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Abstract

A class of non-Dirac-hermitian many-particle quantum systems admit-

ting entirely real spectra and unitary time-evolution is presented. These

quantum models are isospectral with Dirac-hermitian systems and are

exactly solvable. The general method involves a realization of the basic

canonical commutation relations defining the quantum system in terms of

operators those are hermitian with respect to a pre-determined positive

definite metric in the Hilbert space. Appropriate combinations of these

operators result in a large number of pseudo-hermitian quantum systems

admitting entirely real spectra and unitary time evolution. Examples of

a pseudo-hermitian rational Calogero model and XXZ spin-chain are con-

sidered.
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1 Introduction

The (non-)hermiticity of an operator crucially depends on the choice of the met-

ric( or inner-product) in the Hilbert space, which has been taken as an identity

operator in the standard treatment of quantum mechanics. The question of ne-

cessity of such a choice in formulating quantum physics is as old as the subject

itself. A renewed interest[1, 2, 3] has been generated over the last decade in

addressing the same question in a systematic manner. The current understand-

ing is that a quantum system with unbroken combined Parity(P) and Time-

reversal(T) symmetry admits entirely real spectra even though the system may

be non-Dirac-hermitian. A consistent quantum description including reality of

the entire spectra and unitary time-evolution of the non-Dirac-hermitian system

is possible with the choice of a new inner-product[1]. An alternative description

of non-Dirac-hermitian quantum systems admitting entirely real spectra is in

terms of pseudo-hermitian operator[2, 3]. The existence of a positive-definite

metric in the Hilbert space is again crucial in this formalism for showing reality

of the entire spectra as well as unitary time evolution.

A large number of non-Dirac-hermitian quantum systems admitting entirely

real spectra have been found. A few prototype examples from a vast list of

such systems are contained in Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The

real difficulty in giving a complete description of these systems lies in finding

the exact positive-definite metric in the Hilbert space. It is worth emphasizing

here that no expectation values of physical observables or correlation functions

can be calculated without the knowledge of the metric in the Hilbert space.

This makes a non-Dirac-hermitian quantum system incomplete, even though

the complete energy spectrum and the associated eigenfunctions may be known

explicitly. There are not many non-Dirac-hermitian quantum systems for which
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the metric is known exactly and explicitly, the scenario being even worse for

such system with several degrees of freedom.

The purpose of this contribution is to present a class of exactly solvable

pseudo-hermitian many-particle quantum systems with a pre-determined met-

ric in the Hilbert space. The motivation behind considering a pre-determined

metric lies in the fact that it can be used to construct non-Dirac-hermitian quan-

tum systems with a complete description, simply by deforming known Dirac-

hermitian quantum systems. Although the non-Dirac-hermitian Hamiltonian

constructed in this way is isospectral with the corresponding Dirac-hermitian

Hamiltonian, the difference may appear in the description of different correlation

functions of these two quantum systems[7].

The motivation behind constructing such non-Dirac-hermitian Hamiltonian

by isospectral deformation is the following. First of all, quantum systems con-

structed in this way may serve as prototype examples for testing different ideas

and methods related to the subject. This is important particularly in the con-

text of many-particle systems, where the number of exactly solvable models with

an explicit knowledge of the metric in the Hilbert space are very few and valid-

ity of approximate and/or numerical methods are required to be checked before

applications. Secondly, a significant number of non-Dirac-hermitian quantum

systems are known to admit entirely real spectra for which the origin of the

reality of the spectra is not obvious. It is to be seen whether the reality of the

spectra of some of these models could be related to certain pseudo-hermitian

quantum system or not. In fact, the asymmetric XXZ spin-chain[12], which is

relevant in the context of two species reaction-diffusion processes and Kardar-

Parisi-Zhang-type growth phenomenon, is shown to be pseudo-hermitian follow-

ing the general approach[4] prescribed in this article. Finally, construction of

physically realizable quantum systems is always desirable.
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The general method involves a realization of the basic canonical commu-

tation relations defining the quantum system in terms of operators those are

hermitian with respect to a pre-determined positive definite metric η+ in the

Hilbert space. Consequently, any Hamiltonian that is constructed using appro-

priate combination of these operators is hermitian with respect to η+. However,

in general, the same Hamiltonian may not be Dirac-hermitian, thereby giving

rise to a pseudo-hermitian Hamiltonian. A pseudo-hermitian quantum system

constructed this way may or may not be exactly solvable. The examples con-

sidered in this article include an exactly solvable non-Dirac-hermitian Calogero

Model and an XXZ spin-chain. Both of these models are pseudo-hermitian and

isospectral with known Dirac-hermitian model. Many other interesting quantum

systems following from this construction are described in Ref. [4].

