
ar
X

iv
:1

10
2.

25
83

v1
 [

m
at

h.
ST

]
 1

3
Fe

b
20

11

Graver basis for an undirected graph and its

application to testing the beta model of random graphs

Mitsunori Ogawa∗, Hisayuki Hara†and Akimichi Takemura∗‡

February 2011

Abstract

In this paper we give an explicit and algorithmic description of Graver basis for

the toric ideal associated with a simple undirected graph and apply the basis for

testing the beta model of random graphs by Markov chain Monte Carlo method.

Keywords and phrases: Markov basis, Markov chain Monte Carlo, Rasch model, toric
ideal.

1 Introduction

Random graphs and their applications to the statistical modeling of complex networks
have been attracting much interest in many fields, including statistical mechanics, ecology,
biology and sociology (e.g. Newman [11], Goldenberg et al. [7]). Statistical models for
random graphs have been studied since Solomonoff and Rapoport [19] and Erdős and
Rényi [6] introduced the Bernoulli random graph model. The beta model generalizes
the Bernoulli model to a discrete exponential family with vertex degrees as sufficient
statistics. The beta model was discussed by Holland and Leinhardt [9] in the directed
case and by Park and Newman [15], Blitzstein and Diaconis [2] and Chatterjee et al. [3]
in the undirected case. The Rasch model [17], which is a standard model in the item
response theory, is also interpreted as a beta model for undirected complete bipartite
graphs. In this article we discuss the random sampling of graphs from the conditional
distribution in the beta model when the vertex degrees are fixed.

In the context of social network the vertices of the graph represent individuals and
their edges represent relationships between individuals. In the undirected case the graphs
are sometimes restricted to be simple, i.e., no loops or multiple edges exist. The sample

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology,

University of Tokyo.
†Department of Technology Management for Innovation, University of Tokyo
‡JST CREST

1

http://arxiv.org/abs/1102.2583v1

size for such cases is at most the number of edges of the graph and is often small. The
goodness of fit of the model is usually assessed by large sample approximation of the
distribution of a test statistic. When the sample size is not large enough, however, it is
desirable to use a conditional test based on the exact distribution of a test statistic.

Random sampling of graphs with a given vertex degree sequence enables us to numer-
ically evaluate the exact distribution of a test statistics for the beta model. Blitzstein and
Diaconis [2] developed a sequential importance sampling algorithm for simple graphs. In
this article we construct a Markov chain Monte Carlo algorithm for sampling graphs by
using the Graver basis for the toric ideal arising from the beta model.

A Markov basis [4] is often used for sampling from discrete exponential families. Al-
gebraically a Markov basis for the beta model is defined as a set of generators of the toric
ideal arising from the beta model. A set of graphs with a given degree sequence is called
a fiber of the beta model. A Markov basis for the beta model is also considered as a set
of Markov transition operators connecting every fiber. Petrović et al. [16] discussed some
properties of the toric ideal arising from the model of [9] and provided Markov bases of
the model for small directed graphs. Properties of toric ideals arising from a graph have
been studied in a series of papers by Ohsugi and Hibi ([13], [12], [14]).

The Graver basis is the set of primitive binomials of the toric ideal. Since the Graver
basis is a superset of any minimal Markov basis, the Graver basis is also a Markov basis
and therefore connects every fiber. When the graph is restricted to be simple, however,
a Markov basis does not necessarily connect every fiber. A recent result by Hara and
Takemura [8] implies that the set of square-free elements of the Graver basis connects
every fiber of simple graphs with a given vertex degree sequence. Thus if we have the
Graver basis for the beta model, we can sample graphs from any fiber, with or without the
restriction that graphs are simple, in such a way that every graph in the fiber is generated
with positive probability.

In the sequential importance sampling algorithm of [2] the underlying graph for the
model was assumed to be complete, i.e., all the edges have positive probability. In our
approach we can allow that some edges are absent from the beginning (structural zero
edges in the terminology of contingency table analysis), such as the bipartite graph for
the case of the Rasch model. In fact the Graver basis of an arbitrary graph is obtained
by restriction of the Graver basis of the complete graph to the existing edges of G (cf.
Proposition 4.13 of Sturmfels [20]). This is the advantage of obtaining the Graver basis.

The Graver basis for small graphs can be computed by a computer algebra system such
as 4ti2 [1]. For even moderate-sized graphs, however, it is difficult to compute the Graver
basis via 4ti2 in a practical amount of time. In this article we first provide a complete
description of the Graver basis for the beta model. In general the number of elements of
the Graver basis is too large. So we construct an adaptive algorithm for sampling elements
from the Graver basis, which is enough for constructing a connected Markov chain over
any fiber. Our theoretical results on the Graver basis have many overlaps with the results
of resent paper of Reyes et al. ([18]). However our results are more suitable for sampling
elements from the Graver basis.

The organization of this paper is as follows. In Section 2 we give a brief review on

2

some statistical models for random graphs and clarify the connection between the models
and toric ideals arising from graphs. In Section 3 we provide an explicit description of
the Graver basis for the toric ideal associated with an undirected graph. Section 4 gives
an algorithm for random sampling of square-free elements of the Graver basis. In Section
5 we apply the proposed algorithm to some data sets and confirm that it works well in
practice. We conclude the paper with some remarks in Section 6.

2 The beta model of random graphs

In this section we give a brief review of the beta model for undirected graphs according
to Chatterjee et al. [3].

Let G be an undirected graph with n vertices V (G) = {1, 2, . . . , n}. Here we assume
that G has no loop. Let E = E(G) be the set of edges and let d1, . . . , dn be a degree
sequence. Denote d := (d1, . . . , dn). For each edge {i, j} ∈ E, let a non-negative integer
xij be the weight for {i, j} and denote x = {xij | {i, j} ∈ E}. x is considered as
an |E| dimensional integer vector. We assume that an observed graph H is generated
by independent binomial distribution B(nij, pij) for each edge {i, j} ∈ E, i.e., xij ∼
B(nij , pij) with

pij :=
eβi+βj

1 + eβi+βj
=

αiαj

1 + αiαj

, αi = eβi.

