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Abstract When the underlying stock price is a strict local martingale process
under an equivalent local martingale measure, Black-Scholes PDE associated
with an European option may have multiple solutions. In this paper, we study
an approximation for the smallest hedging price of such an European op-
tion. Our results show that a class of rebate barrier options can be used for
this approximation, when its rebate and barrier are chosen appropriately. An
asymptotic convergence rate is also achieved when the knocked-out barrier
moves to infinity under suitable conditions.
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1 Introduction

We consider a single stock in the presence of the unique equivalent local mar-
tingale measure (ELMM) P, under which the deflated price process follows

dX(s) = σ(X(s))dW (s), X(t) = x ≥ 0, (1.1)

where W is a standard Brownian motion with respect to a given probability
space (Ω,F ,P,F = {Fs : s ≥ t}) satisfying usual conditions. For a contingent
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claim f(X(T )) with a fixed maturity T > 0, the smallest hedging price has
the form of

V (x, t) = Ex,t[f(X(T ))] := E[f(Xx,t(T ))|Ft]. (1.2)

In the above, we suppress the superscripts (x, t) in Xx,t, and write Ex,t to
indicate the expectation computed under these initial conditions.

Recently, [5] shows that the value function V of (1.2) is the C2,1(Q)∩C(Q)
solution of BS(Q, f), where BS(Q, f) refers to Black-Scholes equation

ut +
1

2
σ2(x)uxx = 0 on Q := R

+ × (0, T ) (1.3)

satisfying boundary-terminal condition

u(x, t) = f(x) on ∂∗Q := [0,∞)× {T } ∪ {0} × (0, T ), (1.4)

However, next example taken from [2] shows that the value function V may
not be the unique solution of BS(Q, f) when the deflated price process X is
a strict local martingale.

Example 1.1 (CEV model) Suppose the stock price follows a strict local mar-
tingale process dX(s) = X2dW (s), with the initial X(t) = x > 0. Consider
V (x, t) = Ex,t[X(T )]. Then, V can be computed explicitly as

V (x, t) = x
(

1− 2Φ
(

− 1

x
√
T − t

))

. (1.5)

One can verify V satisfies BS(Q, f). Another trivial solution is u(x, t) = x.

The difference u−V of Example 1.1 is termed as a bubble in the literature,
see [5], [7] and the references therein. Now, V is one of possibly multiple
solutions of BS(Q, f). A natural question is that how one can find a feasible
numerical approximation of this value function V of (1.2). Similar question is
also proposed by [6].

The next trivial example shows that the classical Monte Carlo method by
Euler-Maruyama approximation does not lead to the desired value V (x, t) of
(1.5) of Example 1.1.

Example 1.2 Consider the strong Euler-Maruyama (EM) approximation to
Example 1.1 is: with step size ∆

X∆
n+1 = X∆

n + σ(X∆
n )(W (n∆ +∆)−W (n∆)), X∆

0 = x.

Let X∆(·) be the piecewise constant interpolation of {X∆
n : n ≥ 0}, i.e.

X∆(s) = X∆
[s/∆], ∀s > 0. (1.6)

Since {X∆
n : n ≥ 0} is a martingale, the approximated value function leads to

Ex,0[X
∆(T )] = Ex,0[X

∆
(T−t)/∆] = x > V (x, 0).
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Our work in this paper is to find a feasible approximation to the smallest
hedging price V (x, t) of (1.2) in its domain Q of (1.3). It turns out that the
value function of (1.2) can be obtained by a limit of a series of rebate option
prices, which can be easily implemented by exactly the same EM method of
Example 1.2.

To be more precise, we consider the following up-rebate: Suppose the
knocked-out barrier is given by a positive constant β and the rebate func-
tion is a Borel measurable non-negative function g on Q. Rebate option makes
a payment g(X(t), t) if either the asset price X(t) of (1.1) reaches the barrier
β or the time evolution reaches the maturity T . One of our results shows that,
if the Rebate function g is chosen to satisfy growth conditions of Theorem 3.4,
its rebate option price V β,g(x, t) of (3.1) converges to V (x, t) as β → ∞. More-
over, its error estimate is also provided in (3.10) in terms of growth factor of
functions f and g, which may be used to choose a rebate function g a priori
for better approximation.

