Bernoulli **17**(1), 2011, 155–169 DOI: 10.3150/00-BEJ268

Transportation inequalities: From Poisson to Gibbs measures

YUTAO MA¹, SHI SHEN², XINYU WANG³ and LIMING WU⁴

¹School of Mathematical Sciences and Lab. Math. Com. Sys., Beijing Normal University, 100875 Beijing, China. E-mail: mayt@bnu.edu.cn
²College of Science, Minzu University of China, 100081 Beijing, China. E-mail: henlen80@yahoo.com.cn
³School of Mathematics, Wuhan University, 430072 Hubei, China. E-mail: wang_xin_yu2000@hotmail.com
⁴Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal, avenue des Landais 63177 Aubière, France and Institute of Applied Mathematics, Chinese Academy of Sciences, 100190 Beijing, China. E-mail: Li-Ming.Wu@math.univ-bpclermont.fr

We establish an optimal transportation inequality for the Poisson measure on the configuration space. Furthermore, under the Dobrushin uniqueness condition, we obtain a sharp transportation inequality for the Gibbs measure on \mathbb{N}^{Λ} or the continuum Gibbs measure on the configuration space.

Keywords: Gibbs measures; Poisson point processes; transportation inequalities

1. Introduction

Transportation inequality W_1H . Let \mathcal{X} be a Polish space equipped with the Borel σ -field \mathcal{B} and d be a lower semi-continuous metric on the product space $\mathcal{X} \times \mathcal{X}$ (which does not necessarily generate the topology of \mathcal{X}). Let $\mathcal{M}_1(\mathcal{X})$ be the space of all probability measures on \mathcal{X} . Given $p \geq 1$ and two probability measures μ and ν on \mathcal{X} , we define the quantity

$$W_{p,d}(\mu,\nu) = \inf\left(\int\int d(x,y)^p \,\mathrm{d}\pi(x,y)\right)^{1/p}$$

where the infimum is taken over all probability measures π on the product space $\mathcal{X} \times \mathcal{X}$ with marginal distributions μ and ν (say, coupling of (μ, ν)). This infimum is finite provided that μ and ν belong to $\mathcal{M}_1^p(\mathcal{X}, d) := \{\nu \in \mathcal{M}_1(\mathcal{X}); \int d^p(x, x_0) \, d\nu < +\infty\}$, where x_0 is some fixed point of \mathcal{X} . This quantity is commonly referred to as the L^p -Wasserstein

This is an electronic reprint of the original article published by the ISI/BS in *Bernoulli*, 2011, Vol. 17, No. 1, 155–169. This reprint differs from the original in pagination and typographic detail.

distance between μ and ν . When d is the trivial metric $d(x,y) = 1_{x \neq y}, 2W_{1,d}(\mu,\nu) =$ $\|\mu - \nu\|_{\mathrm{TV}}$, the total variation of $\mu - \nu$.

The Kullback information (or relative entropy) of ν with respect to μ is defined as

$$H(\nu/\mu) = \begin{cases} \int \log \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \,\mathrm{d}\nu & \text{if } \nu \ll \mu, \\ +\infty & \text{otherwise.} \end{cases}$$
(1.1)

Let α be a non-decreasing left-continuous function on $\mathbb{R}^+ = [0, +\infty)$ which vanishes at 0. If, moreover, α is convex, we write $\alpha \in \mathcal{C}$. We say that the probability measure μ satisfies the transportation inequality α -W₁H with deviation function α on (\mathcal{X}, d) if

$$\alpha(W_{1,d}(\mu,\nu)) \le H(\nu/\mu) \qquad \forall \nu \in \mathcal{M}_1(\mathcal{X}). \tag{1.2}$$

This transportation inequality W_1H was introduced and studied by Marton [11] in relation with measure concentration, for quadratic deviation function α . It was further characterized by Bobkov and Götze [1], Djellout, Guillin and Wu [4], Bolley and Villani [2] and others. The latest development is due to Gozlan and Léonard [7], in which the general α -W₁H inequality above was introduced in relation to large deviations and characterized by concentration inequalities, as follows.

Theorem 1.1 (Gozlan and Léonard [7]). Let $\alpha \in C$ and $\mu \in \mathcal{M}^1_1(\mathcal{X}, d)$. The following statements are then equivalent:

- (a) the transportation inequality α -W₁H (1.2) holds; (b) for all $\lambda \geq 0$ and all $F \in b\mathcal{B}$, $\|F\|_{\operatorname{Lip}(d)} := \sup_{x \neq y} \frac{|F(x) F(y)|}{d(x,y)} \leq 1$,

$$\log \int_{\mathcal{X}} \exp(\lambda [F - \mu(F)]) \mu(\mathrm{d}x) \le \alpha^*(\lambda),$$

where $\mu(F) := \int_{\mathcal{X}} F \, \mathrm{d}\mu$ and $\alpha^*(\lambda) := \sup_{r \ge 0} (\lambda r - \alpha(r))$ is the semi-Legendre transformation of α ;

(b') for all $\lambda \geq 0$ and all $F, G \in C_b(\mathcal{X})$ (the space of all bounded and continuous functions on \mathcal{X}) such that $F(x) - G(y) \leq d(x, y)$ for all $x, y \in \mathcal{X}$,

$$\log \int_{\mathcal{X}} \mathrm{e}^{\lambda F} \mu(\mathrm{d}x) \leq \lambda \mu(G) + \alpha^*(\lambda);$$

(c) for any measurable function F such that $||F||_{\text{Lip}(d)} \leq 1$, the following concentration inequality holds true: for all n > 1, r > 0,

$$\mathbb{P}\left(\frac{1}{n}\sum_{1}^{n}F(\xi_k) \ge \mu(F) + r\right) \le e^{-n\alpha(r)},\tag{1.3}$$

where $(\xi_n)_{n\geq 1}$ is a sequence of i.i.d. \mathcal{X} -valued random variables with common law μ .

The estimate on the Laplace transform in (b) and the concentration inequality in (1.3) are the main motivations for the transportation inequality $(\alpha - W_1 H)$.

