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We establish an optimal transportation inequality for the Poisson measure on the configuration
space. Furthermore, under the Dobrushin uniqueness condition, we obtain a sharp transportation
inequality for the Gibbs measure on N

Λ or the continuum Gibbs measure on the configuration
space.
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1. Introduction

Transportation inequality W1H . Let X be a Polish space equipped with the Borel σ-field
B and d be a lower semi-continuous metric on the product space X × X (which does
not necessarily generate the topology of X ). Let M1(X ) be the space of all probability
measures on X . Given p≥ 1 and two probability measures µ and ν on X , we define the
quantity

Wp,d(µ, ν) = inf

(
∫ ∫

d(x, y)p dπ(x, y)

)1/p

,

where the infimum is taken over all probability measures π on the product space X ×X
with marginal distributions µ and ν (say, coupling of (µ, ν)). This infimum is finite
provided that µ and ν belong to Mp

1(X , d) := {ν ∈M1(X );
∫

dp(x,x0) dν <+∞}, where
x0 is some fixed point of X . This quantity is commonly referred to as the Lp-Wasserstein
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distance between µ and ν. When d is the trivial metric d(x, y) = 1x 6=y,2W1,d(µ, ν) =
‖µ− ν‖TV, the total variation of µ− ν.
The Kullback information (or relative entropy) of ν with respect to µ is defined as

H(ν/µ) =

{
∫

log
dν

dµ
dν if ν ≪ µ,

+∞ otherwise.
(1.1)

Let α be a non-decreasing left-continuous function on R
+ = [0,+∞) which vanishes at 0.

If, moreover, α is convex, we write α ∈ C. We say that the probability measure µ satisfies
the transportation inequality α-W1H with deviation function α on (X , d) if

α(W1,d(µ, ν))≤H(ν/µ) ∀ν ∈M1(X ). (1.2)

This transportation inequality W1H was introduced and studied by Marton [11] in re-
lation with measure concentration, for quadratic deviation function α. It was further
characterized by Bobkov and Götze [1], Djellout, Guillin and Wu [4], Bolley and Vil-
lani [2] and others. The latest development is due to Gozlan and Léonard [7], in which
the general α-W1H inequality above was introduced in relation to large deviations and
characterized by concentration inequalities, as follows.

Theorem 1.1 (Gozlan and Léonard [7]). Let α ∈ C and µ ∈M1
1(X , d). The following

statements are then equivalent:

(a) the transportation inequality α-W1H (1.2) holds;

(b) for all λ≥ 0 and all F ∈ bB, ‖F‖Lip(d) := supx 6=y
|F (x)−F (y)|

d(x,y) ≤ 1,

log

∫

X

exp(λ[F − µ(F )])µ(dx)≤ α∗(λ),

where µ(F ) :=
∫

X
F dµ and α∗(λ) := supr≥0(λr−α(r)) is the semi-Legendre trans-

formation of α;
(b′) for all λ≥ 0 and all F,G ∈Cb(X ) (the space of all bounded and continuous func-

tions on X ) such that F (x)−G(y)≤ d(x, y) for all x, y ∈X ,

log

∫

X

eλFµ(dx)≤ λµ(G) +α∗(λ);

(c) for any measurable function F such that ‖F‖Lip(d) ≤ 1, the following concentration
inequality holds true: for all n≥ 1, r≥ 0,

P

(

1

n

n
∑

1

F (ξk)≥ µ(F ) + r

)

≤ e−nα(r), (1.3)

where (ξn)n≥1 is a sequence of i.i.d. X -valued random variables with common law
µ.
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The estimate on the Laplace transform in (b) and the concentration inequality in (1.3)

are the main motivations for the transportation inequality (α-W1H).

Objective and organization. The objective of this paper is to prove the transportation

inequality (α-W1H) for:

(1) (the free case) the Poisson measure P 0 on the configuration space consisting of

Radon point measures ω =
∑

i δxi
, xi ∈E with some σ-finite intensity measure m

on E, where E is some fixed locally compact space;

(2) (the interaction case) the continuum Gibbs measure over a compact subset E of

R
d,

Pφ(dω) =
e
−(1/2)

∑
xi,xj∈suppω,i6=j φ(xi−xj)−

∑
k,xi∈supp(ω) φ(xi−yk)

Z
P 0(dω),

where φ :Rd → [0,+∞] is some pair-interaction non-negative even function (see

Section 4 for notation) and P 0 is the Poisson measure with intensity z dx on E.

