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In their paper, Nicolae, Meng and Kong (hence-
forth NMK) propose several very interesting meth-
ods for quantifying the fraction of missing informa-
tion in a sample, and focus their attention on genetic
studies. Survival analysis is another area in statis-
tics where missing information plays an important
role. Here, censoring complicates study design, for
example when we want to determine how big a clin-
ical trial should be in order to have a good chance of
detecting a treatment effect in a Cox model. Most
current methods for dealing with this difficult prob-
lem involve two stages, where in the first stage we
make a projection of what the variance of the co-
efficient of the treatment effect would be if there
was no censoring, and in the second stage we make
a correction to adjust for the censoring. Often this
is done under restrictive parametric (e.g., exponen-
tial) assumptions for the underlying distributions. It
would be desirable to use the methods proposed by
NMK in the survival analysis setting. I tried to carry
over their methods to the Cox model, and encoun-
tered some problems. The difficulties I discovered
led me to consider modifications of their proposals,
which I believe work well. Below I discuss the setup
I consider, my experiences, the issues, and some ap-
proaches I think are promising.

1. SURVIVAL STUDIES FOR ASSESSING THE
EFFICACY OF A NEW TREATMENT

A typical clinical trial with a survival outcome in-
volves a fixed time frame, say five years. Patients en-
ter the trial continuously during the first four years,
are randomly assigned to treatment or control, and
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the last year is a followup year, during which no pa-
tients enter the study. Some patients die during the
study, in which case their survival time is observed.
But some patients die from other causes or are lost
to followup, and some are still alive at the time the
trial is ended; so in these cases the survival time
is censored: for each individual in this group, there
is a time ¢t and we know only that the individual’s
survival is greater than t.

Clearly the censoring reduces information regard-
ing the efficacy of the new treatment. When de-
signing a subsequent study in the hope of getting
stronger evidence against the null hypothesis of no
treatment effect, we now have two choices: increase
the number of patients in the study, which can be
expensive, or try to reduce the censoring. We can re-
duce the censoring either by putting more resources
into followup, or by extending the length of the pe-
riod of time after the end of the accrual period.
These result in costs which are financial and also
ethical because increasing the length of the final fol-
lowup period postpones publication of results that
are of potential benefit to other patients. The deci-
sion of whether to increase the number of patients
or to reduce the censoring depends crucially on the
amount of information loss due to censoring, so be-
ing able to measure this is extremely important in
the design of future studies. This situation is very
similar to the one discussed by NMK.

By far the most commonly used model for regres-
sion with censored survival data is the Cox pro-
portional hazards model. Suppose that individual ¢
has covariate vector Z; = (Z;1,. .., Zip), where Z;; is
the indicator that the individual receives the treat-
ment. Let X; be the death time of individual ¢ if
there was no censoring, and let Y; be the censoring
time. For each individual, we observe the minimum
T; = min(X;,Y;) and also the indicator J; that X;
was not censored, that is, §; = I[(X; <Y;). So the
data for individual ¢ is the triple (73, d;, Z;).

The proportional hazards model stipulates that
the hazard rate for an individual with covariate vec-
tor Z is given by

(1) A(t1Z) = Ao(t) exp(B'Z),
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where 3 is a p-dimensional vector of coefficients, and
Ao is the hazard function for an individual with co-
variate vector 0. For our purposes (as will be clear
later), it is preferable to define the model in terms
of cumulative hazard functions, and so by integrat-
ing (1), the model is stated by specifying that A(t|Z),
the cumulative hazard function for an individual
with covariate Z, is related to Ag(t), the cumulative
hazard function for an individual with covariate 0
via

(2)

The model is parameterized by 6 = (Ao, ), in which
Ag is considered a nuisance parameter. The likeli-
hood function is very complex, and involves both Ag
and (. Cox’s partial likelihood (Cox, 1972, 1975)—
literally just a part of the full likelihood; see Efron
(1977)—involves only 5.

A(t1Z) = Ao(t) exp(8'2).