Objective and organization. The objective of this paper is to prove the transportation inequality $(\alpha - W_1 H)$ for:

- (1) (the free case) the Poisson measure P^0 on the configuration space consisting of Radon point measures $\omega = \sum_i \delta_{x_i}, x_i \in E$ with some σ -finite intensity measure mon E, where E is some fixed locally compact space;
- (2) (the interaction case) the continuum Gibbs measure over a compact subset E of \mathbb{R}^d ,

$$P^{\phi}(\mathrm{d}\omega) = \frac{\mathrm{e}^{-(1/2)\sum_{x_i, x_j \in \mathrm{supp}\,\omega, i \neq j} \phi(x_i - x_j) - \sum_{k, x_i \in \mathrm{supp}(\omega)} \phi(x_i - y_k)}}{Z} P^0(\mathrm{d}\omega),$$

where $\phi : \mathbb{R}^d \to [0, +\infty]$ is some pair-interaction non-negative even function (see Section 4 for notation) and P^0 is the Poisson measure with intensity $z \, dx$ on E.

For Poisson measures on \mathbb{N} , Liu [10] obtained the optimal deviation function by means of Theorem 1.1. For transportation inequalities of Gibbs measures on discrete sites, see [12] and [17].

For an illustration of our main result (Theorem 4.1) on the continuum Gibbs measure P^{ϕ} , let $E := [-N, N]^d$ $(1 \le N \in \mathbb{N})$ and $f : [-N, N]^d \to \mathbb{R}$ be measurable and periodic with period 1 at each variable so that $|f| \le M$. Consider the empirical mean per volume $F(\omega) := \omega(f)/(2N)^d$ of f. Under Dobrushin's uniqueness condition $D := z \int_{\mathbb{R}^d} (1 - e^{-\phi(y)}) \, \mathrm{d}y < 1$, we have (see Remark 4.3 for proof)

$$P^{\phi}(F > P^{\phi}(F) + r) \le \exp\left(-\frac{(2N)^d (1-D)r}{2M} \log\left(1 + \frac{(1-D)r}{zM}\right)\right), \qquad r > 0, \quad (1.4)$$

an explicit Poissonian concentration inequality which is sharp when $\phi = 0$.

The paper is organized as follows. In the next section, we prove $(\alpha - W_1H)$ for the Poisson measure on the configuration space with respect to two metrics: in both cases, we obtain optimal deviation functions. Our main tool is Gozlan and Leonard's Theorem 1.1 and a known concentration inequality in [15]. Section 3, as a prelude to the study of the continuum Gibbs measure P^{ϕ} on the configuration space, is devoted to the study of a Gibbs measure on \mathbb{N}^{Λ} . Our method is a combination of a lemma on W_1H for mixed measure, Dobrushin's uniqueness condition and the McDiarmid–Rio martingale method for dependent tensorization of the W_1H -inequality. Finally, in the last section, by approximation, we obtain a sharp $(\alpha - W_1H)$ inequality for the continuum Gibbs measure P^{ϕ} under Dobrushin's uniqueness condition $D = z \int_{\mathbb{R}^d} (1 - e^{-\phi(y)}) dy < 1$. The latter is a sharp sufficient condition, both for the analyticity of the pressure functional and for the spectral gap; see [16].

2. Poisson point processes

Poisson space. Let E be a metric complete locally compact space with the Borel field \mathcal{B}_E and m a σ -finite positive Radon measure on E. The Poisson space $(\Omega, \mathcal{F}, P^0)$ is given by:

- (1) $\Omega := \{ \omega = \sum_{i} \delta_{x_i} (\text{Radon measure}); x_i \in E \}$ (the so-called configuration space over $\begin{array}{c} E);\\ (2) \quad \mathcal{F}=\sigma(\omega\to\omega(B)|B\in\mathcal{B}_E); \end{array}$

- (3) $\forall B \in \mathcal{B}_E, \forall k \in \mathbb{N}: P^0(\omega : \omega(B) = k) = e^{-m(B)} \frac{m(B)^k}{k!};$ (4) $\forall B_1, \dots, B_n \in \mathcal{B}_E$ disjoint, $\omega(B_1), \dots, \omega(B_n)$ are P^0 -independent,

where δ_x denotes the Dirac measure at x. Under P^0 , ω is exactly the Poisson point process on E with intensity measure m(dx). On Ω , we consider the vague convergence topology, that is, the coarsest topology such that $\omega \to \omega(f)$ is continuous, where f runs over the space $C_0(E)$ of all continuous functions with compact support on E. Equipped with this topology, Ω is a Polish space and this topology is the weak convergence topology (of measures) if E is compact.

Definition 2.1. Letting φ be a positive measurable function on E, we define a metric $d_{\omega}(\cdot, \cdot)$ (which may be infinite) on the Poisson space $(\Omega, \mathcal{F}, P^0)$ by

$$d_{\varphi}(\omega,\omega') = \int_{E} \varphi \,\mathrm{d}|\omega - \omega'|,$$

where $|\nu| := \nu^+ + \nu^-$ for a signed measure ν (ν^{\pm} are, respectively, the positive and negative parts of ν in the Hahn–Jordan decomposition).

Lemma 2.2. If φ is continuous, then the metric d_{φ} is lower semi-continuous on Ω .

Proof. Indeed, for any $\omega, \omega' \in \Omega$,

$$d_{\varphi}(\omega, \omega') = \sup_{f} |\omega(f) - \omega'(f)|,$$

where the supremum is taken over all bounded \mathcal{B}_E -measurable functions f with compact support such that $|f| \leq \varphi$. Now, as φ is continuous, we can approximate such f by $f_n \in C_0(E)$ in $L^1(E, \omega + \omega')$ and $|f_n| \leq \varphi$. Then

$$d_{\varphi}(\omega, \omega') = \sup_{f \in C_0(E), |f| \le \varphi} |\omega(f) - \omega'(f)|.$$

As $(\omega, \omega') \to |\omega(f) - \omega'(f)|$ is continuous on $\Omega \times \Omega$, $d_{\varphi}(\omega, \omega')$ is lower semi-continuous on $\Omega \times \Omega$.

Assume from now on that φ is continuous. Then, for any $\nu, \mu \in \mathcal{M}_1(\Omega)$, we have the Kantorovitch–Rubinstein equality [8, 9, 14],

$$W_{1,d_{\varphi}}(\mu,\nu) = \sup\left\{ \int F \,\mathrm{d}\nu - \int G \,\mathrm{d}\mu \Big| F, G \in C_b(\Omega), F(\omega) - G(\omega') \le d_{\varphi}(\omega,\omega') \right\}$$
$$= \sup\left\{ \int G \,\mathrm{d}(\nu-\mu) : G \in b\mathcal{F}, \|G\|_{\mathrm{Lip}(d_{\varphi})} \le 1 \right\}.$$

Here, $b\mathcal{F}$ is the space of all real, bounded and \mathcal{F} -measurable functions.