Then the probability of H is described as

P (H) ∝
∏

{i,j}∈E

p
xij

ij (1− pij)
nij−xij

=
1

∏

{i,j}∈E(1 + αiαj)nij

∏

{i,j}∈E

(αiαj)
xij

=

∏

i∈V αdi
i

∏

{i,j}∈E(1 + αiαj)nij
, (1)

where we note that di =
∑

j:{i,j}∈E xij . The model (1) is called the beta model ([3]).

Note that if xi,j = 0 then the observed graph H does not have an edge {i, j} even if
{i, j} ∈ E(G) for the underlying graph G.

This model was considered by many authors (e.g. Park and Newman [15], Blitzstein
and Diaconis [2] and Chatterjee et al. [3]). The p1 model for random directed graphs by
Holland and Leinhardt [9] can be interpreted as a generalization of the beta model. When
G is a complete bipartite graph, the beta model coincides with the Rasch model ([17]).
The many-facet Rasch model by Linacre [10], which is a multivariate version of the Rasch
model, can be interpreted as a generalization of the beta model such that G is a complete
k-partite graph.

3

The sufficient statistic for (1) is d. Let A : |V | × |E| denote the incidence matrix
between vertices and edges of G. Then it is easily seen that x and d is related as

Ax = d.

A set of graphs (without restriction to be simple) with a given degree sequence d is
called a fiber of the beta model. An integer array z of the same dimension as x is called
a move of the beta model if Az = 0. A move z is written as the difference of its positive
part and negative part as z = z+ − z−. Since Az = Az+ −Az−, every move is written
as the difference of two graphs in the same fiber. A finite set of moves is called a Markov
basis if for every fiber any two graphs are mutually accessible by the moves in the set
([4]). By adding or subtracting moves in a Markov basis, we can sample graphs from any
fiber in such a way that every graph in the fiber is generated with positive probability.

As mentioned in Section 1, graphs are restricted to be simple in some practical prob-
lems. For a simple graph, xij , {i, j} ∈ E, is either zero or one. A Markov basis guarantees
the connectivity of every fiber if the restriction that graphs are simple is not imposed.
Under the restriction, however, a Markov basis does not necessarily connect every fiber.

For a given x, supp(x) = {e | xe > 0} denotes the set of observed edges of x. For two
moves z1, z2, the sum z1 + z2 is called conformal if there is no cancellation of signs in
z1 + z2, i.e., ∅ = supp(z+

1) ∩ supp(z−
2) = supp(z−

1) ∩ supp(z+
2). The set of moves which

can not be written as a conformal sum of two nonzero moves is called the Graver basis.
The Graver basis is known to be a Markov basis (e.g. [5]). A move is square-free if the
absolute values of its elements are 0 or 1. As a corollary of Proposition 2.1 of Hara and
Takemura [8], we can easily obtain the following proposition.

Proposition 1. The set of square-free moves of the Graver basis for the beta model
connects every fiber of simple graphs.

Therefore it suffices to have the Graver basis to sample graphs from any fiber with or
without the restriction that graphs are simple. In the next section we derive the Graver
basis for the beta model.

3 Graver basis of a random graph

In this section we will give a simple characterization of the Graver basis for an undirected
graph. Theorem 1 in Section 3.2 is the main result of this paper. As mentioned in Section
1 it has many overlaps with [18]. However our Theorem 1 is convenient for constructing
an algorithm for sampling elements from the Graver basis, as shown in Algorithm 1 in
Section 4.

3.1 Preliminaries

Let G = (V (G), E(G)) be a simple connected graph with V (G) = {1, 2, . . . , n} and
E(G) = {e1, e2, . . . , em}. A walk connecting i ∈ V (G) and j ∈ V (G) is a finite sequence

4

of edges of the form

w = ({i1, i2}, {i2, i3}, . . . , {iq, iq+1})

with i1 = i, iq+1 = j. The length of the walk w is the number of edges q of the walk.
An even (respectively odd) walk is a walk of even (respectively odd) length. A walk w is
closed if i = j. A cycle is a closed walk w = ({i1, i2}, {i2, i3}, . . . , {iq, i1}) with il 6= il′ for
every 1 ≤ l < l′ ≤ q.

For a walk w, let V (w) = {i1, . . . , iq+1} denote the set of vertices appearing in w
and let E(w) = {{i1, i2}, {i2, i3}, . . . , {iq, iq+1}} denote the set of edges appearing in w.
Furthermore let Gw = (V (w), E(w)) be the subgraph of G, whose vertices and edges
appear in the walk w.

In order to describe known results on the toric ideal IG arising from an undirected
graph G, we give an algebraic definition of IG. Let K[t] = K[t1, . . . , tn] be a polynomial
ring in n variables over K. We will associate each edge er = {i, j} ∈ E(G) with the
monomial tr = titj ∈ K[t]. Let K[s] = K[s1, . . . , sm] be a polynomial ring in m = |E(G)|
variables over K and let π be a homomorphism from K[s] to K[t] defined by π : sr 7→ tr.
Then the toric ideal IG of the graph G is defined as

IG = ker(π) = {f ∈ K[s] | π(f) = 0}.

A binomial f = u − v ∈ IG is called primitive if there is no binomial g = u′ − v′ ∈ IG,
g 6= 0, f , such that u′|u and v′|v. The Graver basis of IG is the set of all primitive
binomials belonging to IG and we denote it by G(IG). If we write the monomials u, v as
u = sx, v = sy, then u− v ∈ IG if and only if x− y is a move. Furthermore u− v ∈ IG is
primitive if and only if supp(x)∩supp(y) = ∅ and x−y can not be written as a conformal
sum of two nonzero moves.