2. MEASURING THE RELATIVE
INFORMATION IN THE DATA

There is a large literature that shows that Cox’s
partial likelihood has the main features of an ordi-
nary likelihood: the maximum partial likelihood es-
timator [ is consistent and asymptotically normal
(Andersen and Gill, 1982), and there are several pa-
pers (Efron, 1977; Oakes, 1977) that show that infer-
ence based on this partial likelihood is essentially as
good as inference based on the full likelihood. Stan-
dard software gives the partial likelihood function.
For example in R, if we fit a Cox model to a data
set and call the result fitcox, then fitcox$loglik
gives the log of the partial likelihood, evaluated at
any desired value of 3, and also at the maximum
partial likelihood estimate of 5.

These considerations suggest that we use the par-
tial likelihood function as a likelihood in the measure
RI; that NMK propose. For a data set D, let £p(f3)
denote the log partial likelihood function based on
D. Let Dg, denote the observed data, and D, de-
note the full data, had we been able to see it. Sup-
pose we wish to test the null hypothesis that g = 3.
If we use the partial likelihood, the numerator of R1;
is simply ¢p,_,(8) — {p,, (Po), and the denominator
is

(3)  E;{lp.,(B)| Don} — Eg{tp.,(Bo) | Dob}-

In (3), D¢ is random and has the conditional distri-
bution of the complete data given the observed data,
and the subscript 6 indicates that this conditional

distribution is computed under the assumption that
0 is the true value of 6. Here, the maximum likeli-
hood estimator of 0 is 6 = (Ao,ﬁ), where A is the
Nelson—Aalen estimator of Ag. This expectation is
hopelessly difficult to compute. However, it is pos-
sible to estimate it via Monte Carlo, and the last
section of this article details how to do this.

To assess the performance of this measure I con-
sidered the “acute myelogenous leukemia data” and
some perturbations of it. This data set is given in
Miller (1981, page 49), and is available in the survival
package in R. There are 11 individuals receiving the
new treatment (Z =0), of whom four have censored
survival times, and 12 individuals receiving the stan-
dard treatment (Z = 1), of whom one has a censored
survival time. We are interested in testing the null
hypothesis that § =0, indicating no treatment ef-
fect.

Table 1 gives three versions of this data set, of
which the first is the original data set. Dataset aml-
1 is a perturbed version in which (i) all the status
indicators d; that were 0 were changed to 1 and (ii)
11 observations, all censored at time 0, were added
to the new treatment group, and 12 observations,
all censored at time 0, were added to the standard
treatment group. The inclusion of these 23 new ob-
servations all censored at time 0 doubles the size of
the data set but adds no information whatsoever,
and any reasonable method for estimating the rel-
ative information in the data should give 0.5. This
is the censored data analogue of the example of un-
observed Bernoullis in Section 1.3 of NMK. Dataset
aml-2 is a perturbed version of the original data set
in which 11 observations, all censored at time 0, are
added to the new treatment group, and 12 obser-
vations, all censored at time 0, are added to the
standard treatment group; but the original part of
the data set was not altered.

The results are given in line 1 of Table 2. They are
surprising. The value of RI; for the original data
set is 0.987, suggesting that there is essentially no
missing information, even though 5 of the 23 ob-
servations are censored; and for aml-1, the value is
0.552 whereas it should be 0.5, or at least very close
to 0.5; and what is more worrisome is that for aml-2
it is bigger than for aml-1, even though aml-2 has
more missing data. In fact, it is not even true that
RI is always less than 1. (A particular instance of
this phenomenon arises when dealing with the data
set veteran, available in the survival package in R,
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TABLE 1
Three versions of the leukemia data

T 9 13 13 18 23 28 31 34 45 48
aml-orig & 1 1.0 1 1 0 1 1 0 1
A 0 0 00O 0O 0 0 0 0 0
T 0 L 0 9 13 13 18 23 28 31 34 45 48
aml-1 s ol o1 1 1 1 1 1 1 1 1 1
Z 0o X oo 0000000 O0 O
T 0 L 0 9 13 13 18 23 28 31 34 45 48
aml-2 s o o1 1 01 1 0 1 1 0 1
Z o XL oo 00 0000 0 O0 O

