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Abstract

We make a detailed study of the first and second-order SUS3Ngrarof a one-dimensio-
nal free Hamiltonian with a singular perturbation propamal to a Dirac delta function. It
is shown that the second-order transformations increa&sgpictral manipulation possibil-
ities offered by the standard first-order supersymmetrantium mechanics.

1 Introduction

One-dimensional Hamiltonians with a singular interacti@ve been studied during the past
two decaded [1-+7]. In general, a singular interaction iculesd by a potential concentrated
either in a single or a discrete number of points as it happewgs, for the Dirac delta or its
derivative. Mathematically, these potentials are define@iwen especial domains of the free
particle Hamiltonian with some matching conditions for thiave functions at the singular
points [2/8=11]. In particular, the Dirac delta barrier ogllhave been extensively studied
in this way with or without other interactions [12], with orittwout mass discontinuities at the
singular points etcl [13,14].

On the other hand, supersymmetric quantum mechanics (SU8)¥h@s emerged as the
standard technique for generating new potentials with knspectra departing from an initial
one [15+-41]. The method has been applied successfully tesimgular one-dimensional po-
tentials defined on the full real lineé [42,143], on the positsemi-axis|[44, 45] or in a finite
interval [46]. Although there are some works dealing withSSUQM applied to singular po-
tentials [47-58], however the corresponding study has bleee just for particular first-order
SUSY transformations, without analyzing the full possilas of spectral manipulation offered
by the method. It is interesting to note as well that singplatential may appear as hidden
supersymmetries [54, 55].
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Now, it is the appropriate time for studying the behavioriofysilar potentials with bound
states under SUSY QM. Due to the calculation complexity, gl $ocus our attention to first
and second-order transformations, which anyway are istiegeby themselves [56-59]. We
will restrict the discussion to the following one-dimensabHamiltonian

Hy=—=— + W), W) :=-a(x), a>0, (1)

which is mathematically well defined and selfadjoint pr@ddhat we use as its domédinhthe
subspace of the Sobolev spd¢&(R/{0}) such that for any/(x) € D, one has:

¥ (0+) 10 ¥(0-)
(o)) o)
¥'(04) —2a 1 ¥'(0-)
wherey)(04), ¥(0—) andy)’(0+), ¢'(0—) are the right and left limits ofy(x) andy’(z) at the
origin respectively [2].

In order to achieve our goal, we have organized this papeolasyvs: in Section 2, we
will study the solutions of the stationary Schrodinger &tipn for the Hamiltoniari, given by
@@. In section 3 we will apply the first-order SUSY techniguin Section 4 we will analyse
the second-order tranformations and in section 5 we wik@né our conclusions. Appendix A

contains a short discussion about the case in which thalipititential includes an extra term
proportional toy' ().

2 Solution of the Schibdinger equation

Let us evaluate in the first place the general solution of thigomary Schrodinger equation for
an arbitrarye = —k?/2 < 0:
Hou(z) = eu(z), (3)

with H, given in (1). There is one solution vanishing for» —co, denoted., (z), of the form
uy(z) =™ H(—z) + (a ™ + Be ™) H(z), k>0, 4)

where H (z) is the Heaviside step function, and /5 are constants to be determined from the
discontinuity equations (2). We need as well the derivative, (z),

u, () = kuy () — 2kBe ™ H(z) + (o + B — 1)8(x). (5)
From equationd {4) andl(5) it turns out that
ur(0+)=a+p5, u(0-)=1, o, (0+)=k(a—p), u\ (0-)=*r. (6)
On the other hand, using equatiohk (2) ddd (6), we obtain:
a+B=1, a-B=1-2a, (7)

wherea = a/k. Hence:
a=1-—a, b=a. (8)



Inserting these expressions in equatians (4) ahd (5), wiyfiget

up(z) = e —a (" —e™™) H(z), 9)
ul, (7) = kuy(z) — 2ae” " H(z). (10)

Note that the Hamiltoniati, in equation[(IL) is invariant under the change+» —z. Thus,
we can find a second linearly independent solutioiir) for the same = —k?/2, vanishing
now forx — oo, by applying this transformation te, (x):

u_(z)=a (e —e ™) H(—z)+e ", (11)

Moreover:
u' (x) = —ku_(z) 4 2ae"* H(—x). (12)

Finally, the general solution of equatidd (3) for= —k?/2 < 0 is a linear combination of both
(@) and [(11) which, up to an unessential constant factopres:

w(z) = ui(x)+Du_(z) =" +De ™ —a (e —e™™) [H(z) — DH(-2)] , (13)
whereD is a constant. The corresponding derivative is given by:

u'(z) = —ku(x) + 2ke* [1 — aH(z) + DaH(—x)] . (14)

Note that, up to normalization, both solutions(x) lead to the same bound state fgr= a:

Yo(z) = va [ H(—z) + e ™" H(z)] . (15)

The corresponding eigenvalue becomes

Ey=—— (16)

which coincides with the result derived in J11].

