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INTRODUCTION

The authors suggest an interesting way to measure
the fraction of missing information in the context of
hypothesis testing. The measure seeks to quantify
the impact of missing observations on the test be-
tween two hypotheses. The amount of impact can be
useful information for applied research. An example
is, in genetics, where multiple tests of the same sort
are performed on different variables with different
missing rates, and follow-up studies may be designed
to resolve missing values in selected variables.

In this discussion, we offer our prospective views
on the use of relative information in a follow-up
study. For studies where the impact of missing ob-
servations varies greatly across different variables
and where the investigators have the flexibility of
designing studies that can have different efforts on
variables, an optimal design may be derived using
relative information measures to improve the cost-
effectiveness of the follow-up.

Using the simple motivation example in their pa-
per, we examine the estimation of relative informa-
tion by RI; and RIj in terms of unbiasedness and
variability, and discuss issues that require further
research. Although the relative information measure
developed in their paper estimates the mean impact
of the missing data, the actual impact may be highly
variable when the amount of information in the ob-
served data is moderate or small, which makes the
estimated mean relative information a less reliable
prediction of the actual impact of missing observa-
tions. For this reason, we suggest a simple way to
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estimate the variability of relative information be-
tween complete data and observed data in the sim-
ple motivation example. Further investigation is re-
quired in incorporating these variability estimates
into the optimal design of follow-up studies.

RELATIVE INFORMATION AND FOLLOW-UP
STUDY DESIGNS

Missing values can occur for many reasons and can
have different effects on a given test. Nicolae, Meng
and Kong pointed out that the impact of missing
values (in terms of relative information) on a test
may not be as simple as the “face value” of ngy/n,
where ng is the number of observed values and n is
the number of individuals (n — ng is then the num-
ber of missing values). Therefore, a more accurate
estimation of the information gain due to the reso-
lution of missing values is important for the design
of follow-up studies.

Given an existing data with n individuals (with
missing values), if n; additional independent sam-
ples are collected (possibly with the same missing
rate) to expand this data set, it is intuitive to assume
that the ratio of information in the original data
and the expanded data is approximately n/(n+mny).
Now consider a test on the existing data with n in-
dividuals that has some missing values (say, ng ob-
served values). The relative information is estimated
to be 80%, meaning that if the data used for this
test is “resolved” to become complete, the expected
log likelihood ratio is about 1/80% = 125% of the
observed log likelihood ratio. To achieve the same
level of information by adding new independent ob-
servations, one would need to collect a sample of
additional n; =n x 25% individuals. In many situa-
tions, resolving missing values, if possible, turns out
to be much cheaper than collecting data on addi-
tional samples. In Section 2 of the NMK paper, an
example was given on genotyping ambiguity in ge-
netic linkage analysis (meaning that the exact inher-
itance vectors needed for the lod score computation
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cannot always be derived given the genotypes ob-
served on the individuals). Here, let Yg;, be current
data with unambiguous genotypes. For a follow-up
study, a researcher can decide between (1) increas-
ing the density of genetic markers on the observed
individuals to resolve the ambiguities and (2) in-
creasing the sample size by genotyping more inde-
pendent individuals on the same set of markers for
the previously observed individuals. If we denote the
two potential expanded data sets as Ycom and Yo
with m and ¢ standing for markers and individu-
als, we can compute the fraction of information be-
tween Yoy, and Yoo 1, and between Y;}, and Y, i, po-
tentially using RI; and RIy proposed in the NMK
paper. Comparing these two measures of relative in-
formation, the researcher can then decide which op-
tion (increasing markers or increasing individuals)
is cost-efficient for the inferential task at hand.

In practice, one would need to consider such com-
parison at multiple variables simultaneously. Here
we consider a simple example. Let {Y1,...,Ya} be
the variables studied. For Y;, ng; values are observed
on n individuals. In a follow-up study ni; missing
values can be resolved at Y;. At Y;, the relative infor-
mation (say, RI;) is a function of n ;, the observed
lod score lod,p,; and the observed m.l.e. To evalu-
ate the owerall information gain due to these addi-
tional observations, we suggest an expression similar
to that of (19) in the NMK paper!:

I
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A possible way to yield an optimal design would be
to select values of 0 <nj;; <n —ng; to maximize
the information gain while controlling for a fixed
cost. Differences in design may involve varying setup
costs that may depend on, for example, the number
of nonzero n;; such as that in genotyping studies.
Once such a cost function can be fully specified, lin-
ear programming can be used to obtain the optimal
design. If the nq;’s in the optimal design identified
take similar values on ¢ =1,..., M, this may suggest
a design that collects data on ny new independent
individuals and takes measurements on the same M
variables as in the original data.

(1)

'BEquation (19) in the original paper is to combine relative
information measures from several studies, while (1) here is
to evaluate relative overall information of multiple variables.

