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Abstract

We analyze the phase equilibria of systems of polydisperse hydrocar-

bons by means of the recently introduced moment method. Hydrocarbons

are modelled with the Soave-Redlick-Kwong and Peng-Robinson equations

of states. Numerical results show no particular qualitative difference be-

tween the two equations of states. Furthermore, in general the moment

method proves to be an excellent method for solving phase equilibria of

polydisperse systems, showing excellent agreement with previous results

and allowing a great improvement in generality of the numerical scheme

and speed of computation.

1 Introduction

In this paper we analyze the phase behaviour of a mixture of hydrocarbons,
by means of the moment method [7, 8]. This method allows to reduce the
number of degrees of freedom of the free energy, which normally depends on the
concentration of each specie in the mixture, to a smaller number of moments
of the density distribution which already appear in the excess part of the free
energy. By doing this, one is able is reduce the number of equations needed
to analyze the phase equilibria and, at the same time, by projecting the free
energy onto the space generated by the moments only, to check for global and
local stability of the phases [8].

The approximation made when introducing the moment free energy can be
efficiently controlled and minimized by means of the adaptive method of choice
of extra moments [11], which allows to reduce the deviation of the moment
method solution from the exact solution, by simply retaining two extra moments,
beyond the ones appearing in the excess free energy. This iterative method,
which it can be proven, converges to the exact solution, as long as it converges at
all, shows to represent an excellent compromise between approximation, which
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can easily be reduced to an error smaller than 0.01%, and computational speed.
Furthermore, the resulting algorithm turns out to be stable and to be very
little affected by the number of species in the mixture. In fact, as the number
of unknowns is not increased by the increase of the number of species, the
computation is hardly affected at all, with just a small influence on its global
speed of computation, while no relevant error is introduced.

The numerical results agree very well with the results obtained with a widely
diffused commercial program in different points of the phase diagram. The
concentration of each component in the coexisting phases and the density of both
phases are evaluated correctly. Clud point is detected exactly. Furthermore, the
introduction of heavy species, up to n-C15, even present in very small amount,
does not compromise either numerical results or computation.

2 Polydisperse hydrocarbons

In order to analyze the phase equilibria of hydrocarbons, we will refer to the two
equations of state most widely used to describe them, i.e., the Soave-Redlick-
Kwong (SRK) [6] equation of state and the Peng-Robinson (PR) [5] equation of
state. Both are cubic equations of state and thus are able to predict gas-liquid
phase transitions. Although originally introduced for pure systems, as we will
see, they are both easily extended to describe multicomponent,i.e., polydisperse
systems. As we will show, given the polydisperse form of two equations of
state, one can easily obtain the Gibbs and Helmoltz free energies, by Legendre
transforming, and therefore obtain the phase equilibrium equations that are to
be solved, in order to fully analyze the phase behaviour of the system.

The SRK equation of state is generally written as

P =
NκBT

V − b
− N2α(T )aC

V (V + b)
(1)

where N is the total number of particles, V the total volume, κB the Boltzman
constant and the parameters a, b and α(T ) depend on the critical temperature
and pressure, shape and size of the molucules etc., of the specific hydrocarbon.

The extension of the equation above to the case of polydisperse system is
rather straightforward, if one introduces a set of parameters aC,i, bi, αi(T ) for
each specie i and defines new global parameters B and D as follows

B =
∑

i

Nibi (2)

and
D(T ) =

∑

i,j

NiNjaij(T ) (3)

where

aij(T ) =
√

aC,iaC,jαi(T )αj(T ) (4)
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In this way, the polydisperse version of Eq. (1) is

P =
NκBT

V −B
− D

V (V +B)
(5)

where N =
∑

iNi is the total number of particles of the system.
The Helmoltz free energy can now be obtained simply by solving the equation

P = −∂F

∂V

and by introducing Fid, the ideal part of the free energy, i.e., the free energy of
a mixture of ideal gas

Fid = κBT
∑

i

Ni

(

ln
Ni

V
− 1

)

(6)

The free energy then turns out to be

F (n, V, T ) = Fid +NκBT ln
V

V −B
− D

B
ln

V +B

V
(7)

The above quantity is extensive, one can therefore define an intensive “free
energy density” f = F/V ol. Introducing a density distribution ρ(k) = Nk/V
and multiplying by β = 1/κBT , the free energy density turns out to be