The difference operator D. We denote by $L^0(\Omega, P^0)$ the space of all P^0 -equivalent classes of real measurable functions w.r.t. the completion of \mathcal{F} by P^0 . Hence, the difference operator $D: L^0(\Omega, P^0) \to L^0(E \times \Omega, m \otimes P^0)$ given by

$$F \to D_x F(\omega) := F(\omega + \delta_x) - F(\omega)$$

is well defined (see [15]) and plays a crucial role in the Malliavin calculus on the Poisson space.

Lemma 2.3. Given a measurable function $F: \Omega \to \mathbb{R}$, $||F||_{\operatorname{Lip}(d_{\varphi})} \leq 1$ if and only if $|D_x F(\omega)| \leq \varphi(x)$ for all $\omega \in \Omega$ and $x \in E$.

Proof. If $||F||_{\operatorname{Lip}(d_{\varphi})} \leq 1$, since

$$|D_x F(\omega)| = |F(\omega + \delta_x) - F(\omega)| \le d_{\varphi}(\omega + \delta_x, \omega) = \int_E \varphi \, \mathrm{d}|(\omega + \delta_x) - \omega| = \varphi(x),$$

the necessity is true. We now prove the sufficiency. For any $\omega, \omega' \in \Omega$, we write $\omega = \sum_{k=1}^{i} \delta_{x_k} + \omega \wedge \omega'$ and $\omega' = \sum_{k=1}^{j} \delta_{y_k} + \omega \wedge \omega'$, where $\omega \wedge \omega' := \frac{1}{2}(\omega + \omega' - |\omega - \omega'|)$. We then have

$$|F(\omega) - F(\omega')| \leq |F(\omega) - F(\omega \wedge \omega')| + |F(\omega') - F(\omega \wedge \omega')|$$

$$\leq \sum_{k=1}^{i} \left| F\left(\omega \wedge \omega' + \sum_{l=1}^{k} \delta_{x_{l}}\right) - F\left(\omega \wedge \omega' + \sum_{l=1}^{k-1} \delta_{x_{l}}\right) \right|$$

$$+ \sum_{k=1}^{j} \left| F\left(\omega \wedge \omega' + \sum_{l=1}^{k} \delta_{y_{l}}\right) - F\left(\omega \wedge \omega' + \sum_{l=1}^{k-1} \delta_{y_{l}}\right) \right|$$

$$\leq \sum_{k=1}^{i} \varphi(x_{k}) + \sum_{k=1}^{j} \varphi(y_{k}) = \int_{E} \varphi \, \mathrm{d}|\omega - \omega'| = d_{\varphi}(\omega, \omega'),$$

which implies that $||F||_{\operatorname{Lip}(d_{\varphi})} \leq 1$.

Remark 2.4. When $\varphi = 1$, we denote d_{φ} by d. Obviously, $d(\omega, \omega') = |\omega - \omega'|(E) = ||\omega - \omega'||_{\text{TV}}$, that is, d is exactly the total variation distance.

The following result, due to the fourth-named author [15], was obtained by means of the L^1 -log-Sobolev inequality and will play an important role.

Lemma 2.5 ([15], Proposition 3.2). Let $F \in L^1(\Omega, P^0)$. If there is some $0 \le \varphi \in L^2(E,m)$ such that $|D_xF(\omega)| \le \varphi(x)$, $m \otimes P^0$ -a.e., then for any $\lambda \ge 0$,

$$\mathbb{E}^{P^{0}} \mathrm{e}^{\lambda(F - P^{0}(F))} \leq \exp\left\{\int_{E} (\mathrm{e}^{\lambda\varphi} - \lambda\varphi - 1) \,\mathrm{d}m\right\}.$$

In particular, if m is finite and $|D_xF(\omega)| \leq 1$ for $m \times P^0$ -a.e. (x,ω) on $E \times \Omega$ (i.e., $\varphi(x) = 1$), then

$$\mathbb{E}^{P^{0}} \mathrm{e}^{\lambda(F - P^{0}(F))} \leq \exp\{(\mathrm{e}^{\lambda} - \lambda - 1)m(E)\}.$$

We now state our main result on the Poisson space.

Theorem 2.6. Let $(\Omega, \mathcal{F}, P^0)$ be the Poisson space with intensity measure m(dx) and φ a bounded continuous function on E such that $0 < \varphi \leq M$ and $\sigma^2 = \int_E \varphi^2 \, \mathrm{d}m < +\infty$. Then

$$\frac{1}{M}h_c(W_{1,d_{\varphi}}(Q,P^0)) \le H(Q|P^0) \qquad \forall Q \in \mathcal{M}_1(\Omega),$$
(2.1)

where $c = \sigma^2/M$ and

$$h_c(r) = c \cdot h\left(\frac{r}{c}\right), \qquad h(r) = (1+r)\log(1+r) - r.$$
 (2.2)

Note that $h^*(\lambda) := \sup_{r \ge 0} (\lambda r - h(r)) = e^{\lambda} - \lambda - 1$ and $h^*_c(\lambda) = ch^*(\lambda)$.

Proof of Theorem 2.6. Since the function $(e^{\lambda\varphi} - \lambda\varphi - 1)/\varphi^2$ is increasing in φ , it is easy to see that

$$\int_{E} (e^{\lambda \varphi} - \lambda \varphi - 1) \, \mathrm{d}m \le \frac{e^{\lambda M} - \lambda M - 1}{M^2} \int \varphi^2 \, \mathrm{d}m.$$
(2.3)

Further, the Legendre transformation of the right-hand side of (2.3) is, for $r \ge 0$,

$$\sup_{\lambda \ge 0} \left\{ \lambda r - \frac{\mathrm{e}^{\lambda M} - \lambda M - 1}{M^2} \int \varphi^2 \,\mathrm{d}m \right\} = \left(\frac{r}{M} + \frac{\int \varphi^2 \,\mathrm{d}m}{M^2}\right) \log\left(\frac{Mr}{\int \varphi^2 \,\mathrm{d}m} + 1\right) - \frac{r}{M}$$
$$= \frac{1}{M} h_c(r).$$

The desired result then follows from Theorem 1.1, by Lemma 2.5.