For a given even closed walk w = (ej1 , ej2, . . . , ej2p) we define a binomial fw ∈ IG as

fw = f+
w − f−

w , where f+
w =

p
∏

k=1

sj2k−1
, f−

w =

p
∏

k=1

sj2k .

An even closed walk w′ is a proper subwalk of w, if g+w′ | f+
w and g−w′ | f−

w hold for the
binomial g = g+w′ − g−w′(6= fw). An even closed walk w is called primitive, if its binomial
fw is primitive. Then the primitiveness of w is equal to non-existence of a proper subwalk
of w.

A characterization of the primitive walks of graph G, which gives a necessary condition
for a binomial to be primitive, was given by Ohsugi and Hibi [13].

Proposition 2 (Ohsugi and Hibi [13]). Let G be a finite connected graph. If f ∈ IG is
primitive, then we have f = fw where w is one of the following even closed walks:

(i) w is an even cycle of G.

(ii) w = (c1, c2), where c1 and c2 are odd cycles of G having exactly one common vertex.

5

(iii) w = (c1, w1, c2, w2), where c1 and c2 are odd cycles of G having no common vertex
and where w1 and w2 are walks of G both of which contain a vertex v1 of c1 and a
vertex v2 of c2.

Every binomial in the first two cases is primitive but a binomial in the third case is
not necessarily primitive.

3.2 Characterization of primitive walks

In this subsection we give a simple characterization of the primitive walks of a graph
G as sequences of vertices. Express an even closed walk w as a sequence of vertices:
(i1, i2, . . . , i2p, i1), where i1 ≡ i2p+1. Let #w(i) = #{1 ≤ l ≤ 2p | il = i} denote the
number of times i is visited in the walk w before it returns to the vertex i1. Consider the
following condition for the even closed walk w.

Condition 1. (i) #w(i) ∈ {1, 2} for every vertex i ∈ V (w). (ii) For every vertex j ∈
V (w) with #w(j) = 2 and j = il = il′, 1 ≤ l < l′ ≤ 2p, the closed walks wj

1 = (il, . . . , il′)
and wj

2 = (il′, . . . , i2p, i1, . . . , il−1, il) are odd walks with V (wj
1) ∩ V (wj

2) = {j}. (cf. Figure
1).

i2
i1i2p

j

j

w

w
j
1

w
j
2

Figure 1: Even closed walk w.

Remark 1. The equation V (wj
1) ∩ V (wj

2) = {j} in Condition 1 means that there are
no crossing chords in Figure 1 when adding a chord {j, j} to the figure for every vertex
j ∈ V (w) with #w(j) = 2.

Using Condition 1, we can characterize primitive walks of a graph G as follows.

Theorem 1. A binomial f ∈ IG is primitive if and only if there exists an even closed
walk w with fw = f satisfying Condition 1.

Remark 2. It follows from the definition of primitive walks and Theorem 1 that if an
even closed walk w is primitive, every even closed walk w′ with fw′ = fw is primitive and
satisfies Condition 1.

6

To prove Theorem 1, another characterization of primitive walks will be given in
Proposition 3. In order to that, we need some more definitions on graphs. For a walk
w = (ej1, ej2, . . . , ejq), let W = W (w) denote the weighted subgraph (V (w), E(w), ρ) of G
where ρ : E(w) → Z is the weight function defined by ρ(e) := #{l | ej2l+1

= e} − #{l |
ej2l = e} for each edge e ∈ E(w). For simplicity, we denote a weight +1 (respectively
−1) by + (respectively −) in our figures. For a vertex i ∈ V (w), we define two kinds of
degrees of vertex i:

degGw
(i) = #{e ∈ E(w) | i ∈ e},

degW (i) =
∑

e∈E(w):i∈e

|ρ(e)|.

degGw
(i) is the usual degree of i in Gw. Note that the same weighted graph W might

correspond to two different even closed walks w,w′, i.e. W (w) = W (w′). Given a weighted
graph W , we say that w spans W if W = W (w) and {ejl | l:odd} ∩ {ejl | l:even} = ∅.

Now we define two operations, contraction and separation, on a weighted graph W .

• Let e = {i, j} ∈ E(w) be an edge with |ρ(e)| = 2, whose removal from Gw increases
the number of connected components of the remaining subgraph. Contraction of
e is an operation as shown in Figure 2. That is, it first replaces W by W ′ =
(V (w) \ {j}, E ′, ρ′) where E ′ consists of all edges of W contained in V (w) \ {j},
together with all edges {α, i}, where {α, j} is an edge of W different from e. Then,
it defines ρ′ by inversion of the signs of weights of edges belonging to the i-side of
W .

inversion±2

signei j
i

Figure 2: Contraction.

• Let i ∈ V (w) be a vertex with degGw
(i) = degW (i) = 4, such that the removal

of i increases the number of connected components of the remaining subgraph and
the positive side as well as the negative side of i fit to one of three cases (a)–(c)
(respectively to the sign reverse cases) in Figure 3. Separation of i is an operation
as shown in Figure 3. That is, it first deletes the vertex i and all edges connected
to i on W . Then, in the case of (a), it adds a new edge {k1, k2} with weight +1. In
the case of (b), it redefines ρ({k1, k2}) := +2 and then contracts {k1, k2}, where we
assume that the contraction of {k1, k2} is possible. In the case of (c), it redefines
ρ({k1, k2}) := 0. We call this {k1, k2} an edge with weight 0. The sign reverse cases
are defined in the same way.

