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1. A PROFESSIONAL JOY

Few authors would not be pleased when discus-
sants implement their methods or follow-up on their
ideas. It is therefore a professional joy to see every
discussant doing both! Our heartfelt thanks go to all
discussants, and to the Executive Editor, Ed George,
for bringing us such joy!

Incidentally, the three discussions cover nicely the
three main parts of our paper. Zheng and Lo’s dis-
cussion centers on our motivating application, namely,
designing follow-up strategies in genetic studies, but
with the additional consideration of the uncertainty
in the measures themselves. Doss’s discussion fo-
cuses on the second part of our paper, namely, the
likelihood-based relative measure, but with applica-
tions to survival analysis where the use of partial
likelihood reveals very interesting (and inevitably
confusing) complications. Chang, Chen, Chien and
Hsing (hereafter C3H) comment on the third part
of our paper, the Bayesian measures for small sam-
ples, and implement variations that are applied to
problems in infectious disease research and isotonic
regression.

Our responses are organized in the aforementioned
order. We very much appreciate all the key messages
conveyed by the discussants, though for a few of
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them we offer alternative explanations. Some ques-
tions posed by the discussants make nice Ph.D. or
master thesis topics, so we summarize them at the
end of this rejoinder.

2. ZHENG AND LO: DESIGN WITH
UNCERTAINTY

Zheng and Lo further emphasize the critical role of
measuring relative information in designing follow-
up studies, and touch upon the issue of optimal de-
sign under a given measure. In particular, they con-
sider a setting with multiple variables, and suggest
an extension of our harmonic rule (19) for combining
multiple studies to the setting of combining multi-
ple variables. Since our rule (19) was derived under
the assumption that individual studies are indepen-
dent, we surmise that Zheng and Lo’s setting is un-
der similar considerations, where variables are con-
sidered to be independent of each other and their
contributions to the overall log-likelihood are addi-
tive. Otherwise we will need to consider all variables
jointly in measuring relative information. Neverthe-
less, it would be useful to investigate how Zheng and
Lo’s combining rule (1) performs as a quick approx-
imation to the measure that uses the full likelihood,
when the independence assumption fails. Zheng and
Lo’s (1) could be quite appealing to a practitioner
who chooses to deal with multiple variables sepa-
rately, especially for testing purposes, because of the
technical difficulty in specifying a reliable large joint
multivariate model.

Zheng and Lo also correctly point out that the ac-
tual test statistics (e.g., log-likelihood ratio) from a
follow-up study can be quite different from what is
predicted by our measures of relative information,
RI; and RIy. There are several different ways of
investigating this uncertainty. Zheng and Lo take
a direct approach, by simulating the actual ratio of
complete-data log-likelihood ratio versus the observed-
data log-likelihood ratio, which they denote by RI,,
as a function of the missing data. The simulations
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are done by drawing the missing data from the con-
ditional distribution given the observed data and
the parameter value estimated by the observed-data
MLE. In the binomial example, a simulation study
is used to demonstrate that RI; Lis the average of

RI, L which itself exhibits considerable variation.

Here we wish to point out a subtlety. Whereas
RI; ! has the nice interpretation of being the ra-
tio of the expected complete-data lod score to the
observed-data lod score, this expectation is calcu-
lated under the assumption that the value of the
parameter under the alternative hypothesis is the
same as the one under which the (conditional) ex-
pectation is calculated. There is no confusion about
this assumption when the alternative hypothesis is
sharp, that is, when it has a fixed known value.
This is essentially what Zheng and Lo assumed, as
they considered a number of alternative values (p =
0.525,0.55,0.65) for their simulation studies. It is
clear that under such a setting, E[RI, Yo 0 =
Oob] = RI; ', by the definition of RI;.