In particular, taking g by

g(x, t) = f(x)1{(x,t)∈∂∗Q} on Q, (1.7)

the up-rebate becomes up-and-out barrier option, which is analogous to the
truncation approximation of Black-Scholes PDE proposed by [4]. Theorem 3.4
also implies the convergence of the rebate option price with this specific choice
of (1.7).

Thanks to the convergent result of Theorem 3.4, Example 3.5 shows that, if
one can apply the natural EM approximation to an appropriate rebate option
for a large barrier β and a small step size ∆, then the approximated up-rebate
price V β,g

∆ of (3.14) must be close to V .
On the other hand, if the rebate function g can be chosen to be continuous

on Q, then V β,g of (3.1) solves Black-Scholes equation BS(Qβ , g) given by

ut + Lu = 0 on Qβ := (0, β)× (0, T ) (1.8)

and Cauchy-Dirichlet data

u(x, t) = g(x, t) on ∂∗Qβ := {β, 0} × (0, T ) ∪ [0, β]× {T }. (1.9)

uniquely in C2,1(Qβ) ∩ C(Qβ), see Lemma 3.7. Unique solvability provides
alternative approximation to the above Monte Carlo methods: one can use
any of numerical PDE methods, such as finite element method (FEM) or
finite difference method (FDM).

However, if g is taken by a discontinuous function, for instance (1.7), one
can not expect the solvability of BS(Qβ, g) in C2,1(Qβ)∩C(Qβ). Moreover, it
is well-known that singularity and discontinuity on boundary layer propogates
the numerical errors quickly throughout its domain in using numerical PDE
methods. This gives added difficulty if one may want to use numerical PDE
approximation due to the discontinuity of the function g. To overcome this dif-
ficulty, we will provide a continuous rebate function gβ of (3.16) depending on
the barrier β, and show its convergence and the unique solvability of BS(Qβ, g)
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in C2,1(Qβ) ∩ C(Qβ), see Proposition 3.9. Note that Holder regularity of gβ

does not decrease to zero as β → ∞, but preserves Holder regularity of given
payoff function f . This enables us to avoid the difficulty in using numerical
PDE approximation with a singularity.

The rest of the paper is outlined as follows. We start with the precise
problem formulation and some related preliminary results in Section 2. The
main results, including convergence analysis and approximation with continu-
ous Cauchy-Dichlet data, are included in Section 3. The last section is devoted
to a brief summary of current and future studies.

2 Problem setup and some related preliminary results

We consider a single stock with price Xx,t(·) of (1.1). The desired value func-
tion V (x, t) to be studied is the smallest hedging price of contingent claim
f(Xx,t(T )), defined in (1.2). Throughout this paper, we use K as a generic
constant, and impose the following two conditions on f and σ:

(A1) σ is locally Holder continuous with exponent 1
2 satisfying σ(x) > 0 for all

x ∈ R
+, σ(0) = 0.

(A2) f : R̄+ → R̄
+ is a Cγ(R̄

+) a payoff function for some γ ∈ [0, 1].

In the above, R+ = (0,∞), R̄+ = R
+∪{0}, and Cγ(A) = C(A)∩Dγ(A), where

C(A) denotes the set of all continuous real functions on A, and Dγ(A) denotes
the set of all measurable functions ϕ : A → R̄

+ satisfying growth condition

ϕ(x) ≤ K(1 + |x|γ), ∀x ∈ A. (2.1)

By [8, 5.5.11], the assumption (A1) on σ ensures there exists a unique strong
solution of (1.1) with absorbing state at zero.

To proceed, we need the next fundamental properties of the value function
V (x, t), which establishes the link with parabolic partial differential equation
BS(Q, f).

