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A Roe-type Riemann solver based on the spectral decomposition of
the equations of Relativistic Magnetohydrodynamics
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Abstract. In a recent paper (Antón et al. 2010) we have derived sets of right and left
eigenvectors of the Jacobians of the relativistic MHD equations, which are regular and
span a complete basis in any physical state including degenerate ones. We present a
summary of the main steps followed in the above derivation and the numerical exper-
iments carried out with the linearized (Roe-type) Riemann solver we have developed,
and some note on the (non-)convex character of the relativistic MHD equations.

1. Introduction

Relativistic flows in association with intense gravitational and magnetic fields are com-
monly linked up to extremely energetic phenomena in the Universe, viz. pulsar winds,
anomalous X-ray pulsars, soft gamma-ray repeaters, gamma-ray bursts, relativistic jets
in active galactic nuclei, etc. The necessity to model the aforementioned astrophysical
scenarios in the framework of relativistic MHD (RMHD), together with the fast increase
in computing power, is pushing towards the development of more efficient numerical
algorithms. In the last years, considerable progress has been achieved in numerical
special RMHD (SRMHD), by extending the existing high-resolution shock-capturing
(HRSC) methods of special relativistic hydrodynamics (e.g., Martı́ & Müller 2003). In
the so called Godunov-type methods, an important subsampleof HRSC methods, nu-
merical fluxes are evaluated through the exact or approximate solution of the (local)
Riemann problem. Despite the fact that such an exact solution in SRMHD is known
(Romero et al. 2005; Giacomazzo & Rezzolla 2006), approximate algorithms are usu-
ally preferred because of their larger numerical efficiency. Several authors (see, e.g.,
Antón et al. 2010, and references therein) have developed independentRoe-typealgo-
rithms based on linearized Riemann solvers relying on the characteristic structure of
the RMHD equations.

The purpose of the present paper is twofold. On one hand, the objective is to
present aregular set of right and left eigenvectors of the flux vector Jacobianmatrices
of the RMHD equations, and span a complete basis inany physical state, including
degenerate states. On the other hand, wish to evaluate numerically the performance of
a RMHD Riemann solver based on the aforementioned spectral decomposition. Both
the theoretical analysis and the numerical applications presented in this paper are based
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on the work developed by Antón et al. (2010), where we have characterized thoroughly
all the degeneracies of RMHD in terms of the components of themagnetic field nor-
mal and tangential to the wavefront in the fluid rest frame. Our numerical method
deviates in several aspects from previous works based on linearized Riemann solver
approaches (Komissarov 1999; Balsara 2001; Koldoba et al. 2002). First, numerical
fluxes are computed from the spectral decomposition in conserved variables. Second,
we present explicit expressions also for the left eigenvectors. Third, and most impor-
tant, we have extended classical MHD strategy (Brio & Wu 1988) to relativistic flows,
giving sets of right and left eigenvectors which are well defined through degenerate
states. Based on the full wave decomposition (FWD) providedby the renormalized set
of eigenvectors in conserved variables, we have also developed a linearized (Roe-type)
Riemann solver.

Extensive testing against one- and two-dimensional standard numerical problems
allows us to conclude that our solver is very robust. When compared with a family of
simpler solvers that do not require the knowledge of the fullcharacteristic structure of
the equations in the computation of the numerical fluxes, oursolver turns out to be less
diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The
amount of operations needed by the FWD solver makes it less efficient computation-
ally than those of the HLL family in one-dimensional problems. However its relative
efficiency increases in multidimensional simulations.