However, once we move away from this setting
and allow the use of the actual complete-data lod
score 1od(0co, 00|Yeo), where 0, is the complete-data
MLE, then things can become much more compli-
cated. For example, E[Rly_l |Yon; 0 = 0op] = lel no
longer holds because in general,

Eflod(0co, 00]Yeo)Yob: € = O]

(1)
# Ellod(0b, 00| Yeo) [Yob: 0 = bob).-

Mathematically, our key identity (13) requires both
01 and 05 to be fixed known constants (given the
observed data), so one cannot take 67 = 6.,, which
would be a random variable, even after condition-
ing on Yg,. This technical requirement, however,
is a reflection of a more fundamental difficulty in
measuring (relative) information. If the additional
data change the MLE (i.e., from 6}, to 6¢,), which
can be viewed as a “center” of the likelihood, then
measuring relative information, in terms of relative
strength against a null hypothesis, becomes a very
tricky task. Perhaps this is more clearly seen by
viewing the likelihood function as an un-normalized
posterior density, and imagining that there are two
posterior densities. One is centered around a value
close to 0y with a small posterior variance (i.e., the
one based on Y;,) and the other is centered around
a value farther away from 6y but also with larger
spread (i.e., the one based on Ygp). It is then debat-
able how to compare the two posteriors’ respective
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strengths in discrediting the value of 6y; certainly it
is a much harder task than when both posteriors are
centered at the same location.

With our measures we circumvent this problem by
first calculating the log-likelihood ratio or lod score
for the same null value 8y and same alternative value
01, given both the observed data and complete data.
We then estimate the unknown value of 61, or even
0y when the null is not sharp, by the MLE under the
alternative and null hypotheses, respectively. Alter-
natively, as we demonstrated via the simple bino-
mial example, when the complete-data likelihood is
from an exponential family [which is the case for
the binomial when p is restricted to (0, 1)], what we
proposed was to measure how anti-conservative our
test would be if we imputed the complete-data suffi-
cient statistics under the alternative hypothesis and
then pretended that they were real data (for R1I;),
or how conservative our test procedure would be if
we imputed under the null and then pretended that
they were real data (for RIp).

In that sense, the only uncertainty in our measures
is the uncertainty caused by using the observed-
data MLEs for 61 and 6y. This is different from
Zheng and Lo’s simulation and variance calculation,
which attempts to capture the conditional variation
in RI,; ! given the observed data. However, it is im-
portant to point out that, because Zheng and Lo’s
setting treats the alternative value of the hypothe-
sis as known, their variation is also different from
the actual (conditional) variation in the ratio of the
complete-data lod score and the observed-data lod
score. The latter would be

(2) Var[IOd(acm GO‘YCO)‘Yoba 9]
lod® (8o, 6| Yob)

which then can be evaluated at 6 = 60,1, as Zheng
and Lo suggested. Which of these variance calcula-
tions is most relevant for practical purposes is wor-
thy of exploring, and we thank Zheng and Lo for
their recognition of this issue.

It is worth reiterating here that the range of ge-
netics/genomics applications of the proposed mea-
sures of information is expanding with every high-

)

throughput technology that is developed in this rapidly

moving field. For example, in many applications, the
individual genotypes on the genome are not mea-
sured deterministically; instead, a distribution on all
possible states is inferred from the raw data. Exam-
ples of this include: (i) genotype calling using data
from the new sequencing technologies such as those
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from Solexa and Applied Biosystems, where uncer-
tainty in calls comes from technical errors, sequence
assembly and sequence similarity (Brockman et al.
(2008)); (ii) imputation of genotypes for untyped
markers using information from a reference database
such as HapMap, where uncertainty is caused by
imperfect prediction and by the size of the training
data set (Nicolae (2006)); and (iii) calling genotypes
of Copy Number Variation (CNV), where the vari-
ability is caused by uncertainty in the boundaries of
the CNVs and by technical variability in the probe
measurements (Redon et al. (2006)). In all of these
situations, instead of data yielding a genotype, G,
the raw information is processed into a distribution
on all possible values for G, P(G|data). These dis-
tributions can be used, for example, in testing for
genetic association of a disease or quantitative trait
with the marker under investigation. The measures
proposed in our paper can be applied directly (sim-
ilarly to the haplotype application presented in the
paper) to quantify the amount of information rela-
tive to having observed the genotypes. The measures
are important because it is possible, with additional
laboratory work, to determine the genotypes with
certainty. The complications arise when information
on different markers that are in the same biological
unit (such as a gene or a pathway) are combined
into a single association test. This is the case where
the discussion above is relevant and further research
is necessary.