For Poisson measures on N, Liu [10] obtained the optimal deviation function by means

of Theorem 1.1. For transportation inequalities of Gibbs measures on discrete sites, see

[12] and [17].

For an illustration of our main result (Theorem 4.1) on the continuum Gibbs mea-

sure Pφ, let E := [−N,N ]d (1 ≤ N ∈ N) and f : [−N,N ]d → R be measurable and pe-

riodic with period 1 at each variable so that |f | ≤ M . Consider the empirical mean

per volume F (ω) := ω(f)/(2N)d of f . Under Dobrushin’s uniqueness condition D :=

z
∫

Rd(1− e−φ(y)) dy < 1, we have (see Remark 4.3 for proof)

Pφ(F > Pφ(F ) + r)≤ exp

(

−
(2N)d(1−D)r

2M
log

(

1+
(1−D)r

zM

))

, r > 0, (1.4)

an explicit Poissonian concentration inequality which is sharp when φ= 0.

The paper is organized as follows. In the next section, we prove (α–W1H) for the

Poisson measure on the configuration space with respect to two metrics: in both cases,

we obtain optimal deviation functions. Our main tool is Gozlan and Leonard’s Theorem

1.1 and a known concentration inequality in [15]. Section 3, as a prelude to the study

of the continuum Gibbs measure Pφ on the configuration space, is devoted to the study

of a Gibbs measure on N
Λ. Our method is a combination of a lemma on W1H for

mixed measure, Dobrushin’s uniqueness condition and the McDiarmid–Rio martingale

method for dependent tensorization of the W1H-inequality. Finally, in the last section, by

approximation, we obtain a sharp (α–W1H) inequality for the continuum Gibbs measure

Pφ under Dobrushin’s uniqueness condition D= z
∫

Rd(1− e−φ(y)) dy < 1. The latter is a

sharp sufficient condition, both for the analyticity of the pressure functional and for the

spectral gap; see [16].
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2. Poisson point processes

Poisson space. Let E be a metric complete locally compact space with the Borel field BE

and m a σ-finite positive Radon measure on E. The Poisson space (Ω,F , P 0) is given
by:

(1) Ω := {ω =
∑

i δxi
(Radon measure); xi ∈E} (the so-called configuration space over

E);
(2) F = σ(ω → ω(B)|B ∈ BE);

(3) ∀B ∈ BE ,∀k ∈N: P 0(ω :ω(B) = k) = e−m(B)m(B)k

k! ;
(4) ∀B1, . . . ,Bn ∈ BE disjoint, ω(B1), . . . , ω(Bn) are P 0-independent,

where δx denotes the Dirac measure at x. Under P 0, ω is exactly the Poisson point
process on E with intensity measure m(dx). On Ω, we consider the vague convergence
topology, that is, the coarsest topology such that ω→ ω(f) is continuous, where f runs
over the space C0(E) of all continuous functions with compact support on E. Equipped
with this topology, Ω is a Polish space and this topology is the weak convergence topology
(of measures) if E is compact.

Definition 2.1. Letting ϕ be a positive measurable function on E, we define a metric
dϕ(·, ·) (which may be infinite) on the Poisson space (Ω,F , P 0) by

dϕ(ω,ω
′) =

∫

E

ϕd|ω − ω′|,

where |ν| := ν+ + ν− for a signed measure ν (ν± are, respectively, the positive and neg-
ative parts of ν in the Hahn–Jordan decomposition).

Lemma 2.2. If ϕ is continuous, then the metric dϕ is lower semi-continuous on Ω.

Proof. Indeed, for any ω,ω′ ∈Ω,

dϕ(ω,ω
′) = sup

f
|ω(f)− ω′(f)|,

where the supremum is taken over all bounded BE -measurable functions f with compact
support such that |f | ≤ ϕ. Now, as ϕ is continuous, we can approximate such f by
fn ∈C0(E) in L1(E,ω+ ω′) and |fn| ≤ ϕ. Then

dϕ(ω,ω
′) = sup

f∈C0(E),|f |≤ϕ

|ω(f)−ω′(f)|.

