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§ Departamento de Fı́sica Teórica, Atómica y Optica
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Abstract

We make a detailed study of the first and second-order SUSY partners of a one-dimensio-
nal free Hamiltonian with a singular perturbation proportional to a Dirac delta function. It
is shown that the second-order transformations increase the spectral manipulation possibil-
ities offered by the standard first-order supersymmetric quantum mechanics.

1 Introduction

One-dimensional Hamiltonians with a singular interactionhave been studied during the past
two decades [1–7]. In general, a singular interaction is described by a potential concentrated
either in a single or a discrete number of points as it happens, e.g., for the Dirac delta or its
derivative. Mathematically, these potentials are defined on given especial domains of the free
particle Hamiltonian with some matching conditions for thewave functions at the singular
points [2, 8–11]. In particular, the Dirac delta barrier or well have been extensively studied
in this way with or without other interactions [12], with or without mass discontinuities at the
singular points etc. [13,14].

On the other hand, supersymmetric quantum mechanics (SUSY QM) has emerged as the
standard technique for generating new potentials with known spectra departing from an initial
one [15–41]. The method has been applied successfully to non-singular one-dimensional po-
tentials defined on the full real line [42, 43], on the positive semi-axis [44, 45] or in a finite
interval [46]. Although there are some works dealing with SUSY QM applied to singular po-
tentials [47–53], however the corresponding study has beendone just for particular first-order
SUSY transformations, without analyzing the full possibilities of spectral manipulation offered
by the method. It is interesting to note as well that singularpotential may appear as hidden
supersymmetries [54,55].

1

http://arxiv.org/abs/1012.0808v2


Now, it is the appropriate time for studying the behavior of singular potentials with bound
states under SUSY QM. Due to the calculation complexity, we shall focus our attention to first
and second-order transformations, which anyway are interesting by themselves [56–59]. We
will restrict the discussion to the following one-dimensional Hamiltonian

H0 = −1

2

d2

dx2
+ V0(x) , V0(x) := −aδ(x) , a > 0 , (1)

which is mathematically well defined and selfadjoint provided that we use as its domainD the
subspace of the Sobolev spaceW 2

2 (R/{0}) such that for anyψ(x) ∈ D, one has:

(

ψ(0+)

ψ′(0+)

)

=

(

1 0

−2a 1

) (

ψ(0−)

ψ′(0−)

)

, (2)

whereψ(0+), ψ(0−) andψ′(0+), ψ′(0−) are the right and left limits ofψ(x) andψ′(x) at the
origin respectively [2].

In order to achieve our goal, we have organized this paper as follows: in Section 2, we
will study the solutions of the stationary Schrödinger equation for the HamiltonianH0 given by
(1). In section 3 we will apply the first-order SUSY techniques, in Section 4 we will analyse
the second-order tranformations and in section 5 we will present our conclusions. Appendix A
contains a short discussion about the case in which the initial potential includes an extra term
proportional toδ′(x).

2 Solution of the Schr̈odinger equation

Let us evaluate in the first place the general solution of the stationary Schrödinger equation for
an arbitraryǫ = −k2/2 < 0:

H0u(x) = ǫu(x), (3)

with H0 given in (1). There is one solution vanishing forx→ −∞, denotedu+(x), of the form

u+(x) = ekxH(−x) + (α ekx + β e−kx)H(x) , k > 0 , (4)

whereH(x) is the Heaviside step function, andα, β are constants to be determined from the
discontinuity equations (2). We need as well the derivativeof u+(x),

u′+(x) = ku+(x)− 2kβ e−kxH(x) + (α + β − 1)δ(x). (5)

From equations (4) and (5) it turns out that

u+(0+) = α + β , u+(0−) = 1 , u′+(0+) = k(α− β), u′+(0−) = k. (6)

On the other hand, using equations (2) and (6), we obtain:

α + β = 1 , α− β = 1− 2ã , (7)

whereã = a/k. Hence:
α = 1− ã , β = ã . (8)
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Inserting these expressions in equations (4) and (5), we finally get

u+(x) = ekx − ã
(

ekx − e−kx
)

H(x) , (9)

u′+(x) = ku+(x)− 2ae−kxH(x). (10)

Note that the HamiltonianH0 in equation (1) is invariant under the changex → −x. Thus,
we can find a second linearly independent solutionu−(x) for the sameǫ = −k2/2, vanishing
now forx→ ∞, by applying this transformation tou+(x):

u−(x) = ã
(

ekx − e−kx
)