2. The equations of ideal relativistic magnetohydrodynamics

The equations of ideal RMHD correspond to the conservation of rest-mass and energy-
momentum, and the Maxwell equations. In the following, the standard Einstein sum
convention is assumed. Greek indices will run from 0 to 3 (or from t to z) while Roman
run from 1 to 3 (or fromx to z). We use units in which the speed of light isc = 1 and
the (4π)1/2 factor is absorbed in the definition of the magnetic field. Specializing for a
flat space-time and Cartesian coordinates, these equationscan be written as a system of
conservation laws, which reads

∂U
∂t
+
∂Fi

∂xi
= 0, (1)

where the state vector,U (vector ofconserved variables), and the fluxes,Fi (i = 1, 2, 3
or i = x, y, z), are the following column vectors,

U = (D,S j , τ, Bk)T (2)

Fi = (Dvi ,S jvi + p∗δi j − b j Bi/W, τvi + p∗vi − b0Bi/W, vi Bk − vkBi)T (3)

where the superscriptT stands for the transposition.
In the preceding equations,D, S j andτ stand, respectively, for the rest-mass den-

sity, the momentum density of the magnetized fluid in thej-direction and its total en-
ergy density as measured in the laboratory (i.e., Eulerian)frame,

D = ρW , S j = ρh∗W2v j − b0b j , τ = ρh∗W2 − p∗ − (b0)2 − D. (4)

whereρ is the proper rest-mass density,h∗ = 1+ ǫ + p/ρ+ b2/ρ is the specific enthalpy
including the contribution from the magnetic field (b2 stands forbµbµ), ǫ is the specific
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internal energy,p the thermal pressure, andp∗ = p+ b2/2 the total pressure. The four-
vectors representing the fluid velocity,uµ, and the magnetic field measured in the fluid
rest frame,bµ, and there is an equation of state relating the thermodynamic variables,
p, ρ and ǫ, p = p(ρ, ǫ). All the discussion will be valid for a general equation of
state but results will be shown for an ideal gas, for whichp = (γ − 1)ρǫ, whereγ is the
adiabatic exponent. Quantitiesvi stand for the components of the fluid velocity trivector
as measured in the laboratory frame; they are related with the components of the fluid
four-velocity according to the following expressionuµ = W(1, vx, vy, vz), whereW is
the flow Lorentz factor,W2 = 1/(1− vivi).

The following fundamental relations hold between the components of the magnetic
field four-vector in the comoving frame and the three vector componentsBi measured
in the laboratory frame,

b0 =WB · v , bi =
Bi

W
+ b0vi (5)

v andB being, respectively, the tri-vectors (vx, vy, vz) and (Bx, By, Bz).

b2 =
B2

W2
+ (B · v)2 . (6)

The preceding system must be complemented with the usual divergence constraint

∂Bi

∂xi
= 0 , (7)

which should be fulfilled at all times.
FluxesFi (i = x, y, z) are functions of the conserved variables,U, although for the

RMHD this dependence, in general, can not be expressed explicitly. It is therefore nec-
essary to introduce another set of variables, the so-calledprimitive variables, derived
from the conserved ones, in terms of which the fluxes can be computed explicitly. We
have used the following set of primitive variables

V = (ρ, p, vx, vy, vz, Bx, By, Bz)T . (8)

3. Characteristic structure of the RMHD equations

The hyperbolicity of the equations of RMHD including the derivation of wavespeeds
and the corresponding eigenvectors, and the analysis of various degeneracies has been
reviewed by Anile (1989), in a covariant framework, using a set of variables of dimen-
sion 10, the so-calledcovariant variables(Anile’s variables, in the next):

Ũ = (uµ, bµ, p, s)T , (9)

wheres is the specific entropy.
In terms of variables̃U, the system of RMHD equations can be written as a quasi-

linear system of the form

AµŨ;µ = 0, (10)
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where the subscript ;µ stands for the covariant derivative, and four 10× 10 Jacobian
matricesAµ can be found in Anile’s book. It is important to remark that the 10 covariant
variables we have used to write the system of equations are not independent, since they
are related by the constraints

uαuα = −1 , bαuα = 0 , ∂α(u
αb0 − u0bα) = 0 , (11)

The latter condition, is a covariant representation of the divergence constraint (Eq. 7).