βf [ρ(k), T ] = βfid − ρ ln(1− B̃)− D̃

B̃
ln(1 + B̃) (8)

where the ideal part is just

fid = κBT
∑

k

ρ(k) [ln ρ(k)− 1] (9)

and we have defined two new parameters B̃ and D̃, by rescaling B and D with
the volume

B̃ =
B

V
=
∑

k

bkρ(k) (10)

D̃ =
βD

V 2
=
∑

k,j

βak,j(T )ρ(k)ρ(j) (11)

The non-ideal part of the free energy in Eq. (8) is called excess free energy f̃ and
contains the terms due to the interaction between the particles in a non-ideal
gas.

The Gibbs free energy can now be obtained from the expressions above,
simply by Legendre transforming F as G(N,P, T ) = minV {F (N, V, T ) + PV }.

3



We now introduce a Gibbs free energy per particle g = G/N and divide again
the resulting function into the ideal part

βgid[x(k), P, T ] =
βGid

N
=
∑

k

x(k) ln x(k) + lnβP (12)

and the excess part

βg̃[x(k), P, T ] =
βG̃

N
= −

∑

k

x(k) [lnβPV + 1] +
βf̃

ρ
+

βP

ρ
(13)

where the number fraction x(k) of the specie k is just x(k) = Nk/N = ρ(k)/ρ,
with ρ =

∑

k ρ(k) = N/V the overall density.
From the above equations (12,13) we can now derive the phase equilibrium

equations µa
k = µb

k for the coexisting phases a and b, and each specie k as
µk = ∂G/∂Nk = ∂g/∂x(k). For a system of M species, dividing in P phases,
the phase equilibrium is therefore fully analyzed by solving a system of (P−1)M
equations, plus the M equations given by the conservation of the total number
of particles, i.e.,

∑

a x
a(k) = x(0)(k), where x(0)(k) is the number density of the

kth specie of the parent, in the MP unknowns xa(k). The values of P and T
are set as external parameters.

As far as the Peng-Robinson equation of state is concerned, not much change
is needed in the equations above. The PR equation is generally written as

P =
NκBT

V −B
− D

V (V +B) +B(V −B)
(14)

where B and D differ from the SRK case in the numerical coefficients of bk and
aC,k. Once again, from the equation above one gets the excess part of Helmoltz
free energy as

βf̃ = ρ ln
V

V −B
+

√
2

4

D

BV
ln

(

V + (1 −
√
2)B

V + (1 +
√
2)B

)

(15)

Similarly, the excess part of the Gibbs free energy per particle turns out to be

βg̃ = −
∑

k

x(k) [lnβPV + 1] +
βf̃

ρ
+

βP

ρ
(16)

2.1 Truncatable systems

A polydisperse system is said to be truncatable when the excess part of its free
energy, say the Helmoltz free energy, is a function a limited number of moments
ρi of the density distribution ρ(k)

ρi =
∑

k

wi(k)ρ(k) (17)
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with given weight functions wi(k). In other words, the Helmoltz free energy of
a truncatable system is

f [ρ(k), T ] =
∑

k

ρ(k) [ln ρ(k)− 1] + f̃(ρi)

For a truncatable system one has

βµ(k) =
∂(βf)

∂ρ(k)
= ln ρ(k) +

∑

i

wi(k)βµ̃i

where the excess moment chemical potentials µ̃i = ∂f̃/ρi. By imposing the
equality of the chemical potentials in all the coexisting phases, one gets that
the density distribution of the coexisting phases must have the form

ρa(k) = R(k) exp[−β
∑

i

µ̃a
iwi(k)] (18)

By imposing the lever rule, i.e., the conservation of the total number of particles
per specie,

∑

a v
aρa(k) = ρ(0)(k) (ρ(0)(k) is the density of the parent and va =

V a/V is the volume occupied by the phase) one finds that the function R(k)
has the form

R(k) =
ρ(0)(k)

∑

a v
a exp[−βµ̃a(k)]

=
ρ(0)(k)

∑

a v
a exp[−β

∑

i µ̃
a
iwi(k)]

(19)

Although formally solved through the two equations above, an actual numerical
solution of the system is not easily found. Eq. (18) actually represents a set of,
say, M (for M species of particles) self consistent all strongly coupled through
the denominator of Eq. (19). The problem is that, although the excess free
energy is a function just of the moments ρi, usually a much smaller number
than the number of species, the ideal part of the free energy is still function
of the whole density distribution ρ(k). Ideally, one would like to reduce the
problem to a smaller number of degrees of freedom, by expressing also the ideal
part of the free energy as a function of the moments only. While this argument
will be treated in the next section, here we will show that both the SRK and
the PR equations of state are in fact truncatable.