7

k2

i

i

i

+

+−

−

k1

k2

k1

k2

+

+

+

−

−

+

k1 k1

k2

+2
Step1

Step2

(contraction)

+

+−

−

−

k1

k2

0

k2

k1

(a)

(b)

(c)

Figure 3: Separation.

Note that the separation is not defined for any vertex i with degGw
(i) = degW (i) = 4,

if i fits to none of three cases (a)–(c) in Figure 3. The vertex i in Figure 4 is such an
example, because its positive side fits to none of three cases (a)–(c) in Figure 3.

i +

+

−

−

−

Figure 4: A vertex i whose separation is not defined.

Let insertion and binding be the reverse operations of contraction and separation,
respectively. With these operations, consider the following condition for an even closed
walk w = (ej1 , ej2, . . . , ej2p).

Condition 2. (i) {ejl | l:odd} ∩ {ejl | l:even} = ∅. Every vertex i ∈ V (w) satisfies
degW (i) ∈ {2, 4}. For every vertex i with degW (i) = 4, its removal from Gw increases the
number of connected components of the remaining subgraph. (ii) Let W̃ be a graph obtained
by recursively applying contraction and separation of all possible edges and vertices in W .
Then each connected component of W̃ is an even cycle or an edge with weight 0.

Proposition 3. For an even closed walk w, the binomial fw is primitive if and only if w
satisfies Condition 2.

We establish some lemmas to prove Proposition 3. Our proof also shows that W̃ in
Condition 2 does not depend on the order of application of contractions and separations
excepting the sign inversion of weights of edges of each connected component in W̃ .

8

Lemma 1. If an even closed walk w is primitive, w satisfies (i) in Condition 2.

Proof. Consider a vertex i ∈ V (w). Since w is closed, degW (i) is even. Furthermore,
since w is primitive, {ejl | l:odd} ∩ {ejl | l:even} = ∅ holds which implies that there
is no cancellation in the calculation of weight on any edge. Then, a half of the weight
degW (i)/2 is assigned as positive weights and other half degW (i)/2 is assigned as negative
weights to the edges connected to i onW . Therefore degW (i) ∈ {2, 4, 6, . . .}. Now suppose
degW (i) ≥ 6. Consider that we start from a vertex i along an edge with positive weight
and go along the walk w or its reverse until returning back to i again for the first time.
We can always take this closed walk since w is closed. If we come back to i for the first
time along an edge with negative weight, we can take it as a proper subwalk of w, which
contradicts the primitiveness of w. Therefore we have to come back to i along an edge
with positive weight. Let us continue along w or its reverse until returning back to i. By
the same reasoning, the last edge of this closed walk has a negative weight. This implies
that we can take this even closed walk as a proper subwalk of w, a contradiction to the
primitiveness of w. Therefore degW (i) is 2 or 4.

To prove the remaining part, let i ∈ V (w) be a vertex with degW (i) = 4 and consider
all closed walks on W , where the edge starting from i and the edge coming back to
i have positive weights. We denote the set of vertices with the exception of i which
appear in one of these walks by V +. We define V − in the same way. Then we have
V +∪V −∪{i} = V (w). First, we show V +∩V − = ∅. Suppose that there exists a vertex j ∈
V + ∩ V −. Then, as shown in Figure 5, there are two closed walks ({i, i+1 },Γ

+
1 ,Γ

+
2 , {i

+
2 , i})

and ({i, i−1 },Γ
−
1 ,Γ

−
2 , {i

−
2 , i}). This implies that we can construct a proper subwalk of w

by the combination of {i, i+k },Γ
+
k (k = 1, 2), and Γ−

l , {i
−
l , i}(l = 1, 2), a contradiction to

the primitiveness of w. Therefore V + ∩ V − = ∅. Second, suppose that the removal of the

i +

+−

−

j

i+1

i+2i−2

i−1

Γ
+

2Γ
+

1Γ
−

1Γ
−

2

Figure 5: Case that there exists a vertex j ∈ V + ∩ V −.

vertex i from Gw does not increase the number of connected components of the remaining
subgraph. Then, there are vertices v+ ∈ V +, v− ∈ V − such that {v+, v−} ∈ E(w), because
V + ∩ V − = ∅ holds as shown above. Hence, as shown in Figure 6, an even closed walk
({i, i+k },Γ

+
k , {v

+, v−},Γ−
l , {i

−
l , i}) is a proper subwalk of w for appropriate k, l ∈ {1, 2},

k 6= l, which contradicts to the primitiveness of w. Therefore the removal of i from Gw

increases the number of connected components of the remaining subgraph.

Lemma 2. Let an even closed walk w be primitive and W̃ be the weighted graph which
is obtained by a contraction for an edge with its weight ±2 on W . Then any even closed
walk w̃ spanning W̃ is primitive.

9

i
+

1
i +

+−

−

i
+

2i
−

2

i
−

1

v
+

v
−

Γ
+

2Γ
+

1Γ
−

1Γ
−

2

Figure 6: Case that there exists an edge {v+, v−}.

Proof. The contraction of the edge with its weight ±2 on W is possible from Lemma 1.
We denote this edge by e = {i, j} as shown in Figure 7. Suppose w̃ is not primitive. Then

W W̃

inversion±2

signei j
i

Figure 7: Contraction of an edge e.

there exists an proper subwalk w̃′ of w̃. If i /∈ V (w̃′), w̃′ is also a proper subwalk of w, a
contradiction to the primitiveness of w. Then i ∈ V (w̃′). However, a proper subwalk of
w is constructed by embedding e into W̃ ′. Therefore, w̃ is primitive.

Lemma 3. Let an even closed walk w be primitive and W1,W2 be the weighted graphs
obtained by the separation of a vertex i. Then any even closed walks wl(l = 1, 2) spanning
Wl(l = 1, 2) are primitive or of length two with fwl

= 0.

