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Nicolae, Meng and Kong are to be congratulated
on having treated an important practical problem
in many scientific inquiries in which the investigator
has chosen the testing procedure, but needs to know
the impact of the missing data on the test in terms of
the relative loss of information. To measure the rel-
ative information, they propose to compare how the
observed-data likelihood deviates from flatness rela-
tive to the same deviation in the complete-data like-
lihood. Several measures of this deviation expressed
by Bayesian method are explored and applied to the
study of genetics and genomics. As noted in their pa-
per, these measures are especially needed in small-
sample problems with incomplete data.

We would like to explore the use of this type of
measure in two examples to indicate its wide ap-
plicability and some computational issues. One con-
cerns infectious disease data, which are usually highly
dependent and incomplete; the investigators often
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need to decide if more data are needed, and in case
they are, to know the type of data that is most de-
sirable. The other concerns a test on the shape of a
regression function; we will apply the Bayesian mea-
sure of relative information to select design points
for collecting more data.

Because Bayesian tests are more tractable and
natural than a frequentist approach in these two ex-
amples, we consider the following extensions of their
(25) for the measure of relative information:
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posterior distribution on the null hypothesis. To shorten

the presentation, we use only (BI3) in the following
discussion.

1. INFECTIOUS DISEASE DATA

As discussed in Rhodes, Halloran and Longini (1996),

there are several levels of information in the study of
infectious disease data and it is of interest to decide
the level of information in the study. We consider
two levels of information in a simple model to illus-
trate the way that (BI3) may be used in this situa-
tion. Suppose there is a collection of disjoint house-
holds that suffer a transmissible disease and an indi-
vidual can only be infected by members in the same
household. We assume an S-I-R model; at any time
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point, each individual is in one of the three states:
susceptible (S), infectious (I) or removed (R); a sus-
ceptible individual may become infectious and an
infectious individual may become removed. Assume
there are m people in one household. The transition
of the health status of people in one household is de-
scribed by the following counting process. We note
that counting process modeling of infectious disease
data is discussed in Becker (1989) and Andersson
and Britton (2000), among others.

For i=1,...,m, let N;(t) be 1 if the i¢th individ-
ual has been infected at time ¢ and be 0 if not; for
i=m+1,...,2m, let N;(t) be 1 if the (i —m)th
individual has been removed at time ¢ and be 0 if
not. Let I(t) denote the number of infectious peo-
ple at time ¢t. Here ¢ > 0. Assume N;(0) =1, which
means this individual is the first infected person. As-
sume that P(N;(t + h) — N;(t)|F:) = hAi(t) + o(h).
Here \;(t) = Boexp(B1Z;)I(t—)(1 — N;(t—)) for i =
1,...,m,and \;(t) = vo(Ni—m(t—) — N;(t—)) for i =
m+1,...,2m; F; is the history up to time t. The
parameters By and 7y are respectively called the in-
fection rate and the removal rate.

Assuming the covariate Z; has value 0 or 1, we are
interested in testing the hypothesis Hy that 51 is less
than 0. When Z; =1 means that the ¢th individual
has been vaccinated, 7 may represent the efficacy
of the vaccine.

We assume the removal times of all the removed
individuals are observable and their infection times
are not observable except the first one in the house-
hold, which is assumed to be zero. We note that it is
often easier to obtain removal times than infection
times; the latter are often hard, if not impossible,
to get; the sole purpose of assuming that the first
infection time is observable is to simplify the pre-
sentation.

Suppose we have collected the observed data and
decided to test the hypothesis Hy by considering
the ratio of the posterior probability to the prior
probability of the event [3; < 0].

Viewing all the infection times except the first one
in each household as missing data, we can use (BI3)
to measure the fraction of missing information. Al-
ternatively, we may consider the removal times of
additional four, say, households as missing data and
calculate its (BI3). These two (BI3)s might be useful
in deciding, when additional data are needed, which
type of additional data is more desirable. We illus-
trate this method in the following simulation stud-
ies.

Assuming 5y =1, 51 = —0.5, 79 = 1, there are 6
members in each household and there are 20 house-
holds, we generate a set of observed data; assuming
the priors for 8y and ~yy are exponentially distributed
as Exp(1) and that for 3 is standard normal, we use
MCMC to generate the posterior distributions of the
parameters.

The relative information (BI3) has values 0.795
and 0.288, respectively, for the missing data being
infection times and for that being additional four
household removal times. This seems to suggest that
obtaining additional four household removal times is
more desirable for this set of observed data. By the
way, the prior probability of [3; < 0] is 0.5 and the
posterior probability of [3; < 0], given the removal
times of the 20 households, is 0.739. Although we
have treated only an oversimplified example, this
simulation study seems to suggest that the relative
information measure proposed by Nicolae, Meng and
Kong (2008) is useful in infectious disease data anal-
ysis.