On the other hand, the scattering statescfer x?/2 > 0 can be simply obtained from the
solutions given in equationkl(9J11) by the substitutionr> —ix, x > 0. In particular, for a
probability flux approaching the singularity fromoo the corresponding scattering state arises
in this way from theu_ () of equation[(1l), which (up to unessential constant fadeas to
1 B (). (17)

Y(z) = { B e_i’”} H(—x)+ —

K —1a

It is clear now that the reflectioR and transmitioril” coefficients become the standard ones
(see, e.g./160]):

= (18)




3 First-order SUSY transformation

Let us start with the initial Schrodinger Hamiltoniah given in (1). As it is well known (see,
e.g., [37,41] and the references cited there), in order neigee its first-order SUSY partner,

o=t v (19)
LT Ty g T
which is intertwined withH in the way
HAf = A{ Hy, (20)
where . p /
A= (-2 4% 21

it is used as transformation functiar{x) the seed solution given ifn_(1L3), associated to the
factorization energy = —k?/2 and satisfying equatiof](3). The SUSY partner potentjét)
of Vy(x) is given by:

Vi(z) = Vo(z) — nu(x))". (22)

We assume the standard restrictiord £y = k > kg, in order to avoid the creation of new
singularities inV; (x) with respect to those dfy(z). Note that, from equatioh_(22) and (3) we
have:

Vi) = Vi) - S+ [Z((j)’}: Vo) + 26 + [u/@)r (23)

Hence, a straightforward calculation using equation&ld)3eads to:

{U'(x)] S 4k*(1 - a) D+ aD*H(—z) + aH (z)] . (24)

u(z) u?(x)
As e = —k?/2, equations(2B,24) give:

4k*(1 — a)[D + aD*H(—x) + aH (z)]

Vi(z) = ad(z) — {ek* + De=F* + 2a sinh(kx)[DH(—z) — H(x)|}?

(25)

Note that the denominator of equatidn](25) never vanishes f@é (—oo,00) and D > 0.
Moreover, it can be seen that the delta tern¥ific) is now repulsive (since > 0).

A straightforward consequence of the intertwining relasioip [20) is that for any mathe-
matical or physical eigenfunction of H, associated to the eigenvalle(Hy = Ev) such
that Ay # 0, it turns out that)(!) oc A+ oc W (u, 1)) /u is a corresponding eigenfunction of
H, associated td’. Moreover, if the mathematical or physical eigenfunctionf H, satisfies
equation[(R) it turns out that now obeys:

( YW (0+) ) ( 1 0) ( Y (0-) )
= : (26)
o0 (0+) 20 1)\ w'(0-)



which is consistent with the fact that the intensity of théalgerm inV/; (x) has an opposite sign
compared with/y(z) and the second term &f () has just a finite discontinuity at = 0 (see
equation((Zb)).

Concerning the spectrum &f;, let us note in the first place thdt transforms the scattering
eigenfunctions off, into the corresponding ones éf;. In particular, the wavefunction(x)
given in equation[{17), when transformed by acting on it with, produces an expression
1 () which is a bit large to be presented here. However, for lasdiges ofjz| that expression
reduces to the following scattering one (up to a constamdfac

(1) iKkT a —k+ ik —iKkT o
o ) (]

|z| =00
K —k+ik\ ;
STH(x). 27
+(a+m)<k+m)e (z) (27)

This means that the initial reflexion and transmision coeifits are unchanged under the first-
order SUSY transformation (compare equation (18)). We tturlude that the continuous
spectrum ofH/, belongs as well to the spectrum &f.

Let us note that the differences in the spectradgfand H, rely in general in the modi-
fications produced by a non-singular SUSY transformatiorthendiscrete part of the initial
spectrum. For first-order transformations, these changese classified according to the es-
sentially different combinations of the parametérs> 0 andk > k, which characterize the
seed eigenfunction(z). We can find three different situations.

