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Abstract: The goal of this paper is to present a formalism that allows to handle four-

fermion effective theories at finite temperature and density in curved space. The formalism

is based on the use of the effective action and zeta function regularization and supports the

inclusion of inhomogeneous and anisotropic phases. One of the key points of the method

is the use of a non-perturbative ansatz for the heat-kernel that returns the effective action

in partially resummed form, providing a way to go beyond the approximations based on

the Ginzburg-Landau expansion for the partition function. The effective action for the

case of ultra-static Riemannian spacetimes with compact spatial section is discussed in

general and a series representation, valid when the chemical potential satisfies a certain

constraint, is derived. To see the formalism at work, we consider the case of static Einstein

spaces at zero chemical potential. Although in this case we expect inhomogeneous phases

to occur only as meta-stable states, the problem is complex enough and allows to illustrate

how to implement numerical studies of inhomogeneous phases in curved space. Finally,

we extend the formalism to include arbitrary chemical potentials and obtain the analytical

continuation of the effective action in curved space.
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1. Introduction

The Nambu-Jona Lasinio (NJL) [1] and the Gross-Neveu (GN) [2] models are the two most

notable examples of four-fermion effective theories (4fET) sharing the global symmetries of

QCD as well as displaying the phenomenon of chiral symmetry breaking. 4fET have been

attracting attention since their inception and it is now well understood that they provide

useful working models allowing to describe dynamical chiral symmetry breaking in vacuum

and in hot-dense baryonic matter, to investigate the QCD phase diagram and, in general,

low-energy non-perturbative effects involving strong interactions at finite temperature and

density (There are many reviews available in the literature, we mainly consulted Refs. [3,

4, 5, 6, 7, 8]).

4fET, aside from being central in the study of superconductivity, quark condensation,

the physics of light mesons, just to mention a few, cover remarkable importance in describ-

ing many astrophysical and cosmological systems where the effects of strong interactions

play a prominent role. Neutron stars and astrophysical compact objects are, in fact, a

natural playground for such models. Interesting ramifications also exist in connection with

the hadrosynthesys in the early universe. Importantly, due to the experimental efforts cur-

rently carried out at heavy ion colliders and directed to explore the properties of QCD at

high temperature and density, the above problems acquire a timely importance also from

a phenomenological point of view.

4fET are usually discussed within the mean-field and large-N approximations, with the

condensate defining the different phases assumed to be spatially homogeneous. However,

there are various reasons to believe that there may be inhomogeneous phases in the phase

diagram of strongly interacting theories as well. Recent attention has been focusing on
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trying to understand whether these phases may actually form. Although the study of these

phases is very important from both a theoretical and a phenomenological perspective, it is

so far rather limited, mostly due to technical complexity. Amongst the cases discussed so

far, the formation of inhomogeneous condensates in NJL-class of models has received some

attention. An initial analysis has been performed within the chiral density wave approach

in which the spatially varying order parameter is assumed to be a plane wave [9]. In

Refs. [10, 11] a Ginzburg-Landau approximation complemented by a full numerical study

has been used. The results indicate that, in the vicinity of the critical chiral point, the

phase diagram is carachterized by two second order phase transitions tracks, intersecting

at a Lifshitz point, with an inhomogeneous ground state rensembling a lattice of domain

walls, which seems to be favoured in the vicinity of the chiral critical point. Solitonic ground

states in color superconductivity have also been analyzed in Ref. [12, 13, 14, 15, 16]. Other

relevant analyses were also performed in the context of the GN model in 1 + 1 dimensions

that allows for exact solutions (see, for instance, Refs. [17, 18, 19, 20, 21]).

We are especially interested in understanding how the effect of an external, spatially

varying gravitational field may modify the phase diagram of QCD. This is clearly a very

complicated problem and the aim of this paper is to set up a formalism useful to study

the above issue. Our goal is to develop a different approach, based on the use of the

effective action formalism and zeta function regularization, which allows for generalization

to curved space and the inclusion of inhomogeneous and anisotropic phases. As we will see,

the method described in this paper may also be easily adapted to include varying external

fields of various sorts, whose analytical study is so far limited to the case of spatially

homogeneous, and/or weak fields.

Understanding how the phase structure of 4fET may be modified due to the presence

of external gravitational fields has received some attention (see, for example, Refs. [22,

23]). The approach tipically used for accounting the presence of the gravitational field is

based on the expansion of the fermion propagator in powers of the external field and is

limited to the case of homogenous condensates, which is usually not reliable in the vicinity

of the transition. A better approach based on the direct computation of the effective

potential without relying on a weak curvature expansion can be easily designed as long

as the condensate, curvature and any additional external field are homogeneous. Such a

direct approach has been used in Ref. [23] to obtain the phase structure of the NJL model

on a cosmological background.

Developing an efficient method that allows the inclusion of inhomogeneous condensates

is one of the aims of this work. In flat space this problem has been considered in Ref. [11],

which uses the Ginzburg-Landau (GL) expansion for the partition function. The GL-

expansion takes the following form:

SGL =
α2

2
σ2 +

α4

4

[

σ4 + (∇σ)2
]

+
α6

6

[

σ6 + 5 (∇σ)2 σ2 + 1

2
(∆σ)2

]

+ · · · , (1.1)

where the dots stand for higher order terms, and has the limitation of leaving out non-

perturbative effects. The above expression is general and, once the underlying model is

fixed, the coefficients αn can be computed.
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As an alternative, in principle, one can design a method based on the direct compu-

tation of the effective action, in a similar way to what is done in Ref. [23] that considers

constant chiral condensates on the background of a static Einstein space. The method used

there is, however, based on the explicit knowledge of the eigenvalues of the Dirac operator.

For this reason this approach simply cannot be adapted to include the general cases with

spatially varying condensates.