3. DOSS: SO WHAT WENT WRONG WITH
PARTIAL LIKELIHOOD?

We very much appreciate Doss’s exploration of
applying our measures to the survival analysis set-
ting, and were very intrigued by the problems he
reported with Cox’s partial likelihood. As we stated
in the first section of our paper, one basic require-
ment in measuring relative information is that we
need to assume that the procedure under investi-
gation is “optimal” in some sense (e.g., being full-
likelihood based). This requirement is needed to pre-
vent paradoxical situations where less data can lead
to more information, much like the “self-efficient”
requirement in Meng (1994). A good illustration of
such a situation is a least-square regression in which
the variance depends on the value of the covariate.
While the ordinary least-square estimators enjoy the
robustness in the sense of still being consistent in
the presence of heteroscedasticity, they are not self-
efficient (Meng (1994)) because one can have a much

more efficient least-square estimator with fewer data
if the additional data happen to be those with much
higher variances; see Meng (2001) for a detailed il-
lustration. So Doss’s finding, that R1; may not be
less than 1 for some of the data sets he used, re-
minded us to look into the possibility that the par-
tial likelihood approach may fail this basic require-
ment.

When “partial likelihood” is taken to mean liter-
ally any part of a full likelihood, this failure is obvi-
ous, because it would be trivial to construct many
examples where the part chosen is so inefficient com-
pared with the full likelihood that “self-efficiency”
cannot possibly hold (even taking into account that
“self-efficiency” is a weaker requirement than the
usual full efficiency). So the question of real inter-
est here is what happens in the specific case of Cox’s
partial likelihood for the proportional hazard model,
an approach that is often considered to produce re-
sults as good as the full likelihood method, at least
for practical purposes. The answer to this question,
however, is not straightforward.

The simplest situation is when there is no cen-
soring, in which case it is known that Cox’s par-
tial likelihood for the proportional hazard model is
also a genuine likelihood based on part of the data,
that is, on the ranks of all the observed failure times
(Fleming and Harrington (1991), Chapter 4). Since
it is a genuine likelihood, it must be self-efficient,
and there should be no problem to apply our (16)
or any subsequent formulas, as long as they are im-
plemented correctly (see below). When there is cen-
soring, the discussion in Fleming and Harrington
(1991) shows that a further sacrifice of efficiency is
needed in order to arrive at Cox’s partial likelihood
via the rank-data formulation. Currently we are un-
able to determine the impact of this further sacrifice
on self-efficiency.

What we are able to determine, or rather to de-
tect, however, is that there is another reason that
can explain Doss’s “surprising findings,” even if the
self-efficiency issue is not relevant. The problem lies
in how one defines observed data, and by compari-
son, what constitutes complete data. One might find
this is a rather odd inquiry—how hard could it be
to determine what is observed and what is missing?

To see why this can be a problem, let us set up
the notation carefully. Using Doss’s D notation for
data, we distinguish three data sets: D¢y is the full
data set that would be observed if there were no
censoring, Deeng is the available/observed censored
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data, and Dpar¢ is Cox’s partial data, that is, the
actual data used for calculating Cox’s partial likeli-
hood function.

Given this setup, we can use R/; to measure the
loss of information due to censoring by setting {Y,, =
Deenss Yeo = Drun}, using our generic notation; we
believe Doss’s first reported R1I; value, 0.987, is for
this purpose. We can also measure the loss of infor-
mation from using the partial likelihood approach
compared with the full-likelihood approach, which
corresponds to setting { Yo, = Dpart, Yoo = Deens }- Doss
does not seem to provide such a measure. We re-
mark that we may also measure the loss of infor-
mation of using Y}, = Dpary compared with using
Yeo = Dgut, though this RI; may not be numerically
the same as the product of the previous two because
they assume different observed data in computing
the MLEs and take different conditional expecta-
tions over the missing data.

The setting Doss provided is, however, more com-
plicated. Imagine that we had collected additional
samples, possibly censored. Let Deegs denote the aug-
mented data set that includes Deens; Deens C Deerss -
We then obviously can ask what is the relative infor-
mation in Yy, = Deens compared with the augmented
sample Y., = Deogs. This is, we believe, what Doss
intended. However, since Cox’s partial likelihood is
a very popular approach, Doss wanted to measure
the relative information when using the partial like-
lihood, not the full likelihood.