In fact, it is rather easy to show that the equations of state generate two
truncatable systems if one introduces two moments of the density distribution
ρ1 and ρ2 as follows

ρ1 = B̃ =
∑

k

bkρ(k) (20)

ρ2 =
∑

k

dkρ(k) (21)

where, from Eq. (4), dk =
√

βaC,kαk(T ). From the definition above and Eq. (3),

we get that D̃ = ρ22. Plugging (20,21) into Eq. (8), we therefore get, for the
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SRK equation of states

βf̃(ρ, ρ1, ρ2) = −ρ ln(1− ρ1)−
ρ22
ρ1

ln(1 + ρ1) (22)

Note that in the above expression, the overall density ρ is itself a moment of
the density distribution, with weight function w0(k) = 1, as ρ = ρ0 =

∑

k ρ(k).
In other words, the excess part of the free energy is fully described by the
knowledge of only three moments of the density distribution ρ0, ρ1, ρ2 and not
on the whole distribution ρ(k) itself.

For the PR equation of state the argument is again similar to the case of the
SRK equation of states. Introducing again the three moments ρ0, ρ1 and ρ2,
we get that the excess part of the Helmoltz free energy is just

βf̃(ρ0, ρ1, ρ2) = −ρ ln(1− ρ1)−
√
2

4

ρ22
ρ1

ln

(

1 + (1−
√
2)ρ1

1 + (1 +
√
2)ρ1

)

(23)

As far as the Gibbs free energy is concerned, it is easy to show [8] that the Gibbs
free energy inherits its moment structure from the Helmoltz free energy. How-
ever, this time, one usually introduces normalized moments mi of the number
density distribution x(k) defined as

mi =
∑

k

wi(k)x(k) =
ρi
ρ0

(24)

Clearly this time m0 =
∑

k x(k) = 1, thus, since f̃ depends on three moments,
ρ0, ρ1, ρ2, the Gibbs free energy depends itself on the overall density, which,
however, is obtained from the equation of state, as a function of P, m1 and m2.
In other words, the Gibbs free energy turns out to have one degree of freedom
less than the Helmoltz free energy.

In any case, with the definitions above, one gets that the excess part of the
Gibbs free energy for the SRK equation of states is just

βg̃(m1,m2) = ln
ρ0
βP

− 1 + β
P

ρ0
− ln(1− ρ0m1)−

m2
2

m1
ln(1 + ρ0m1) (25)

Similarly, for the PR equation of state, we get

βg̃(m1,m2) = ln
ρ0
βP

−1+β
P

ρ0
−ln(1−ρ0m1)+

√
2

4

m2
2

m1
ln

(

1 + (1−
√
2)ρ0m1

1 + (1 +
√
2)ρ0m2

)

(26)
Note that in the two equations above we have omitted the dependence of g̃ on
P and T .

3 The moment method

Truncatable systems allow to express the excess free energy as a function of a
small, say M , number of moments only. However, as we saw in the previous
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section, the difficulty of solving the phase coexistence equations remains largely
unaltered, as the ideal part of the free energy is still function of the full density
(or number) distribution. Ideally, one would like to express the ideal free energy
too, as a function of the moments only. This is in fact possible, by means of the
moment method [1, 7, 8]. While the following description will refer mostly to
the Helmoltz free energy, similar considerations can be made for the Gibbs free
energy [8], with the introduction of the normalized moments and the number
density distribution.