3.1. Wavespeeds and degeneracies

The system of (ideal) RMHD equations have the same seven wavespeeds as in classical
MHD: the entropic, Alfvén, slow magnetosonic, and fast magnetosonic waves. They
can be ordered as follows

λ−f ≤ λ
−
a ≤ λ

−
s ≤ λe ≤ λ

+
s ≤ λ

+
a ≤ λ

+
f , (12)

where the subscriptse, a, sand f stand forentropic, Alfvén, slow magnetosonicandfast
magnetosonicrespectively, and the superscript− or + refer to the lower or higher value
of each pair. Unlike classical MHD, it is however not possible, in general, to obtain
simple expressions for the magnetosonic speeds since they are given by the solutions
of a quartic equation.

As in the case of classical MHD, degeneracies are encountered for waves propa-
gating perpendicular to the magnetic field direction (Type I) and for waves propagating
along the magnetic field direction (Type II). Finally, a particular subcase of Type II
degeneracy appears when the sound speed is equal toca.

For Type I degeneracy, the two Alfvén waves, the entropic wave and the two slow
magnetosonic waves propagate at the same speed (λ−a = λ

−
s = λe = λ

+
s = λ

+
a). For Type

II degeneracy, an Alfvén wave and a magnetosonic wave (slowor fast) of the same
class propagate at the same speed (λ−f = λ

−
a or λ−a = λ

−
s or λ+s = λ

+
a or λ+a = λ

+
f ). In

the special Type II′ subcase, an Alfvén wave and both the slow and fast magnetosonic
waves of the same class propagate at the same speed (λ−f = λ

−
a = λ

−
s or λ+s = λ

+
a = λ

+
f ).

3.2. Renormalized right eigenvectors

As it is well known in classical MHD, Alfvén and magnetosonic eigenvectors have a
pathological behaviour at degeneracies, since they becomezero or linearly dependent
and they do not form a basis. In Antón et al. (2010), we have derived a new set of renor-
malized Alfvén and magnetosonic eigenvectors for RMHD. Our renormalized Alfvén
right eigenvectors (following Brio & Wu 1988 methodology) are a linear combination
of the ones proposed by Komissarov (1999), for the Type II degeneracy case. However,
contrary to the Komissarov’s choice, our expressions are free of pathologies not only
in the Type II degeneracy but also in the Type I degeneracy case. Our derivation of
the renormalized magnetosonic right eigenvectors is algebraically more cumbersome
and reader interested is addressed to Antón et al. (2010). The final result of this anal-
ysis allows to have a complete set of right eigenvectors linearly independent for all
possible states. Following the same procedure we have used to renormalize the right
eigenvectors, we have derived (see Antón et al. 2010) left eigenvectors well behaved
for degenerate states.
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4. A Full Wave Decomposition Riemann Solver in RMHD (FWD)

Let us summarize the main steps allowing us to derive a FWD Riemann Solver in
RMHD:

• Let r
Ũ

be a generic right eigenvector derived in terms of Anile’s variables (9).

• The corresponding eigenvector in terms of the primitive variables (8) is derived
according to:rV =

(
∂ŨV

)
r

Ũ
.

• Finally, the corresponding vector in terms of the conservedvariables (2) is ob-
tained fromR ≡ rU = (∂VU) rV .

• Analogously, for the left eigenvectors. This procedure, which starts with renor-
malized eigenvectors, allows one to get the full spectral decomposition of the
Jacobian matrices (associated to the fluxes), and free of pathologies in the degen-
eracies.

• We use a linearized (Roe’s type) Riemann solver:

f̂ j± 1
2
= 1

2

(
f (uL

j± 1
2

) + f (uR
j± 1

2

) −
∑p
α=1 | λ̃α | ∆ω̃αr̃α

)

whereuL, uR, are the left and right reconstructed variables;∆ω, is the jump of
characteristic variables.

Our FWD linearized Riemann solver has been exhaustively tested (Antón et al.
2010).