As (ω,ω′)→ |ω(f)−ω′(f)| is continuous on Ω×Ω, dϕ(ω,ω
′) is lower semi-continuous on

Ω×Ω. �
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Assume from now on that ϕ is continuous. Then, for any ν,µ ∈M1(Ω), we have the
Kantorovitch–Rubinstein equality [8, 9, 14],

W1,dϕ
(µ, ν) = sup

{
∫

F dν −

∫

Gdµ
∣

∣

∣
F,G ∈Cb(Ω), F (ω)−G(ω′)≤ dϕ(ω,ω

′)

}

= sup

{
∫

Gd(ν − µ) :G ∈ bF ,‖G‖Lip(dϕ) ≤ 1

}

.

Here, bF is the space of all real, bounded and F -measurable functions.
The difference operator D. We denote by L0(Ω, P 0) the space of all P 0-equivalent

classes of real measurable functions w.r.t. the completion of F by P 0. Hence, the differ-
ence operator D :L0(Ω, P 0)→ L0(E ×Ω,m⊗ P 0) given by

F →DxF (ω) := F (ω + δx)− F (ω)

is well defined (see [15]) and plays a crucial role in the Malliavin calculus on the Poisson
space.

Lemma 2.3. Given a measurable function F :Ω → R, ‖F‖Lip(dϕ) ≤ 1 if and only if
|DxF (ω)| ≤ ϕ(x) for all ω ∈Ω and x ∈E.

Proof. If ‖F‖Lip(dϕ) ≤ 1, since

|DxF (ω)|= |F (ω + δx)− F (ω)| ≤ dϕ(ω + δx, ω) =

∫

E

ϕd|(ω + δx)− ω|= ϕ(x),

the necessity is true. We now prove the sufficiency. For any ω,ω′ ∈ Ω, we write ω =
∑i

k=1 δxk
+ ω ∧ ω′ and ω′ =

∑j
k=1 δyk

+ω ∧ ω′, where ω ∧ ω′ := 1
2 (ω+ω′ − |ω −ω′|). We

then have

|F (ω)− F (ω′)| ≤ |F (ω)− F (ω ∧ ω′)|+ |F (ω′)− F (ω ∧ ω′)|

≤

i
∑

k=1

∣

∣

∣

∣

∣

F

(

ω ∧ ω′ +

k
∑

l=1

δxl

)

− F

(

ω ∧ ω′ +

k−1
∑

l=1

δxl

)∣

∣

∣

∣

∣

+

j
∑

k=1

∣

∣

∣

∣

∣

F

(

ω ∧ ω′ +

k
∑

l=1

δyl

)

− F

(

ω ∧ ω′ +

k−1
∑

l=1

δyl

)
∣

∣

∣

∣

∣

≤

i
∑

k=1

ϕ(xk) +

j
∑

k=1

ϕ(yk) =

∫

E

ϕd|ω− ω′|= dϕ(ω,ω
′),

which implies that ‖F‖Lip(dϕ) ≤ 1. �

Remark 2.4. When ϕ = 1, we denote dϕ by d. Obviously, d(ω,ω′) = |ω − ω′|(E) =
‖ω− ω′‖TV, that is, d is exactly the total variation distance.
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The following result, due to the fourth-named author [15], was obtained by means of
the L1-log-Sobolev inequality and will play an important role.

Lemma 2.5 ([15], Proposition 3.2). Let F ∈ L1(Ω, P 0). If there is some 0 ≤ ϕ ∈
L2(E,m) such that |DxF (ω)| ≤ ϕ(x), m⊗P 0-a.e., then for any λ≥ 0,

E
P 0

eλ(F−P 0(F )) ≤ exp

{
∫

E

(eλϕ − λϕ− 1)dm

}

.

In particular, if m is finite and |DxF (ω)| ≤ 1 for m × P 0-a.e. (x,ω) on E × Ω (i.e.,
ϕ(x) = 1), then

E
P 0

eλ(F−P 0(F )) ≤ exp{(eλ − λ− 1)m(E)}.

We now state our main result on the Poisson space.

Theorem 2.6. Let (Ω,F , P 0) be the Poisson space with intensity measure m(dx) and
ϕ a bounded continuous function on E such that 0< ϕ≤M and σ2 =

∫

E ϕ2 dm<+∞.
Then

1

M
hc(W1,dϕ

(Q,P 0))≤H(Q|P 0) ∀Q ∈M1(Ω), (2.1)

where c= σ2/M and

hc(r) = c · h

(

r

c

)

, h(r) = (1 + r) log(1 + r)− r. (2.2)

Note that h∗(λ) := supr≥0(λr − h(r)) = eλ − λ− 1 and h∗
c(λ) = ch∗(λ).