In the following we will present a method that bypasses the drawbacks of the above

approaches and allows to compute the effective Lagrangian on a curved background of

ultrastatic type (or conformally related to an ultrastatic manifold). When we consider

spatially inhomogeneous background space-times (or external fields), we also need to care

about the regularization procedure. To avoid ambiguity related to regularization, we adopt

a method that keeps the general covariance manifest.

In the next section we will briefly remind the basics, and in Sec. 3 we will illustrate

our formalism. The method allows to compute the effective Lagrangian for the conden-

sate in partially resummed form, which can be used as a starting point for analyzing the

properties of the inhomogeneous phases and the structure of the phase diagram. This, in

general, requires a non-trivial numerical effort. In order to see the method at work and

to anticipate possible complexties in the numerical analysis, we consider the case of inho-

mogeneous condensates in a static Einstein space at zero chemical potential. This case is

still complicated enough to deserve discussion and will help us to understand better what

are the possible issues in applying the method to cases of physical interest. This example

will be discussed at length in Sec. 4, where we develop the necessary numerics to investi-

gate whether inhomogeneous phases may form due to non-trivial curvature, finite size, and

non-perturbative effects. In fact, we will find that inhomogenous kink-type solutions form.

These solutions, however, have free energy larger than the corresponding homogeneous

phases, and therefore they can only appear as excited states. Sec. 5 is devoted to extend

the formalism to aritrary chemical potentials and conclude in Sec. 6. Some technical details

are included in Appendix.

2. Four-fermion Effective Theories

In the following we will consider as a prototype model of 4fET the following D-dimensional

theory:

S =

∫

dDx
√
g

{

ψ̄iγµ∇µψ +
G

2N

(

ψ̄ψ
)2

+ · · ·
}

, (2.1)

where ψ is a (D × Nf × Nc)-component quark spinor, with Nf flavors and Nc colors

(N ≡ Nf ×Nc), γµ are the gamma matrices in curved space, G is the four-fermion coupling

constant and g = |Detgµν |. The rest of the notation is standard [24, 25]. The dots stand

for terms with higher mass dimension.

Finite temperature will be introduced by means of the imaginary time formalism and

finite density by means of a chemical potential contribution of the form µψ̄γ0ψ. In the

following, we will not consider how the chiral anomaly may be induced by gravitational

effects, and thus we neglect terms of the form
(

ψ̄γ5ψ
)2
.
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The above action is invariant under discrete chiral transformations and mass terms can-

not appear without breaking chiral symmetry. On the other hand, if the chiral symmetry is

broken dynamically, the composite operator 〈ψ̄ψ〉 acquires a non-zero vacuum expectation

value and a fermion mass term would appear. The action is also invariant under SU(Nf )

flavor symmetry. In the following, we will stick to the large-N approximation.

Starting from the theory in flat space allows for a direct generalization to curved

space by replacing the flat space metric and ordinary derivatives with the metric tensor

and covariant derivatives. This process of ‘covariantization’ also requires to augment the

original action with all the terms compatible with coordinate invariance and the symmetries

of the action. The leading contribution is R(ψ̄ψ)2, and it is suppressed relative to the

four-fermion interaction term by the ratio between the curvature and the fundamental

energy scale squared. Higher order terms are further suppressed by inverse powers of the

fundamental energy scale and/or inverse powers of N . In the four dimensional case, for

example, the divergences in the effective action contain a term proportional to R(ψ̄ψ)2,

but not any subleading term (in the sense defined above). In this case, after calculation of

loop corrections, one has to determine the renormalized value of the coefficient of R(ψ̄ψ)2

according to an experimental input. However, such an experimental input is lacking for

this term. Therefore, one renormalization parameter is inevitably left unfixed. As we can

adjust the renormalized coefficient of R(ψ̄ψ)2 later by means of finite renormalization, in

the following calculation we choose the zeroth order Lagrangian not to contain the term

∝ R(ψ̄ψ)2, which does not lose generality as long as only the leading correction due to

curvature R is concerned.

The basic formalism will be illustrated for the case of a D = d+ 1 dimensional, ultra-

static spacetime of the form

ds2 = dt2 − gijdx
idxj , (2.2)

where the tensor gij represents the metric on the spatial section M of the spacetime.

We stress, however, that the procedure described below is always possible, with minor

modifications, if the spacetime can be conformally related to an ultra-static one.

Allowing a mean field value 〈ψ̄ψ〉 = −Nσ(x)/G for the chiral condensate, after

bosonization, the partition function can be expressed as a path integral over σ:

Z =

∫

[dσ] eiSeff , (2.3)

where the effective action (per fermionic degree of freedom) at the lowest order in the

large-N approximation can be written as

Seff = −
∫

dDx
√
g

(

σ2

2G

)

+ lnDet
(

iγµ∇µ − σ + µγ0
)

. (2.4)

The above determinant acts on the Dirac spinor, and coordinate space. The last term,

proportional to µ, represents a chemical potential term that allows to include finite density

effects, while finite temperature is introduced using the imaginary time formalism, t→ −iτ
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with period β = 2π/T , and imposing anti-periodic boundary conditions on the fermion

fields, ψ(τ) = −ψ(τ + β).

The effective action can be expressed as [24]

Seff = −
∫

dDx
√
g

(

σ2

2G

)

+
1

2
lnDet

[

�+
1

4
R+ σ2 − µ2 − 2iµ

∂

∂t
+ iγµ (∇µσ)

]

.(2.5)

Finally, making finite temperature effects explicit leads to

Seff = −
∫

dDx
√
g

(

σ2

2G

)

+
1

2

∑

λ

∞
∑

n=−∞

lnDetD
(n) , (2.6)

where we defined d-dimensional operators

D
(n) ≡ −∆+ ω2

n +
1

4
R+ σ2 − µ2 − 2iµωn + λ |∂σ| , (2.7)

with the frequencies given by

ωn =
2π

β

(

n+
1

2

)

, (2.8)

and

∆ =
1√
g
∂i
(√
ggij∂j

)

, (2.9)

being the Laplacian over the spatial section M .