5. A note on RMHD convexity

For the sake of conciseness let us remind some definitions. A characteristic field
Cα (α = 1, 2, ..., d) (d is the number of equations) satisfying

Cα :
dx
dt
= λα (α = 1, 2, ..., d) (13)

is said to begenuinely nonlinearor linearly degenerateif, respectively,

~∇u λα · rα , 0 , (14)
~∇u λα · rα = 0 (15)

where the operator~∇u acts on the space of conserved variables.
In a convex system, all the characteristic fields are genuinely non-linear or linearly

degenerate. Non-convexity is associated to those states for which the condition (14) is
not fulfiled.

For the system of equations governing relativistic (ideal)flows it can be shown that
the convexity is strongly dependent on the second derivatives of pressure (or the first
derivatives of the sound speed). In the following, we analize when genuinely nonlinear
fields become linearly degenerate, by examining the productsP± := ~∇w λ±(w) · r±(w).
After some algebra, we find

P± = ± T(a, b, cs)

(
∂cs

∂ρ
+

p

ρ2

∂cs

∂ǫ
+

cs

ρ
(1− c2

s)

)
(16)
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being
T(a, b, cs) = (a cs ± δ

1/2)−2 (1− a2)2 δ−1/2 W2 (17)

wherea andb stand for, respectively, the spatial components of the velocity field in the
x-direction and the tangential one. The quantityδ is defined byδ =W2(1− a2 − b2c2

s).
¿From the above relations (16,17) it turns out that the loss of convexity is closely

related with the properties of the equation of state (secondterm in Eq. 16). The first and
second thermodinamical derivatives of pressure play a fundamental role regarding with
this issue (that was noticed by Menikoff & Plohr (1989), for equations of state having
phase transitions). Furthermore, we realize that
i) In the purely one-dimensional case (b = 0), non-convexity only appears in the ultra-
relativistic regime (a→ 1):

T(a, 0, cs) = (1 ± a cs)
−2 W−2 ; a → 1 =⇒ T(a, 0, cs) −→ 0 , O (W−2) (18)

ii) Likewise, if a = 0, non-convexity arises in the ultrarelativistic regime (b→ 1):

T(0, b, cs) = ∆
−3/2 W2 ; b → 1 =⇒ T(0, b, cs) −→ 0 , O (W−1) (19)

Brio & Wu (1988) noted that the equations of classical MHD arenon-convex at the
degenerate states (magnetosonic waves change from genuinely non-linear to linearly
degenerate) . We have faced on the problem of non-convex character of RMHD, and
preliminar results allows one to conclude that the degenerate states are, as in the classi-
cal MHD, non-convex, being the magnetosonic fields the ones changing their character.
We refer the reader to Antón (2008) (appendix G), where an analysis of the character-
istic fields of RMHD in terms of Anile’s covariant variables is presented. Much more
theoretical work is necessary in order to asses all the richness of other possible non-
convex states in RMHD. The previous analysis in special relativistic hydrodynamics
serves us as a road-map to the full characterization of RMHD pathological behaviours
(we remind the reader that the non-convex character of both the classical and relativistic
MHD equations is source of several pathologies, as the development of the so-called
compound waves).
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Antón, L., Miralles, J. A., Martı́, J. M., Ibáñez, J. M., Aloy, M. A., & Mimica, P. 2010, ApJS,

188, 1
Balsara, D. 2001, ApJS, 132, 83
Brio, M., & Wu, C. C. 1988, J. Comput. Phys., 75, 400
Giacomazzo, B., & Rezzolla, L. 2006, J. Fluid Mech., 562, 223
Koldoba, A. V., Kuznetsov, O. A., & Ustyugova, G. V. 2002, MNRAS, 333, 932
Komissarov, S. S. 1999, MNRAS, 303, 343
Martı́, J. M., & Müller, E. 2003, Living Rev. Relativity, 6,7
Menikoff, R., & Plohr, B. 1989, Rev. Mod. Phys., 61, 75
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