Remark 2.7. Let $\beta(\lambda) := \int_E (e^{\lambda \varphi} - \lambda \varphi - 1) dm$ and $\alpha(r) := \sup_{\lambda \ge 0} (\lambda r - \beta(\lambda))$. The proof above gives us

$$\alpha(W_{1,d_{\varphi}}(Q,P^0)) \le H(Q|P^0) \qquad \forall Q \in \mathcal{M}_1(\Omega).$$

This less explicit inequality is sharp. Indeed, assume that E is compact and let $F(\omega) := \int_E \varphi(x)(\omega - m)(\mathrm{d}x)$. We have $\|F\|_{\mathrm{Lip}(d_{\varphi})} = 1$ and

$$\log \mathbb{E}^{P^0} \mathrm{e}^{\lambda F} = \beta(\lambda).$$

The sharpness is then ensured by Theorem 1.1.

Proposition 2.8. If $\varphi = 1$ and m is finite, then the inequality (2.1) turns out to be

$$h_{m(E)}(W_{1,d}(Q,P^0)) \le H(Q|P^0) \qquad \forall Q \in \mathcal{M}_1(\Omega).$$

$$(2.4)$$

In particular, for the Poisson measure $\mathcal{P}(\lambda)$ with parameter $\lambda > 0$ on \mathbb{N} equipped with the Euclidean distance ρ ,

$$h_{\lambda}(W_{1,\rho}(\nu, \mathcal{P}(\lambda))) \le H(\nu|\mathcal{P}(\lambda)) \qquad \forall \nu \in \mathcal{M}_1(\mathbb{N}).$$
(2.5)

Proof. The inequality (2.4) is a particular case of (2.1) with $\varphi = 1$ and it holds on $\Omega^0 := \{\omega \in \Omega; \omega(E) < +\infty\}$ (for P^0 is actually supported in Ω^0 as m is finite). For (2.5), let $m(E) = \lambda$ and consider the mapping $\Psi : \Omega^0 \to \mathbb{N}, \Psi(\omega) = \omega(E)$. Since $|\Psi(\omega) - \Psi(\omega')| = |\omega(E) - \omega'(E)| \le d(\omega, \omega'), \Psi$ is Lipschitzian with the Lipschitzian coefficient less than 1. Thus, (2.5) follows from (2.4) by [4], Lemma 2.1 and its proof.

Remark 2.9. The transportation inequality (2.5) was shown by Liu [10] by means of a tensorization technique and the approximation of $\mathcal{P}(\lambda)$ by binomial distributions. It is optimal (therefore, so is (2.4)). In fact, consider another Poisson distribution $\mathcal{P}(\lambda')$ with parameter $\lambda' > \lambda$. On the one hand,

$$\begin{split} H(\mathcal{P}(\lambda')|\mathcal{P}(\lambda)) &= \int_{\mathbb{N}} \log \frac{\mathrm{d}\mathcal{P}(\lambda')}{\mathrm{d}\mathcal{P}(\lambda)} \,\mathrm{d}\mathcal{P}(\lambda') = \sum_{n=0}^{\infty} \mathcal{P}(\lambda')(n) \log \left(\frac{\mathrm{e}^{-\lambda'} \lambda'^n}{n!} \middle/ \frac{\mathrm{e}^{-\lambda} \lambda^n}{n!}\right) \\ &= \lambda - \lambda' + \sum_{n=0}^{\infty} \mathcal{P}(\lambda')(n) n \log \frac{\lambda'}{\lambda} \\ &= \lambda - \lambda' + \lambda' \log \frac{\lambda'}{\lambda}. \end{split}$$

On the other hand, let $r := \lambda' - \lambda > 0$. Let X, Y be two independent random variables having distributions $\mathcal{P}(\lambda)$ and $\mathcal{P}(r)$, respectively. Obviously, the law of X + Y is $\mathcal{P}(\lambda')$. Then

$$W_{1,\rho}(\mathcal{P}(\lambda'),\mathcal{P}(\lambda)) \leq \mathbb{E}|X - (X+Y)| = \mathbb{E}Y = r.$$

Now, supposing that (X, X') is a coupling of $\mathcal{P}(\lambda')$ and $\mathcal{P}(\lambda)$, we have

$$\mathbb{E}|X - X'| \ge |\mathbb{E}X - \mathbb{E}X'| = r$$

which implies that $W_{1,\rho}(\mathcal{P}(\lambda'), \mathcal{P}(\lambda)) \geq r$. Then $W_{1,\rho}(\mathcal{P}(\lambda'), \mathcal{P}(\lambda)) = r$ (and (X, X + Y) is an optimal coupling for $\mathcal{P}(\lambda)$ and $\mathcal{P}(\lambda')$). Therefore,

$$h_{\lambda}(W_{1,\rho}(\mathcal{P}(\lambda'),\mathcal{P}(\lambda))) = h_{\lambda}(r) = H(\mathcal{P}(\lambda')|\mathcal{P}(\lambda)).$$

Namely, h_{λ} is the optimal deviation function for the Poisson distribution $\mathcal{P}(\lambda)$.

3. A discrete spin system

The model and the Dobrushin interdependence coefficient. Let $\Lambda = \{1, \ldots, N\}$ $(2 \le N \in \mathbb{N})$ and $\gamma : \Lambda \times \Lambda \mapsto [0, +\infty]$ be a non-negative interaction function satisfying $\gamma_{ij} = \gamma_{ji}$ and $\gamma_{ii} = 0$ for all $i, j \in \Lambda$. Consider the Gibbs measure P on \mathbb{N}^{Λ} with

$$P(x_1, \dots, x_N) = e^{-\sum_{i < j} \gamma_{ij} x_i x_j} \prod_{i=1}^N \mathcal{P}(\delta_i)(x_i) \Big/ C, \qquad (3.1)$$