2 Preliminaries and Examples

The Hilbert space that is endowed with the standard inner product 〈., .〉 is

denoted as HD. The subscript D indicates that the Dirac-hermiticity condition

is used in this Hilbert space. On the other hand, the Hilbert space that is

endowed with the positive-definite metric η+ and the modified inner product,

〈〈., .〉〉η+
:= 〈., η+.〉. (1)

is denoted as Hη+
. Corresponding to a hermitian operator B̂ in the Hilbert

space HD, a hermitian operator B̂ in the Hilbert space Hη+
can be defined

as[2],

B̂ = ρ−1B̂ρ, ρ :=
√
η+. (2)

An interesting consequence of Eq. (2) is that a set of operators B̂i obey the same

canonical commutation relations as those satisfied by the corresponding set of
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operators B̂i and the vice verse. The relation (2) is important for identifying

observables in Hη+
and also crucial for the discussion that follows.

2.1 Pseudo-hermitian Rational Calogero Model

The rational Calogero model[13] is one of the most celebrated examples of ex-

actly solvable many-particle quantum systems. This model[13] and its variants[14]

are relevant to the study of a diverse branches of contemporary physics. Calogero-

Sutherland-type models have been constructed previously[9, 10, 11] within the

context of PT-symmetric quantum systems. A new class of pseudo-hermitian

quantum system involving rational Calogero model is presented below.

A Dirac-non-hermitian rational AN+1 Calogero model may be introduced as

follows:

H = −1

2

N
∑

i=1

∂2

∂x2i
+

1

2
λ(λ − 1)

∑

i6=j

X−2
ij +

1

2

N
∑

i=1

x2i ,

X12 = (x1 − x2) coshφ+ i (x1 + x2) sinhφ,

X1j = x1coshφ+ ix2sinhφ− xj , j > 2,

X2j = −ix1sinhφ+ x2coshφ− xj j > 2,

Xij = xi − xj , (i, j) > 2. (3)

The parameters λ, φ appearing in H are real. The coordinates xi and their con-

jugate momenta pi are hermitian in HD. Unlike the standard rational Calogero

model, the two-body inverse-square interaction term is neither invariant under

translation nor singular for x1 = xi, i > 1 and x2 = xi, i > 2. However, the

Hamiltonian is invariant under a combined PT operation with the P and T

transformations defined as,

P : x1 → x2, x2 → x1, xi → xi ∀ i > 2; T : i→ −i. (4)

The operation of P may be identified as a permutation of the particles ‘1’ and
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‘2’ in one dimension. Alternatively, with the interpretation of H as describing a

single-particle system in N dimensions, P is a valid parity transformation in the

N dimensional space. It may be recalled at this point that the transformation,

x1 → x1cosθ + x2sinθ,

x2 → x1sinθ − x2cosθ, 0 ≤ θ ≤ 2π, (5)

corresponds to parity transformation in two dimensions with the familiar forms

x1 → x1, x2 → −x2 or x1 → −x1, x2 → x2 reproduced by θ = 0 and θ = π,

respectively. The parity transformation corresponding to θ = π
2 , i.e. x1 → x2

and x2 → x1, has been embedded in the N dimensional space for introducing

P in Eq. (4) and the choice of θ is unique for the Calogero model considered in

this article.

The claim is that the non-Dirac-hermitian H is isospectral with the stan-

dard rational Calogero model. The reality of the entire spectra of H could be

attributed to an underlying pseudo-hermiticity. A positive-definite metric η+ in

the Hilbert space Hη+
may be considered:

η+ := e−2γL12 , L12 = x1p2 − x2p1, γ ∈ R. (6)

The coordinates xi and the momenta pi are not hermitian in Hη+
. A new set

of canonical conjugate operators those are hermitian in the Hilbert space Hη+

may be introduced by using the relation (2) as follows:

X1 = x1 coshφ+ ix2 sinhφ,

X2 = −ix1 sinhφ+ x2 coshφ, Xi = xi for i > 2

P1 = p1 coshφ+ ip2 sinhφ,

P2 = −ip1 sinhφ+ p2 coshφ, Pi = pi for i > 2. (7)