2. A TEST FOR MONOTONICITY OF A
REGRESSION FUNCTION

Let S denote the set of all continuous functions on
[0,1] and Z denote the set of all nondecreasing con-
tinuous functions on [0, 1]. Consider the regression
model

Y, = F(Xk) + o,

for some F' in S. Here for k=0,...,K, Y} is a re-
sponse variable, X} is a constant design point in
[0,1], and the errors {e} are assumed to be inde-
pendent and standard normal; ¢ is a positive con-
stant.

We are interested in testing the hypothesis Hy
that the regression function F' is nondecreasing and
wish to know the way to collect more data properly.
We will introduce a probability measure on §, and
consider a Bayesian approach.

Let B=J02;({n} x R"™) and ; ,(t) = CIt'(1—
)"~ for t € [0,1]. For by, = (b, .- -,bnn), we define
an (t) = an (n, b07n, ey bn,na t) = Z?:O bi,n@i,n(t)- We
note Fj, is called a Bernstein polynomial with co-
efficients bg 5, ..., by . It is readily seen that Fy, (-)
is a member of § and it is a member of Z, if b, €
{bulbon <+ <bpn}. Let S, ={Fy, |b, e R"T1}. It
is clear that S D |J;2 | Sy. A probability measure 7
can be introduced on S as follows. Let m,, be a con-
ditional density on R™*! and p a probability mass
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function on {1,2,...}; define w(n,b,) = p(n)m,(bn),

which introduces a probability measure on | ;> ; ({n} x

R"™*1). Identifying a Bernstein polynomial with its
order and coefficients, we can regard w as a proba-
bility on [J;7; Sy, hence on S. Priors of this form
are referred to as Bernstein priors.

Chang et al. (2007) showed that suitably intro-
duced Bernstein priors facilitate the estimation of
F under various shape restrictions. In fact, this ap-
proach also provides a direct assessment of the hy-
pothesis Hy that I is in Z by considering the ratio
of the posterior probability to the prior probability
of the set Z. We note that the Bernstein priors used
in Chang et al. (2005) and Chang et al. (2007) have
large supports and, yet, take into consideration the
shape restrictions, and the prior on § that we use in
the following simulation is constructed in the spirit
of these references and motivated by the simple ob-
servation that if b; ,, is in [, 2] for every i, then Fy,
is in [71,72], and a continuous function with values
in [r1,72] can be approximated by Bernstein poly-
nomials with coefficients contained in |17, 79].

Suppose we have collected response variables at
Xo,...,Xg and would like to know the relative
information of the observed data when more
response variables are taken at additional design
points xg,...,xr. The following simulation studies
are meant to illustrate the use of (BI3) in this prob-
lem. Assume F'(t) = 0.6t for ¢ in [0,1] and o = 0.4.
Let K =9 and Xy =k/9 for k=0,...,9. We gener-
ate one set of data according to this specification,
and then calculate (BI3) under several missing data
scenarios. When L = K and zg = Xg,...,xr = X,
we find (BI3) is equal to 0.139. When (0, xo, ..., x4,
0.5) form an equal length partition of the interval
[0,0.5] and (0.5,z5,...,29,1) form an equal length
partition of the interval [0.5,1], we find (BI3) is
equal 0.346. This shows that the former design points
would be preferable to the latter when additional
data are needed.

To have some idea for the case L = 2K, we find
(BI3) is 0.052 if xop = xop 41 = X for k=0,..., K,
and is 0.217 if (0, zg, . . ., 29, 0.5) form an equal length
partition of the interval [0,0.5] and (0.5,z10,...,
x19,1) form an equal length partition of interval
[0.5,1]. We note that the prior probability of Z is
0.0006 and the posterior probability of Z is 0.0015.
In summary, we find the measure of relative infor-
mation (BI3) useful in selecting extra design points
for data collection in this regression example.

3. SOME COMPUTATIONAL REMARKS
Nicolae, Meng and Kong (2008) pointed out that (24)

may be problematic because of the large variability
in the likelihood ratios. That this problem does ap-
pear in the above two examples is the sole reason
that only extensions of (25) are used here.

Because we work with Bayesian tests, in which

there are already specified priors, it seems natural to
use the corresponding posteriors in the calculation
of (24) and (25) and their extensions like (BI3) and
(BI4). In particular, the Eq in (BI3) and (BI4) is the
conditional posterior probability on the null hypoth-
esis. It may happen that the (unconditional) poste-
rior probability of the null hypothesis is so small that
sampling from the conditional posterior probabil-
ity needs large computation time, which may make
the calculation of (BI3) hard. In this connection, we
would like to note that although the posterior prob-
ability for the above regression problem is somewhat
small, it is still manageable.
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