To obtain formula (2.6), we chose one of the directions of our tetrad frame to coincide

with the direction in which the condensate varies. Namely, ej(1) := ∂jσ/|∂σ|. Then, we

decomposed the 2 [D/2] × 2 [D/2] matrix operator in Eq. (2.5) (where a square bracket

means the floor function) by means of the eigenvectors of the first component of the gamma

matrix in the tetrad frame, γ(1), defined by (the −i factor and choosing ej(1) as preferred

direction is just due to our convention),

γ(1)ψλ = −iλψλ , (2.10)

with λ = ±1. In Eq. (2.6), the summation over λ is taken for all 2 × [D/2] eigenvalues.

For example, in the case of spherical symmetry, σ = σ(r), identifying γr =
√
grrγ(1), the

last term in (2.7) becomes λ
√
grrσ′(r).

It is immediate to see that if we keep the background space homogeneous and isotropic,

as well as the condensate σ, one can obtain the eigenvalues of the operator. Then the

effective potential can be computed exactely (no explicit knowledge of the eigenvalues is,

in fact, necessary). If we remove the assumption concerning the background, then such a

direct approach wouldn’t work in general.

Most of the next section will be devoted to describe the details of the computation of

the above functional determinant with σ assumed to be spatially varying.
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3. Computation of the Effective Action

The effective action can be formally expressed as

Seff = −
∫

dDx
√
g

(

σ2

2G

)

+ δΓ , (3.1)

with

δΓ =
1

2

∫

ddx
√
g
(

ζ(0) ln ℓ2 + ζ ′(0)
)

, (3.2)

where ζ(s) is the zeta function associated with D (n) and ℓ a renormalization length scale.

The values of the zeta function and its derivative at s = 0 are understood as regularized

by means of analytical continuation.

In the present case, it is convenient to define the zeta function in terms of the Mellin

transform of the heat-trace,

ζ(s) =
1

Γ(s)

∑

n,λ

∫

∞

0
dt ts−1Tr e−tD(n)

. (3.3)

A connection with the expanded form for the GL partition function (1.1), can be made

explicit by using a local expansion for the heat-trace [26],

Tr e−tD(n)
=

1

(4πt)d/2

∞
∑

j=0

Hj t
j , (3.4)

where the coefficients Hj are the standard heat-kernel coefficients now tabulated in many

places (see, for example, Ref. [27]). The reader may easily notice the analogy between

the GL expansion and the above heat-kernel expansion of the functional determinant in

powers of σ and its derivatives. In this sense, the heat-kernel expansion is a generalization

of the GL expansion to curved space. It may be worth noticing that this approach can

also be adapted to the case of manifolds with boundaries just by modifying the heat-kernel

coefficients that will acquire, aside from global contributions, boundary terms.

Conveniently, it is possible to do better by using a partially resummed form for the

heat-trace that would correspond to a partially resummed form for the GL-expansion. A

better ansatz for the heat-trace is

Tr e−tD(n)
=

1

(4πt)
d
2

e−tQ
∑

k

C
(k)
λ tk , (3.5)

with Q = ω2
n + R/12 + σ2 − µ2 − 2iµωn + λ |∂σ|. The above form for the heat-kernel in

curved spacetime was conjectured in Ref. [28] and demonstrated in Ref. [29]. The result

tells that, for an operator of the form −� + E(x) on a Riemannian manifold, all powers

of the scalar curvature R and the function E(x) are generated by the overall exponential

factor in (3.5). This effectively sums, in the sense described in Refs. [28, 29], all powers of

R and E(x) (with any functional form of coefficients) in the proper-time series.
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When using the above resummed form for the heat-trace, the heat-kernel coefficients

become slightly simpler and can be easily written down to relatively high order. The first

few are (we are considering the case of a manifold without boundary):

C
(0)
λ = 1 ,

C
(1)
λ = 0 ,

C
(2)
λ = R +

1

6
∆
(

σ2 + λ |∂σ|
)

,

where

R =
1

180
RµνρσR

µνρσ − 1

180
RµνR

µν − 1

120
∆R .

In the above formulas R, Rµν and Rµνλρ are the Ricci scalar and Ricci and Riemann

tensors, respectively. Substituting (3.5) in (3.3), one arrives at the following expression for

ζ(s),

ζ(s) =
1

Γ(s)

∑

k,λ

∫

∞

0
dt
ts−1+k

(4πt)
d
2

C
(k)
λ e−tXλFβ,µ(t) , (3.6)

where we have defined

Fβ,µ(t) =

∞
∑

n=−∞

e−t(ω2
n−2iµωn−µ2) , (3.7)

Xλ =
(

R/12 + σ2 + λ |∂σ|
)

. (3.8)

The parameter s works as a regulator and the above expression is understood as a function

in the complex s plane. We assume that ℜs < d/2 − k − 2 and analytically continue to

s = 0 at the end of the computation. Under these assumptions the above expression is well

defined and convergent for µ = 0.

The dependence of the effective action from the temperature and the chemical potential

in (3.6) is factorized. This is a nice bonus of the resummed form for the heat-trace that

we have used and it was noticed before for the case of zero chemical potential in Ref.[30],

which also uses a non-local form for the effective action to analyze finite temperature effects

for free fields in curved space.

The analytical continuation of ζ(s) and ζ ′(s) to s = 0 can be carried out explicitly

(the calculation is worked out in Appendix A), leading to the following result:

ζ(0) =
β

(4π)D/2

∑

λ

[D/2]
∑

k=0

γk(D)C
(k)
λ X

D/2−k
λ , (3.9)

ζ ′(0) =
β

(4π)D/2

∞
∑

k=0

∑

λ

(

ak(D)C
(k)
λ X

D/2−k
λ + γk(D)C

(k)
λ X

D/2−k
λ lnXλ

+2D/2+1−k
C

(k)
λ (Xλ)

D/4−k/2
∞
∑

n=1

(−1)n
cosh(βµn)

(nβ)D/2−k
Kk−D/2

(

nβ
√

Xλ

)

)

.(3.10)

– 7 –



The coefficients γk(D) and ak(D) are given by

γk(D) = lim
s→0

Γ(s+ k −D/2)

Γ(s)
,

ak(D) = lim
s→0

Γ(s+ k −D/2)

Γ(s)

(

ψ(0) (s+ k −D/2)− ψ(0) (s)
)

.