Proof. We consider the case that both positive and negative sides of i correspond to (a)
in Figure 3 and relevant edges are labeled as shown in Figure 8. Suppose w1 is neither
primitive nor of length two. Then there exists a proper subwalk w′

1 of w1 on W1. If

i +

+−

−

+

e
+

2e
−

2

e
−

1 e
+

1

e
+

e
−

−

W W2 W1

Figure 8: Separation of a vertex i.

e+ /∈ E(w′
1), w

′
1 is also a proper subwalk of w, a contradiction to the primitiveness of w.

Then e+ ∈ E(w′
1). Now w′

1 is expressed as follows:

w′
1 = (ei1 , ei2 , . . . , eik , e

+, eik+1
, . . . , eis).

Then an even closed walk on W

(ei1 , ei2 , . . . , eik , e
+
1 , e

−
1 , . . . , e

−
2 , e

+
2 , eik+1

, . . . , eis)

10

is a proper subwalk of w. This contradicts the primitiveness of w. Therefore w1 is
primitive or of length two. The cases of (b) and (c) in Figure 3 are shown in the same
way. Note that it is easy to confirm the possibility of contraction after the step 1 in the
case (b) from Lemma 1 and then the primitiveness is guaranteed by Lemma 2. By the
same argument, the case of w2 is confirmed.

We have so far discussed contraction and separation. From now we show that the
inverse operations, insertion and binding, preserve primitiveness.

Lemma 4. Let w be a primitive walk and let W̃ be the weighted graph obtained by the
insertion to i with degW (i) = 4 on W . Then any even closed walk w̃ spanning W̃ is
primitive.

Proof. Let e be the new edge appearing through the insertion to i as shown in Figure 9.
Suppose w̃ is not primitive. Then there exists a proper subwalk w̃′ of w̃. If e /∈ E(w̃′),

inversion

sign
i

W

±2

e

W̃1 W̃2

Figure 9: Insertion to a vertex i.

w̃′ is contained in W̃1 or W̃2. Then w̃′ or its reverse becomes a proper subwalk of w.
This contradicts the primitiveness of w. Hence e ∈ E(w̃′). Then we can construct a
proper subwalk of w by removing e from w̃′ and reversing the weights of edges belonging
to E(w1), a contradiction to the primitiveness of w. Therefore, w̃ is primitive.

Lemma 5. Let each wl (l = 1, 2) be a primitive walk or a closed walk with length two,
and W be the weighted subgraph obtained by binding of W1 and W2. Then any even closed
walk w spanning W is primitive.

Proof. Let i be the new vertex appearing through the binding. We consider the case that
both positive and negative sides of i correspond to (a) in Figure 3 and relevant edges are
labeled as shown in Figure 10. Other cases are shown in the same way. Suppose w is

+−

W2 W1

i +

+−

−

e
+

2e
−

2

e
−

1 e
+

1

W

Figure 10: Binding of W1 and W2.

not primitive. Then there exists a proper subwalk w′ of w. Here we choose a primitive

11

walk as w′. If i /∈ V (w′), w′ is also a proper subwalk of w1 or w2. Then i ∈ V (w′). This
implies that all four edges connected to i appear in w′. Let us consider the separation of
i to W ′. Then the resulting two weighted graphs W ′

1,W
′
2 are primitive from Lemma 3.

Furthermore at least one of w′
i (i = 1, 2) is a proper subwalk of wi, a contradiction to the

primitiveness of wi. Therefore w is primitive.

Proof of Proposition 3. Let w be a primitive walk. From Lemma 1 w satisfies (i) in
Condition 2 and every edge e with |ρ(e)| = 2 can be contracted. Furthermore, it is easy
to see that every vertex i with degW (i) = 4 can be separated after recursively applying
contractions of all possible edges. Therefore degW (i) = 2 holds for every vertex i on W̃ .
From Lemmas 2 and 3, each even closed walk corresponding to the connected component
of W̃ is primitive or of length two. Then, every connected component of W̃ is an even
cycle or an edge with weight 0, because from Proposition 2 every primitive walk includes
a vertex i with degW (i) = 4 if it is not an even cycle. Therefore, a primitive walk w
satisfies Condition 2. Conversely, suppose an even closed walk w satisfies Condition 2.
From Proposition 2 and Lemmas 4 and 5, w is primitive.

Proof of Theorem 1. Let w be a primitive walk. From Lemma 1, #w(i) ∈ {1, 2} holds
for each vertex i ∈ V (w) and V (wj

1) ∩ V (wj
2) = {j} holds for each vertex j ∈ V (w)

with #w(j) = 2. By the primitiveness of w, the closed walks wj
1 = (j, . . . , j) and wj

2 =
(j, . . . , i1, . . . , j) along w are odd closed walks. Therefore w satisfies Condition 1.

Conversely, let w be an even closed walk with Condition 1. From Proposition 3, it
suffices to show that w satisfies Condition 2. The condition (i) in Condition 2 follows from
Condition 1. Then, it is enough to confirm that w satisfies the condition (ii) in Condition
2.

First, we claim that every edge e ∈ E(w) with |ρ(e)| = 2 can be contracted and
every vertex j with #w(j) = 2 and degGw

(j) = 4, i.e. degGw
(j) = degW (j) = 4, can be

separated. The case of contraction is obvious from Condition 1. We confirm the case of
separation. Consider the vertex j in Figure 11. If an edge {k1, k2} dose not exist or exists

j +

+

−

−

k1

k2

Figure 11: A vertex j with degGw
(j) = degW (j) = 4.

with weight +1, it belongs to the case (a) or (b) in Figure 3, respectively. Let us consider
the case that there exists an edge {k1, k2} with weight −1 and suppose that the vertex k1
connects to more than three edges as shown in Figure 12. Then, j, k1 and k2 appear in w
like (j, k1, . . . , k1, k2, j) or (j, k1, . . . , k1, k2, . . . , k2, j), because V (wj

1)∩V (wj
2) = {j} holds.