Proof of Theorem 2.6. Since the function (eλϕ − λϕ− 1)/ϕ2 is increasing in ϕ, it is
easy to see that

∫

E

(eλϕ − λϕ− 1)dm≤
eλM − λM − 1

M2

∫

ϕ2 dm. (2.3)

Further, the Legendre transformation of the right-hand side of (2.3) is, for r ≥ 0,

sup
λ≥0

{

λr−
eλM − λM − 1

M2

∫

ϕ2 dm

}

=

(

r

M
+

∫

ϕ2 dm

M2

)

log

(

Mr
∫

ϕ2 dm
+ 1

)

−
r

M

=
1

M
hc(r).

The desired result then follows from Theorem 1.1, by Lemma 2.5. �
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Remark 2.7. Let β(λ) :=
∫

E
(eλϕ − λϕ − 1)dm and α(r) := supλ≥0(λr − β(λ)). The

proof above gives us

α(W1,dϕ
(Q,P 0))≤H(Q|P 0) ∀Q ∈M1(Ω).

This less explicit inequality is sharp. Indeed, assume that E is compact and let F (ω) :=
∫

E ϕ(x)(ω −m)(dx). We have ‖F‖Lip(dϕ) = 1 and

logEP 0

eλF = β(λ).

The sharpness is then ensured by Theorem 1.1.

Proposition 2.8. If ϕ= 1 and m is finite, then the inequality (2.1) turns out to be

hm(E)(W1,d(Q,P 0))≤H(Q|P 0) ∀Q ∈M1(Ω). (2.4)

In particular, for the Poisson measure P(λ) with parameter λ > 0 on N equipped with
the Euclidean distance ρ,

hλ(W1,ρ(ν,P(λ)))≤H(ν|P(λ)) ∀ν ∈M1(N). (2.5)

Proof. The inequality (2.4) is a particular case of (2.1) with ϕ = 1 and it holds on
Ω0 := {ω ∈Ω;ω(E)<+∞} (for P 0 is actually supported in Ω0 as m is finite). For (2.5),
let m(E) = λ and consider the mapping Ψ :Ω0 →N, Ψ(ω) = ω(E). Since |Ψ(ω)−Ψ(ω′)|=
|ω(E)−ω′(E)| ≤ d(ω,ω′), Ψ is Lipschitzian with the Lipschitzian coefficient less than 1.
Thus, (2.5) follows from (2.4) by [4], Lemma 2.1 and its proof. �

Remark 2.9. The transportation inequality (2.5) was shown by Liu [10] by means of a
tensorization technique and the approximation of P(λ) by binomial distributions. It is
optimal (therefore, so is (2.4)). In fact, consider another Poisson distribution P(λ′) with
parameter λ′ > λ. On the one hand,

H(P(λ′)|P(λ)) =

∫

N

log
dP(λ′)

dP(λ)
dP(λ′) =

∞
∑

n=0

P(λ′)(n) log

(

e−λ′

λ′n

n!

/e−λλn

n!

)

= λ− λ′ +

∞
∑

n=0

P(λ′)(n)n log
λ′

λ

= λ− λ′ + λ′ log
λ′

λ
.

On the other hand, let r := λ′ − λ > 0. Let X,Y be two independent random variables
having distributions P(λ) and P(r), respectively. Obviously, the law of X + Y is P(λ′).
Then

W1,ρ(P(λ′),P(λ))≤ E|X − (X + Y )|=EY = r.
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Now, supposing that (X,X ′) is a coupling of P(λ′) and P(λ), we have

E|X −X ′| ≥ |EX −EX ′|= r,

which implies that W1,ρ(P(λ′),P(λ))≥ r. Then W1,ρ(P(λ′),P(λ)) = r (and (X,X + Y )
is an optimal coupling for P(λ) and P(λ′)). Therefore,

hλ(W1,ρ(P(λ′),P(λ))) = hλ(r) =H(P(λ′)|P(λ)).

Namely, hλ is the optimal deviation function for the Poisson distribution P(λ).