It is essential to check the range of convergence of the n-summation in (3.10). This

can be easily done by expanding the summand for large n as

(−1)n
cosh(βµn)

(nβ)D/2−k
Kk−D/2

(

nβ
√

Xλ

)

∼ (−1)n
enβ(µ−X

1/2
λ )

n1/2

(

1 +O

(

1

n

))

, (3.11)

from which we obtain the convergence condition ℜ
(

µ− X
1/2
λ

)

< 0. Clearly there is no

issue of convergence for purely imaginary µ. However, extending the result to the opposite

case, ℜ
(

µ− X
1/2
λ

)

> 0, requires some modifications of the approach we used above. We

will discuss this in Sec. 5.

Specializing the result to four dimensions and keeping terms up to second order in the

heat-kernel expansion, the results simplify slightly:

ζ(0) =
β

(2π)2

∑

λ

(

1

2
X

2
λ + C

(2)
λ

)

,

ζ ′(0) =
β

(2π)2

∑

λ

[

3

4
X

2
λ − 1

2
X

2
λ lnXλ − C

(2)
λ lnXλ

+2

∞
∑

n=1

(−1)n cosh(βµn)

(

4Xλ

(nβ)2
K2

(

nβ
√

Xλ

)

+ C
(2)
λ K0

(

nβ
√

Xλ

)

)

]

.

In the above expressions, we are neglecting fourth order derivatives of the condensate, and

thus the reminder of the expansion is O(∂(4)σ).

The approach used here presents various advantages. The first obvious one lies in

the fact that non-perturbative effects are taken into account. In flat space, if we use the

GL expansion, it is essential to carry out the calculation at least to fourth order in the

NJL, and sixth order in the GN model to reproduce the qualitative features of the phase

diagram (Refs. [10, 31] work at sixth order). The present approach allows to completely

resum various classes of terms in the GL expansion: all terms proportional to powers of

σ (and of the scalar curvature, R,) with any functional form of coefficients. In this way,

non-perturbative effects can be taken into account. The advantage to use this resummed

approach is most stricking when we consider the case of constant σ in flat space. In this

case, all derivatives of σ vanish and the result (3.10) becomes exact (C
(k)
λ = 0 for k ≥ 1).

(It is worth noticing that, although it is not possible to perform a full resummation of the

heat-trace, it is, in fact, possible to engineer the procedure in a different way and resum

the derivatives of the condensate while expanding in powers σ.)

A further bonus lies in the fact that the effective action turns out to be arranged as

the sum of elementary functions plus a series of Kν(z) that decay exponentially. This is

rather advantageous for any numerical manipulation one may have in mind.
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Finally, the use of a manifestly covariant regularization allows to handle renormal-

ization transparently, especially when we take into account gravity. In contrast to cutoff

methods, zeta function regularization is manifestly covariant. The divergences in the above

computation of the determinant appear in the form of low order heat-kernel coefficients

Hj with j ≤ [D/2], although the divergences as such are removed in the process of analitic

continuation. These divergent terms must be tuned to experimental inputs. In four di-

mensional space-times, the divergences are proportional to σ2, σ4 and Rσ2. Adjustment of

the coefficients of σ2 and σ4 can be achieved by tuning ℓ and G in the effective action. For

the term Rσ2, we have to introduce an additional term ξRσ2 in the effective action with

a tunable parameter ξ. As anticipated, experimental input for ξ is lacking, and hence it

remains unfixed. In the example discussed in Sec. 4, we consider the case of vanishing ξ.

We wish to conclude this section by briefly commenting on the strategy we have fol-

lowed. In the previous computation we have performed the sum over n first and then

integrated the result over t. Following the opposite order is also possible without any am-

biguity due to the fact that we are in a region of the complex s plane where the expression

converges. The reader familiar with the work of Chowla and Selberg [32] (and some of its

generalizations) would have immediately noticed that by integrating expression (3.6) before

performing the summation over n leads to a sum (over k) of generalized Epstein-Hurwitz

zeta functions. This sum can be recast, by using a generalization of the Chowla-Selberg

formula (see Ref. [33]), in a form analogous to (3.10). Explicit computation, which we

omit here, shows the equivalence of the two results.

4. Chiral Kinks in static Einstein spaces

The results we have obtained so far are general and allow to obtain the effective action

for the condensate. Any explicit application will require further numerical analysis of the

model. This step is non-trivial as it can be understood from the complicated form of the

effective action and the goal of this section is to present a sample application to highlight

the complexities that may occur in any practical case. In the following, we will consider

the case of a four-dimensional static Einstein space,

ds2 = dt2 − a2
(

dθ2 + sin2 θ
(

dϕ2 + sin2 ϕdχ2
))

, (4.1)

with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ π and 0 ≤ χ ≤ 2π. Static Einstein spaces have the topology of

R ⊗ S3 and constant curvature R = 6a−2, with a being the radius of the 3-sphere. In the

following we will set µ = 0 as this simplifies the numerics still permitting to illustrate the

technical issues in implementing the formalism.