where $\mathcal{P}(\delta_i)(x_i) = e^{-\delta_i} \frac{\delta_i^{x_i}}{x_i!}, x_i \in \mathbb{N}$, is the Poisson distribution with parameter $\delta_i > 0$ and C is the normalization constant. Here and hereafter, the convention that $0 \cdot \infty = 0$ is used. Let $P_i(dx_i|x_\Lambda)$ be the given regular conditional distribution of x_i given $x_{\Lambda \setminus \{i\}}$, which is, in the present case, the Poisson distribution $\mathcal{P}(\delta_i e^{-\sum_{j \neq i} \gamma_{ij} x_j})$ with parameter $\delta_i e^{-\sum_{j \neq i} \gamma_{ij} x_j}$, with the convention that the Poisson measure $\mathcal{P}(0)$ with parameter $\lambda = 0$ is the Dirac measure δ_0 at 0. Define the Dobrushin interdependence matrix $C := (c_{ij})_{i,j \in \Lambda}$ w.r.t. the Euclidean metric ρ by

$$c_{ij} = \sup_{x_{\Lambda} = x'_{\Lambda} \text{off}j} \frac{W_{1,\rho}(P_i(\mathrm{d}x_i|x_{\Lambda}), P_i(\mathrm{d}x'_i|x'_{\Lambda}))}{|x_j - x'_j|} \qquad \forall i, j \in \Lambda$$
(3.2)

(obviously, $c_{ii} = 0$). The Dobrushin uniqueness condition [5, 6] is then

$$D := \sup_{j} \sum_{i} c_{ij} < 1.$$

For this model, we can identify c_{ij} .

Lemma 3.1. Recall that $\gamma_{ij} \ge 0$. We have

$$c_{ij} = \delta_i (1 - \mathrm{e}^{-\gamma_{ij}}).$$

Proof. By Remark 2.9, if $x_{\Lambda} = x'_{\Lambda}$ off j, then

$$W_{1,\rho}(P_i(\mathrm{d}x_i|x_\Lambda), P_i(\mathrm{d}x_i'|x_\Lambda')) = \delta_i |\mathrm{e}^{-\sum_k \gamma_{ik} x_k} - \mathrm{e}^{-\sum_k \gamma_{ik} x_k'}|.$$

Without loss of generality, suppose that $x_j = x'_j + x$ with $x \ge 1$. We have then

$$c_{ij} = \delta_i \sup_{\substack{x_\Lambda = x'_\Lambda \text{off}j}} \frac{|e^{-\sum_k \gamma_{ik} x_k} - e^{-\sum_k \gamma_{ik} x'_k}|}{|x_j - x'_j|}$$
$$= \delta_i \sup_{x \ge 1} \frac{1 - e^{-\gamma_{ij} x}}{x} \qquad (\text{taking } x_k = x'_k = 0 \text{ for } k \ne j, x'_j = 0)$$
$$= \delta_i (1 - e^{-\gamma_{ij}}).$$

Here, the first equality holds since γ_{ij} is non-negative and the last equality is due to the fact that $(1 - e^{-\gamma_{ij}x})/x$ is decreasing in x > 0.

The transportation inequality W_1H for mixed measure. We return to the general framework of the Introduction. Let \mathcal{X} be a general Polish space and d be a metric on \mathcal{X} which is lower semi-continuous on $\mathcal{X} \times \mathcal{X}$. Consider a mixed probability measure $\mu := \int_I \mu_\lambda \, \mathrm{d}\sigma(\lambda)$ on \mathcal{X} , where, for each $\lambda \in I$, μ_λ is a probability on \mathcal{X} and σ is a probability measure on another Polish space I. Let ρ be a lower semi-continuous metric on I.

Proposition 3.2. Suppose that:

(i) for any $\lambda \in I$, μ_{λ} satisfies $\alpha - W_1 H$ with deviation function $\alpha \in C$,

$$\alpha(W_{1,d}(\nu,\mu_{\lambda})) \leq H(\nu|\mu_{\lambda}) \qquad \forall \nu \in \mathcal{M}_1(\mathcal{X});$$

(ii) σ satisfies a β -W₁H inequality on I with deviation function $\beta \in C$,

$$\beta(W_{1,\rho}(\eta,\sigma)) \le H(\eta|\sigma) \qquad \forall \eta \in \mathcal{M}_1(I);$$

(iii) $\lambda \to \mu_{\lambda}$ is Lipschitzian, that is, for some constant M > 0,

$$W_{1,d}(\mu_{\lambda},\mu_{\lambda'}) \leq M\rho(\lambda,\lambda') \quad \forall \lambda,\lambda' \in I.$$

The mixed probability $\mu = \int_{I} \mu_{\lambda} d\sigma(\lambda)$ then satisfies

$$\tilde{\alpha}(W_{1,d}(\nu,\mu)) \le H(\nu|\mu) \qquad \forall \nu \in \mathcal{M}_1(\mathcal{X}), \tag{3.3}$$

where

$$\tilde{\alpha}(r) = \sup_{b \ge 0} \{ br - [\alpha^*(b) + \beta^*(bM)] \}, \qquad r \ge 0.$$

Proof. By Gozlan and Leonard's Theorem 1.1, it is enough to show that for any Lipschitzian function f on \mathcal{X} with $||f||_{\text{Lip}(d)} \leq 1$ and $b \geq 0$,

$$\int_{\mathcal{X}} \mathrm{e}^{b[f(x)-\mu(f)]} \,\mathrm{d}\mu(x) \leq \exp(\alpha^*(b) + \beta^*(bM)).$$

Let $g(\lambda) := \int_{\mathcal{X}} f(x) d\mu_{\lambda}(x) = \mu_{\lambda}(f)$. We have $\sigma(g) = \mu(f)$ and, by Kantorovitch's duality equality and our condition (iii), $|g(\lambda) - g(\lambda')| \leq M\rho(\lambda, \lambda')$. Using Theorem 1.1 and our conditions (i) and (ii), we then get, for any $b \geq 0$,

$$\int_{\mathcal{X}} e^{b[f(x)-\mu(f)]} d\mu = \int_{I} \left(\int_{\mathcal{X}} e^{b[f(x)-\mu_{\lambda}(f)]} d\mu_{\lambda}(x) \right) e^{b[g(\lambda)-\sigma(g)]} d\sigma(\lambda),$$
$$\leq e^{\alpha^{*}(b)+\beta^{*}(bM)}$$

the desired result.