3. A discrete spin system

The model and the Dobrushin interdependence coefficient. Let Λ = {1, . . . ,N} (2≤N ∈N)
and γ :Λ× Λ 7→ [0,+∞] be a non-negative interaction function satisfying γij = γji and
γii = 0 for all i, j ∈Λ. Consider the Gibbs measure P on N

Λ with

P (x1, . . . , xN ) = e−
∑

i<j γijxixj

N
∏

i=1

P(δi)(xi)
/

C, (3.1)

where P(δi)(xi) = e−δi δ
xi
i

xi!
, xi ∈N, is the Poisson distribution with parameter δi > 0 and

C is the normalization constant. Here and hereafter, the convention that 0 · ∞ = 0 is

used. Let Pi(dxi|xΛ) be the given regular conditional distribution of xi given xΛ\{i},

which is, in the present case, the Poisson distribution P(δie
−

∑
j 6=i

γijxj) with parameter

δie
−

∑
j 6=i γijxj , with the convention that the Poisson measure P(0) with parameter λ= 0

is the Dirac measure δ0 at 0. Define the Dobrushin interdependence matrix C := (cij)i,j∈Λ

w.r.t. the Euclidean metric ρ by

cij = sup
xΛ=x′

Λoffj

W1,ρ(Pi(dxi|xΛ), Pi(dx
′
i|x

′
Λ))

|xj − x′
j |

∀i, j ∈ Λ (3.2)

(obviously, cii = 0). The Dobrushin uniqueness condition [5, 6] is then

D := sup
j

∑

i

cij < 1.

For this model, we can identify cij .

Lemma 3.1. Recall that γij ≥ 0. We have

cij = δi(1− e−γij ).

Proof. By Remark 2.9, if xΛ = x′
Λ off j, then

W1,ρ(Pi(dxi|xΛ), Pi(dx
′
i|x

′
Λ)) = δi|e

−
∑

k
γikxk − e−

∑
k
γikx

′
k |.
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Without loss of generality, suppose that xj = x′
j + x with x≥ 1. We have then

cij = δi sup
xΛ=x′

Λoffj

|e−
∑

k
γikxk − e−

∑
k
γikx

′
k |

|xj − x′
j |

= δi sup
x≥1

1− e−γijx

x
(taking xk = x′

k = 0 for k 6= j, x′
j = 0)

= δi(1− e−γij ).

Here, the first equality holds since γij is non-negative and the last equality is due to the
fact that (1− e−γijx)/x is decreasing in x > 0. �

The transportation inequality W1H for mixed measure.We return to the general frame-
work of the Introduction. Let X be a general Polish space and d be a metric on X which is
lower semi-continuous on X ×X . Consider a mixed probability measure µ :=

∫

I µλ dσ(λ)
on X , where, for each λ ∈ I, µλ is a probability on X and σ is a probability measure on
another Polish space I. Let ρ be a lower semi-continuous metric on I.

Proposition 3.2. Suppose that:

(i) for any λ ∈ I, µλ satisfies α–W1H with deviation function α ∈ C,

α(W1,d(ν,µλ))≤H(ν|µλ) ∀ν ∈M1(X );

(ii) σ satisfies a β–W1H inequality on I with deviation function β ∈ C,

β(W1,ρ(η, σ))≤H(η|σ) ∀η ∈M1(I);

(iii) λ→ µλ is Lipschitzian, that is, for some constant M > 0,

W1,d(µλ, µλ′)≤Mρ(λ,λ′) ∀λ,λ′ ∈ I.

The mixed probability µ=
∫

I
µλ dσ(λ) then satisfies

α̃(W1,d(ν,µ))≤H(ν|µ) ∀ν ∈M1(X ), (3.3)

where

α̃(r) = sup
b≥0

{br− [α∗(b) + β∗(bM)]}, r ≥ 0.