As mentioned in Introduction, the phenomena of chiral symmetry breaking in 4fET in

curved space with homogeneous condensates has been considered, for example, in Refs. [7,

22, 34, 35, 36]). In this case the partition function takes a particularly simple form,

Seff

βV
=

σ2

2G
− 1

2

1

(2π)2

[

3

4
σ̂4 − 1

2
σ̂4 ln

σ̂2

σ20
+ 8σ̂2

∞
∑

n=1

(−1)n
cosh(βµn)

(nβ)2
K2 (nβ |σ̂|)

]

,(4.2)
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Figure 1: The figure illustrates the typical behaviour of the thermodynamic potential. The three

curves represent the thermodynamic potential for increasing values of the temperature T = 1

(continuous line), T = 5 (short-dashed line), T = 10 (long-dashed line). The value of the curvature

radius is set to a = 10, the coupling to G = 10, and the renormalization scale to ℓ = 103.

with σ̂2 =
(

σ2 + a−2/2
)

and V being the volume of S3. In the above expression we have

appropriately rescaled the renormalization length ℓ in terms of the constant σ0. The flat

space limit, a → ∞ (σ̂ → σ), of the above result can be easily compared with the one

reported in Refs. [37, 38], and a simple computation shows the equivalence between these

two.

Our goal is to include more general cases of inhomogeneous condensates. We will

assume that the condensate σ is varying only along the θ direction1, σ ≡ σ(θ). A straight-

forward computation allows one to recast the general result for the effective Lagrangian,

including up to second order terms in the heat-kernel expansion, into the following form

Seff =

∫

dDx
√
g

{

σ̃2+ + σ̃2−
4G

− 2

(2π)3

[

1

2

(

3

2
− ln ℓ2

)

(

σ̃4+ + σ̃4−
)

− σ̃4+ ln σ̃+ − σ̃4− ln σ̃−

+8
∞
∑

n=1

(−1)n cosh(βµn)

(nβ)2
(

σ̃2+K2 (nβ |σ̃+|) + σ̃2−K2 (nβ |σ̃−|)
)

+2

∞
∑

n=1

(−1)n cosh(βµn)

6a2 sin2 θ

d2σ2

dθ2
(K0 (nβ |σ̃+|) +K0 (nβ |σ̃−|))

]}

, (4.3)

where σ̃2± = σ̂2 ± a−1σ̂′ and the prime signifies differentiation with respect to θ. The

above result can be used as a starting point to analyze the formation of inhomogeneous

condensates.

It is advantageous to notice that under the following rescaling of the parameters,

σ → ασ , a→ α−1a , ℓ→ α−1ℓ , β → α−1β , µ→ αµ , G→ α−2G ,

the effective action transforms as Seff → α4Seff . This allows us to fix one of the quantities

aribitrarily without loss of generality.

1We identify γθ = γ1a
−1 and this gives λ± = ±a−1
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In the following we will use (4.3), the effective Lagrangian to second order in the

heat-kernel expansion. Expression (4.3) contains sums over n of the form

A =

∞
∑

n=1

(−1)n cosh(βµn)

β2n2
K2 (nβ |σ̃±|) ,

B =

∞
∑

n=1

(−1)n cosh(βµn)K0 (nβ |σ̃±|) .

Due to the asymptotic exponential decays of the Bessel functions Kν(z) for large z, approx-

imating the sum by its truncated form is possible when the arguments are large enough.

For inhomogeneous condensates, however, this approximation does not work uniformly.

In fact, kink-type solutions, that interpolate between two (positive and negative) extrema

cross zero of σ̃± at around the equator thus invalidating the truncation. This problem can

be overcome by replacing the above truncated form with a fully resummed expression for

|σ̃±| smaller than a certain threshold ε. This resummed form can be obtained by expanding

the summand assuming |σ̃±| is small. Expanding the Bessel functions to second order in

|σ̃±|, one can obtain the following expressions

A =
1

16

[

(γE − 3/4) |σ̃±|4 − |σ̃±|4 ln (2β |σ̃±|) +
16

β4

(

ψ(4)
(

−e−βµ
)

+ ψ(4)
(

−eβµ
))

−4
|σ̃±|2
β2

(

ψ(2)
(

−e−βµ
)

+ ψ(2)
(

−eβµ
))

+ |σ̃±|4
(

ψ̇(0)
(

−e−βµ
)

+ ψ̇(0)
(

−eβµ
))

]

,

B =
1

2

[

γE − ln (2β |σ̃±|) +
β2 |σ̃±|2

4

(

ψ̇(−2)
(

−e−βµ
)

+ ψ̇(−2)
(

−eβµ
))

+
(

ψ̇(0)
(

−e−βµ
)

+ ψ̇(0)
(

−eβµ
))]

.

In the above expressions we used the notation ψ̇(a)(z) = dψ(t)(z)/dt
∣

∣

t=a
.

In the following we will restrict our analysis to second order in the derivatives. Then,

it is possible to recast the equation of motion for σ as a non-linear Schrödinger equation

(the explicit form for the potential changes depending on whether |σ̃±| > ε or not):

σ′′ = U
′
(

σ, σ′
)

, (4.4)

where the potential U (σ, σ′) depends on σ, σ′ and the other parameters of the model.

Its explicit expression is rather lengthy and we will not report it here. For homogenous

condensates, σ′ = 0, the potential has the profile illustrated in Figure 1. The critical

temperature can be computed explictly from the condition that the second derivative of

the potential at σ = 0 vanishes. This gives for the critical temperature

Tcrit = 2π

√

3π

G
. (4.5)

The existence of an inhomogeneous solution depends on the form of the potential. The

same arguments presented by Coleman in the description of the false vacuum decay are also

– 11 –



σ

θ 1/a

σ′

a

∣

∣

∣

θ=π
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.00

0.05

0.10

0.15

0.20

Figure 2: The numerical solution for the kink is shown in the left panel, where the three solutions

(right to left) are obtained for T = 2 and a = 20, 40, 100. As we increase the radius of the

three-sphere (decrease the curvature) the kink becomes more steep and its derivative increase. The

behavior of the derivative at the equator is shown in the right pannel for (top to bottom) T = 2, 3, 4.

valid in this case and guarantee the existence of the solution. However, finding the precise

value of the boundary conditions and explicitly constructing a solution require some work.