H(−x) + e−kx . (11)

Moreover:
u′−(x) = −ku−(x) + 2aekxH(−x). (12)

Finally, the general solution of equation (3) forǫ = −k2/2 < 0 is a linear combination of both
(9) and (11) which, up to an unessential constant factor, becomes:

u(x) = u+(x) +Du−(x) = ekx +D e−kx − ã
(

ekx − e−kx
)

[H(x)−DH(−x)] , (13)

whereD is a constant. The corresponding derivative is given by:

u′(x) = −ku(x) + 2kekx [1− ãH(x) +DãH(−x)] . (14)

Note that, up to normalization, both solutionsu±(x) lead to the same bound state fork0 = a:

ψ0(x) =
√
a
[

ek0xH(−x) + e−k0xH(x)
]

. (15)

The corresponding eigenvalue becomes

E0 = −a
2

2
, (16)

which coincides with the result derived in [11].
On the other hand, the scattering states forǫ = κ2/2 > 0 can be simply obtained from the

solutions given in equations (9,11) by the substitutionk → −iκ, κ > 0. In particular, for a
probability flux approaching the singularity from−∞ the corresponding scattering state arises
in this way from theu−(x) of equation (11), which (up to unessential constant factor)leads to

ψ(x) =

[

eiκx +
ia

κ− ia
e−iκx

]

H(−x) + κ

κ− ia
eiκxH(x). (17)

It is clear now that the reflectionR and transmitionT coefficients become the standard ones
(see, e.g., [60]):

R =

∣

∣

∣

∣

ia

κ− ia

∣

∣

∣

∣

2

=
a2

κ2 + a2
, T =

∣

∣

∣

∣

κ

κ− ia

∣

∣

∣

∣

2

=
κ2

κ2 + a2
. (18)
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3 First-order SUSY transformation

Let us start with the initial Schrödinger HamiltonianH0 given in (1). As it is well known (see,
e.g., [37,41] and the references cited there), in order to generate its first-order SUSY partner,

H1 = −1

2

d2

dx2
+ V1(x), (19)

which is intertwined withH0 in the way

H1A
+
1 = A+

1H0, (20)

where

A+
1 =

1√
2

(

− d

dx
+
u′

u

)

, (21)

it is used as transformation functionu(x) the seed solution given in (13), associated to the
factorization energyǫ = −k2/2 and satisfying equation (3). The SUSY partner potentialV1(x)
of V0(x) is given by:

V1(x) = V0(x)− [ln u(x)]′′ . (22)

We assume the standard restrictionǫ ≤ E0 ⇒ k ≥ k0, in order to avoid the creation of new
singularities inV1(x) with respect to those ofV0(x). Note that, from equation (22) and (3) we
have:

V1(x) = V0(x)−
u′′(x)

u(x)
+

[

u′(x)

u(x)

]2

= −V0(x) + 2ǫ+

[

u′(x)

u(x)

]2

. (23)

Hence, a straightforward calculation using equations (13,14) leads to:

[

u′(x)

u(x)

]2

= k2 − 4k2(1− ã)

u2(x)
[D + ãD2H(−x) + ãH(x)] . (24)

As ǫ = −k2/2, equations (23,24) give:

V1(x) = aδ(x)− 4k2(1− ã)[D + ãD2H(−x) + ãH(x)]

{ekx +De−kx + 2ã sinh(kx)[DH(−x)−H(x)]}2 . (25)

Note that the denominator of equation (25) never vanishes for x ∈ (−∞,∞) andD ≥ 0.
Moreover, it can be seen that the delta term inV1(x) is now repulsive (sincea > 0).

A straightforward consequence of the intertwining relationship (20) is that for any mathe-
matical or physical eigenfunctionψ of H0 associated to the eigenvalueE (H0ψ = Eψ) such
thatA+

1 ψ 6= 0, it turns out thatψ(1) ∝ A+
1 ψ ∝ W (u, ψ)/u is a corresponding eigenfunction of

H1 associated toE. Moreover, if the mathematical or physical eigenfunctionψ of H0 satisfies
equation (2) it turns out thatψ(1) now obeys:





ψ(1)(0+)

ψ(1)′(0+)



 =

(

1 0

2a 1

)





ψ(1)(0−)

ψ(1)′(0−)



 , (26)
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which is consistent with the fact that the intensity of the delta term inV1(x) has an opposite sign
compared withV0(x) and the second term ofV1(x) has just a finite discontinuity atx = 0 (see
equation (25)).