161 5 5 8 8 12 16 23 27 30 33 43 45
0 1111 1 0 1 1 1 1 1 1
0 1111 1 1 1 1 1 1 1 1

161 0 12 0 8 8 12 16 23 27 30 33 43 45
10 201111 1111 1 1 1 1
o1 1211111 11111111

161 0 12 0 5 8 8 12 16 23 27 30 33 43 45
oo 1201111 101 1 1 1 1 1
o1 1211111 11111 1 1 1

Notation of the sort 0 L1 0 indicates a string of 11 0’s.

when testing whether the treatment effect is 0, and
ignoring all other predictors.)

An explanation for this is as follows. The partial
likelihood uses only the information at the times of
the uncensored deaths (Efron, 1977), whereas the
full likelihood also includes the information between
successive uncensored deaths. The data used to form
the denominator of RI; involves some censored ob-
servations, whereas the data used to form the nu-
merator does not. So it appears that the parts miss-
ing from the partial likelihood are different in the
numerator and denominator of RI;. This is a very
rare instance where using the partial likelihood cre-
ates serious problems. The net effect is that the key
inequality (16) in NMK fails: the inequality is based
on using the full likelihood. Consequently the basic
inequality RI; <1 need not hold.

The rationale for the criterion RI; suggests the
following alternative way of forming the ratio of
“evidence against the null hypothesis in the present
sample” to the “expected value of the evidence against
the null hypothesis if we had the complete data
set,” which bypasses the likelihood function. For a
given method of estimating 6 and a data set D,
let 6(D) denote the estimate based on data D, and

let Var(6(D)) be an estimate of the covariance ma-
trix of 6(D). Also let Vg, = Var(6(Dyp)) and Ve, be

the matrix whose inverse is given by
(4) Vo = Eg{[Var(8(Dco))] ™| Dov },

where, as before, Dy, is the complete data, and D,
is random and has the conditional distribution of
the complete data given the observed data; and the
subscript 6 indicates that this conditional distribu-
tion is computed under the assumption that 6 is the

true value of 8. We form
(5) _ (H:(Dob) —0p)' V! (H:(Dob) —0o)
(0(Dop,) — 00) Vo (0(Doy,) — 6o)

which is a ratio of Wald-like quantities. If the di-
mension of @ is 1, the reciprocal of RIy simplifies

to
-1 _ @ . \//a}'(é(Dob))
(Rlw)™ = Ee{@«(é(pm)) ‘D"b}

and has the interpretation of “expected value of the
ratio of the variance of the 6 we have to the variance
of what 6 would be if we had the complete data.”
Motivation for (5) in general is given at the end of
this section.

When we apply this criterion to the example of un-
observed Bernoullis in Section 1.3 of NMK, a short
calculation shows that this approach gives what RI;
gives, namely that the fraction of information in the
sample is ng/n (to order 1/n).

Line 2 of Table 2 gives the value of RIy for the
three versions of the leukemia data, when we esti-
mate [ via the maximum partial likelihood estima-
tor, and the variance estimate is the negative sec-
ond derivative of the log partial likelihood function
at its maximum. The pattern we see makes sense.
For aml-orig, which includes five partially informa-
tive censored observations, RIyy gives a number in-
termediate between 1 and the proportion of uncen-
sored observations (0.783); it is almost equal to 0.5
for aml-1, correctly reflecting the fact that the ad-
ditional 23 points censored at 0 give no information
at all; and it is less than 0.5 for aml-2, which in-
cludes not only 23 completely uninformative points,
but also the original censored observations. It should
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TABLE 2
Monte Carlo estimates of the RI1 and RIw criteria, together with 99% confidence intervals, on three versions of the
leukemia data

aml-1 aml-2

aml-orig
RI: 0.987 (0.976,0.999)
Rilw 0.847 (0.844,0.849)

0.552 (0.538,0.567)
0.490 (0.489,0.491)

0.694 (0.675,0.714)
0.387 (0.386,0.389)