This implies that (k1, . . . , k1) is even as shown in Figure 13, which contradicts Condition
1. Hence the case with {k1, k2} with weight −1 belongs to (c) in Figure 3. Therefore the
claim is confirmed.

12

j +

+

−

−

−

k1

k2

Figure 12: A vertex j which does not exist in w with Condition 1.

orj

k1

k2
k1

+

+

−

j

k1

k2

k1

k2

+

+
−

Figure 13: Case that there exists a vertex j in Figure 12.

Second, we verify that contraction and separation on W preserve Condition 1. Con-
sider the case of contraction of an edge {i, j} ∈ E(W). From Condition 1, such i, j
appear in w as w = (i1, . . . , il1 , i, j, il2 , . . . , il3, j, i, il4 , . . . , i1). The contraction of {i, j}
is equivalent to replacing w by (i1, . . . , il1 , i, il2 , . . . , il3 , i, il4 , . . . , i1). This change causes
the decrease of two edges from w, and preserves Condition 1. The case of separation is
checked in the same way.

Finally, consider the weighted graph W ′ obtained by all possible contractions and
separations on W . From the claims above, every connected component of W ′ satisfies
Condition 1 and has no vertex j with #w(j) = 2, i.e. an even cycle or an edge with weight
0. Therefore w satisfies Condition 2.

4 Algorithms for generating elements of Graver basis

In this section we present two algorithms for generating elements randomly from the
Graver basis of a simple undirected graph. Square-free elements of the Graver basis are
mainly discussed, because for testing the beta model of random graphs we only need
square-free elements of the Graver basis as shown in Proposition 1. Therefore the main
objective of this section is to construct an algorithm which generates every square-free
element of the Graver basis with positive probability.

First we start with an algorithm based on graph search, which is naturally derived
from Theorem 1, and stated as follows.

Algorithm 1 (Algorithm based on graph search).
Input : A simple undirected graph G = (V (G), E(G)).
Output : A primitive walk w.

1. Choose a root vertex i ∈ V (G) randomly and color it by red.

2. Depth first search from i with the following additional rules.

• Each vertex is visited at most twice after starting from i.

• Each edge is used at most once.

13

• Each vertex is colored by red and blue alternately.

• When a vertex j ∈ V (G) is visited twice, distinguish the following two cases:

– If its coloring order is the same as the first visit, then pick up the search
path from j to j as an even closed walk w and go to 3.

– Else delete the vertices included in the search path from j to j from candi-
dates to visit after passing j.

• If all paths are tested, return to 1.

3. Output w.

It is easy to see that Algorithm 1 can generate every square-free element of the Graver
basis with positive probability, because it just searches an even closed walk under Con-
dition 1. However, large backtracks might happen in the search. Then it is desirable to
construct a more efficient algorithm.

Next, we discuss another algorithm through a weighted tree with a certain condition
introduced below. Let T be a weighted tree (V (T), E(T), µ) where µ : V (T) → Z≥3 =
{3, 4, . . . } is a weight function. For this weighted tree T , let us consider the following
condition.

Condition 3. (i) If |V (T)| = 1, the weight of the single vertex is even. (ii) If |V (T)| > 1,
T satisfies the following two:

(a) For each leaf vT ∈ V (T), µ(vT) is odd.

(b) For each vertex vT ∈ V (T), deg(vT) ≤ µ(vT) and deg(vT) ≡ µ(vT) mod 2.

With these tools, let us consider generating a square-free element of the Graver basis of
a simple undirected graph G = (V (G), E(G)). For simplicity, suppose that G is complete.
We will discuss later the case that G is not complete. Let T = (V (T), E(T), µ) be a
weighted tree satisfying Condition 3 and the following equation:

∑

vT∈V (T)

µ(vT)− |E(T)| ≤ |V (G)|. (2)

Then, we can construct a primitive walk in G using T as follows. First, we assign the set
of vertices VvT ⊆ V (G) with |VvT | = µ(vT) for each vertex vT ∈ V (T) under the equation

|VvT ∩ Vv′
T
| =

{

1, if {vT , v
′
T} ∈ E(T),

0, if {vT , v
′
T} /∈ E(T),

(v′T ∈ V (T))

and every vertex v ∈ V (G) is assigned at most twice. Equation (2) guarantees that this
assignment is possible. Second, we make cycles in G by arbitrarily ordering the vertices
VvT . Then we make a subgraph of G by taking the union of these cycles. Finally, we
obtain a closed walk by choosing a root vertex from this subgraph and going around it.
It is easy to see that this closed walk is primitive by Theorem 1.

14

Conversely we can construct a weighted tree with Condition 3 and (2) from each
primitive walk. Let w be a square-free primitive walk. First, the vertex set V (T) is
constructed by creating a vertex vc of T for each cycle c in Gw. Second, the edge set
E(T) is obtained by adding edge {vc, vc′} to E(T) for each pair of cycles c, c′ in Gw with
V (c) ∩ V (c′) 6= ∅. Then, we assign weight µ(vc) := |V (c)| to each vertex vc ∈ V (T).

Therefore, once we have a weighted tree T with Condition 3 and (2), we can construct
a square-free element of the Graver basis of G. Such a tree T is constructed by the
following algorithm.

Algorithm 2 (Algorithm for constructing an weighted tree).
Input : A complete graph G = (V (G), E(G)).
Output : A weighted tree T = (V (T), E(T), µ) with Condition 3 and (2).