Since the effective Lagrangian enjoys σ ↔ −σ symmetry, for kink-type configurations we

can search for solutions in the upper hemisphere, θ ⊂ [π/2, π], setting σ|θ=π/2 = 0 and

varying σ′|θ=π/2. The equation of motion for the condensate is a second order, non-linear

differential equation and the value of σ′|θ=π/2 has to be fine-tuned to achieve the correct

solution. Figure 2 illustrates how the solution changes as we increase the size of the 3-

sphere showing that the kink becomes more steep at the equator as the curvature increases

(The derivativative at the equator is shown in the right panel of Figure 2). The behavior

of the solution, i.e. the fact that it becomes less steep when the radius a is increased, is

mainly due to the fact that θ is not a coordinate that measures the proper length. If we

plot the profile of the kink vs the proper distance aθ, the profiles obtained for various radii

a almost overlap for fixed values of the temperature. For small enough a, the geometry is

no more capable to accomodate a kink. This means the existence of a critical value for a,

below which kink-type solutions do not exist.

Aside from kink-type solution, we naturally have homogeneous solutions that corre-

spond to the minima of the potential. The phase diagram will be trivial in this case,

since the homogeneous solutions are expected to have smaller free energy, thus being

favoured compared with inhomogeneous ones. Checking which solution is realized for a

smaller/larger value of the action is a simple task. Once the numerical solutions are ob-

tained, the action (in canonical form)

S = −
∫

dθ
(

f(σ)σ′2 +W (σ)
)

, (4.6)

can be computed. Here f and W depend solely on σ and not on its derivatives. If we shift

the potential in such a way that the minimum corresponding to symmetry breaking vacua

is at W = 0, the action for the homogeneous solution is zero. Then, the functions f and W

are positive definite. Therefore inhomogeneous solutions take always larger values of the

action than the homogeneous one, indicating that they only appear as meta-stable states.
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5. Chemical Potential

In Sec. 3 we have obtained the effective Lagrangian for a 4fET of the form (2.1) at finite

temperature and density. The effective Lagrangian has been obtained in the form of a

series representation, (3.10), which is convergent for ℜ
(

µ− X
1/2
λ

)

< 0. Notice that the

representation (3.10) is always fine for purely imaginary values of µ. Even inspecting

the simple case of homogeneous condensate, the limitation ℜ
(

µ− X
1/2
λ

)

< 0 is clearly

not satisfactory when one needs to consider large densities. The goal of this section is

to illustrate how to adapt the procedure of analytical continuation to include arbitrarily

large, real values of the chemical potential µ in curved space. In fact, this can be achieved

in parallel to the procedure in flat space that makes use of the Hubbard-Stratonovich

transformation, as done in Ref. [39]. We note, in passing, that the results of this section

also show the equivalence between the series representation of the effective action given in

Sec. 3 and the more familiar textbook expression.

The starting point of the present discussion will be the expression (A.1). In our

formulation based on zeta functions, we have written the effective action in terms of ζ(0)

and ζ ′(0). Since ζ(0) does not depend on the chemical potential (see formula (A.5)), it

does not require any change. As for ζ ′(0), we may write

ζ ′(0) =
1

(4π)d/2

∑

k,λ

C
(k)
λ H(k)

λ , (5.1)

with

H(k)
λ = lim

s→0

d

ds

1

Γ(s)

∫

∞

0
dt ts−1−d/2+ke−tXλFβ,µ(t) . (5.2)

Substituting the explicit form of ωn into (3.8), we have

Fβ,µ(t) =
β√
πt

∞
∑

n=−∞

(−1)ne−
β2n2

4t e−βµn .

Thanks to the presence of the factor e−
β2n2

4t in Fβ,µ(t) for n 6= 0, the integral over t in (5.2)

does not produce any additional pole at s = 0. Therefore, the contribution that remains

in the limit s→ 0 solely comes from the term in which d/ds acts on 1/Γ(s) ≈ s. Thus, we

can take the limit s → 0 first for n 6= 0. Isolating the n = 0 contribution from the rest of

the summation (signified by the prime in the summation below), we obtain

H(k)
λ =

β√
π

∞
∑

n=−∞

′
∫

∞

0
dt

e−tXλ

t(d+3)/2−k
(−1)ne−

β2n2

4t e−βµn +H0 (5.3)

where

H0 =
β√
π
lim
s→0

d

ds

∫

∞

0

dt

Γ(s)
ts−1−D/2+ke−tXλ . (5.4)
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Analogously to the case of flat space, we may define the density of states, ρ
(k)
λ , according

to

e−tXλ

td/2−k
≡ 1

2

∫

∞

0
dEEρ

(k)
λ (E)e−tE2

. (5.5)

Using the above expression together with the identity

e−tE2
= 2t

∫

∞

E
dx x e−tx2

, (5.6)

it is not difficult to arrive at

H(k)
λ = 2

∫

∞

0
dEE ρ

(k)
λ (E) I(E) +H0 (5.7)

with

I(E) ≡ β

2
√
π

∞
∑

n=−∞

′
∫

∞

0
dt

∫

∞

E
dx x e−tx2 (−1)ne−

β2n2

4t e−βµn

√
t

=
∞
∑

n=−∞

′
∫

∞

0
dt

∫

∞

E
dxxe−tx2

∫

dze2πinze
−t

(

2π
β
(z+1/2)−iµ

)2

, (5.8)

where we used the Hubbard-Stratonovich transformation to rewrite the expression for I(E).