We now turn to a mixed Poisson distribution,

$$\mu = \int_0^a \mathcal{P}(\lambda)\sigma(\mathrm{d}\lambda),\tag{3.4}$$

where a > 0. By Proposition 2.8, we know that w.r.t. the Euclidean metric ρ ,

$$h_{\lambda}(W_{1,\rho}(\nu,\mathcal{P}(\lambda))) \le H(\nu|\mathcal{P}(\lambda))$$

and $W_{1,\rho}(\mathcal{P}(\lambda), \mathcal{P}(\lambda')) = |\lambda - \lambda'|$. Since h_{λ} is decreasing in λ , the hypotheses in Proposition 3.2 with $E = \mathbb{N}$, I = [0, a], both equipped with the Euclidean metric ρ , are satisfied with $\alpha(r) = h_a(r) = ah(\frac{r}{a})$ and $\beta(r) = 2r^2/a^2$ (the well-known CKP inequality). On the other hand, obviously,

$$h(r) = (1+r)\log(1+r) - r \le \frac{r^2}{2}, \qquad r \ge 0,$$

which implies that

$$h_{a^2/4}(r) = \frac{a^2}{4}h\left(\frac{4r}{a^2}\right) \le \frac{2r^2}{a^2} = \beta(r)$$

Since $h_c^*(\lambda) = c(e^{\lambda} - \lambda - 1),$

$$\sup_{b\geq 0} \{br - [(h_a(b))^* + (h_{a^2/4}(b))^*]\} = \sup_{b\geq 0} \{br - (a + a^2/4)(e^b - b - 1)\} = h_{a+a^2/4}(r).$$

By Proposition 3.2, we have, for the mixed Poisson measure μ given in (3.4),

$$h_{a+a^2/4}(W_{1,d}(\nu,\mu)) \le H(\nu|\mu) \qquad \forall \nu \in \mathcal{M}_1(\mathbb{N}). \tag{3.5}$$

See Chafai and Malrieu [3] for fine analysis of transportation or functional inequalities for mixed measures. We can now state the main result of this section.

Theorem 3.3. Let P be the Gibbs measure given in (3.1) with $\gamma_{ij} \ge 0$. Assume Dobrushin's uniqueness condition

$$D := \sup_{j \in \Lambda} \sum_{i \in \Lambda} \delta_i (1 - e^{-\gamma_{ij}}) < 1.$$

164

For any probability measure Q on \mathbb{N}^{Λ} equipped with the metric $\rho_H(x_{\Lambda}, y_{\Lambda}) := \sum_{i \in \Lambda} |x_i - y_i|$ (the index H refers to Hamming), we then have, for $c := \sum_{i \in \Lambda} (\delta_i + \delta_i^2/4)$,

$$h_c((1-D)W_{1,\rho_H}(Q,P)) \le H(Q|P) \qquad \forall Q \in \mathcal{M}_1(\mathbb{N}^\Lambda).$$

This result, without the extra constants $\delta_i^2/4$, would become sharp if $\gamma = 0$ (i.e., without interaction) or $P = \mathcal{P}(\delta)^{\otimes \Lambda}$.

Proof of Theorem 3.3. By Theorem 1.1, it is equivalent to prove that for any 1-Lipschitzian functional F w.r.t. the metric ρ_H ,

$$\log \mathbb{E}^{P} e^{\lambda (F - \mathbb{E}^{P} F)} \le h_{c}^{*} \left(\frac{\lambda}{1 - D}\right) = ch^{*} \left(\frac{\lambda}{1 - D}\right) \qquad \forall \lambda > 0.$$
(3.6)

We prove the inequality (3.6) by the McDiarmid–Rio martingale method (as in [4, 17]). Consider the martingale

$$M_0 = \mathbb{E}^P(F), \qquad M_k(x_1^k) = \int F(x_1^k, x_{k+1}^N) P(\mathrm{d}x_{k+1}^N | x_1^k), \qquad 1 \le k \le N,$$

where $x_i^j = (x_k)_{i \le k \le j}$, $P(dx_{k+1}^N | x_1^k)$ is the conditional distribution of x_{k+1}^N given x_1^k . Since $M_N = F$, we have

$$\mathbb{E}^{P} \mathrm{e}^{\lambda(F - \mathbb{E}^{P}F)} = \mathbb{E}^{P} \exp\left(\lambda \sum_{k=1}^{N} (M_{k} - M_{k-1})\right).$$

By induction, for (3.6), it suffices to establish that for each k = 1, ..., N, P-a.s.,

$$\log \int \exp(\lambda(M_k(x_1^{k-1}, x_k) - M_{k-1}(x_1^{k-1}))) P(\mathrm{d}x_k | x_1^{k-1}) \le (\delta_k + \delta_k^2/4) h^*\left(\frac{\lambda}{1-D}\right).$$
(3.7)

By (3.5), $P(dx_k|x_1^{k-1})$, being a convex combination of Poisson measures $P_k(dx_k|x_\Lambda) = \mathcal{P}(\delta_k e^{-\sum_{j \neq k} \gamma_{kj} x_j})$ (over x_{k+1}^N), satisfies the W_1H -inequality with the deviation function $h_{\delta_k + \delta_k^2/4}$. Hence, by Theorem 1.1, (3.7) holds if

$$|M_k(x_1^{k-1}, x_k) - M_k(x_1^{k-1}, y_k)| \le \frac{1}{1-D} |x_k - y_k|.$$
(3.8)

In fact, the inequality (3.8) has been proven in [17], step 2 in the proof of Theorem 4.3. The proof is thus complete.

Remark 3.4. For a previous study on transportation inequalities for Gibbs measures on discrete sites, see Marton [12] and Wu [17]. Our method here is quite close to that in [17], but with two new features: (1) W_1H for mixed probability measures; (2) Gozlan and Léonard's Theorem 1.1 as a new tool.