1. Let V (T), E(T) be empty sets and n := |V (G)|.

2. Add a root vertex r to V (T).

3. Assign µ(r) a weight from {3, 4, . . . , n} randomly.

4. Grow T by the following loop.

(a) For each vertex vT ∈ V (T) which is deepest from r, add edges {vT , v
i
T} to

E(T) and the endpoints viT (i = 0, 1, . . . , IvT) to V (T), where the number IvT
is randomly decided under the following two conditions:

• IvT + 1 ≤ µ(vT).
• IvT + 1 ≡ µ(vT) mod 2.

(b) For each new vertex viT , assign µ(viT) a weight from {3, 4, . . . , n−α} randomly,
where α :=

∑

vT∈V (T) µ(vT)− |E(T)|.

(c) Recompute α and if α > n, delete all new vertices and edges in the above (a)
and break the loop.

(d) If the total number of new edges is equal to 0, break the loop.

(e) Return to (a).

5. If |V (T)| = 1 and µ(r) is odd, change µ(r) to µ(r)− 1 or µ(r) + 1.

6. If |V (T)| > 1 and T has a leaf with even weight, subtract or add 1 to the weight.

7. Output T .

Algorithm 2 provides a simple algorithm for generating a square-free element of Graver
basis as follows.

Algorithm 3 (Algorithm through a weighted tree).
Input : A complete graph G = (V (G), E(G)).
Output : A primitive walk w.

1. Construct a weighted graph T with Condition 3 and (2) by Algorithm 2.

15

2. Construct a primitive walk by assigning vertices of G and ordering them randomly.

3. Output w.

Since there is no restarts in Algorithm 3, it has a fixed worst case running time. In
each step, the algorithm performs O(|V (G)|) operations. Then it generates one element
of the Graver basis of G in O(|V (G)|) time.

A demonstration for the case of a complete graph G with |V (G)| = 25 is shown in
Figures 14 and 15.

3 3 3 3 3

3333

3 3 3

4 4 4

4444

4 4 4

3

3 3 3 3

333

4 5 4 4

4

45 5 5

5

4 4 4 4 4 43 3 3

3 5

4 5

44 3

53

4

3 5

4

3 33 3 3

5 5

Stop Stop Stop

Stop Stop

Stop

Stop

Stop Stop

Stop

Over!

3

Output

Figure 14: Demonstration of Algorithm 2.

Figure 15: Demonstration of Algorithm 3.

Remark 3. For the case that an input graph G is not complete, the elements of the Graver
basis of G can be generated by throwing away elements with supports not contained in G

16

(Proposition 4.13 of Sturmfels [20]). In fact this is the advantage of considering the
Graver basis. General non-square-free elements of the Graver basis can be generated by
Algorithm 3 with a slight modification. In fact, it suffices to change merely {3, 4, . . .} to
{2, 3, 4, . . .} in Step 3 and in (b) of Step 4 in Algorithm 2.

Remark 4. The output of Algorithm 3 is not uniformly distributed over all square-free
elements of Graver basis. The distribution depends on how to implement the randomness
in Step 3 and in (b) of Step 4 in Algorithm 2.

5 Numerical experiments

In this section we present numerical experiments with elements of the Graver basis com-
puted by Algorithm 3 in Section 4.

5.1 A simulation with a small graph

We shall show that Algorithm 3 allows us to uniformly sample graphs with the common
degree sequence. It is done by constructing a connected Markov chain of graphs through
Metropolis-Hastings method with the Graver basis as follows. In each iteration, a prim-
itive walk is randomly generated by Algorithm 3. If the primitive walk is applicable, a
new subgraph with the same degree sequence is obtained by adding the primitive walk,
otherwise reject the primitive walk.

1 2 3

4

5

6

7 8

Figure 16: Small graph H0.
Frequency

T
he

 n
um

be
r

of
 ty

pe
s

of
 g

ra
ph

s

700 750 800 850 900 950 1000

0
20

40
60

80
10

0

Figure 17: Histogram from sampling.

We run a Markov chain over the fiber containing a small graph H0 in Figure 16. The
underlying graph G = K8 is assumed to be complete with eight vertices. By the Markov
chain we sampled 510,000 graphs in the fiber, including 10,000 burn-in steps by 8,760,926
iterations. The number of types of obtained graphs in our chain is 591. By enumeration
we checked that 591 is actually the number of the elements of the fiber of H0. The
histogram of this experiment is shown in Figure 17. The horizontal axis expresses the
frequency of each type of graph and the vertical axis expresses the number of types. The

17

mean of the number of appearances of each type is 846 and the standard deviation is
50. This experiment shows that the algorithm samples each element of the fiber almost
uniformly.

5.2 The beta model for the food web data

We apply Algorithm 3 for testing of the real data, the observed food web of 36 types of
organisms in the Chesapeake Bay during the summer. This data is available online at
[21]. Blitzstein and Diaconis [2] analyzed essentially the same data set.

1

7

8

11 1213 22 23

34

35

9

1020

21

24

36

19 2627 28

3233 30

31

5

2

3

141516

17

18

2529 4

6

Figure 18: Food web for the Chesapeake Bay during the summer.

The graph H of the data is shown in Figure 18. The vertices of the graph represent the
types of organisms like blue crab, bacteria etc., and the edges represent the relationship
of one preying upon the other. The degree sequence of H is

(9, 10, 6, 2, 3, 3, 9, 11, 6, 4, 6, 7, 5, 7, 8, 4, 3, 8, 7, 2, 3, 11, 8, 2, 4, 5, 7, 4, 4, 4, 3, 5, 5, 2, 14, 29).

Although there is a self loop at the vertex 19 in the observation, we ignored it for simplicity.
We set the beta model (1) in Section 2 with nij = 1 for each edge {i, j} as the null

hypothesis. Then the probability of H is described as

P (H) ∝

∏

i∈V αdi
i

∏

{i,j}∈E(1 + αiαj)
. (3)

Parameter αi (i ∈ V) is interpreted as the value of organism represented by the vertex i
as a food to other organisms. Then the beta model (3) implies that a vertex i with large
αi is likely to be connected to many edges. Let P ∈ (3) mean that P can be expressed
by (3) for a set of parameters {αi}i∈V . Consider now the statistical hypothesis testing
problem

H0 : P ∈ (3) versus H1 : P /∈ (3).