Proposition 2.1 Assume (A1-A2). Then, value function V of (1.2) is

1. the smallest lower-bounded C2,1(Q) ∩Cγ(Q) solution of BS(Q, f).
2. the unique C2,1(Q) ∩ C(Q) solution of BS(Q, f) if and only if σ satisfies

∫ ∞

1

x

σ2(x)
dx = ∞. (2.2)

Proof Theorem 3.2 of [5] shows that V is a C2,1(Q)∩C(Q) solution ofBS(Q, f).
Applying supermartingale property of X(T ) and Jensen’s inequality, the next
derivation shows that V ∈ Cγ(Q),

V (x, t) = Ex,t[f(X(T ))] ≤ K(1 + Ex,t[X
γ(T )]) ≤ K(1 + xγ).

For the necessary and sufficient condition on uniqueness, we refer the proof to
[1]. It remains to show V is the smallest lower bounded solution. Sometimes, we
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use X to denote Xx,0 without ambiguity in this proof. Note that, by pathwise
uniqueness of the solution to (1.1)

Y (t) , V (Xx,0(t), t) = E[f(XXx,0(t),t(T ))|Ft] = E[f(Xx,0(T ))|Ft]

is a martingale process. Suppose V̂ ∈ C2,1(Q) ∩ C(Q) is an arbitrary lower
bounded solution ofBS(Q, f), then Ito’s formula applying to Ŷ (t) , V̂ (X(t), t)
leads to

Ŷ (t) = V (X(0), 0) +

∫ t

0

V̂x(X(s), s)σ(X(s))dW (s),

and Ŷ (t) is a lower bounded local martingale, hence is a supermartingale.
Therefore, we have

Ŷ (0) ≥ E[Ŷ (T )] = E[f(X(T ))] = Y (0)

and this implies
V̂ (x, 0) ≥ V (x, 0).

We can similarly prove for V̂ (x, t) ≥ V (x, t) for all t.

Proposition 2.2 Assuming (A1-A2), BS(Q, f) only admits non-negative so-
lution in the space of lower bounded C2,1(Q) ∩ C(Q) functions.

Proof Proposition 2.1 shows that V is the smallest lower-bounded solution of
PDE. Since V ≥ 0 by definition of (1.2), it implies any lower-bounded solution
u satisfies u ≥ V ≥ 0.

In Example 1.1, we have seen that BS(Q, f) of CEV model has multiple
solutions. We continue this model to demonstrate Proposition 2.2, a solution
smaller than V must be unbounded from below.

Example 2.3 By Proposition 2.1, the explicit solution V ≥ 0 of (1.5) in CEV
model smallest lower-bounded solution of BS(Q, f). In fact one can find,

v(x, t) = x
(

1− λΦ
(

− 1

x
√
T − t

))

, λ > 2

is a smaller solution, i.e. v ≤ V in Q. However, v is not lower-bounded, i.e.
v(x, t) → −∞ as x → ∞.

Our goal is to find a feasible approximation V (x, t) of (1.2) by using trun-
cation method.

3 The truncation approximation with rebate options

In this section, we first give probabilistic definition of truncated value function
V β,g, which corresponds to fair price of the rebate option with knocked-out
barrier β and rebate function g. We will also determine a class of rebate func-
tions g which lead to the convergence V β,g → V as β → ∞. The convergence
with g of (1.7) proposed by [4] is treated as a special case.
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3.1 The definition of rebate barrier options: The truncated value function

Recall that the domain of the value function V is given by Q of (1.3), and
its related truncated domain Qβ is given by (1.8). Let g : Q → R̄

+ be a
measurable function. We introduce the truncated value function V β,g by

V β,g(x, t) =

{

Ex,t[g(X(τβ), τβ)], ∀(x, t) ∈ Qβ ,
0 Otherwise.

(3.1)

where the stopping time τβ (suppressing the initial condition (x, t)) is given
by

τx,t,β = inf{s > t : (Xx,t(s), s) /∈ Qβ}. (3.2)

With the above setup, our goal is to find a suitable function g such that
V β,g → V as β → ∞. Since V β,g(x, t) = g(x, t) on parabolic boundary ∂∗Qβ,
we will restrict our search for g in the set of functions satisfying

g(x, t) = f(x), ∀(x, t) ∈ ∂∗Q. (3.3)

To cover g of (1.7) in our analysis, we do not exclude possibly discontinuous
function at the boundary.

The following question may be our ultimate goal of this work: What kind
of rebate function g can result in the fastest convergence V β,g → V among
all possible g satisfying (3.3)? The answer is extremely simple, g = V is best
function due to the next lemma.