(i) Creation of a new ground state at e < FE,. This case appears f@& > 0, k£ > kq. Here, the
eigenfunction)" 1/u(x) of H, associated te is square-integrable. Moreover, since the

mapped initial ground stat@él) = %ﬁw is as well a normalized eigenfunction of

H, with eigenvalueF, then SPH,) = {¢, Ex} U [0, 00) = {e} U Sp(H,).

(i) Isospectral transformations. These are achieved from the previous case either by taking
D — 0 or D — oo. Since in both situations(z) goes to zero at one of the ends of the

domain, it turns out tha;bﬁl) x 1/u(zx) is not longer square-integrable, althoug(ﬁ) is. Thus,
Sp(H1) = {Eo} U [0, 00) = Sp(Ho).

(iii) Deleting Ey. This situation arises from the previous one by taking ko = a (@ = a/k =
1). Sinceu(z)  1(z) is square-integrable, thert" o 1/u(z) is not normalizable, and then
Sp(H;) = [0, 00). From equation(25), it is clear that now

Vi(z) = ad(z). (28)

This means that, by deleting the bound state of the attedglta wellV,(x) = —ad(z),a > 0,
which is placed atF, = —a?/2, we recover the repulsive delta barrier of equation (28), a
standard result well known in the literature.



4 Second-order SUSY transformation

In this section it will be illustrated, by means of the deltall potential, the advantages for
manipulating spectra of the second-order SUSY transfoomat{56+-59] compared with the
first-order ones. It is nowadays known that the second-d&lE8Y partnerdd, of the initial
HamiltonianH, can be generated either by employing two eigenfunctigis), u,(z) of Hy,
not necessarily physical, associated to two differentf@ation energies, », €; # €, [37,41]
or by an appropriate eigenfunction(x) in the limit whene; — ¢; (the so called confluent
case([6]1, 62]). In both situations the two Hamiltonidiig H, are intertwined by a second-
order operator in the way

HyBy = By Hy, (29)
where W
1 d ul d w(z)

Br—_(_%_ % | (_“ " 1 _ 30
2 2( dx—i_ugl)) ( dx+u1)’ 2 uy(z)’ (30)

the new Hamiltoniar, takes the standard Schrodinger form

1 d?

H2——§d—12+‘/2($)7 (31)

and the second-order SUSY partig(z) of the initial potentially(x) is given by
Va(x) = Vo(z) — Inw(x)]”, (32)

the real functionu(x) being proportional in general to the Wronskian of two geliezd eigen-
functions of H, [63]. An explicit classification of the several second-or8&SY transforma-
tion is next given.

4.1 Confluent casel[61,62]

Let us consider in the first place the limit — ¢; = ¢ = —k?/2 < 0, taking as seed the
Schradinger solution (z) vanishing asc — —oo, which means to take the(x) given in
equation[(IB) withD = 0, namely:

u(z) = e — 2asinh(kx)H (z) . (33)

In this case the real function(z) appearing in equation (B2) takes the fofrm/[62]

w(z) = wp +/ u?(y) dy . (34)
An explicit calculation forr < 0 leads to:
T x 62k:v
| = [ a0 (35)



Figure 1: Potential differencAV (x) as function ofz (blue lines) induced by the confluent
second order SUSY transformation for= 2, £ = 1, wy = 1. A new level was created at
e = —1/2, above the initial ground statg, = —2 (gray horizontal lines).

On the other hand, for > 0 it turns out that:

/;B uy)dy = /0 u2(y)dy+/0xu2(y)dy

—00 —00

i (1-2a) 5, @& . o
- T+ — — ) 36
- T +o sinh(2kz) + 2a(1 — a)x (36)

ke Ta a ., a . . .
w(w) =wo o g e g sinh(2ke) 4 20(1 —a)e| H(z). (37

The second-order SUSY partner potentialpfz) becomes now

ul(r)  2u(z)u(z)

Vo) = —ad(x)+ w2(z) w(z)

(38)

Note that, since/(0+) = k£ — 2a andv/(0—) = k, then«/(x) and consequently the potential
differenceAV (z) = Va(z) — Vi (x) have a finite discontinuity at = 0.

In order to avoid the arising of extra singularities #6x(x) with respect td/;(xz) we have
to takew, > 0. Concerning the spectrum éf,, a similar calculation as in the first-order case
shows that the scattering eigenfunctiongffare mapped into the corresponding onegief
i.e., the energy intervgD, co) belongs to SfH,). As for the discrete part of the spectrum,
several possibilities of spectral manipulation emerg®ating to how we choosk andwy.