It may be noted that L12 = X1P2 −X2P1 = L12 is hermitian both in HD and

Hη+
. This ensures that η+ defined in Eq. (6) is positive-definite.
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The Hamiltonian H can be re-written in terms of (Xi, Pi) as,

H = −1

2

N
∑

i=1

∂2

∂X2
i

+
1

2
λ(λ− 1)

∑

i6=j

X−2
ij +

1

2

N
∑

i=1

X2
i , (8)

which implies hermiticity of H in Hη+
. The non-Dirac-hermitian H can also be

mapped to Dirac-hermitian Hamiltonian h through a similarity transformation,

h :=
(

e−γL12
)

H
(

eγL12
)

= −1

2

N
∑

i=1

∂2

∂x2i
+

1

2
λ(λ − 1)

∑

i6=j

x−2
ij +

1

2

N
∑

i=1

x2i . (9)

Thus, the Hamiltonian H is isospectral with the standard rational Calogero

model h. The eigenfunctions ψη+
of H are related to the eigenfunctions ψD of

h through the relation, ψη+
= eγL12 ψD. The wave-functions ψη+

constitute a

complete set of orthonormal states in Hη+
.

A few comments are in order.

(i) The rational Calogero model in its original formulation[13] has been first

solved for a definite ordering of the particles and then extended it to the whole

of the configuration space in a continuous fashion by using the underlying per-

mutation symmetry. New states have been found[15] for h by considering more

general boundary conditions and including singular points/lines in the config-

uration space. Thus, with the use of these generalized boundary conditions,

the fact that H is non-singular for x1 = xi, i > 1 and x2 = xi, i > 2 has no

special significance. However, if singular points/lines are not included in the

configuration space, careful analysis of the eigenvalue problem of H is required.

(ii) There are N(N−1)
2 numbers of angular-momentum operators in the N -

dimensional hyper-spherical coordinate system. More general metric involving

these angular momentum operators can be constructed with new non-Dirac-

hermitian Calogero models admitting entirely real spectra and unitary time-

evolution.
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(iii) The construction can be trivially generalized to rational Calogero models

corresponding to other root systems.

2.2 Pseudo-hermitian XXZ Spin-chain

It is a well known fact that non-hermitian quantum spin chains correspond to

two-dimensional classical systems with positive Boltzmann weights. Examples

of non-Dirac-hermitian spin chains are also abundant in the literature. The

list includes XY and XXZ spin chain Hamiltonian with Dzyaloshinsky-Moriya

interaction[16], the integrable chiral Potts model[17, 18], asymmetric XXZ spin

chains[12] and quantum ising spin chain in one dimension[19]. Within the con-

text of PT -symmetric theory, non-hermitian spin chains have been studied in

Refs. [4, 7, 8].

A non-Dirac-hermitian XXZ spin-chain in an external complex magnetic

field may be introduced as follows:

HA =

N−1
∑

i=1

[Γ
(

ewi−wi+1S+
i S−

i+1 + e−(wi−wi+1)S−
i S+

i+1

)

+∆Sz
i Sz

i+1

+ (Aicoshwi − iBisinhwi)Sx
i + (Bicoshwi + iAisinhwi)Sy

i

+ CiSz
i ], (10)

where S±
i := Sx

i ± iSy
i , {Γ,∆, Ai, Bi, Ci, wi} ∈ R and S

x,y,z
i are hermitian in

HD. The non-hermitian interaction in HA without the external magnetic field

may be interpreted as arising due to imaginary vector potential. It may be noted

that such imaginary gauge potentials are also relevant in the context of metal-

insulator transitions or depinnning of flux lines from extended defects in type-II

superconductors[20]. A Hamiltonian resembling the random-hopping model of

Ref. [20] can be obtained from HA by using a hard-core boson representation

and mapping it to a non-hermitian quadratic form of bosonic operators with

nearest-neighbour interactions[4]. The inclusion of the complex magnetic field
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is justified, since it may shed light on the nature of ordinary second order phase

transitions as in the case of popular Yang-Lee model[21]. As discussed below,

HA reduces to the asymmetric XXZ model[12] that arises in the context of

two species reaction-diffusion processes and Kardar-Parisi-Zhang-type growth

phenomenon.