Proof. By Gozlan and Leonard’s Theorem 1.1, it is enough to show that for any Lips-
chitzian function f on X with ‖f‖Lip(d) ≤ 1 and b≥ 0,

∫

X

eb[f(x)−µ(f)] dµ(x)≤ exp(α∗(b) + β∗(bM)).
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Let g(λ) :=
∫

X
f(x) dµλ(x) = µλ(f). We have σ(g) = µ(f) and, by Kantorovitch’s duality

equality and our condition (iii), |g(λ)− g(λ′)| ≤Mρ(λ,λ′). Using Theorem 1.1 and our
conditions (i) and (ii), we then get, for any b≥ 0,

∫

X

eb[f(x)−µ(f)] dµ =

∫

I

(
∫

X

eb[f(x)−µλ(f)] dµλ(x)

)

eb[g(λ)−σ(g)] dσ(λ),

≤ eα
∗(b)+β∗(bM)

the desired result. �

We now turn to a mixed Poisson distribution,

µ=

∫ a

0

P(λ)σ(dλ), (3.4)

where a > 0. By Proposition 2.8, we know that w.r.t. the Euclidean metric ρ,

hλ(W1,ρ(ν,P(λ)))≤H(ν|P(λ))

and W1,ρ(P(λ),P(λ′)) = |λ−λ′|. Since hλ is decreasing in λ, the hypotheses in Proposi-
tion 3.2 with E =N, I = [0, a], both equipped with the Euclidean metric ρ, are satisfied
with α(r) = ha(r) = ah( ra ) and β(r) = 2r2/a2 (the well-known CKP inequality). On the
other hand, obviously,

h(r) = (1 + r) log(1 + r)− r ≤
r2

2
, r ≥ 0,

which implies that

ha2/4(r) =
a2

4
h

(

4r

a2

)

≤
2r2

a2
= β(r).

Since h∗
c(λ) = c(eλ − λ− 1),

sup
b≥0

{br− [(ha(b))
∗ + (ha2/4(b))

∗]}= sup
b≥0

{br− (a+ a2/4)(eb − b− 1)}= ha+a2/4(r).

By Proposition 3.2, we have, for the mixed Poisson measure µ given in (3.4),

ha+a2/4(W1,d(ν,µ))≤H(ν|µ) ∀ν ∈M1(N). (3.5)

See Chafai and Malrieu [3] for fine analysis of transportation or functional inequalities
for mixed measures. We can now state the main result of this section.

Theorem 3.3. Let P be the Gibbs measure given in (3.1) with γij ≥ 0. Assume Do-
brushin’s uniqueness condition

D := sup
j∈Λ

∑

i∈Λ

δi(1− e−γij )< 1.
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For any probability measure Q on N
Λ equipped with the metric ρH(xΛ, yΛ) :=

∑

i∈Λ |xi −
yi| (the index H refers to Hamming), we then have, for c :=

∑

i∈Λ(δi + δ2i /4),

hc((1−D)W1,ρH
(Q,P ))≤H(Q|P ) ∀Q ∈M1(N

Λ).

This result, without the extra constants δ2i /4, would become sharp if γ = 0 (i.e., without
interaction) or P = P(δ)⊗Λ.

Proof of Theorem 3.3. By Theorem 1.1, it is equivalent to prove that for any 1-
Lipschitzian functional F w.r.t. the metric ρH ,

logEP eλ(F−E
PF ) ≤ h∗

c

(

λ

1−D

)

= ch∗

(

λ

1−D

)

∀λ > 0. (3.6)

We prove the inequality (3.6) by the McDiarmid–Rio martingale method (as in [4, 17]).
Consider the martingale

M0 = E
P (F ), Mk(x

k
1) =

∫

F (xk
1 , x

N
k+1)P (dxN

k+1|x
k
1), 1≤ k ≤N,

where xj
i = (xk)i≤k≤j , P (dxN

k+1|x
k
1) is the conditional distribution of xN

k+1 given xk
1 . Since

MN = F, we have

E
P eλ(F−E

PF ) = E
P exp

(

λ
N
∑

k=1

(Mk −Mk−1)

)

.

By induction, for (3.6), it suffices to establish that for each k = 1, . . . ,N,P -a.s.,

log

∫

exp(λ(Mk(x
k−1
1 , xk)−Mk−1(x

k−1
1 )))P (dxk|x

k−1
1 )≤ (δk + δ2k/4)h

∗

(

λ

1−D

)

.