Lemma 3.1 Assume (A1-A2). Then, V (x, t) = V β,V (x, t) for all 0 < x < β.

Proof Xx,t is the unique strong solution of (1.1) due to (A1). Therefore, the
conclusion follows from the following simple derivation using tower property
and strong Markov property:

V (x, t) = E[f(Xx,t(T ))|Ft]
= E[f(Xx,t(T ))|Fτβ ]|Ft]

= E[E[f(XX(τβ),τβ

(T ))|Fτβ ]|Ft]

= E[V (X(τβ), τβ)|Ft]
= V β,V (x, t).

Although, V is an unknown function and the above approximation by V β,V

of Lemma 3.1 is apparently not implementable, Lemma 3.1 is placed in the
above for later error estimates.

3.2 Convergence

Lemma 3.2 Assume (A1-A2), and g satisfies (3.3). V β,g of (3.1) satisfies

1. For each β > 0, V β,g1 ≤ V β,g2 whenever g1 ≤ g2.
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2. limβ→∞ V β,g(x, t) ≥ V (x, t). In particular, limβ→∞ V β,g(x, t) = V (x, t) if
and only if

lim
β→∞

Ex,t

[

g(β, τβ)1{τβ<T}

]

= 0 (3.4)

Proof Monotonicity in g follows directly from the definition of V β,g in the
above. To show the the second statement, we start with the following obser-
vation: The solution X := Xt,x of (1.1) does not explode almost surely by [8,
5.5.3], i.e.

lim
β→∞

τβ = T, a.s.P (3.5)

Due to this fact with Monotone Convergence Theorem, we obtain following
identities:

lim
β→∞

Ex,t

[

f(X(T ))1{τβ=T}

]

= Ex,t

[

lim
β→∞

f(X(T ))1{τβ=T}

]

= Ex,t

[

f(X(T ))
]

= V (x, t).

(3.6)
This results in

lim
β→∞

V β,g(x, t)

= lim
β→∞

Ex,t[g(X(τβ), τβ)1{τβ<T}] + lim
β→∞

Ex,t[g(X(τβ), τβ)1{τβ=T}]

= lim
β→∞

Ex,t[g(β, τ
β)1{τβ<T}] + lim

β→∞
Ex,t[f(X(T ))1{τβ=T}]

= lim
β→∞

Ex,t[g(β, τ
β)1{τβ<T}] + V (x, t).

By rearranging the above identity, we have

V (x, t) = lim
β→∞

V β,g(x, t) − lim
β→∞

Ex,t[g(β, τ
β)1{τβ<T}]. (3.7)

Note that three terms in (3.7) are all non-negative. Hence, limβ→∞ V β,g(x, t) ≥
V (x, t) and equality holds if and only if (3.4) holds.

As mentioned in (3.5), the solution Xx,t of (1.1) does not explode almost
surely, and this implies rewritten as P(τx,t,β < T ) → 0 as β → ∞. Then, how
fast does this probability converge to zero? The next answer to this question
may be useful to obtain the convergence rate of the truncated approximation.

Proposition 3.3 Fix (x, t) ∈ Q and assume (A1-A2). As β → ∞, stopping
time τx,t,β of (3.2) satisfies

1. P{τx,t,β < T } = O(1/β).
2. Moreover, P{τx,t,β < T } = o(1/β) if and only if {Xt,x(s) : t ≤ s ≤ T } is

a martingale .

Proof By taking g(x, t) = x in (3.7),

lim
β→∞

Ex,t[X(τβ)] = lim
β→∞

βP{τx,t,β < T }+ Ex,t[X(T )].
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For all β > x, since {Xx,t(τβ ∧s) : s > t} is a bounded local martingale, hence
it is martingale. So, Ex,t[X(τβ)] = x for all β > x. Rearranging the above
identity, we have

lim
β→∞

βP{τx,t,β < T } = x− Ex,t[X(T )] (3.8)

(3.8) implies

1. Since Ex,t[X(T )] ≥ 0, limβ→∞ βP{τx,t,β < T } ≤ x < ∞, which shows
P{τx,t,β < T } = O(1/β).

2. {Xt,x(s) : t ≤ s ≤ T } is a martingale if and only if x = Ex,t[X(T )], if and
only if P{τx,t,β < T } = o(1/β).