The parity and the time-reversal transformations involving spin-operators

are defined as,

P : ~Si → ~Si, T : ~Si → −~Si, i→ −i. (11)

It may be noted that spin being an axial vector does not change sign under

the parity operation. The Hamiltonian HA is not invariant under the combined

operation of PT . However, the Hamiltonian HA with Ai = 0 = Bi ∀ i is

invariant under an anti-linear PT transformation, where T : i → −i and P is

defined as a discrete symmetry in the spin-space with its actions on the spin

operators as follows:

Sx
i → S̄x

i = Sx
i cosθ + S

y
i sinθ

S
y
i → S̄

y
i = Sx

i sinθ − S
y
i cosθ

Sz
i → S̄z

i = Sz
i , 0 ≤ θ ≤ 2π. (12)

The discrete transformationP is similar to a non-standard parity transformation

in three dimensions involving the position co-ordinates. The PT symmetry can

be promoted to be the symmetry ofHA with non-vanishing Ai and Bi for a fixed

θ, provided these parameters are related to each other through the relations:

Bi

Ai

= tan
θ

2
, ∀ i. (13)

The Hamiltonian HA may be invariant under a more general anti-linear trans-

formation for arbitrary Ai and Bi which is not known at this point.
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The Hamiltonian HA is hermitian in Hη+
with the metric:

η+ :=
N
∏

i=1

e−2γiS
z

i . (14)

A set of spin-operators Tx,y,z may be introduced which are hermitian in Hη+
:

T x
i := coshwi Sx

i + isinhwi Sy
i

T
y
i := −isinhwi Sx

i + coshwi Sy
i

T z
i := Sz

i . (15)

Consequently, HA can be re-written as,

HA =

N−1
∑

i=1

[

Γ
(

T+
i T

−
i+1 + T−

i T
+
i+1

)

+∆T z
i T

z
i+1 +AiT

x
i +BiT

y
i + CiT

z
i

]

, (16)

showing its hermiticity in Hη+
, where T±

i := T x
i ± iT

y
i . The Hamiltonian HA

can be mapped to a Dirac-hermitian Hamiltonian,

h := (η
1
2

+HAη
− 1

2

+ )

=

N−1
∑

i=1

[

Γ
(

Sx
i Sx

i+1 + Sy
i S

y
i+1

)

+∆Sz
i Sz

i+1 +AiSx
i +BiSy

i + CiSz
i

]

,(17)

implying that both HA and h have entirely real spectra.

A few comments are in order at this point.

(i) A typical choice for wk as wk = w − (k − 1)φ leads to a site-independent

global phase factor e±φ in lieu of e±(wi−wi+1) and HA reduces to asymmetric

XXZ Hamiltonian that has been studied in the literature[12] in the context of

two species reaction-diffusion processes and Kardar-Parisi-Zhang-type growth

phenomenon. Although the transformation that maps non-hermitian asymmet-

ricXXZ Hamiltonian to a hermitian Hamiltonian is known in the literature[12],

the realization of pseudo-hermiticity is new. Thus, with the discovery of the

pseudo-hermiticity of HA, it may be used to describe unitary time evolution in

Hη+
.
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(ii) With the choice of wi ≡ w ∀ i in Eq. (10), a symmetric XXZ spin-chain

Hamiltonian in an external complex magnetic field may be constructed,

HS =

N−1
∑

i=1

[Γ
(

Sx
i Sx

i+1 + Sy
i S

y
i+1

)

+∆Sz
i Sz

i+1 + (Aicoshw − iBisinhw)Sx
i

+ (Bicoshw + iAisinhw)Sy
i + CiSz

i ], (18)

which is non-Dirac-hermitian, but, hermitian in Hη+
. The equivalent Dirac-

hermitian Hamiltonian h := (η
1
2

+HSη
− 1

2

+ ) is still given by Eq. (17).