Each case is obtained by a Monte Carlo run of 5000 simulations, as described in Section 3, and takes about a minute to
produce on a 3.8-GHz dual core P4 running Linux. For RIw, the estimates are very stable: 99% confidence intervals have
width of about 0.003. For RI;, the confidence intervals are wider.

be noted that the variances used in the calculation
of V1, and V., are estimated variances, and so the
value of RIy depends on the particular estimate
that is used. This dependence may be noticeable in
small samples. For instance, this is the reason why
RIy gives 0.490 instead of 0.5 for aml-1. Table 2
gives results for a single experiment, but I got very
similar results for many other data sets, including
data sets that are bigger, have a bigger percentage
of censored observations, or both.
Criterion (5) has the following advantages:

e It does not require the evaluation of a likelihood
at some estimate. In fact, 6 need not be a max-
imum likelihood estimator, and there need not
even be a likelihood function. This is important
for some situations—for example when we have a
single randomly censored sample and we use the
Kaplan—Meier estimate—when there is no likeli-
hood at all.

e It handles nuisance parameters without modifi-
cation. That is, if = (/(1),0(?)), and the null hy-
pothesis involves only (1), then we simply form (5)

with ) and 961) replacing 6 and Oy, etc.

To motivate (5), suppose we are in a parametric
framework, and recall that R is given by

(6) EDob (Aé(DOb)) — gDob (00) 7
Es{lp.,(0(Dov)) — £De, (00)| Dob }
and let us compare this to the closely related quan-
tity

RIw-at
- = (0(Dob) = 00)'[p,, (0(Dap)))(0(Dop) = bo)

/(Eg{(0(Dop) = 00)'[~€p., (0(Dco))]
'(é(Dob) - 90)|Dob})7

in which ¢ D, denotes the second derivative (with
respect to ) of £p_, . Consider the numerator of (6).

Assuming standard regularity conditions, a two-term
Taylor expansion of ¢p_, (6p) around 6(D,}) gives
the numerator of (7) (except for a factor of 2). If
we expand £p__ (Ag) around 0(D,p,) and approximate
€D, (0(Dop)) and £p.,(6(Dob)) by £pe, (6(Deo)) and
lp.,(0(Deo)), respectively, the denominator of (6) is
the denominator of (7) (except for a factor of 2), and
in (7) we may take (8(Dgp) — 0o)’ and (A(Dep) — 6o)
outside the expectation. Expressions (5) and (7) are
the same, except that in (5) we use an estimate of
the inverse variance that is not necessarily given by
the negative observed Fisher information.

3. GENERATING A COMPLETE DATA SET

Let S(t|Z) be the survival function for an individ-
ual with covariate vector Z. The proportional haz-
ards model may be reformulated as

(8) S(t1Z) = (So(t)>P 2,

where Sy is the survival function for an individ-
ual with covariate vector 0. Models (2) and (8) are
equivalent in the continuous case, for which the sur-
vival function and corresponding cumulative hazard
function are related via S(t) = exp(—A(t)). In gen-
eral, (2) and (8) are not the same, and it is important
to decide on the specification of the Cox model, and
here we take (8) as our definition. There are rea-
sons why (8) is more sensible; see Kalbfleisch and
Prentice (1980, Section 4.6).

For an individual with covariate 0, the survival
function and the cumulative hazard function are re-
lated via the product integral So(t) = [[,<,(1—Ao(ds))
(Gill and Johansen, 1990), so by (8) the survival
function for an individual with covariate Z is given

by
9)  S(t]2) = {[T,<,(1 — Ao(ds)) P72,

Suppose that the survival time for individual 7 is
censored, that is, we observe T; and Z; and we know
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that X; > T;. We form S’(t|Zl) by substituting Ao
and J for Ag and 8 in (9), and generate X; from this
distribution conditional on its being greater than
T;. We do this for all censored observations, and
the expectations in (3) and (4) can be estimated by
Monte Carlo. Standard software gives Ao and the
corresponding Sy, so this scheme is easy to carry
out. R functions to implement this scheme and to
calculate the criteria RI; and RIy are available
from me upon request.
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