18

Starting from the graph in Figure 18, we construct a Markov chain of 510,000 graphs in-
cluding 10,000 burn-in steps by 167,277,350 iterations and compute the chi-square statistic
of each graph as a test statistic. Using the maximum likelihood estimator, the chi-square
value of observed graph H is 477 and the histogram of the estimated distribution of the
chi-square values is shown in Figure 19. The approximate p-value is 0.278. This value is
not so small and there is no evidence against the beta model (3).

Chi−square statistic

F
re

qu
en

cy

400 450 500 550

0
20

00
60

00
10

00
0

Figure 19: Histogram of the chi-square statistic.

6 Concluding remarks

In this paper we obtained a simple characterization of the Graver basis for toric ideals
arising from undirected graphs. This Graver basis allows us to perform the conditional
test of the beta model for arbitrary underlying graph. Our characterization allows us to
construct an algorithm for sampling elements of the Graver basis, which is sufficient for
performing the conditional test.

By numerical experiments we confirmed that our procedure works well in practice.
We should mention that the sequential importance sampling method of Blitzstein and
Diaconis [2] may work faster for the case of complete underlying graph.

If we allow multiple edges, then we do not need the Graver basis. A minimal Markov
basis, which is often much smaller than the Graver basis, is sufficient for connectivity of
Markov chains. Properties of Markov basis for the p1-model have been given in Petrović
et al. [16]. It is of interest to study properties of minimal Markov bases for undirected
graphs, including the case of allowing self loops.

Acknowledgment

We are very grateful to Hidefumi Ohsugi for valuable discussions.

19

References

[1] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial prob-
lems on linear spaces. Available at www.4ti2.de.

[2] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling al-
gorithm for generating random graphs with prescribed degrees. Available at
http://www.people.fas.harvard.edu/˜blitz/BlitzsteinDiaconisGraphAlgorithm.pdf,
2006. Preprint.

[3] Sourav Chatterjee, Persi Diaconis, and Allan Sly. Random graphs with a given degree
sequence. arXiv:1005.1136v4, 2010.

[4] Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from condi-
tional distributions. Ann. Statist., 26(1):363–397, 1998. ISSN 0090-5364.

[5] Mathias Drton, Bernd Sturmfel, and Seth Sullivant. Lectures on Algebraic Statistics.
Oberwolfach Seminars. Birkhäuser Basel, 2008.

[6] P. Erdős and A. Rényi. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

[7] Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M. Airoldi. A
survey of statistical network models. Foundations and Trends in Machine Learning,
2:129–233, 2009.

[8] Hisayuki Hara and Akimichi Takemura. Connecting tables with zero-one entries by
a subset of a markov basis. In Algebraic Methods in Statistics and Probability II,
volume 516 of Contemp. Math., pages 199–213. Amer. Math. Soc., Providence, RI,
2010.

[9] Paul Holland and Samuel Leinhardt. An exponential family of probability distribu-
tion for directed graphs. J. Amer. Statist. Soc., 76(373):33–50, 1981.

[10] J. M. Linacre. Many-facet Rasch Measurement. MESA Press, Chicago, 1989.

[11] Mark E. J. Newman. The structure and function of complex networks. SIAM Review,
45:167–256, 2003.

[12] Hidefumi Ohsugi and Takayuki Hibi. Koszul bipartite graphs. Adv. in Appl. Math.,
22(1):25–28, 1999. ISSN 0196-8858.

[13] Hidefumi Ohsugi and Takayuki Hibi. Toric ideals generated by quadratic binomials.
J. Algebra, 218(2):509–527, 1999. ISSN 0021-8693.

[14] Hidefumi Ohsugi and Takayuki Hibi. Indispensable binomials of finite graphs. J.
Algebra Appl., 4(4):421–434, 2005. ISSN 0219-4988.

20

[15] Juyong Park and Mark E. J. Newman. The statistical mechanics of networks. Phys.
Rev. E, 70:066117, 2004.

[16] Sonya Petrović, Alessandro Rinaldo, and Stephen E. Fienberg. Algebraic statistics
for a directed random graph model with reciprocation. In Algebraic Methods in
Statistics and Probability II, volume 516 of Contemp. Math., pages 261–283. Amer.
Math. Soc., Providence, RI, 2010.

[17] G. Rasch. Probabilistic Models for Some Intelligence and Attainment Tests. Univer-
sity of Chicago Press, Chicago, 1980.

[18] Enrique Reyes, Christos Tatakis, and Apostolos Thoma. Minimal generators of toric
ideals of graphs. arXiv:1002.2045v1, 2010.

[19] R. Solomonoff and A. Rapoport. Connectivity of random nets. Bulletin of Mathe-
matical Biophysics, 13:107–117, 1951.

[20] Bernd Sturmfels. Gröbner Bases and Convex Polytopes, volume 8 of University
Lecture Series. American Mathematical Society, Providence, RI, 1996. ISBN 0-8218-
0487-1.

[21] Robert E. Ulanowicz. Ecosystem network analysis web page, 2005. URL
http://www.cbl.umces.edu/~{}ulan/ntwk/network.html.

21

http://www.cbl.umces.edu/~{}ulan/ntwk/network.html

	1 Introduction
	2 The beta model of random graphs
	3 Graver basis of a random graph
	3.1 Preliminaries
	3.2 Characterization of primitive walks

	4 Algorithms for generating elements of Graver basis
	5 Numerical experiments
	5.1 A simulation with a small graph
	5.2 The beta model for the food web data

	6 Concluding remarks