The Hamiltonian h has several integrable limits. Consequently, HA and

HS are also integrable in these limits with entirely real spectra and unitary

time-evolution. For example, h reduces to a transverse-field Ising model for

Γ = Bi = Ci = 0, Ai = A ∀ i and both h and HS have been studied in some

detail[7] for this limiting case. For ∆ = 0, Ai = 0, Bi = 0 ∀ i, h reduces to an XX

model in a transverse magnetic field and is exactly solvable[22, 23]. AlthoughHS

is hermitian inHD for this choice of the parameters,HA is non-hermitian. Thus,

the non-hermitian HA is exactly solvable and has an equivalent description in

terms of a hermitian XX model in an external magnetic field. For the following

choice of the parameters,

Γ = 1,∆ = coshq, C1 = −CN = −sinhq,

Ai = Bi = 0 ∀ i;Ci = 0, i = 2, 3, . . . , N − 1, (19)

h−∆ reduces to an SUq(2) invariant[24] integrable[25] spin-chain Hamiltonian.

The XXZ spin-chain with Sl2 loop symmetry[26] may also be obtained as a lim-

iting case. The corresponding non-hermitian Hamiltonian HA is also integrable

and allows an unitary description.

(iii) A more general PT -symmetric Hamiltonian may be introduced which

contains HA as a special case. In particular,

H̃A =
N−1
∑

i=1

[

Γ
(

γi,i+1S+
i S−

i+1 + δi,i+1S−
i S+

i+1

)

+∆Sz
i Sz

i+1

]

11



+

N−1
∑

i=1

[(

αR
i + iαI

i

)

Sx
i +

(

βR
i + iβI

i

)

Sy
i + CiSz

i

]

, (20)

is invariant under the PT transformation provided that, for a fixed θ, the real

parameters αR
i , α

I
i , β

R
i , β

I
i satisfy the equations,

βR
i

αR
i

= −α
R
i

βI
i

= tan(
θ

2
) ∀ i. (21)

It may be noted that there are no restrictions on the real parameters γi,i+1

and δi,i+1 in order to ensure the PT symmetry. Further, αR,I
i and β

R,I
i are

independent of the parameters γi,i+1 and δi,i+1 in H̃A. The Hamiltonian HA is

reproduced with the choice of the parameters:

γi,i+1 = ewi−wi+1 , δi,i+1 = e−(wi−wi+1)

αR
i = Aicoshwi, α

I
i = −Bisinhwi,

βR
i = Bicoshwi, β

I
i = Aisinhwi. (22)

The region in the parameter-space of H̃A for which PT is unbroken must contain

the region defined by the above equations. A concrete investigation to find the

region of unbroken PT symmetry for H̃A is desirable.

(iv) The general prescription given in this article may be used to construct

models of non-Dirac-hermitian spin-chain with long-range interaction. For ex-

ample, the non-Dirac-hermitian spin-chain Hamiltonian,

H = ±
∑

i<j

~Ti · ~Tj
2sin2 π

N
(i − j)

, (23)

is isospectral with the celebrated Haldane-Shastry[27] model. The equivalent

hermitian Hamiltonian in HD may be obtained as,

h := ρHρ−1 = ±
∑

i<j

~Si · ~Sj

2sin2 π
N
(i− j)

. (24)

It may be noted that, in general, eigenstates of h and H are different. However,

with proper identification of physical observables in Hη+
through Eq. (2), dif-
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ferent correlation functions of the quantum systems governed by H and h are

identical.

3 Conclusions

A class of non-Dirac-hermitian many-particle quantum systems admitting en-

tirely real spectra has been presented. The time-evolution of these systems is

guaranteed to be unitary with the modified inner-product in the Hilbert space

involving the pre-determined metric. These quantum systems are isospectral

with known Dirac-hermitian quantum systems and are exactly solvable. In

fact, several previously studied non-Dirac-hermitian quantum systems involv-

ing transverse ising-chain[7], asymmetric XXZ spin-chain[4, 12] belong to this

class of pseudo-hermitian quantum system. New exactly solvable interesting

pseudo-hermitian many-particle quantum systems involving rational Calogero

model, XXZ spin-chain and Haldane-Shastry spin-chain have also been con-

structed. Many other physically relevant pseudo-hermitian quantum system in-

volving Swanson model[5], Dicke model, Lipkin model, quadratic boson/fermion

form etc. are described in Ref. [4].

The general approach that has been followed in the construction of these

quantum systems is the following. The basic canonical commutation relations

defining these systems have been realized in terms of non-Dirac-hermitian op-

erators which are hermitian with respect to the modified inner product in the

Hilbert space involving the pre-determined metric. Consequently, appropri-

ate combinations of these operators result in a very large number of pseudo-

hermitian quantum systems. The construction in this article is purely mathe-

matical. Physical realizations of such models are desirable.
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