(3.7)
By (3.5), P (dxk|x

k−1
1 ), being a convex combination of Poisson measures Pk(dxk|xΛ) =

P(δke
−

∑
j 6=k

γkjxj) (over xN
k+1), satisfies the W1H-inequality with the deviation function

hδk+δ2
k
/4. Hence, by Theorem 1.1, (3.7) holds if

|Mk(x
k−1
1 , xk)−Mk(x

k−1
1 , yk)| ≤

1

1−D
|xk − yk|. (3.8)

In fact, the inequality (3.8) has been proven in [17], step 2 in the proof of Theorem 4.3.
The proof is thus complete. �

Remark 3.4. For a previous study on transportation inequalities for Gibbs measures
on discrete sites, see Marton [12] and Wu [17]. Our method here is quite close to that
in [17], but with two new features: (1) W1H for mixed probability measures; (2) Gozlan
and Léonard’s Theorem 1.1 as a new tool.
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Remark 3.5. Every Poisson distribution P(λ) satisfies the Poincaré inequality ([15],
Remark 1.4)

VarP(λ)(f)≤ λ

∫

N

(Df(x))2 dP(λ)(x) ∀f ∈ L2(N,P(λ)),

where Df(x) := f(x + 1) − f(x) and Varµ(f) := µ(f2) − [µ(f)]2 is the variance of f
w.r.t. µ. By [17], Theorem 2.2 we have the following Poincaré inequality for the Gibbs
measure P : if D < 1, then

VarP (F )≤
max1≤i≤N δi

1−D

∫

NΛ

∑

i∈Λ

(DiF )2(x) dP (x) ∀F ∈ L2(NΛ, P ),

where DiF (x1, . . . , xN ) := F (x1, . . . , xi−1, xi + 1, xi+1, . . . , xN ) − F (x1, . . . , xN ). We re-
mind the reader that an important open question is to prove the L1-log-Sobolev inequal-
ity (or entropy inequality)

H(FP |P )≤C

∫

NΛ

∑

i∈Λ

DiF ·Di logF dP for all P -probability densities F

(which is equivalent to the exponential convergence in entropy of the corresponding
Glauber system) under Dobrushin’s uniqueness condition, or at least for high tempera-
ture.

4. W1H-inequality for the continuum Gibbs measure

We now generalize the result for the discrete sites Gibbs measure in Section 3 to the
continuum Gibbs measure (continuous gas model), by an approximation procedure.
Let (Ω,F , P 0) be the Poisson space over a compact subset E of R

d with intensity
m(dx) = z dx, where the Lebesgue measure |E| of E is positive and finite, and z > 0
represents the activity. Given a non-negative pair-interaction function φ :Rd 7→ [0,+∞],
which is measurable and even over R

d, the corresponding Poisson space is denoted by
(Ω,F , P 0) and the associated Gibbs measure is given by

Pφ(dω) =
e
−(1/2)

∑
xi,xj∈supp(ω),i6=j

φ(xi−xj)−
∑

k,xi∈supp(ω) φ(xi−yk)

Z
P 0(dω),

where Z is the normalization constant and {yk, k} is an at most countable family of
points in R

d\E such that
∑

k φ(x− yk)<+∞ for all x ∈ E (boundary condition). The
main result of this section is the following theorem.

Theorem 4.1. Assume that the Dobrushin uniqueness condition holds, that is,

D := z

∫

Rd

(1− e−φ(y)) dy < 1. (4.1)
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Then, w.r.t. the total variation distance d= dϕ with ϕ= 1 on Ω,

hz|E|((1−D)W1,d(Q,Pφ))≤H(Q|Pφ) ∀Q ∈M1(Ω). (4.2)

Remark 4.2. Without interaction (i.e., φ= 0), D = 0 and the W1H-inequality (4.2) is
exactly the optimal W1H-inequality for the Poisson measure P 0 in Proposition 2.8. In the
presence of non-negative interaction φ, it is well known that D < 1 is a sharp condition
for the analyticity of the pressure functional p(z): indeed, the radius R of convergence
of the entire series of p(z) at z = 0 satisfies R

∫

Rd(1− e−φ(y)) dy < 1; see [13], Theorem

4.5.3. The corresponding sharp Poincaré inequality for Pφ was established in [16].

Proof of Theorem 4.1. We shall establish this sharp α–W1H inequality for Pφ by
approximation.
By part (b′) of Theorem 1.1, it is equivalent to show that for any F,G ∈ Cb(Ω) such

that F (ω)−G(ω′)≤ d(ω,ω′), ω,ω′ ∈Ω, and for any λ > 0,

log

∫

Ω

eλF dPφ ≤ λPφ(G) + z|E|h∗

(

λ

1−D

)

