞, we have

by Kac’s Theorem,

EA




τA(2)∑

i=τA(1)+1

N(Xi)


 /EA[τA] = EA[L(B1)]/EA[τA] <∞.

The bounding function L(B1) is then integrable. This gives assumption (2). Assump-
tion (5) is derived from H2(c) by the same arguments.
By H2(d), ‖m(Xi, θ)‖3 is bounded by N(Xi) for θ in V , and then

‖M(B1, θ)‖3 ≤
τA(2)∑

i=τA(1)+1

‖m(Xi, θ)‖3 ≤
τA(2)∑

i=τA(1)+1

N(Xi) = L(B1).

Thus, ‖M(B1, θ)‖3 is also bounded by L(B1) for θ in V , and hypotheses (3) follows.
By Kac’s Theorem,

EA[τA]
−1EA[∂M(B1, θ0)/∂θ] = Eµ[∂m(Xi, θ0)/∂θ],

which is supposed to be of full rank by H2(b). Thus EA[∂M(B1, θ0)/∂θ] is of full rank
and this gives assumption (4). This concludes the proof of Theorem 3.3.
Under the same hypotheses, Theorem 2 and Corollaries 4 and 5 of Qin and Lawless

(1994) hold. They give respectively our Theorems 3.5, 3.4 and 3.6.

A.5. Proof of Theorem 4.1

Suppose that we know the real transition density p. The chain can then be split with the
Nummelin technique as above. We get an atomic chain X̃ . Let’s denote by Bj the blocks
obtained from this chain. The Theorem (3.1) can then be applied to Yj =M(Bj , θ0).
Unfortunately p is unknown and then we can not use the Yj . Instead, we have the

vectors Ŷj = M(B̂j , θ0), built on approximatively regenerative blocks. To prove the
Theorem 4.1, we essentially need to control the difference between the two statistics

Y = 1
ln

∑ln
j=1 Yj and Ŷ = 1

l̂n

∑l̂n
j=1 Ŷj. This can be done by using Lemmas (5.2) and (5.3)

in Bertail and Clémençon (2006): under H0(S, 4, ν), we get

∣∣∣∣∣
l̂n
n

− ln
n

∣∣∣∣∣ = Oν(α
1/2
n ) (A3)
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and under H1(S, 4, ν,m) and H1(S, 2,m),

∥∥∥∥∥
l̂n
n
Ŷ − ln

n
Y

∥∥∥∥∥ =

∥∥∥∥∥∥
1

n

l̂n∑

j=1

Ŷj −
1

n

ln∑

j=1

Yj

∥∥∥∥∥∥
= Oν(n

−1α1/2
n ).

With some straightforward calculus, we have

∥∥∥Ŷ − Y
∥∥∥ ≤ n

l̂n

∥∥∥∥∥
l̂n
n
Ŷ − ln

n
Y

∥∥∥∥∥+
∣∣∣∣
ln

l̂n
− 1

∣∣∣∣
∥∥Y
∥∥ . (A4)

Since

∣∣∣∣ln − n/EA[τA]

∣∣∣∣
a.s.−−−→

n→∞
0,

equation (A3) gives

n

l̂n
=
n

ln

(
1 +

n

ln

l̂n − ln
n

)−1

= Oν(EA[τA])
(
1 +Oν(EA[τA])Oν(α

1/2
n )

)−1
= Oν(EA[τA])

and

∣∣∣∣
ln

l̂n
− 1

∣∣∣∣ =
n

l̂n

∣∣∣∣∣
l̂n − ln
n

∣∣∣∣∣ = Oν(EA[τA])Oν(α
1/2
n ) = Oν(α

1/2
n ).

From this and equation (A4), we deduce:

∥∥∥Ŷ − Y
∥∥∥ ≤ Oν(EA[τA])Oν(n

−1α1/2
n ) +Oν(α

1/2
n )Oν(n

−1/2) = Oν(α
1/2
n n−1/2). (A5)

Therefore

n1/2Ŷ = n1/2Y + n1/2
(
Y − Ŷ

)
= n1/2Y +Oν(α

1/2
n ).