Concerning the spectrum ofH1, let us note in the first place thatA+
1 transforms the scattering

eigenfunctions ofH0 into the corresponding ones ofH1. In particular, the wavefunctionψ(x)
given in equation (17), when transformed by acting on it withA+

1 , produces an expression
ψ(1)(x) which is a bit large to be presented here. However, for large values of|x| that expression
reduces to the following scattering one (up to a constant factor):

ψ(1)(x) →
|x|→∞

[

eiκx +

(

a

a+ iκ

)(−k + iκ

k + iκ

)

e−iκx
]

H(−x)

+

(

iκ

a+ iκ

)(−k + iκ

k + iκ

)

eiκxH(x). (27)

This means that the initial reflexion and transmision coefficients are unchanged under the first-
order SUSY transformation (compare equation (18)). We thusconclude that the continuous
spectrum ofH0 belongs as well to the spectrum ofH1.

Let us note that the differences in the spectra ofH1 andH0 rely in general in the modi-
fications produced by a non-singular SUSY transformation onthe discrete part of the initial
spectrum. For first-order transformations, these changes can be classified according to the es-
sentially different combinations of the parametersD ≥ 0 andk ≥ k0 which characterize the
seed eigenfunctionu(x). We can find three different situations.

(i) Creation of a new ground state at ǫ < E0. This case appears forD > 0, k > k0. Here, the
eigenfunctionψ(1)

ǫ ∝ 1/u(x) of H1 associated toǫ is square-integrable. Moreover, since the
mapped initial ground stateψ(1)

0 = 1√
2

1√
E0−ǫ

W (u,ψ0)
u

is as well a normalized eigenfunction of
H1 with eigenvalueE0, then Sp(H1) = {ǫ, E0} ∪ [0,∞) = {ǫ} ∪ Sp(H0).

(ii) Isospectral transformations. These are achieved from the previous case either by taking
D → 0 or D → ∞. Since in both situationsu(x) goes to zero at one of the ends of thex-
domain, it turns out thatψ(1)

ǫ ∝ 1/u(x) is not longer square-integrable, althoughψ(1)
0 is. Thus,

Sp(H1) = {E0} ∪ [0,∞) = Sp(H0).

(iii) Deleting E0. This situation arises from the previous one by takingk = k0 = a (ã = a/k =

1). Sinceu(x) ∝ ψ0(x) is square-integrable, thenψ(1)
ǫ ∝ 1/u(x) is not normalizable, and then

Sp(H1) = [0,∞). From equation (25), it is clear that now

V1(x) = aδ(x) . (28)

This means that, by deleting the bound state of the attractive delta wellV0(x) = −aδ(x), a > 0,
which is placed atE0 = −a2/2, we recover the repulsive delta barrier of equation (28), a
standard result well known in the literature.
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4 Second-order SUSY transformation

In this section it will be illustrated, by means of the delta-well potential, the advantages for
manipulating spectra of the second-order SUSY transformations [56–59] compared with the
first-order ones. It is nowadays known that the second-orderSUSY partnersH2 of the initial
HamiltonianH0 can be generated either by employing two eigenfunctionsu1(x), u2(x) of H0,
not necessarily physical, associated to two different factorization energiesǫ1,2, ǫ1 6= ǫ2 [37, 41]
or by an appropriate eigenfunctionu1(x) in the limit whenǫ2 → ǫ1 (the so called confluent
case [61, 62]). In both situations the two HamiltoniansH0, H2 are intertwined by a second-
order operator in the way

H2B
+
2 = B+

2 H0, (29)

where

B+
2 =

1

2

(

− d

dx
+
u
(1)
2

′

u
(1)
2

)

(

− d

dx
+
u′1
u1

)

, u
(1)
2 =

w(x)

u1(x)
, (30)

the new HamiltonianH2 takes the standard Schrödinger form

H2 = −1

2

d2

dx2
+ V2(x) , (31)

and the second-order SUSY partnerV2(x) of the initial potentialV0(x) is given by

V2(x) = V0(x)− [lnw(x)]′′ , (32)

the real functionw(x) being proportional in general to the Wronskian of two generalized eigen-
functions ofH0 [63]. An explicit classification of the several second-order SUSY transforma-
tion is next given.