The quantity I(E) can be computed, as in Ref. [39]. Performing the integration over t first,

then integrating over z using the Cauchy integral theorem, summing over n, and finally

integrating over x, one easily arrives at the following result

I(E) = I0(E)−
[

ln

(

1 + e−β(E−µ)

1 + e−βE

)

+ ln

(

1 + e−β(E+µ)

1 + e−βE

)]

, (5.9)

where I0(E) corresponds to the expression for µ = 0. The contribution of I0(E) combined

with H0 simply gives the effective action for the µ = 0 case, which can be calculated as

described in Appendix. Thus, the final expression for the effective action becomes

Seff = Seff |µ=0 −
1

(4π)d/2

∫

ddx
√
g

∫

∞

0
dEEρ(E)

×
[

ln

(

1 + e−β(E−µ)

1 + e−βE

)

+ ln

(

1 + e−β(E+µ)

1 + e−βE

)]

, (5.10)

where we have defined

ρ(E) =
∑

k,λ

C
(k)
λ ρ

(k)
λ (E) . (5.11)

As in flat space, the expression (5.10) is regular for any µ and can represent the analytic

continuation of the effective action to arbitrary values of the chemical potential on a curved

background.
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To perform the integration over E in Eq. (5.10), we can use

ρ
(0)
λ (E) = 4π−d/2

∫

ddp δ
(

E2 − Xλ − p2
)

. (5.12)

By differentiating (5.5) with respect to Xλ, we obtain a set of recursive relations:

ρ
(k)
λ (E) =

∂k

∂X k
λ

ρ
(0)
λ (E) = (−1)k

∂k

∂(E2)k
ρ
(0)
λ (E) . (5.13)

Repeating integration by parts using (5.12) and (5.13), we can perform the integral over

E in Eq. (5.10), leaving p-integration. The surface terms that appear from the integration

by parts can be evaluated by using a more explicit expression for ρ
(0)
λ (E) obtained by

evaluating the p-integral in Eq. (5.12):

ρ
(0)
λ (E) =

2

Γ(d/2)

(

E2 − Xλ

)d/2−1
. (5.14)

The remaining p integral is manifestly regular in the p→ 0 limit and decays exponentially

fast for large p. Therefore it can be evaluated numerically without any difficulties.

6. Conclusions

Theoretical explorations trying to understand the behavior of hot/dense strongly interact-

ing matter, as well as experimental attempts to create a quark-gluon plasma using heavy

ion collisions, provide profund motivations for investigating four-fermion effective theories

at finite temperature and density.

In this context, a great deal of attention has recently been focusing on the identification

of inhomogeneous phases. In fact, although the subject is not new (see Ref. [40] for a

review) and well explored in condensed matter physics, some very interesting results were

discussed only recently. Two years ago, it was, in fact, demonstrated in the context of

the Gross-Neveu model that, at high densities, inhomogeneous cristalline phases may form

[17]. Inhomogeneous phases have also been recently discussed in the context of Nambu-

Jona Lasinio class of models [10], where it was suggested that at high densities the ground

state may be populated by a lattice of domain walls implying important changes in the

phase diagram. Our goal is to study similar phenomena in curved spacetime, and in this

paper we have set the formalism for future analyses.

Here, we have followed a less traditional approach and proposed a method based on the

use of the effective action formalism along with zeta function regularization as basic tools

of our analysis. Our approach is similar in spirit to the work of Ref. [39] that adopts world-

line Monte Carlo methods to analyze the effective action for strongly interacting fermionic

systems at large N in flat space, particularly focusing on the Gross-Neveu model. One es-

sential key point of our approach is the use of a non-pertubative ansatz for the heat-trace

that returns the effective action in a partially resummed form. Within this approach it is

possible to include non-local terms in the effective action providing a way to go beyond

the approximation based on a truncated form for the Ginzburg-Landau expansion for the
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partition function. Another important point lies in the use of zeta function regularization

that allows to handle renormalization in a manifestly covariant manner, making the reg-

ularization procedure transparent compared with the cutoff method. We have discussed

our formalism in the case of a generic D-dimensional ultrastatic Riemannian manifold with

compact spatial section, and obtained an explicit form for the effective action in terms of

a series representation. The series representation (2.6) is quite advantageous for numerical

treatments, since asymptotically the summands decay exponentially. In fact, the above is

true when the chemical potential is smaller than a certain combination of the condensate,

its derivative, and the curvature. Extending our results to the general case of real and arbi-

trarily large chemical potentials requires some modifications, and to carry out the analytic

continuation for this case, we have adapted the flat space computation of Ref. [39], and

worked out a regular expression for the effective action in this more general case. In pass-

ing, we notice that this also provides a proof of the equivalence between the less standard

series representation of the effective Lagrangian and the standard textbook formula.

Implementing our formalism in a specific situation is not immediate. For this reason,

we discussed an application, physically rather simple, but technically non-trivial, to the

case of a four-fermion effective theory propagating on a static Einstein space at zero chem-

ical potential. We have described a way to solve the effetive equations numerically and,

indeed, found kink-type solutions. Due to curvature effects we may expect the existence of

inhomogenous phases, but at zero chemical potential these kink-type solutions turned out

to be energetically less favoured, with the free energy larger than that of the corresponding

homogeneous solutions.

We are currently testing the formalism in various situations. We are extending the

analysis for a static Einstein space with non vanishing chemical potential. In this case,

analogously to flat space case, we expect a region of the phase diagram where inhomoge-

neous phases are energetically favoured.

While at small curvature the recovery of the flat space behavior is expected, for large

values of the curvature the interplay between chemical potential and curvature effects

becomes non-trivial to intuit. In addition to that, differently from flat space, the finiteness

of the spatial section of a static Einstein space implies the existence of a critical value

of the curvature beyond which, the geometry cannot accomodate inhomogenous phases,

which will make the structure of the phase diagram richer. Extending the above results to

anti-de Sitter spacetimes follows straightforwardly.

Another case we are currently investigating is when an external potential V is included

in the set-up (an interesting case of this type is a system of strongly interacting fermions

in a confining potential). Adapting the formalism to this case is quite simple and requires

only minor modifications, i.e. augmenting the functional determinant in (2.6) by a term of

the form V 2 +λ |∂V |. The heat-kernel coefficients change accordingly and clearly becomes

slightly more involved, but no extra methodological complication arises.