To present the convergence result in the next, we need the following definition,
for any ϕ : Q → R

ϕ(x) := sup
t∈[0,T )

ϕ(x, t). (3.9)

Theorem 3.4 Assume (A1-A2). Suppose g of (3.9) satisfies (3.3) and one
of two following conditions:

1. g(x) is of sublinear growth, i.e. limx→∞ xg(x) = 0;
2. g(x) is of linear growth, i.e. limx→∞ xg(x) < ∞, and Xx,t is a martingale.

Then, we have the convergence

lim
β→∞

V β,g(x, t) = V (x, t).

In addition, if g ∈ Dη(R
+) with γ ∧ η < 1, then the convergence rate is the

order of 1− (γ ∨ η) as β → ∞, i.e.

|(V − V β,g)(x, t)| ≤ Kβ−(1−(γ∨η)), ∀x < β. (3.10)

Proof We first show its convergence, then obtain convergence rate with addi-
tional conditions.

1. Regarding its convergence, it is enough to verify (3.4) by Lemma 3.2. Note
that

lim
β→∞

Ex,t

[

g(β, τβ)1{τβ<T}

]

≤ lim
β→∞

g(β)Ex,t

[

1{τβ<T}

]

≤ lim
β→∞

g(β)

β
lim
β→∞

βP{τx,t,β < T }.

(a) If g is of sublinear growth, then limβ→∞
g(β)
β = 0. Hence, together with

Proposition 3.3, (3.4) holds.
(b) On the other hand, ifXt,x is a martingale, then we have limβ→∞ βP{τx,t,β <

T } = 0 from Proposition 3.3, and (3.4) holds.
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2. Since V (x, t) = V β,V (x, t) for all β > x by Lemma 3.1, we have the follow-
ing identity:

(V − V β,g)(x, t) = (V β,V − V β,g)(x, t)
= E[(V − g)(X(τβ), τβ)1{τβ<T}]
= E[(V − g)(β, τβ)1{τβ<T}]

(3.11)

Since V ∈ Cγ(R
+) by Proposition 2.1 and g ∈ Dγ(R

+), we have V − g ∈
Dγ∨η(R

+). Hence, write (3.11) by

|(V − V β,g)(x, t)| ≤ |(V − g)(β)|Ex,t[1{τβ<T}] ≤ Kβ(γ∨η)−1. (3.12)

Example 3.5 We have seen that the strong EM approximation converges to a
wrong value in Example 1.2. Theorem 3.4 implies that, by taking

g(x, t) = x · 1{(x,t)∈∂∗Q}, (3.13)

the rebate option price is convergent to the smallest hedging price, i.e.

V β,g(x, 0) = Ex,0[f(X(T ))1{X(T )≤β}] → V (x, 0) as β → ∞.

Note that X∆(T ) → X(T ) almost surely. Dominated Convergence Theorem
implies that

V β,g
∆ (x, 0) = Ex,0[f(X

∆(T ))1{X∆(T )≤β}] → V β,g(x, 0), as ∆ → 0. (3.14)

As a result,
lim
β→∞

lim
∆→0

V β,g
∆ (x, 0) = V (x, 0).

Although the convergence can be obtained by the truncation methods given
by g of (1.7) similar to Example 3.5, we can do better approximation by
choosing different choice g, provided that the payoff f is bounded.

Example 3.6 Consider the stock priceX(t) given in CEVmodel of Example 1.1
and put type payoff f(x) = (1− x)+ with maturity T . Now, we compare two
approximations by taking different choices of rebate functions: first choice is
taken as (3.13), and the other is simply taken as g1(x, t) = f(x). We denote
the associated truncated values by V β,g and V β,g1 . By Theorem 3.4, both ap-
proximation result in same order of error estimate O(β−1). However, following
arguments show that V β,g1 has better error estimate than V β,g, respectively.

Let the approximation errors be

eβ(x, t) = (V β,g − V )(x, t), eβ1 (x, t) = (V β,g1 − V )(x, t).