4.1 Confluent case [61,62]

Let us consider in the first place the limitǫ2 → ǫ1 ≡ ǫ = −k2/2 < 0, taking as seed the
Schrödinger solutionu+(x) vanishing asx 7−→ −∞, which means to take theu(x) given in
equation (13) withD = 0, namely:

u(x) = ekx − 2ã sinh(kx)H(x) . (33)

In this case the real functionw(x) appearing in equation (32) takes the form [62]

w(x) := w0 +

∫ x

−∞
u2(y) dy . (34)

An explicit calculation forx ≤ 0 leads to:

∫ x

−∞
u2(y) dy =

∫ x

−∞
e2ky dy =

e2kx

2k
. (35)
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Figure 1: Potential difference∆V (x) as function ofx (blue lines) induced by the confluent
second order SUSY transformation fora = 2, k = 1, w0 = 1. A new level was created at
ǫ = −1/2, above the initial ground stateE0 = −2 (gray horizontal lines).

On the other hand, forx > 0 it turns out that:
∫ x

−∞
u2(y) dy =

∫ 0

−∞
u2(y) dy +

∫ x

0

u2(y) dy

=
ã

k
+

(1− 2ã)

2k
e2kx +

ã2

k
sinh(2kx) + 2ã(1− ã)x . (36)

By combining these two results, we obtain

w(x) = w0 +
e2kx

2k
+

[

ã

k
− ã

k
e2kx +

ã2

k
sinh(2kx) + 2ã(1− ã)x

]

H(x) . (37)

The second-order SUSY partner potential ofV0(x) becomes now

V2(x) = −aδ(x) + u4(x)

w2(x)
− 2u(x)u′(x)

w(x)
. (38)

Note that, sinceu′(0+) = k − 2a andu′(0−) = k, thenu′(x) and consequently the potential
difference∆V (x) = V2(x)− V0(x) have a finite discontinuity atx = 0.

In order to avoid the arising of extra singularities forV2(x) with respect toV0(x) we have
to takew0 ≥ 0. Concerning the spectrum ofH2, a similar calculation as in the first-order case
shows that the scattering eigenfunctions ofH0 are mapped into the corresponding ones ofH2,
i.e., the energy interval[0,∞) belongs to Sp(H2). As for the discrete part of the spectrum,
several possibilities of spectral manipulation emerge according to how we choosek andw0.

(i) Creating a new bound state at ǫ 6= E0. This case appears by takingw0 > 0 andk 6= k0 = a.
Since

lim
|x|→∞

ψ(2)
ǫ ∝ lim

|x|→∞

u(x)

w(x)
= 0, (39)
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the eigenfunctionψ(2)
ǫ of H2 associated toǫ is square-integrable, i.e., a new bound state has

been created atǫ, either below the ground state fork > k0 or above it fork < k0. Note that
the possibility of creating new levels above the ground state of the initial Hamiltonian was not
directly foreseen from the first-order SUSY treatment. Thisoption is illustrated in figure 1,
where we have plotted the potential difference∆V (x) as a funtion ofx for a = 2, k = 1, w0 =
1, i.e., a new level was created atǫ = −1/2 > E0 = −2 (see the two gray horizontal lines in
the same graph). Note the existence of a finite discontinuityin ∆V (x) at x = 0, induced by a
similar discontinuity ofu′(x) at the same point.

(ii) Isospectral transformations. They arise in the first place as a limit of the previous case
for ǫ 6= E0 andw0 → 0. Note that the long explicit expression for theV2(x) of (38) which
would appear if we would substitute explicitly theu(x) andw(x) of equations (33,37) becomes
strongly simplified in this limit:

V2(x) = −aδ(x) + 8ãk2e2kx[(ã−1)e2kx−ã]{(ã−1)[2kx(ã−1)+1−2ã]e2kx+ã[2kx(ã−1)+2ã−3]}
{(ã−1)2e4kx+2ã[1−2kx(ã−1)]e2kx−ã2}2 H(x). (40)

Since now

lim
x→−∞

u(x)

w(x)
= ∞, (41)

it turns out thatǫ 6∈ Sp(H2) = {E0} ∪ [0,∞) = Sp(H0).
An alternative way to produce isospectral transformationsis to use the single bound state of

H0 for evaluatingw(x). The corresponding formula is achieved from equation (37) by taking
k = k0 = a, ã = 1, which leads to:

w(x) = w0 +
e2ax

2a
− 2

a
sinh2(ax)H(x) . (42)