Because Cox’s partial likelihood uses the partial
data Dpare, we then should set {Yy, = Dpart, Yoo =
Dyo}, where DI is Cox’s partial data from the
augmented sample Dgos. That is, the moment we
decide to measure the relative information for using
Cox’s partial likelihood approach, our relative infor-
mation is no longer about Y, = Deens relative to
Yo = Deerss, but rather about Yy}, = Dpart relative to
Yoo = Dngu because the latter are the actual data
sets used by the Cox regression.

Recognizing the correct Yy, and Y, directly af-
fects how we compute, among other things, the de-
nominator of RI;. With Yo, = Dpart and Yoo = Dg:rgt,
the conditional expectation called for by the denom-
inator of RI; of (18) in our paper should be with
respect to

(3) f(cho‘YobS Hob) = f(D?)th|Dpart§ Hob)-

However, the conditional distribution Doss actually
used in his Monte Carlo simulation appears to be

(4) f(f/;:o‘f/ow Hob) = f(Dg:f;]s|Dcens§ Hob)'
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The critical difference between (3) and (4) is in what
is being conditioned upon, namely, Dpart versus Deens.
(The difference between Y, and }760 is less impor-
tant here because Dg:rgt is a deterministic function
of Deeds, so if we can calculate or simulate with re-
spect to a correctly specified conditional distribu-
tion of Deens, then we can do so for any of its func-
tions/margins.) We point out this difference because
the use of (3) is consistent with our original defini-
tion, as it uses the same observed data set for both
the numerator and denominator of R1I;. Using (4),
however, will result in unclear consequences. For one
thing, our key inequality (16) is no longer guaran-
teed to hold because the “Kullback—Leibler infor-
mation” part would then be of the form [ p(z) x
log[p2(x)/po(x)]p(dx), which is not guaranteed to be
nonnegative when py(z) # pa(z).

Doss’s explanation of his “surprising findings” is
also based on an inconsistency, but it is the incon-
sistency between including some censored observa-
tions for the denominator versus only using the un-
censored cases for the numerator. Our investigation
above, however, reveals that the problem lies in us-
ing the ranks of the failure times, as in Dy, and
Dyat, which is not the same as using the failure
times themselves, as in Deens and Deens. This differ-
ence is irrespective of censoring, because even with-
out censoring, in which case D¢epns = Dganl, the crit-
ical difference between the conditioning in (3) and
in (4) remains.

Intriguingly, the need for setting up notation care-
fully is demonstrated by another more subtle differ-
ence between (3) and (4), at least when there is no
censoring. In both (3) and (4), we used the generic
notation 6., to denote an estimator of 6 based on
the observed data. However, in the current setting,
0 consists of both the parameter of interest, [, and
the (infinite-dimensional) nuisance parameter A,
the baseline cumulative hazard. This recognition im-
mediately reveals a problem for (3), because there
is little information in Dy, for estimating Ag. Af-
ter all, the most celebrated feature of Cox’s partial
likelihood is its ability to estimate § without having
to deal with Ag.

When there is no censoring, this problem also turns
out to be the solution because f(Dy%[Dpart;6) is
actually free of Ag, a consequence of the fact that
Cox’s partial likelihood is identical to the full likeli-
hood of 8 based on the ranks alone. One therefore
can carry out (3) by calculating or simulating with
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respect to f(Dpa% [Dpart; 8 = Bob), where By, is the
Cox regression estimator based on Dpart.

When there is censoring, the picture becomes less
clear, because it is then possible for f(Dy % [Dpart; 0)
to depend on the baseline Ay. This is not a con-
tradiction to the celebrated feature of Cox’s partial
likelihood, that is, its robustness to the specification
of Ag. The relative information RI; itself may well
depend on the actual distribution of the failure time
when there is censoring, because the probability of
censoring generally depends on the actual distribu-
tion of the failure time. What this means is that
whereas we can still define RI; theoretically as we
did, it cannot be estimated using Dpa,¢ alone. This
dilemma could be taken as a defense for using (4),
at least for practical purposes, especially consider-
ing the difficulties in implementing (3) even if 6 is
known.