Another advantage of the likelihood ratio-based
evaluation of information used by Nicolae, Meng and
Kong is that one can evaluate the potential informa-
tion gain conditioning not only on the observed data
at the current concerned variable but also on some
associated variables, through a model-based calcula-
tion. Similar model-based strategies have been com-
monly used for imputing missing genotypes in ge-
netic studies. Such consideration may introduce more
complicated design questions than the computation
in (1) but may also bring better efficiency.

THE “EMPIRICAL” FRACTION OF
INFORMATION AND ITS VARIABILITY

Using the simple motivation example in Section
1 of the NMK paper, we consider the relation be-
tween the empirical observed data log likelihood ra-
tio (lod score) and the “random” complete data log
likelihood ratio (lod score). We offer relationships
between the proposed fraction of information and
the distribution of the “empirical” ratio. The “em-
pirical” ratio is the actual random gain due to addi-
tional observations, while the estimation of relative
information and the possible optimal design derived
are intended to approximate this random outcome.

In Figure 1, we plot the joint distribution of the
lod scores under the observed data and the com-
plete data, with missing percentage being 80%. The
distribution is evaluated under three true values of
the probability of success with ng =800 and n =
1000. To obtain a realistic evaluation, we use the
traditional definition of the likelihood ratio test (or
the lod score) where the ratio is evaluated between
the maximum likelihood estimate given current data
(observed or complete) and the value in the null hy-
pothesis.

We first notice the positive correlation between
the complete data statistic and the observed data
statistic. Gray broken lines in Figure 1 give refer-
ence lines for empirical or “random” ratio between
the complete data lod score (or log LR statistic)
and observed lod score. The estimated RI; (which
coincides with r = ng/n) corresponds to a line going
through the center of the joint distribution (almost
exactly), indicating it is a good estimate for the ex-
pected ratio (or fraction of information) regardless
of the values of the observed lod score.

For a small departure (say, p = 0.55) from the null
hypothesis (po = 0.5), the LR test does not have
great power and the test statistics distribute close to
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Fic. 1. Distribution of log likelihood ratio test statistics (or lod scores) given observed data and complete data. The contour

plots display the joint distribution of the log likelihood ratio test stalistics given the observed data and the complete data. Given
no = 800 and n = 1000, the ratio between the complete data log LR and the observed data log LR is expected to be n/ng =1.25.
In each contour plot, a dotted line is plotted to indicate the y = 1.25x line. The gray broken lines display y = ra with r varying
and provide reference for the empirical ratio of the complete data log LR and the observed data log LR.

zero. The contour of the distribution intersects with
lines whose ratio values are shown to go as high as
13. This is natural given the observed data statis-
tic can become very small due to chance and cre-
ate a highly variable ratio. For values that are far
away from the null hypothesis, the estimated RI;
becomes more precise.

As illustrated above and in Figure 1, the unob-
served random missing values make the relative “em-
pirical” information a random quantity. It is instruc-
tive to evaluate the amount of variation in the com-
plete data lod score. It is easy to obtain for the sim-
ple binomial example that

o) var(lod(p1,p2; Yeo) | Yob, P
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Consider a null hypothesis that specifies the prob-
ability of success as pg and let p be the true param-
eter value. Let RIy(Yeo, Yon;p,p0) be the empirical
fraction of information regarding the difference be-
tween p and pg, for a set of Y., with only Y, ob-
served (or the ratio of the lod scores between p and
po derived using the observed data and the potential
complete data). It is easy to see that RI, l'is a more
natural relative information ratio to use for evaluat-
ing overall relative information in (1) and identifying
optimal follow-up design. From similar computation
in (2), RI, 1 conditioning on Y}, has an expecta-

tion
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0

M}

(1—po)
- (lod(p, po; Yob)) ™"

and variance

varRIJl = (n—mno)p(1 —p) [log L log
Po

1—p 2
1- Po}
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In practice, we may substitute p with p,, and have

ERI, L estimated by RI; ! Figure 2 gives the es-
timated standard deviation of RIS I with probabil-
ity density curves under different true values of p.
When the true value is close to the null hypoth-
esis po, RI, " is highly variable, which will make
the simple estimate of R, 1 as an estimated expec-
tation of RI, I a unreliable prediction of RI, LA

—

procedure incorporating both ERI, 1= RI; 1 and
an estimated standard error of RI, ! should be con-
sidered to address the design issues similar to that

of (1).
IN SUMMARY

The paper by Nicolae, Meng and Kong provides
interesting evaluation strategies for relative infor-
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Fi1G. 2. FEstimated standard deviation of Rly_l. For sample size n =100,1000, we plot the estimated standard deviation of
RI;l against the observed number of successes xo. Density curves of observed number of successes xo under different true p
values are plotted.

mation discerning two hypotheses contained in ob- tions that utilize relative information such as RI;
served data. Such measures support the quantifica- and corresponding variability measures.

tion of possible information gain that can be brought
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