Hence

V2(x) = −aδ(x)− 8w0a
3e2ax

(2w0a + e2ax)2
H(−x) + 8a2e2ax(1 + w0a)

[2(1 + w0a)e2ax − 1]2
H(x). (43)

Note that noww(x) is nodeless for

w0 ∈
(

−∞,−1

a

)

∪ (0,∞) . (44)

Moreover, in this domain it turns out that

lim
|x|→∞

u(x)

w(x)
= 0, (45)

i.e.,ψ(2)
ǫ ∝ u(x)/w(x) is square-integrable⇒ Sp(H2) = {E0} ∪ [0,∞) = Sp(H0).

(iii) Deleting the ground state of H0. By taking now the limit of equation (42) forw0 →
0 or w0 → −1/a, it turns out thatlimx→−∞ u(x)/w(x) = ∞ or limx→∞ u(x)/w(x) = ∞
respectively. In both casesψ(2)

ǫ is not square-integrable and then

E0 6∈ Sp(H2) = [0,∞). (46)
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This result means that we have deleted the ground state ofH0 in order to obtainH2. Forw0 → 0
the potential of equation (43) becomes

V2(x) = −aδ(x) + 8a2e2ax

(2e2ax − 1)2
H(x). (47)

On the other hand, forw0 → −1/a the corresponding potentialV2(x) is obtained from the
previous one by the changex→ −x.

Let us remark that, although the final spectra of the SUSY partner Hamiltonians ofH0 are
the same when deleting its ground state in the first-order andin the confluent second-order trans-
formations, however the potentialsV1(x) andV2(x) are physically different (compare equations
(28) and (47)). In particular, note the opposite signs of thecoefficients of the Dirac delta func-
tion for both potentials.

4.2 Complex case [64–66]

Let us assume thatk = kR + ikI is complex withkR > 0, kI ∈ R, and suppose that the two
involved factorization energies are now given byǫ = −k2/2 andǭ, wherez̄ denotes the complex
conjugate ofz. Since we need to avoid the arising of extra singularities inthe new potential, we
will take a Schrödinger seed solution vanishing at one of the ends of thex-domain in the form
given in equation (33) withk ∈ C, namely,

u(x) = ekx − 2a

k
sinh(kx)H(x) , ū(x) = ek̄x − 2a

k̄
sinh(k̄x)H(x) . (48)

To compute now the second-order SUSY partner potentialV2(x), we have to obtain in the first
place the WronskianW (u, ū) and then the real function

w(x) =
W (u, ū)

2(ǫ− ǭ)
. (49)

This calculation is cumbersome but otherwise straightforward, which leads to:

w(x) =
e2kRx

2kR
+
{

− a

|k|2
[

cosh(2kRx)− cos(2kIx)
]

+
a(a− kR)

|k|2kRkI

[

kI sinh(2kRx)− kR sin(2kIx)
]}

H(x) , (50)

Then,V2(x) will be given by

V2(x) = −aδ(x) + |u(x)|4
w2(x)

− [u(x)ū′(x) + ū(x)u′(x)]

w(x)
, (51)

with u(x), ū(x) andw(x) as given in equations (48) and (50). An illustration of the potential
difference∆V (x) as function ofx for a = 2, k = 1/100 + i/10 is given in figure 2.

Note that these equations become highly simplified ifkR = a:

w(x) =
e2ax

2a
−
(

a

a2 + k2I

)

[cosh(2ax)− cos(2kIx)]H(x) , (52)

|u(x)|2 = e2ax −
(

2a

a2 + k2I

)

[a sinh(2ax) + kI sin(2kIx)]H(x) . (53)
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Figure 2: Potential difference∆V (x) as function ofx induced by the complex second order
SUSY transformation fora = 2, k = 1/100 + i/10. The two potentialsV2(x) andV0(x) are
isospectral.

Moreover, forkR = a it is obtained a more compact expression for the new potential V2(x)
than the one that would appear if we would substitute theu(x) andw(x) of equations (48,50)
in equation (51):

V2(x) = −aδ(x) + 4a2e2ax[2(a2−k2
I
) cos(2kIx)(a

2−k2
I
e4ax)−4akI sin(2kIx)(a

2+k2
I
e4ax)+8a2k2

I
e2ax]

[a2−k2
I
e4ax−2a2e2ax cos(2kIx)]2

H(x). (54)

Let us remark that, for the general case characterized by equations (48) and (50) as well as
the particular ones described by equations (52-54), the scattering states ofH0 are mapped into
the corresponding ones ofH2, and the same happens for the bound state. Thus, it turns out that
the spectrum ofH2 will be equal toSp(H0) = {E0} ∪ [0,∞), i.e., the complex second-order
SUSY transformations which produce a real final potential are strictly isospectral.