(i) Creating a new bound state at € # Ej. This case appears by taking > 0 andk # ky = a.
Since
lim ® o lim wz) _ 0, (39)

|| =00 2| =00 w(T)
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the eigenfunctionpﬁ” of H, associated te is square-integrable, i.e., a new bound state has
been created at either below the ground state fbr> k, or above it fork < ky;. Note that

the possibility of creating new levels above the groundestéthe initial Hamiltonian was not
directly foreseen from the first-order SUSY treatment. Tdpsion is illustrated in figure 1,
where we have plotted the potential differens¥ (x) as a funtion ofc fora = 2, k =1, wg =

1, i.e., a new level was createdat —1/2 > E, = —2 (see the two gray horizontal lines in
the same graph). Note the existence of a finite discontimnityl’(z) atz = 0, induced by a
similar discontinuity ofu’(x) at the same point.

(ii) Isospectral transformations. They arise in the first place as a limit of the previous case
for e # Ey andw, — 0. Note that the long explicit expression for thg(x) of (38) which
would appear if we would substitute explicitly théxr) andw(z) of equations[(38,37) becomes
strongly simplified in this limit:

Rak2e2kr[(a—1)e2k* —gl{(a—1)[2kz(a—1)+1—2a)e2k* +a[2kx(a—1)+2a—3
‘/2(1") = —CL(S(Q;’) + [( ) {(&—1])2(84'1“”—)i-[Qﬁ[l(—Qk.’E)?(:l—l)}eLkw——22}[2 ( )+ ]}H(x) (40)
Since now
lim uz) = 00, (41)
T——00 w(x

it turns out that ¢ Sp(H>) = {Ep} U [0,00) = Sp(H,).

An alternative way to produce isospectral transformatisns use the single bound state of
H, for evaluatingw(z). The corresponding formula is achieved from equation (37jaking
k = ky = a, a = 1, which leads to:

2ax
w(z) = wy + N 2sinh2(ax)H(x) . (42)
2a a
Hence
3 2ax 2 2ax
Vale) = —ad(e) — o0 gy g ST w0a) g3

(2wpa + e?ev)? 2(1 4+ woa)e?e® — 1)2

Note that noww(z) is nodeless for

1
wy € (—oo, _5) U (0,00). (44)
Moreover, in this domain it turns out that
lim @) _ g, (45)

e, u(z)/w(x) is square-integrable> Sp(Hs) = {Ey} U [0, 00) = Sp(Hy).

(iii) Deleting the ground state of H,. By taking now the limit of equation (42) fow, —
0 orwy — —1/a, it turns out thatlim, , . u(x)/w(z) = oo Or lim, . u(z)/w(x) = 0o
respectively. In both case[éz) is not square-integrable and then

Ey & Sp(H,) = [0, 00). (46)

8



This result means that we have deleted the ground stdfg iof order to obtaind,. Forw, — 0
the potential of equatiof (43) becomes

N 8a262am
(262am _ 1)2

On the other hand, fow, — —1/a the corresponding potenti&h(x) is obtained from the
previous one by the change— —uz.

Let us remark that, although the final spectra of the SUSYhpatiamiltonians of{, are
the same when deleting its ground state in the first-ordeiratiie confluent second-order trans-
formations, however the potentidlg(x) andV,(z) are physically different (compare equations
(28) and[(4Y¥)). In particular, note the opposite signs ofahefficients of the Dirac delta func-
tion for both potentials.

H(z). (47)

4.2 Complex case [64—66]

Let us assume thdt = ky + ik; is complex withkr > 0, k; € R, and suppose that the two
involved factorization energies are now givendoy —k? /2 ande, wherez denotes the complex
conjugate ot. Since we need to avoid the arising of extra singularitiek@new potential, we
will take a Schrodinger seed solution vanishing at one efehds of the:-domain in the form
given in equation(33) witkk € C, namely,

u(w) = ke — % sinh(kz)H(z),  a(x) = e — 2—: sinh(kz)H(z).  (48)

To compute now the second-order SUSY partner potehtial), we have to obtain in the first
place the Wronskiahl’ (u, u) and then the real function