Remark 3.5. Every Poisson distribution $\mathcal{P}(\lambda)$ satisfies the Poincaré inequality ([15], Remark 1.4)

$$\operatorname{Var}_{\mathcal{P}(\lambda)}(f) \leq \lambda \int_{\mathbb{N}} (Df(x))^2 \, \mathrm{d}\mathcal{P}(\lambda)(x) \qquad \forall f \in L^2(\mathbb{N}, \mathcal{P}(\lambda)).$$

where Df(x) := f(x+1) - f(x) and $\operatorname{Var}_{\mu}(f) := \mu(f^2) - [\mu(f)]^2$ is the variance of f w.r.t. μ . By [17], Theorem 2.2 we have the following Poincaré inequality for the Gibbs measure P: if D < 1, then

$$\operatorname{Var}_{P}(F) \leq \frac{\max_{1 \leq i \leq N} \delta_{i}}{1 - D} \int_{\mathbb{N}^{\Lambda}} \sum_{i \in \Lambda} (D_{i}F)^{2}(x) \, \mathrm{d}P(x) \qquad \forall F \in L^{2}(\mathbb{N}^{\Lambda}, P),$$

where $D_i F(x_1, \ldots, x_N) := F(x_1, \ldots, x_{i-1}, x_i + 1, x_{i+1}, \ldots, x_N) - F(x_1, \ldots, x_N)$. We remind the reader that an important open question is to prove the L^1 -log-Sobolev inequality (or entropy inequality)

$$H(FP|P) \le C \int_{\mathbb{N}^{\Lambda}} \sum_{i \in \Lambda} D_i F \cdot D_i \log F \, \mathrm{d}P \qquad \text{for all } P \text{-probability densities } F$$

(which is equivalent to the exponential convergence in entropy of the corresponding Glauber system) under Dobrushin's uniqueness condition, or at least for high temperature.

4. W_1H -inequality for the continuum Gibbs measure

We now generalize the result for the discrete sites Gibbs measure in Section 3 to the continuum Gibbs measure (continuous gas model), by an approximation procedure.

Let $(\Omega, \mathcal{F}, P^0)$ be the Poisson space over a compact subset E of \mathbb{R}^d with intensity $m(dx) = z \, dx$, where the Lebesgue measure |E| of E is positive and finite, and z > 0 represents the *activity*. Given a *non-negative* pair-interaction function $\phi : \mathbb{R}^d \mapsto [0, +\infty]$, which is measurable and even over \mathbb{R}^d , the corresponding Poisson space is denoted by $(\Omega, \mathcal{F}, P^0)$ and the associated Gibbs measure is given by

$$P^{\phi}(\mathrm{d}\omega) = \frac{\mathrm{e}^{-(1/2)\sum_{x_i, x_j \in \mathrm{supp}(\omega), i \neq j} \phi(x_i - x_j) - \sum_{k, x_i \in \mathrm{supp}(\omega)} \phi(x_i - y_k)}{Z} P^0(\mathrm{d}\omega),$$

where Z is the normalization constant and $\{y_k, k\}$ is an at most countable family of points in $\mathbb{R}^d \setminus E$ such that $\sum_k \phi(x - y_k) < +\infty$ for all $x \in E$ (boundary condition). The main result of this section is the following theorem.

Theorem 4.1. Assume that the Dobrushin uniqueness condition holds, that is,

$$D := z \int_{\mathbb{R}^d} (1 - e^{-\phi(y)}) \, \mathrm{d}y < 1.$$
(4.1)

Then, w.r.t. the total variation distance $d = d_{\varphi}$ with $\varphi = 1$ on Ω ,

$$h_{z|E|}((1-D)W_{1,d}(Q,P^{\phi})) \le H(Q|P^{\phi}) \qquad \forall Q \in \mathcal{M}_1(\Omega).$$

$$(4.2)$$

Remark 4.2. Without interaction (i.e., $\phi = 0$), D = 0 and the W_1H -inequality (4.2) is exactly the optimal W_1H -inequality for the Poisson measure P^0 in Proposition 2.8. In the presence of non-negative interaction ϕ , it is well known that D < 1 is a sharp condition for the analyticity of the pressure functional p(z): indeed, the radius R of convergence of the entire series of p(z) at z = 0 satisfies $R \int_{\mathbb{R}^d} (1 - e^{-\phi(y)}) dy < 1$; see [13], Theorem 4.5.3. The corresponding sharp Poincaré inequality for P^{ϕ} was established in [16].

Proof of Theorem 4.1. We shall establish this sharp $\alpha - W_1 H$ inequality for P^{ϕ} by approximation.

By part (b') of Theorem 1.1, it is equivalent to show that for any $F, G \in C_b(\Omega)$ such that $F(\omega) - G(\omega') \leq d(\omega, \omega'), \ \omega, \omega' \in \Omega$, and for any $\lambda > 0$,

$$\log \int_{\Omega} e^{\lambda F} dP^{\phi} \leq \lambda P^{\phi}(G) + z |E| h^* \left(\frac{\lambda}{1-D}\right), \tag{4.3}$$

where $h^*(\lambda) = e^{\lambda} - \lambda - 1$.

Step 1. ϕ is continuous and $\{y_k, k\}$ is finite. We want to approximate P^{ϕ} by the discrete sites Gibbs measures given in the previous section. To this end, assume first that ϕ is continuous $(+\infty \text{ is regarded as the one-point compactification of } \mathbb{R}^+)$ or, equivalently, that $e^{-\phi} : \mathbb{R}^d \to [0, 1]$ is continuous with the convention that $e^{-\infty} := 0$.

For each $N \geq 2$, let $\{E_1, \ldots, E_N\}$ be a measurable decomposition of E such that, as N goes to infinity, $\max_{1 \leq i \leq N} \operatorname{Diam}(E_i) \to 0$ and $\max_{1 \leq i \leq N} |E_i| \to 0$, where |E| is the Lebesgue measure of E and $\operatorname{Diam}(E_i) = \sup_{x,y \in E_i} |x - y|$ is the diameter of E_i . Fix $x_i^0 \in E_i$ for each i. Consider the probability measure P_N on \mathbb{N}^{Λ} ($\Lambda := \{1, \ldots, N\}$) given by, for all $(n_1, \ldots, n_N) \in \mathbb{N}^{\Lambda}$,

$$P_N(n_1, \dots, n_N) = (1/Z) e^{-(1/2) \sum_{i \neq j} \phi(x_i^0 - x_j^0) n_i n_j - \sum_{i,k} \phi(x_i^0 - y_k) n_i} \prod_{i=1}^N \mathcal{P}(z|E_i|)(n_i)$$
$$= (1/Z') e^{-\sum_{i < j} \phi(x_i^0 - x_j^0) n_i n_j} \prod_{i=1}^N \mathcal{P}(\delta_{N,i})(n_i),$$

where Z, Z' are normalization constants and $\delta_{N,i} = z |E_i| e^{-\sum_k \phi(x_i^0 - y_k)} \le z |E_i|$. Consider the mapping $\Phi : \mathbb{N}^{\Lambda} \to \Omega$ given by

$$\Phi(n_1,\ldots,n_N) = \sum_{i=1}^N n_i \delta_{x_i^0}.$$

 Φ is isometric from $(\mathbb{N}^{\Lambda}, \rho_H)$ to (Ω, d) , where $d = d_{\varphi}$ with $\varphi = 1$ (given in Section 2). Finally, let P^N be the push-forward of P_N by Φ . It is quite direct to see that $P^N \to P$ weakly.