4.3 Real case

Let us take now two seed solutionsu1, u2 in the form given in equation (13), associated to
the pair of real factorization energiesǫ2 < ǫ1 ⇒ k2 > k1. Their explicit forms, and the
corresponding derivatives, are given by:

ui(x) = ekix +Die
−kix + 2ãi sinh(kix)[DiH(−x)−H(x)] , (55)

u′i(x) = −kiui(x) + 2kie
kix [1− ãiH(x) +DiãiH(−x)] , i = 1, 2, (56)

whereãi = a/ki. Similarly as in the complex case, the calculation of the Wronskianw(x) ≡
W (u1, u2) of the two involved Schrödinger seed solutions is once again cumbersome, but a
convenient compact expression reads:

w(x) = (k1 − k2)u1u2 + 2k2u1e
k2x [1− ã2H(x) +D2ã2H(−x)]

−2k1u2e
k1x [1− ã1H(x) +D1ã1H(−x)] . (57)
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By employing this equation, it is straightforward to calculate the new potential throught:

V2(x) = −aδ(x) +
(

w′

w

)2

− w′′

w

= −aδ(x) +
[

(k21 − k22)u1u2
w

]2

+
(k21 − k22)(u1u

′
2 + u′1u2)

w
. (58)

Concerning the spectrum ofH2, once again the scattering states ofH0 are mapped into the
corresponding ones ofH2. As for the discrete part of the spectrum, several possibilies are worth
of study.

(i) Creating two new levels. Let us suppose first thatǫ1 6= E0 6= ǫ2. In order thatw(x) be
nodeless, the two factorization energies must be placed either both below (fork2 > k1 > a)
or both aboveE0 (for k1 < k2 < a). Moreover, according to the chosen orderingǫ2 < ǫ1, the
solutionu2(x) must have one extra node with respect tou1(x) [37]. In the domaink2 > k1 > a
(ǫ2 < ǫ1 < E0) this can be achieved by takingD2 < 0 andD1 > 0 while for k1 < k2 < a
(E0 < ǫ2 < ǫ1) it must be takenD2 > 0 andD1 < 0. With this choice of parameters, it turns
out that the two eigenfunctions ofH2 associated toǫ1 andǫ2, ψ

(2)
ǫ1 ∝ u2/w andψ(2)

ǫ2 ∝ u1/w,
are square-integrable. Thus,

Sp(H2) = {ǫ2, ǫ1} ∪ Sp(H0), (59)

i.e., two new levels have been created forH2, either both below the ground state ofH0 (for
k2 > k1 > a) or both aboveE0 (for k1 < k2 < a). An illustration of the last situation is shown
in figure 3, where we have plotted the potential difference∆V (x) for a = 2, k2 = 1, k1 =
1/2, D1 = −1/2, D2 = 1. As a result of the transformation, two new levels were created
above the ground state energy ofH0 at the positionsǫ2 = −1/2 andǫ1 = −1/8 (see the gray
horizontal lines at figure 3).

(ii) Creating one new level. This case arises from the previous one forD2 → 0. Now it turns
out thatψ(2)

ǫ2 is not square-integrable anymore, meaning that

Sp(H2) = {ǫ1} ∪ Sp(H0). (60)

Thus, in order to generateH2 a new level has been created atǫ1, aboveE0 for k1 < a and below
it for k1 > a.

(iii) Isospectral transformations. These can be achieved from case (i) forD1 = D2 → 0, where
bothψ(2)

ǫ1 andψ(2)
ǫ2 leave to be square-integrable so thatǫi 6∈ Sp(H2), i = 1, 2. Hence,

Sp(H2) = Sp(H0). (61)

(iv) Moving the level E0. This procedure is obtained from case (i), e.g., by takingǫ2 = E0,
D2 → 0, u2(x) ∝ ψ0(x), andu1(x) as given in equation (55) withD1 < 0, ǫ1 > E0. With this
choice it can be shown thatψ(2)

ǫ2 ∝ u1/w is not square-integable butψ(2)
ǫ1 does, meaning that

Sp(H2) = {ǫ1} ∪ [0,∞). (62)

In a way, the levelE0 has been moved up toǫ1 for generatingH2.