_ W(u, u)
w(z) = -9 (49)
This calculation is cumbersome but otherwise straightéwdywhich leads to:
62]€R1’ a
w(zr) = ST + { e [cosh(Qka) - COS(2/{5[{L')]
a(a — kg) . .
Wk [k;, sinh(2krz) — kg sm(zk,x)] }H(m), (50)
Then,V;(x) will be given by
4 =/ = /
Vale) — —ad(a) + LI @)W (@) + au @) 1)

w?(z) w(z)

with u(z), a(z) andw(z) as given in equation§ (48) arid (50). An illustration of théepdial
differenceAV (z) as function ofr for a = 2, £ = 1/100 + /10 is given in figure 2.
Note that these equations become highly simplifide;it= a:

w(x) = 622::0 B <a2 j‘_ k%) [cosh(2ax) — cos(2k;x)] H(z) (52)
|u(x)\2 — e2am _ <%ak%> [a sinh(2ax) + k[ SIH(QI{?[Z’)] H(l’) . (53)

9
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Figure 2: Potential differencAV (x) as function ofr induced by the complex second order
SUSY transformation fow = 2, £k = 1/100 + i/10. The two potentiald’(z) andV;(z) are
isospectral.

Moreover, forky = a it is obtained a more compact expression for the new potehia)
than the one that would appear if we would substituterth® andw(z) of equations[(418,50)
in equation[(5):

4a?e2%%(2(a? —k?2) cos(2k; x)(a® —k2e*2%)—dak; sin(2k;x)(a +k?e*2%)+8a2 k2 e20%)
‘/2(.13) - —a5(x) + [aQ—k%e4“z—2a262‘” cos(2krx)]? H(l’) (54)

Let us remark that, for the general case characterized bgtiems (48) and_(80) as well as
the particular ones described by equatidons[(52-54), thitesicey states of/, are mapped into
the corresponding ones éf,, and the same happens for the bound state. Thus, it turnkatut t
the spectrum of{, will be equal toSp(H,) = {Ey} U [0, 00), i.e., the complex second-order
SUSY transformations which produce a real final potentialsarictly isospectral.

4.3 Real case

Let us take now two seed solutions, u, in the form given in equation_(13), associated to
the pair of real factorization energies < ¢; = ko > k;. Their explicit forms, and the
corresponding derivatives, are given by:

ui(z) = €M+ Die ™ + 24, sinh(k;x)[D;H(—z) — H(z)], (55)
ui(r) = —ku(z) + 2k [1 — @, H (x) + Dya; H(—x)], i=1,2, (56)

1

wherea; = a/k;. Similarly as in the complex case, the calculation of the Mgkianw(z) =
W (uy,us) of the two involved Schrodinger seed solutions is onceragambersome, but a
convenient compact expression reads:

w(x) = (k1 — ka)urug + 2kgur€* [1 — ayH (x) + Dady H(—x)]
—2kyue®® [1 — ay H(z) + Dya  H(—x)] . (57)
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By employing this equation, it is straightforward to caba the new potential throught:

I\ 2 "
Va(z) = —a5(x)+<%) —%
= ooy ¢ W He) G i)

Concerning the spectrum @éf,, once again the scattering stateshfare mapped into the
corresponding ones @f,. As for the discrete part of the spectrum, several poss#dre worth
of study.

(i) Creating two new levels. Let us suppose first that # FEy # €. In order thatw(x) be
nodeless, the two factorization energies must be placedreioth below (forky > k; > a)
or both abover, (for k1 < k3 < a). Moreover, according to the chosen ordering< ¢, the
solutionuy(x) must have one extra node with respect.t@r) [37]. In the domairk, > k; > a
(e2 < €1 < Ejp) this can be achieved by taking, < 0 andD; > 0 while for k; < ks < a
(Ep < €3 < €1) it must be takerD, > 0 andD; < 0. With this choice of parameters, it turns

out that the two eigenfunctions éf, associated te; ande,, wﬁf) X Uy /w andzpﬁf) x up/w,
are square-integrable. Thus,

Sp(Hg) = {62, 61} U Sp(Ho), (59)

i.e., two new levels have been created foy, either both below the ground state &f (for
ko > ki > a) or both aboveF, (for k; < ks < a). Anillustration of the last situation is shown
in figure 3, where we have plotted the potential differeddé(x) fora = 2, ky = 1, ky =
1/2, D; = —1/2, D, = 1. As a result of the transformation, two new levels were aeat
above the ground state energy /@ at the positiong, = —1/2 ande; = —1/8 (see the gray
horizontal lines at figure 3).