, (4.3)

where h∗(λ) = eλ − λ− 1.
Step 1. φ is continuous and {yk, k} is finite. We want to approximate Pφ by the

discrete sites Gibbs measures given in the previous section. To this end, assume first that
φ is continuous (+∞ is regarded as the one-point compactification of R+) or, equivalently,
that e−φ :Rd → [0,1] is continuous with the convention that e−∞ := 0.
For each N ≥ 2, let {E1, . . . ,EN} be a measurable decomposition of E such that, as

N goes to infinity, max1≤i≤N Diam(Ei) → 0 and max1≤i≤N |Ei| → 0, where |E| is the
Lebesgue measure of E and Diam(Ei) = supx,y∈Ei

|x − y| is the diameter of Ei. Fix

x0
i ∈Ei for each i. Consider the probability measure PN on N

Λ (Λ := {1, . . . ,N}) given
by, for all (n1, . . . , nN) ∈N

Λ,

PN (n1, . . . , nN ) = (1/Z)e−(1/2)
∑

i6=j
φ(x0

i−x0
j)ninj−

∑
i,k

φ(x0
i−yk)ni

N
∏

i=1

P(z|Ei|)(ni)

= (1/Z ′)e−
∑

i<j
φ(x0

i−x0
j)ninj

N
∏

i=1

P(δN,i)(ni),

where Z,Z ′ are normalization constants and δN,i = z|Ei|e
−

∑
k
φ(x0

i−yk) ≤ z|Ei|. Consider
the mapping Φ :NΛ →Ω given by

Φ(n1, . . . , nN) =

N
∑

i=1

niδx0
i
.
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Φ is isometric from (NΛ, ρH) to (Ω, d), where d = dϕ with ϕ = 1 (given in Section 2).
Finally, let PN be the push-forward of PN by Φ. It is quite direct to see that PN → P
weakly.
The Dobrushin constant DN associated with PN is given by

DN = sup
j

∑

i

δN,i(1− e−φ(x0
i−x0

j))≤ sup
j

∑

i

z|Ei|(1− e−φ(x0
i−x0

j)).

When N goes to infinity,

limsup
N→∞

DN ≤ sup
y∈Rd

z

∫

E

(1− e−φ(x−y)) dx= z

∫

Rd

(1− e−φ(x))dx=D.

Therefore, if D < 1 and DN < 1 for all N large enough, then the W1H-inequality in
Theorem 3.3 holds for PN . By the isometry of the mapping Φ, PN satisfies the same
W1H-inequality on Ω w.r.t. the metric d, which gives us, by Theorem 1.1(b′),

logEPN

eλF ≤ λPN (G) +

(

∑

i∈Λ

[δN,i + δ2N,i/4]

)

h∗

(

λ

1−DN

)

.

By letting N go to infinity, this yields (4.3), for PN → Pφ weakly and

∑

i∈Λ

[δN,i + δ2N,i/4]≤
∑

i∈Λ

z|Ei|(1 + z|Ei|/4)→ z|E|.

Step 2. General φ and {yk, k} is finite. For general measurable non-negative and even
interaction function φ, we take a sequence of continuous, even and non-negative func-

tions (φn) such that 1− e−φn → 1− e−φ in L1(Rd,dx). Now, note that dPφn

dP 0 → dPφ

dP 0 in
L1(Ω, P 0), that is, Pφn → Pφ in total variation. Hence, (4.3) for Pφn (proved in step 1)
yields (4.3) for Pφ.
Step 3. General case. Finally, if the set of points {yk, k} is infinite, approximating

∑∞
k=1 φ(xi − yk) by

∑n
k=1 φ(xi − yk) in the definition of Pφ, we get (4.3) for Pφ, as in

step 2. �

Remark 4.3. The explicit Poissonian concentration inequality (1.4) follows from Theo-
rem 4.1 by Theorem 1.1(c) (with n= 1) by noting that the observable F (ω) = ω(f)/(2N)d

there is Lipschitzian w.r.t. d with ‖F‖Lip(d) ≤M/(2N)d and h(r)≥ (r/2) log(1 + r).

Remark 4.4. A quite curious phenomena occurs in the continuous gas model: the extra
constant δ2i /4 coming from the mixture of measures now disappears.
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