(v) Deleting the level E0. This can be achieved as a limit of the previous case forD1 → 0. Now
it turns out thatlimx→0 u2/w = ∞, i.e.,ǫ1 6∈ Sp(H2), and hence

Sp(H2) = [0,∞). (63)
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Figure 3: Potential difference∆V (x) as function ofx (blue lines), induced by a real second
order SUSY transformation fora = 2, k2 = 1, k1 = 1/2, D1 = −1/2, D2 = 1. Note that
two new levels were created aboveE0 = −2, at the positionsǫ2 = −1/2 andǫ1 = −1/8 (gray
horizontal lines).

5 Conclusions

We have employed the first and second-order supersymmetric quantum mechanics for generat-
ing new potentials with modified spectra departing from the delta well potential. The first-order
transformation allowed us to change just the ground state energy level, while the second-order
transformations enlarged the possibilities of spectral control, including the option of manipulat-
ing the excited state levels. On the other hand, it is important to remember that the first-order
transformations induced in the new potential a delta term with an opposite sign compared with
the initial one (physically the delta term changed from attractive to repulsive). Meanwhile, the
second-order transformations generated a delta term with exactly the same sign as the initial
one (the attractive nature was preserved under the transformation). These physical differences
should be taken into account in the determination of the mostappropriate transformation for
building a potential model. We can conclude that supersymmetric quantum mechanics is a pow-
erful mathematical tool, which is quite useful for implementing the spectral design in physics.

A The addition of a δ′(x) term in the potential

In a previous work [11], we have considered a singular potential slightly more general than the
V0(x) of equation (1). In this case, the Hamiltonian is given by

H0 = −1

2

d2

dx2
+ V0(x) , V0(x) := −aδ(x) + bδ′(x) , a > 0, b ∈ R . (64)
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This Hamiltonian is mathematically well defined and selfadjoint provided that we use as its
domainD the subspace of the Sobolev spaceW 2

2 (R/{0}) such that for anyψ(x) ∈ D, one has:
(

ψ(0+)

ψ′(0+)

)

=





1+b
1−b 0

−2a
1−b2

1−b
1+b





(

ψ(0−)

ψ′(0−)

)

, (65)

whereψ(0+) andψ(0−) are the right and left limits ofψ(x) at the origin, respectively [2]. The
price we have to pay is the need for a definition of the Dirac delta δ(x) and its derivativeδ′(x)
for functions having a jump at the origin, which are given by

ψ(x)δ(x) =
ψ(0+) + ψ(0−)

2
δ(x), (66)

ψ(x)δ′(x) =
ψ(0+) + ψ(0−)

2
δ′(x)− ψ′(0+) + ψ′(0−)

2
δ(x) . (67)

TheV0(x) of equation (64) appeared in the search for the bound state ofa one-dimensional
repulsive Dirac delta potential with a mass jump at the origin [13]. In this case, the need to find
solutions of the Schrödinger equation with a discontinuity at the origin forced the presence of
theδ′(x) term. TheH0 of equation (64) has been used as well for another purposes elsewhere.
Then, one might ask whether the study presented in this papercan be implemented for such a
Hamiltonian.

To answer this, let us note that the first-order SUSY partner potentialV1(x) of V0(x) is again
given by (23) but now

u(x) = ekx +D e−kx +

[(

2b2 − ã

1− b2

)

ekx +

(

ã+ 2b

1− b2

)

e−kx
]

H(x)

+D

[(

ã− 2b

1− b2

)

ekx +

(

2b2 − ã

1− b2

)

e−kx
]

H(−x) , (68)

u′(x) = −ku(x) + 2kekx
[

1 +

(

2b2 − ã

1− b2

)

H(x) +D

(

ã− 2b

1− b2

)

H(−x)
]

+

(

2b

1 + b

)(

D +
1 + b

1− b

)

δ(x) , (69)

whereã andD were defined in Section 2. From these expressions and equation (23) it is clear
that [u′(x)/u(x)]2 will produce inV1(x) a term proportional toδ2(x), which is nonsense. In
order to avoid this, we must fixb = 0. The conclusion is that the addition of a termδ′(x) in the
potential cannot produce a well defined first-order SUSY partner potential.
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