(i) Creating one new level. This case arises from the previous one far — 0. Now it turns
out that@bg) IS not square-integrable anymore, meaning that

Sp(Hz) = {e1} USp(Ho). (60)

Thus, in order to generafé, a new level has been createdgtabovek, for k; < a and below
it for k; > a.

(iii) Isospectral transformations. These can be achieved from case (i) far= D, — 0, where
bothwe(f) andwg) leave to be square-integrable so tha¥ Sp(H>), ¢ = 1,2. Hence,
Sp(Hz) = Sp(Ho). (61)

(iv) Moving the level E,. This procedure is obtained from case (i), e.g., by taking= Ey,
Dy — 0, uz(x) o ¥o(x), anduy () as given in equation (55) with; < 0, ¢; > Ey. With this
choice it can be shown thaéf) o uy/w IS not square-integable bwﬁf) does, meaning that

Sp(Haz) = {e1} U0, 00). (62)
In a way, the leveE,, has been moved up tg for generatingHs.

(v) Deleting the level E,. This can be achieved as a limit of the previous caséXor> 0. Now
it turns out thatim,, o us/w = oo, i.€.,e; & Sp(Hs), and hence

Sp(H3) = [0, 00). (63)

11



Figure 3: Potential differencAV (x) as function ofz (blue lines), induced by a real second
order SUSY transformation for = 2, ks = 1, k; = 1/2, D; = —1/2, Dy = 1. Note that
two new levels were created abolfg = —2, at the positions, = —1/2 ande; = —1/8 (gray
horizontal lines).

5 Conclusions

We have employed the first and second-order supersymmesittigm mechanics for generat-
ing new potentials with modified spectra departing from tekedwell potential. The first-order
transformation allowed us to change just the ground stageggrievel, while the second-order
transformations enlarged the possibilities of spectratrad, including the option of manipulat-
ing the excited state levels. On the other hand, it is impotaremember that the first-order
transformations induced in the new potential a delta terth am opposite sign compared with
the initial one (physically the delta term changed fromeattive to repulsive). Meanwhile, the
second-order transformations generated a delta term wébtlg the same sign as the initial
one (the attractive nature was preserved under the tranafmm). These physical differences
should be taken into account in the determination of the rapptopriate transformation for
building a potential model. We can conclude that supersymmcoguantum mechanics is a pow-
erful mathematical tool, which is quite useful for implertiag the spectral design in physics.

A The addition of a ¢'(x) term in the potential

In a previous work([11], we have considered a singular paikslightly more general than the
Vo(z) of equation[(lL). In this case, the Hamiltonian is given by

Hy=—-— + W(x), Vo(z) := —ad(z) +b8'(z), a>0,beR. (64)
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This Hamiltonian is mathematically well defined and self@alj provided that we use as its
domainD the subspace of the Sobolev sp&icé(R/{0}) such that for any)(z) € D, one has:

( (04) ) 1 ( (0-) )
= , (65)
Y'(0+) =2 P'(0-)

wherey)(0+) and«(0—) are the right and left limits of (x) at the origin, respectively [2]. The
price we have to pay is the need for a definition of the Diratadgl:) and its derivativey’ ()
for functions having a jump at the origin, which are given by

¥(0+) +¥(0-)

vt = U0 50 (66)

TheVy(z) of equation[(6¥) appeared in the search for the bound stat@pé-dimensional
repulsive Dirac delta potential with a mass jump at the arj@B]. In this case, the need to find
solutions of the Schrodinger equation with a discontyaitthe origin forced the presence of
thed’(z) term. TheH, of equation|[(64) has been used as well for another purposewietre.
Then, one might ask whether the study presented in this mamebe implemented for such a
Hamiltonian.

To answer this, let us note that the first-order SUSY partogzrgialV; (x) of V,(z) is again
given by [23) but now

20° — a a—+ 2b
u(z) = e+ De k4 [( 1_b2a) et 4 (Olh_LbQ) e_k“"] H(x)

+D K‘i — Zf ) e + <2lbz__bf) e—ﬂ H(-z), (68)
u'(z) = —ku(x) + 2ker” [1 + (Qf%_bf) H(z)+ D (%25) H(—x)}
; (12—+bb) <D t %ﬁ) 5() (69)

wherea and D were defined in Section 2. From these expressions and equafdit is clear
that [v/(x) /u(z)]* will produce inV;(z) a term proportional t@*(z), which is nonsense. In
order to avoid this, we must fix= 0. The conclusion is that the addition of a teffi) in the
potential cannot produce a well defined first-order SUSYnaaupotential.
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