The Dobrushin constant D_N associated with P_N is given by

$$D_N = \sup_j \sum_i \delta_{N,i} (1 - e^{-\phi(x_i^0 - x_j^0)}) \le \sup_j \sum_i z |E_i| (1 - e^{-\phi(x_i^0 - x_j^0)}).$$

When N goes to infinity,

$$\limsup_{N \to \infty} D_N \le \sup_{y \in \mathbb{R}^d} z \int_E (1 - e^{-\phi(x-y)}) \, \mathrm{d}x = z \int_{\mathbb{R}^d} (1 - e^{-\phi(x)}) \, \mathrm{d}x = D.$$

Therefore, if D < 1 and $D_N < 1$ for all N large enough, then the W_1H -inequality in Theorem 3.3 holds for P_N . By the isometry of the mapping Φ , P^N satisfies the same W_1H -inequality on Ω w.r.t. the metric d, which gives us, by Theorem 1.1(b'),

$$\log \mathbb{E}^{P^N} \mathrm{e}^{\lambda F} \leq \lambda P^N(G) + \left(\sum_{i \in \Lambda} [\delta_{N,i} + \delta_{N,i}^2/4] \right) h^* \left(\frac{\lambda}{1 - D_N} \right).$$

By letting N go to infinity, this yields (4.3), for $P^N \to P^{\phi}$ weakly and

$$\sum_{i\in\Lambda} [\delta_{N,i}+\delta_{N,i}^2/4] \leq \sum_{i\in\Lambda} z|E_i|(1+z|E_i|/4) \rightarrow z|E|.$$

Step 2. General ϕ and $\{y_k, k\}$ is finite. For general measurable non-negative and even interaction function ϕ , we take a sequence of continuous, even and non-negative functions (ϕ_n) such that $1 - e^{-\phi_n} \rightarrow 1 - e^{-\phi}$ in $L^1(\mathbb{R}^d, dx)$. Now, note that $\frac{dP^{\phi_n}}{dP^0} \rightarrow \frac{dP^{\phi}}{dP^0}$ in $L^1(\Omega, P^0)$, that is, $P^{\phi_n} \rightarrow P^{\phi}$ in total variation. Hence, (4.3) for P^{ϕ_n} (proved in step 1) yields (4.3) for P^{ϕ} .

Step 3. General case. Finally, if the set of points $\{y_k, k\}$ is infinite, approximating $\sum_{k=1}^{\infty} \phi(x_i - y_k)$ by $\sum_{k=1}^{n} \phi(x_i - y_k)$ in the definition of P^{ϕ} , we get (4.3) for P^{ϕ} , as in step 2.

Remark 4.3. The explicit Poissonian concentration inequality (1.4) follows from Theorem 4.1 by Theorem 1.1(c) (with n = 1) by noting that the observable $F(\omega) = \omega(f)/(2N)^d$ there is Lipschitzian w.r.t. d with $||F||_{\text{Lip}(d)} \leq M/(2N)^d$ and $h(r) \geq (r/2)\log(1+r)$.

Remark 4.4. A quite curious phenomena occurs in the continuous gas model: the *extra* constant $\delta_i^2/4$ coming from the mixture of measures now disappears.

Acknowledgments

We are grateful to the referee for his conscientious comments. Yutao Ma was supported by NSFC Grant No. 10721091.

References

- Bobkov, S.G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1–28. MR1682772
- [2] Bolley, F. and Villani, C. (2005). Weighted Csiszár–Kullback–Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse 14 331–352. MR2172583
- [3] Chafai, D. and Malrieu, F. (2010). On fine properties of mixtures with respect to concentration and Sobolev type inequalities. Ann. Inst. H. Poincaré. Preprint. To appear.
- [4] Djellout, H., Gullin, A. and Wu, L.M. (2004). Transportation cost-information inequalities for random dynamical systems and diffusions. Ann. Probab. 32 2702–2732. MR2078555
- [5] Dobrushin, R.L. (1968). The description of a random field by means of conditional probabilities and condition of its regularity. *Theory Probab. Appl.* 13 197–224. MR0231434
- [6] Dobrushin, R.L. (1970). Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15 458–486.
- [7] Gozlan, N. and Léonard, C. (2007). A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields 139 235–283. MR2322697
- [8] Kellerer, H.G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 399–432. MR0761565
- [9] Léonard, C. (2007). Transport inequalities: A large deviation point of view. In Course in Chinese Summer School for Ph.D. Students, Wuhan.
- [10] Liu, W. Optimal transportation-entropy inequalities for several usual distributions on \mathbb{R} . Preprint. Submitted.
- Marton, K. (1996). Bounding d-distance by informational divergence: A way to prove measure concentration. Ann. Probab. 24 857–866. MR1404531
- [12] Marton, K. (2004). Measure concentration for Euclidean distance in the case of dependent random variables. Ann. Probab. 32 2526–2544. MR2078549
- [13] Ruelle, D. (1969). Statistical Mechanics: Rigorous Results. New York: Benjamin. MR0289084
- [14] C. Villani. (2003). Topics in Optimal Transportation. Providence, RI: Amer. Math. Soc. MR1964483
- [15] Wu, L.M. (2000). A new modified logarithmic Sobolev inequality for Poisson processes and several applications. Probab. Theory Related Fields 118 427–438. MR1800540
- [16] Wu, L.M. (2004). Estimate of the spectral gap for continuous gas. Ann. Inst. H. Poincaré Probab. Statist. 40 387–409. MR2070332
- [17] Wu, L.M. (2006). Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition. Ann. Probab. 34 1960–1989. MR2271488

Received March 2009 and revised February 2010