However, to avoid the type of “surprising findings”
that Doss found, we would resolve this dilemma by
nonetheless using (3) but with the nuisance param-
eter Ay estimated from Deeps, for instance using the
Nelson—Aalen estimator used by Doss. That is, Deens
enters the calculation only through the estimation
of Ag. This dependence on Deeng will not cause the
type of problems that Doss reported, because it does
not alter the conditioning as called for by (3) and
because our (18) permits its numerator and denom-
inator to depend on different parts of the same 6,},.
Of course, this dependence makes uncertainty quan-
tifications, such as those emphasized by Zheng and
Lo, even more important, as well as more compli-
cated, because Ay is an infinite-dimensional nuisance
parameter.

In a nutshell, all these complications remind us
of the great caution we must exercise once we devi-
ate from the full-likelihood setting. Indeed, whereas
we recognized early the existence of an alternative
explanation of Doss’s finding, one of our initial ex-
planations itself was a product of our lacking full ap-
preciation of the theoretical intricacy of Cox’s par-
tial likelihood. We are certainly grateful to Doss for
providing such a rich and intricate example, even
though, or perhaps especially because, we were nearly
tripped up by it!

We also very much appreciate Doss’s attempt to
generalize our measure to the nonlikelihood setting.
Indeed, our motivating examples, both the toy ex-
ample with the binomial distribution and the real
genetic applications, are for nonlikelihood types of

testing, either with a Wald-type test in the bino-
mial case or with non-parametric lod scores in the
genetic setting. However, precisely for the “non-self-
efficient” reason discussed above, it soon became
clear to us that in order to avoid paradoxical sit-
uations where fewer data may lead to more infor-
mation, we need to associate a test with a model in
order to proceed, as we did in Section 2.3.

If we understand Doss’s notation correctly, his
RI, can be obtained from our RI; by first asso-
ciating his tests with normal models, and hence the
likelihood ratio test is the same as the Wald test. It is
easy to verify that once we associate the complete-
data test with the normal model (i.e., pretending
the large-sample approximation is exact), the de-
nominator of RI; is the same as the denominator of
Doss’s R1I,, as given in his (5). If we further asso-
ciate the observed-data test with the normal model,
then the numerators of RI; and RI, will be the
same, and hence RI,, will be identical to RI;.

An astute reader might question why we need to
associate the normal model with the complete-data
test and observed-data test separately. Should not
the complete-data model automatically imply the
observed-data model? The answer is “yes” if both
the complete-data test and the observed-data test
are derived from a coherent probability model (e.g.,
if both are likelihood ratio tests). However, when
tests are derived nonparametrically, or even para-
metrically but without following the full-likelihood
recipe (for instance, using a partial likelihood), there
is no guarantee that the two tests are “coherent”
with each other in the sense that by integrating out
the missing values in the complete-data associated
model one would automatically obtain the observed-
data associated model. Indeed, Doss’s ‘R, can also
exceed 1 if the variance of the complete-data test
statistic is larger than that of the observed-data test
statistic, a phenomenon that can occur with an or-
dinary least square estimator, as discussed above. A
logical conclusion is then that even when RI,, seems
to be “likelihood free,” fundamentally its rational-
ity is guaranteed only when a (normal) likelihood
family can be associated with it.

4. C3H: INFECTIOUS DISEASE STUDIES
AND ISOTONIC REGRESSION

We are pleased to see that C3H took on the task
of implementing our suggested Bayesian measures in
the context of infectious disease and regression. For
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infectious disease, C3H’s goal was to decide whether
to invest in finding out the infectious times for the
existing cases for which only the removal times are
known, or in finding additional families/individuals
whose removal times are known (but whose infec-
tious times are unknown). This consideration is im-
portant here because identifying the infection time
is typically much harder (if possible at all) than
identifying the removal time (e.g., death time). For
the isotonic regression application, CsH considered
the design issue: whether to add more measurements
at the existing design points or to add new design
points that interlace with the existing design points.