The moment method arises from the hypothesis, in fact verified in different
works [1, 7, 11, 10], that the excess free energy is mostly responsible for the phase
behaviour of the whole system. This is in fact not surprising, as the ideal free
energy is overall convex, and thus does not allow for phase separation. With
this in mind, the moment free energy is constructed as follows. We subtract
from the actual free energy a term ρ(k) ln ρ(0)(k), where ρ(0)(k) is the density
distribution of the parent. This term, as linear in the density ρ(k), does not
affect the phase behaviour, as it adds just a constant to the chemical potential
µ(k) = ∂f/∂ρ(k). The resulting function is then minimized with respect to ρ(k)
with the M moments appearing in the excess part as constraints (2 in the two
previous cases). The minimum value of the resulting free energy is then found
to be

fmom(ρ) =

M
∑

i

λiρi − ρ0 + f̃(ρ) (27)

where ρ is just a vector having the moments ρi as components and the λs are
the M Lagrange multipliers. The minimum value of the free energy is reached
for a density distribution from the family

ρmom(k) = ρ(0)(k) exp

(

∑

i

λiwi(k)

)

(28)

From the moment free energy (27), one can also define the moment chemical
potentials µi, as µi = ∂fmom/∂ρi = λi + µ̃i. The pressure is obtained from the
Gibbs-Duhem relation as

P =
∑

k

µ(k)ρ(k)− f =
∑

i

µiρi − f

It is easy to show that the above expression obtained from the moment free
energy is in fact identical to the one obtained from the exact free energy [8].
Furthermore, it is easy to show that the moment free energy correctly detects
the onset of phase coexistence. In other words, one can show [8, 9] that any
two phases coexist for the full system, if and only if, they coexist for the mo-
ment free energy, thus, µa(k) = µb(k) ⇔ µa

i = µb
i . Thus, at least up to the

onset of the phase coexistence, the full solution in Eq. (18) actually belongs to
the family in Eq. (28). Cloud point and shadow phases are then correctly de-
tected by the moment free energy solution above. Furthermore, spinodals and
critical/tricricital points are found exactly [8].
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The enforcement of the lever rule only for the moments is in fact the only
approximation we make in using the moment method, as this does not ensure
the satisfaction of the complete levere rule, while, as mentioned earlier, equality
of pressure and chemical potentials are ensured. However, as shown in details
in [1, 11, 10], the approximation can be reduced efficiently by retaining extra
moments and, in particular, by means of the adaptive method of choice of extra
weight functions which allows to obtain a solution as close as wanted to the
exact one, by retaining only two extra moments.

In order to give a more precise insight of the actual problem one has to solve
in the case of the two equations of state mentioned earlier, let us sketch the
resulting system of equations, obtained within the moment method approach.
As mentioned, since we have P and T as external parameters, we move on to
the Gibbs formalism. Thus we evaluate the gibbs free energy and from that,
we calculate the moment chemical potentials as µi = ∂gmom/∂mi, where mi are
the normalized moments. Let us now assume we have a Gas-Liquid demixing
and let us call φa = Na/N (0) the fraction of particles in each phase (G or
L). The phase coexistence is then fully solved by enforcing the equality of the
moment chemical potentials and of the quantity Π = gmom− lnP −

∑

i6=0 miµi,
which is a sort of Legendre transform of the pressure [8], in all the coexisting
phases. We must also enforce the conservation of the total number of particles,
i.e.,

∑

a N
a(k) = N (0)(k). If we multiply by wi(k) on both sides and sum

over k, we get, after rearranging, the lever rule for the normalized moments
∑

a φ
ama

i = m
(0)
i , which is the condition we actually enforce. Thus, for the two

equations of state, the system of equations we have to solve turns out to be







































µG
1 = µL

1

µG
2 = µL

2

ΠG = ΠL

m
(0)
1 = φGmG

1 + (1− φG)mL
1

m
(0)
2 = φGmG

2 + (1− φG)mL
2

P = P (ρG0 ,m
G
1 ,m

G
2 )

P = P (ρL0 ,m
L
1 ,m

L
2 )

i.e., 7 equations in the 7 unknowns λG
1 , λ

L
1 , λ

G
2 , λ

L
2 , ρ

G
0 , ρ

L
0 , φ

G. The moment
chemical potentials and the pressure are then for the SRK equation of state:

βµ1 = βλ1 +
ρ0

1− ρ0m1
− ρ0m

2
2

m1(1 + ρ0m1)
+

m2
2

m2
1

ln (1 + ρ0m1)

βµ2 = βλ2 − 2
m2

m1
ln (1 + ρ0m1)

βP =
ρ0

1− ρ0m1
− ρ20m

2
2

1 + ρ0m1

For the PR equation of state, the calculations are just slightly more complicated,
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as now we get:

βµ1 = βλ1 +
ρ0

1− ρ0m1
− ρ0m

2
2

m1(1 + 2ρ0m1 − ρ20m
2
2)

−
√
2

4

m2
2

m2
1

ln

[

1 + (1−
√
2)ρ0m1

1 + (1 +
√
2)ρ0m1

]

βµ2 = βλ2 +

√
2

2

m2

m1
ln

[

1 + (1 −
√
2)ρ0m1

1 + (1 +
√
2)ρ0m1

]

βP =
ρ0

1− ρ0m1
− ρ20m

2
2

1 + 2ρ0m1 − ρ20m
2
1

4 Numerical results

As a way of example, in order to show the potential of the method described
in the previous section, in this section we will show some numerical results
obtained by applying it to a real case-study. We solve the phase equilibria for
a mixture of 24 hydrocarbons, up to nC15, along a straight line crossing the
(P, T ) phase diagram. The calculations are done using the SRK equation of
state, although no relevant difference is observed when using the PR equation
of state. Our numerical results are compared with the results obtained with a
commercial program (PVTsim), licensed to Snamprogetti s.p.a. (that provided
the results). In Fig. 4, we plot the concentration in mole % of C1 (methane),
in the two coexisting phases, against the temperature. Our result agrees very
well with the points obtained with PVTsim. The concentration of both phases
is evaluated correctly. Furthermore, the cloud point, i.e., the point at which
the liquid phase appears, is detected exactly on the phase envelope shown by
PVTsim.

In Fig. 4 we show again the same case. Now we plot the concentration of n-C4
against the pressure. As the pressure-temperature path enters the coexistence
region, liquid is found. This time the component represents less than 1% of the
total composition of the gas, while it is about 10% of the total composition of
the liquid. Again, even with a heavier hydrocarbon, our numerical results are
in excellent agreement with the ones obtained with PVTsim.

5 Conclusion

We have applied the moment method to the analysis of phase equilibria of mix-
ture of hydrocarbons, using the SRK and PR equations of state. Our results
show that not only the moment method is applicable as it correctly detects
gas-liquid phase coexistence. Even with a large number of components in the
mixture, our algorithm remains robust and numerical calculation fast. Fur-
thermore, our numerical results agree quantitatively very well with the results
obtained using a widely used commercial program (PVTsim). No further demix-
ing, beyond the G-L coexistence is observed, however, it is not yet clear whether
this depends on the equations of state used, or rather to the choice of the mix-
ture of hydrocarbons. It may be possible to have the coexistence of more than
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Figure 1: Concentration of methane against temperature in the two coexisting
phasese (solid and dashed lines), compared to the results obtained with PVTsim
(diamonds). The liquid phase appears correctly at lower temperature as the
path across the phase diagram crosses the phase envelope. The cloud point is
detected exactly by our method. Deep inside the coexistence region some small
deviations appear, although it is not clear whether they are due to the moment
method, or to the approximations introduced by PVTsim.

two (G and L) phases, e.g., more than one different liquid and/or gas phases,
using a wider distribution of hydrocarbons.

As far as future developments are concerned, one could proceed to the anal-
ysis of a fully polydisperse case, i.e., by introducing a continuous distribution
of species. Clearly the two equations should first be extended to the continuous
case, e.g., by introducing a continuous dependence of the acentric factor on the
size of particles. It is possible that further demixing appears using different
distributions. The extension to the continuous case should not have any impact
on our method. Clearly, the computation may be slightly slower, as in that
case the moments have to be evaluated by integration rather than summation
over a finite number of species; however, no formal or substantial adjustment is
needed.

Finally, further applications of the moment method could be tried. For
instance, one could try to apply it to metallurgy or other cases of industrial
interest. Clearly, when solid phases appear, one would have to extend the
analysis introducing spatial and/or orientational degrees of freedom. However,
as previous results already show [1, 2, 3, 4, 11, 10] this should not represent a
limitation for the method.
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Figure 2: Concentration in mole % of n-C4 against pressure across the phase
diagram. As pressure and temperature drop enough to enter the phase coexis-
tence region, the liquid phase is found. The concentration the element in both
phases are in excellent agreement with the ones obtained with PVTsim. Again,
it is not clear whether the small deviations inside the coexistence region are
due to our method, or rather to approximations and truncations introduced by
PVTsim.
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