Rewriting (3.11), we have representation of two errors

eβ(x, t) = Ex,t[V (β, τβ)1{τβ<T}]

and
eβ1 (x, t) = Ex,t[(V (β, τβ)− f(β))1{τβ<T}]
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On the other hand, one can easily verify that g1 is a viscosity subsolution
of BS(Qβ , g1), and V is the unique solution of BS(Qβ , V ). By comparison
principle (see [3]), it follows that

V (x, t) ≥ g1(x, t) = f(x) ≥ 0.

This leads to 0 ≤ eβ1 (x, t) ≤ eβ(x, t).
The other advantage is that, associatedBS(Qβ, g1) has continuous Cauchy-

Dirichlet boundary data, which facilitates use of any numerical PDE method.

3.3 Truncation with continuous Cauchy-Dirichlet data

The heuristic arguments of Feyman-Kac formula on V β,g lead to a PDE for-
mulation of BS(Qβ , g), defined in (1.8)-(1.9). If g is given by (1.7), then the
boundary-terminal data of BS(Qβ , g) is discontinuous at the corner (β, T ).
Therefore, one can not expect solvability of BS(Qβ, g) in C2,1(Qβ) ∩ C(Qβ).
In the following, Lemma 3.7 and Lemma 3.8 discusses solvability of B(Qβ, g)
for the continuous and discontinuous function g, respectively.

Lemma 3.7 Assume (A1-A2). Provided that g ∈ C(Q), then V β,g solves
BS(Qβ , g) uniquely in C2,1(Qβ) ∩ C(Qβ).

Proof Fix (x, t) ∈ Qβ . Take α ∈ (0, x/2). Let Qα
β = Qβ ∩ (Qα)

c be an open

set. Also define τα,β = inf{s > t : (Xx,t(s), s) /∈ Qα
β}.

Due to the uniform ellipticity, V α,β,g(x, t) = Ex,t[g(X(τα,β), τα,β)] solves

BS(Qα
β , g) uniquely in C2,1(Qα

β)∩C(Q
α

β). Using the facts of the continuity of g

and almost sure convergence τα,β → τβ , together with dominated convergence
theorem, one can check that

lim
α→0

V α,β,g(x, t) = Ex,t[ lim
α→0

g(X(τα,β , τα,β)] = V β,g(x, t).

On the other hand, let d = min{x
2 , t, T − t}, which must be less than the

minimum distance of x to a point in the parabolic boundary ∂∗Qα
β . Consider

a neighborhood of x given by Nx = (x − d
2 , x + d

2 ) × (t − d
2 , t +

d
2 ). By max-

imum principle (Theorem 2.11 of [10]), Shauder’s estimate ([9]) , we have
|V α,β,g|2.5,Nx

≤ Kd uniformly in 0 < α < x/2. Hence, V β,g ∈ C2,1(Qβ) solves
BS(Qβ , g). Uniqueness follows from maximum principle.

One can indeed generalize the regularity results of Lemma 3.7 to some dis-
continuous rebate functions g, which is applicable, for instance, digital barrier
options and turbo warrants, etc.

Lemma 3.8 Assume (A1-A2). If there exists ϕn ∈ C(Q) satisfying growth
condition ϕn(x, t) ≤ K(1 + |x|) uniformly in n, such that ϕn → g pointwisely
, then V β,g is in C2,1(Q) satisfying (1.8).
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Proof V β,ϕn ∈ C2,1(Qβ)∩C(Qβ) solves BS(Qβ , ϕn) uniquely by Lemma 3.7.

Since supQβ
|V β,ϕn(x, t)| < K(1+β) by maximum principle (Theorem 2.11 of

[10]), Shauder estimate ([9]) implies

|V β,ϕn |2.5,Qβ(d) ≤ Kd|V β,ϕn |0,Qβ
≤ Kd, (3.15)

where Qβ(d) := {(x, t) ∈ Qβ : dist((x, t); ∂∗Qβ) ≥ d}. Hence, there exists a
convergent subsequence in C2,1(Qβ(d)), which limit denoted by u∞. Then, u∞

solves (1.8) in C2,1(Qβ). It remains to show that V β,g = u∞ on Qβ. In fact,
this can be shown using dominated convergence theorem, for (x, t) ∈ Qβ ,

V β,g(x, t) = E[g(X(τβ), τβ)]
= E[limn→∞ ϕn(X(τβ), τβ)]
= limn→∞ E[ϕn(X(τβ), τβ)]
= limn→∞ V β,ϕn(x, t) = u∞.