While we are excited by these new applications,
we are somewhat puzzled, and worried, by C3H’s
findings in both examples. For the infectious dis-
ease example, our intuition would suggest that iden-
tifying infection times would be more important for
testing efficacy of vaccine than finding more individ-
uals with only removal times known, especially when
it is not clear (at least to us from the model descrip-
tion given by C3H) whether “removal” here means
death or cure (and thus possible immunity). CsH
gave an example where the measured relative infor-
mation in 20 households with only removal times is
about 80% compared with the situation in which ev-
eryone’s infection time is also known. But it is only
about 30% relative information compared with hav-
ing four additional households with removal times
only. This sharp difference is a surprise to us, and
makes us wonder whether it is a reflection of issues
with C3H’s (BI3) or a defect in implementation (e.g.,
failure of an MC algorithm).

Similarly, we are surprised to see that, in the con-
text of testing for monotonicity of a regression func-
tion, doubling the measurements at existing design
points creates substantially more information than
adding an equal amount of new design points inter-
laced with existing design points. C3H gave an ex-
ample where the observed data only have about 15%
information relative to the former design, compared
with 35% information relative to the latter design.
This is rather counterintuitive, because for estimat-
ing a response surface with a fixed number of mea-
surements, it is often wise to spread out more design
points rather than to take more measurements on
fewer design points. For example, for the simple lin-
ear regression y; = Sx; + &; (the one that generated
C3H’s data), the variance of the least-square estima-
tor would be inversely proportional to S, =), x?;

for C3H’s setting, Sy = >°5_(i/9)> = 95/27. Dou-
bling the number of measurements at each existing
design point clearly will double S,: S, =190/27 =
7.037. On the other hand, C3H’s second design, if
we understand their description correctly, is to use
i/12, i=1,...,5,7,...,11, as the additional 10 de-
sign points. Under this design, S, = Y27_(i/9)% +
SOk (i/12)% — (6/12) = 1465/216 = 6.78. So while
the first design is indeed slightly better, the rela-
tive variance ratio is 96%, nowhere near the 2.5-
fold increase in information suggested by CsH’s re-
sults (0.346,/0.139 = 2.5). Of course, we understand
that C3H are measuring information in testing, not
estimation, and their method is far more sophisti-
cated than the simple linear regression. Neverthe-
less, we find the 2.5-fold increase rather counterin-
tuitive, and would be very interested in seeing it
confirmed independently in a different way.

CsH also touch on the intricate issue of dealing
with nuisance parameters under the null. They sug-
gest two ways of averaging: either averaging the nu-
merator and denominator separately and then tak-
ing the ratio (BI3), or directly averaging the ratio
(BI4). Here all averaging is performed with respect
to the posterior distribution of the nuisance param-
eter under the null. As we discussed in Section 6.3
(and elsewhere) of our paper, dealing with nuisance
parameters is a complicated issue, even with the
Bayesian approach, because we do not have reliable
priors for them, nor do we know enough about the
sensitivity of these measures, including C3H’s, to the
choice of priors. Therefore, understanding the the-
oretical properties of C3H’s (BI3) and (BI4) could
be an important step toward establishing a general
scheme for dealing with nuisance parameters in the
context of measuring the fraction of missing infor-
mation.

5. POSSIBLE THESIS TOPICS

As we concluded in our paper, much remains to
be done, especially with small sample sizes. The
three discussions vividly demonstrate this, and point
clearly to a number of concrete research directions.
Here are a few possible thesis titles inspired by the
discussions:

e On Optimal Follow-up Designs in Genetic Hy-
pothesis Testing Problems.

o Measuring Uncertainty in Relative Information
Estimation.
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e On Measuring Relative Information for Semipara-
metric Models.

e Measures of Information for Artificial Likelihoods.
e Implementing Bayesian Relative Information Mea-
sures for Designing Infectious Disease Studies.

e Optimal Design Strategies for Testing Regression

Functions Under Constraints.
e Dealing with Nuisance Parameters in Measuring
the Fraction of Missing Information.

Some of these topics are middle-hanging fruits
waiting to be picked, so if you are a thesis-topic
seeking student reading this set of discussions in the
reverse order, go to the first page as soon as possible!
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