Using this and the CLT for the Yi, we show that n1/2Ŷ is asymptotically Gaussian.
The same kind of arguments give a control on the difference between empirical vari-

ances. Consider

Ŝ2
l̂n

=

l̂n∑

j=1

Ŷj Ŷ
′
j and Ŝ−2

l̂n
= (Ŝ2

l̂n
)−1.

By Lemma (5.3) of Bertail and Clémençon (2006) we have, under H1(S, 4, ν,m) and
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H1(S, 2,m),
∥∥∥ l̂n

n Ŝ
2
l̂n
− ln

n S
2
ln

∥∥∥ = Oν(αn), and then

∥∥∥Ŝ2
l̂n
− S2

ln

∥∥∥ ≤ n

l̂n

∥∥∥∥∥
l̂n
n
Ŝ2
l̂n
− ln
n
S2
ln

∥∥∥∥∥+
∣∣∣∣
ln

l̂n
− 1

∣∣∣∣
∥∥S2

ln

∥∥ = Oν(αn)+Oν(α
1/2
n ) = oν(1). (A6)

The proof of Theorem (3.1) is then also valid for the approximated blocks B̂j and
reduce to the study of the square of a self-normalized sum based on the pseudo-blocks.

We have r̂n(θ0) = supλ∈Rp

{∑l̂n
j=1 log

[
1 + λ′Ŷj

]}
. Let λ̂n = −Ŝ−2

l̂n
Ŷ + oν(n

−1/2) be the

optimum value of λ, we have

2r̂n(θ0) = −2l̂nλ̂
′
nŶ −

l̂n∑

j=1

(λ̂′nŶj)
2 + oν(1) = l̂nŶ

′Ŝ−2

l̂n
Ŷ + oν(1).

Using the controls given by equations (A5) and (A6), we get

2r̂n(θ0) = [ln+Oν(nα
1/2
n )]×

[
Y

′
+Oν

(√
αn

n

)]
×[S−2

ln
+oν(1)]×

[
Y +Oν

(√
αn

n

)]
+oν(1).

Developing this product, the main term is lnY S
−2
ln
Y ∼ν 2rn(θ0) and all other terms are

oν(1), yielding

2r̂n(θ0) = lnY S
−2
ln
Y + oν(1)

L−−−→
n→∞

χ2
p.

Results (b), (c) and (d) can be derived from the atomic case by using the same argu-
ments.
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n ReBEL BEL

250 0.92 0.82
500 0.94 0.88
1000 0.94 0.91

Table A1. Cover rates of confidence intervals for the mean of an AR(1). Comparison of ReBEL and BEL
for different data set lengths. Nominal level is 0.95 .

Figure A1. The plain curve is a chain of length 1000. The horizontal lines limit the small set.
The 18 renewal times are marked by vertical lines. High values are marked by a dot.

θ = θ0 θ = θ0 + 5/
√
n θ = θ0 + 10/

√
n

n ReBEL BEL mean trunc ReBEL BEL mean trunc ReBEL BEL mean trunc

1000 54 55 58 58 24 13 14 20 07 02 02 06
5000 88 67 74 74 52 27 30 29 12 01 01 02
10000 92 70 76 77 59 31 34 33 11 02 02 02

Table A2. Coverage probabilities and type-II errors (percent) under the null and two alternatives, for
ReBEL against BEL, and 2 reference methods. Nominal level is 95%
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Figure A2. The plain curve gives the ReBEL likelihood, whereas the dotted curve shows the
BEL likelihood. The red horizontal line marks the 95% level and θ0 is marked by a circle on
that line. The mean CI is the magenta segment whereas the trunc CI is the larger dotted cyan
segment.
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Figure A3. QQ-plots of 10 000 Monte-Carlo repetitions of ReBEL statistic versus χ2

1
quantiles.

The solid reference line is the 45◦ line. The reference circles on that line mark the 50%, 90% and
95% levels. Data set length is n = 10 000.