Theorem 3.4 together with Lemma 3.8 implies that the value function V
can be approximated by a series of smooth function V β,g with g of (1.7)
as β → ∞. In fact, V β,g can be computed by Euler-Maruyama methods as of
Example 3.5. An alternative approach is to compute V β,g by solvingBS(Qβ, g)
numerically, either by finite element method (FEM) or finite difference method
(FDM). It is well-known that, when solving PDE numerically, the discontinuity
or singularity of Cauchy-Dirichlet data would generate quick error propagation
throughout the domain. This leads to another question: can we find truncation
approximation with continuous terminal-boundary data (the rebate function)?

The answer is positive. In this below, we will construct one such an ap-
proximation. Let the rebate function be

gβ(x, t) = f(x)1{x≤β/2} +
2f(x)(β − x)

β
1{β/2<x≤β} on (x, t) ∈ Q. (3.16)

Observe that gβ ∈ C(Q) depends on β, while the choice of g in Section 3.1 is
invariant of β. Moreover, gβ violates (3.3), instead it satisfies

lim
β→∞

gβ(x, t) = f(x), on ∂∗Q. (3.17)

Recall the definition of V β,gβ

of (3.1). Now, we have the following convergence
results.

Proposition 3.9 Assume (A1-A2), and gβ is given by (3.16). Then, V β,gβ

of

(3.1) is unique C2,1(Qβ)∩C(Qβ) solution of BS(Qβ , g
β), and limβ→0 V

β,gβ

(x, t) →
V (x, t) for all (x, t) ∈ Q. In addition, if γ < 1 in (A2), then the convergence

rate is |V β,gβ − V |(x, t) ≤ Kβ−1+γ.

Proof Unique solvability follows from Lemma 3.7. Fix (x, t) ∈ Q. Then, for
any β > 2x, we have inequality by its definition (3.1)

V β/2,g(x, t) ≤ V β,gβ

(x, t) ≤ V β,g(x, t) (3.18)

where g is given by (1.7). Taking limβ→∞ in the above inequality and using
Theorem 3.4, the convergence result follows. The rate of the convergence is
the combined result of (3.18) and (3.10).
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4 Further remarks

This paper studies an approximation to the smallest hedging price of Euro-
pean option using rebate options. From mathematical point of view, this work
concerns on the approximation of the value function V of (1.2) by truncating
the domain Q and imposing suitable Cauchy-Dirichlet data g.

The main result on the convergence Theorem 3.4 provides that, if the
function g is chosen to satisfy sublinear growth in x uniformly in t ∈ [0, T ),
then the truncated value V β,g converges to V . This enables practitioners to
adopt EM methods on big enough truncated domain Qβ to get a close value
of V , as demonstrated in Example 3.5.

On the other hand, to adopt numerical PDE techniques, continuous Cauchy-
Dirichlet data is desired to get a good approximation. However, if the payoff
f is given as of linear growth, g is taken as sublinear growth in x for the
purpose of the convergence by Theorem 3.4, then it’s not possible to have a
C(Q) function g satisfying (3.3), which basically requires the deferred rebate
function g(·, T ) agrees with payoff f(·) of European option. Alternatively, we
provide a continuous function gβ in (3.16), which asymptotically agrees the
payoff f(·) at T .

One question is that, if there is a rebate function g ∈ C(Q) satisfying
(3.3) and being independent of barrier β, such that V β,g → V when f is of
linear growth and X is strict local martingale (for instance Example 1.1)? The
answer is positive. If one is lucky enough to take g = V , then V β,g is obviously
convergent to V . But, V is unknown, and g = V is not practical. Then, is
there a feasible choice of continuous g satisfying (3.3) such that V β,g → V ?
This may be one of our future directions of this study.
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