Finally, a case that surely deserves attention is that of black holes. This case is

considerably more complex for various reasons. First of all static black hole spacetimes

are only conformally related to ultrastatic spacetimes. Therefore, in order to include this

case, the effective action requires a correction term (sometimes called cocycle) [42, 43].
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A further difficulty arises due to the fact that black hole spacetimes are not constant

curvature ones. This causes substantial differences even in the case of vanishing chemical

potentials. Technically this does not require any change in the formalism, but the numerical

analysis will be complicated. Additional problems arise due to the fact that in the present

approximation the effective action diverges at the horizon, analogously to the case analyzed

in Ref. [41]. This problem can be easily cured by using a different approximation just in the

vicinity of the horizon, but, again, will make the numerics more involved, since we would

need to match the near-horizon solutions with the outer ones. Our analysis is currently

in progress and we may anticipate that all these problems can be solved in the way just

mentioned. Details on the above applications of the formalism presented in this paper will

appear in a follow-up work [44].
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A. Analytical continuation of ζ(s) and ζ ′(s)

This appendix is devoted to carry out explicitly the analytical continuation to s = 0 of

ζ(s) =
1

Γ(s)

∑

k,λ

∫

∞

0
dt
ts−1+k

(4πt)
d
2

C
(k)
λ e−tXλFβ,µ(t) , (A.1)

where Fβ,µ(t) and Xλ are defined according to (3.7) and (3.8). We assume that ℜs <
d/2 − k − 2 and take the limit s = 0 at the end. Under these assumptions the above

expression is well defined and convergent for any Xλ ≥ 0.

In order to perform the integration over t, it is convenient to express the sum over n

in terms of the elliptic function θ3,

Fβ,µ(t) =

∞
∑

n=−∞

e−t(ω2
n−2iµωn−µ2) =

β

2
√
πt
θ3

(

e
−β2

4t ;
π − iβµ

2

)

,

and then use the definition

θ3 (x; y) = 1 + 2

∞
∑

n=1

xn
2
cos(2ny) .

The function Fβ,µ(t) can then be expressed as

Fβ,µ(t) =
β

2
√
πt

(

1 + 2

∞
∑

n=1

(−1)ne
−β2n2

4t cosh(βµn)

)

. (A.2)
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Then, we have

ζ(s) = β
1

(4π)
D
2

∑

k,λ

(

C
(k)
λ I

(k)
λ (s) +

∞
∑

n=1

(−1)n cosh(βµn)C
(k)
λ J

(k,n)
λ (s)

)

, (A.3)

where

I
(k)
λ (s) =

∫

∞

0

dt

Γ(s)
ts−1−D/2+ke−tXλ

=
Γ(s+ k −D/2)

Γ(s)
X

D/2−k−s
λ ,

J
(k,n)
λ (s) =

∫

∞

0

dt

Γ(s)
ts−1−D/2+ke−tXλ−

β2n2

4t

=
2D/2+1−k−s

Γ(s)

(

Xλ

n2β2

)D/4−(k+s)/2

Kk+s−D/2

(

nβ
√

Xλ

)

.

It is easy to check that

lim
s→0

I
(k)
λ (s) = γk(D)X

D/2−k
λ ,

lim
s→0

J
(k,n)
λ (s) = 0 ,

where

γk(D) ≡ lim
s→0

Γ(s+ k −D/2)

Γ(s)
. (A.4)

With the above results in hands, we find

ζ(0) =
β

(4π)D/2

∑

λ

[D/2]
∑

k=0

γk(D)C
(k)
λ X

D/2−k
λ . (A.5)

To obtain the above expression, we have used the fact that for k ≥ D/2+1 the coefficients

γk(D) vanish. Also, notice that for odd D-dimensional spacetimes, γk(D) = 0 for any k,

thus ζ(0) = 0. Keeping only terms up to second order in the heat-kernel expansion and

setting D = 4, we have:

ζ(0) =
β

(4π)2

∑

λ

(

1

2
X

2
λ + C

(2)
λ

)

. (A.6)

The computation of the derivative of the zeta function is slightly more cubersome, but an

explicit expression can be found in a straightforward way using the following relations:

dI
(k)
λ

ds
(s) = −Γ(s+ k −D/2)

Γ(s)
X

D/2−k−s
λ

(

lnXλ + ψ(0)(s) + ψ(0)(s + k −D/2)
)

,

dJ
(k,n)
λ

ds
(s) = −2D/2−k−s

Γ(s)

(

Xλ

n2β2

)D/4−(k+s)/2 [

KD/2−k−s

(

nβ
√

Xλ

)

ln

(

4Xλ

n2β2

)

+2Kk+s−D/2

(

nβ
√

Xλ

)

ψ(0)(s) + 2
dKν

dν

(

nβ
√

Xλ

)

∣

∣

∣

∣

ν=D/2−k−s

]

.
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In the limit of vanishing s, we obtain

lim
s→0

dI
(k)
λ

ds
(s) = ak(D)X

D/2−k
λ + γk(D)X

D/2−k
λ lnXλ ,

lim
s→0

dJ
(k,n)
λ

ds
(s) = 21−k+D/2

(

Xλ

n2β2

)D/4−k/2

Kk−D/2

(

nβ
√

Xλ

)

, (A.7)

with the coefficients ak(D) given by

ak(D) = lim
s→0

Γ(s+ k −D/2)

Γ(s)

(

ψ(0) (s+ k −D/2)− ψ(0) (s)
)

. (A.8)

The result for ζ ′(0) is

ζ ′(0) = β
1

(4π)2

∞
∑

k=0

∑

λ

(

ak(D)C
(k)
λ X

D/2−k
λ + γk(D)C

(k)
λ X

D/2−k
λ lnXλ

+2D/2+1−k
C

(k)
λ (Xλ)

D/4−k/2
∞
∑

n=1

(−1)n
cosh(βµn)

(nβ)D/2−k
Kk−D/2

(

nβ
√

Xλ

)

)

.(A.9)
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