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A Roe-type Riemann solver based on the spectral decompositi of
the equations of Relativistic Magnetohydrodynamics
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Juan A. Miralleg, José M* Martit

Abstract. Inarecent paper (Anton etlal. 2010) we have derived seiglofand left
eigenvectors of the Jacobians of the relativistic MHD eiqunst, which are regular and
span a complete basis in any physical state including degenenes. We present a
summary of the main steps followed in the above derivatiahtae numerical exper-
iments carried out with the linearized (Roe-type) Riemamines we have developed,
and some note on the (non-)convex character of the reli¢iWB1D equations.

1. Introduction

Relativistic flows in association with intense gravitaaband magnetic fields are com-
monly linked up to extremely energetic phenomena in the &hsi, viz. pulsar winds,
anomalous X-ray pulsars, soft gamma-ray repeaters, garaynaursts, relativistic jets
in active galactic nuclei, etc. The necessity to model tloeeaientioned astrophysical
scenarios in the framework of relativistic MHD (RMHD), tager with the fast increase
in computing power, is pushing towards the development afenafficient numerical
algorithms. In the last years, considerable progress has aehieved in numerical
special RMHD (SRMHD), by extending the existing high-resigin shock-capturing
(HRSC) methods of special relativistic hydrodynamics.(évtarti & Muller [2003). In
the so called Godunov-type methods, an important subsaofp&kSC methods, nu-
merical fluxes are evaluated through the exact or approgirsalution of the (local)
Riemann problem. Despite the fact that such an exact soliti®RMHD is known
(Romero et al. 2005; Giacomazzo & Rezzolla 2006), approtéradgorithms are usu-
ally preferred because of their larger numericgiiceency. Several authors (see, e.g.,
Anton et al. 2010, and references therein) have develamebendenRoe-typealgo-
rithms based on linearized Riemann solvers relying on tlasaciteristic structure of
the RMHD equations.

The purpose of the present paper is twofold. On one hand, bfeztive is to
present aegular set of right and left eigenvectors of the flux vector Jacoletrices
of the RMHD equations, and span a complete basianyphysical state, including
degenerate states. On the other hand, wish to evaluate icaityethe performance of
a RMHD Riemann solver based on the aforementioned spe@caingposition. Both
the theoretical analysis and the numerical applicatiorsegnted in this paper are based
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on the work developed by Anton et al. (2010), where we haeeaztierized thoroughly
all the degeneracies of RMHD in terms of the components ofithgnetic field nor-
mal and tangential to the wavefront in the fluid rest frame.r Gumerical method
deviates in several aspects from previous works based earlzed Riemann solver
approaches_(Komissarov 1999; Balsara 2001; Koldoba eD@R2)2 First, numerical
fluxes are computed from the spectral decomposition in ceedevariables. Second,
we present explicit expressions also for the left eigemractThird, and most impor-
tant, we have extended classical MHD strategy (Brio &/Wu )988elativistic flows,
giving sets of right and left eigenvectors which are well nledi through degenerate
states. Based on the full wave decomposition (FWD) providethe renormalized set
of eigenvectors in conserved variables, we have also deséla linearized (Roe-type)
Riemann solver.

Extensive testing against one- and two-dimensional stdrmaamerical problems
allows us to conclude that our solver is very robust. Whenpamed with a family of
simpler solvers that do not require the knowledge of thedélracteristic structure of
the equations in the computation of the numerical fluxessolwer turns out to be less
diffusive than HLL and HLLC, and comparable in accuracy to the Hldolver. The
amount of operations needed by the FWD solver makes it lis$eat computation-
ally than those of the HLL family in one-dimensional probkenHowever its relative
efficiency increases in multidimensional simulations.

2. The equations of ideal relativistic magnetohydrodynamnis

The equations of ideal RMHD correspond to the conservatioast-mass and energy-
momentum, and the Maxwell equations. In the following, ttendard Einstein sum
convention is assumed. Greek indices will run from 0 to 3 fonTt to z) while Roman
run from 1 to 3 (or fromx to z). We use units in which the speed of lightds= 1 and
the (4r)Y/2 factor is absorbed in the definition of the magnetic field. Sgizing for a
flat space-time and Cartesian coordinates, these equatorse written as a system of
conservation laws, which reads

U  oF
— +— =0, 1
ot - ox (1)
where the state vectdd (vector ofconserved variablgsand the fluxesF i=123
ori = x,y, 2), are the following column vectors,

U=(D,sl,7,BY 2
F' = (DV,SIV + p's' = bIB /W, 7V + p*V — b°B'/W, V' BX — V*B')T (3)
where the superscriptstands for the transposition.
In the preceding equationB, S! andr stand, respectively, for the rest-mass den-

sity, the momentum density of the magnetized fluid in prdirection and its total en-
ergy density as measured in the laboratory (i.e., Eulefram)e,

D=pW, Sl=ph'Wa/J -b%l, 7=ph*W?-p*—(b°?-D. (4)

wherep is the proper rest-mass density,= 1+ € + p/p + b?/p is the specific enthalpy
including the contribution from the magnetic fielo? (stands fol*b,), € is the specific
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internal energyp the thermal pressure, amd = p + b?/2 the total pressure. The four-
vectors representing the fluid velocity,, and the magnetic field measured in the fluid
rest framep#, and there is an equation of state relating the thermodynaariables,
p, p ande, p = p(p,€). All the discussion will be valid for a general equation of
state but results will be shown for an ideal gas, for which (y — 1)oe, wherey is the
adiabatic exponent. Quantitigsstand for the components of the fluid velocity trivector
as measured in the laboratory frame; they are related watltdimponents of the fluid
four-velocity according to the following expressioti = W(1, v*, VW, V?), whereW is
the flow Lorentz factoV? = 1/(1 - V'v;).

The following fundamental relations hold between the congmbs of the magnetic
field four-vector in the comoving frame and the three vectomponentsB' measured
in the laboratory frame,

Bi
W
v andB being, respectively, the tri-vectorg*(W, v¥) and 8%, BY, BY).

°=WB-v , b + bV (5)

, _B? 2
b:w+(B‘v) . (6)
The preceding system must be complemented with the usuaygince constraint

0B
aXi - 0 ’ (7)
which should be fulfilled at all times.

FluxesF' (i = x,y, 2) are functions of the conserved variabl&s although for the
RMHD this dependence, in general, can not be expressectityplit is therefore nec-
essary to introduce another set of variables, the so-cpliieditive variables derived
from the conserved ones, in terms of which the fluxes can beoated explicitly. We
have used the following set of primitive variables

V = (o, p,V5, VW, V%, BX, BY, BY)T. (8)

3. Characteristic structure of the RMHD equations

The hyperbolicity of the equations of RMHD including the iglation of wavespeeds
and the corresponding eigenvectors, and the analysis ioiugatdegeneracies has been
reviewed by Anile|(1989), in a covariant framework, usingeaaf variables of dimen-
sion 10, the so-calledovariant variablegAnile’s variables, in the next):

0=, p9, 9)

wheresis the specific entropy.
In terms of variabled), the system of RMHD equations can be written as a quasi-
linear system of the form

ﬂﬂU;ﬂ = O, (10)
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where the subscripty; stands for the covariant derivative, and fourx.Q0 Jacobian
matricesA* can be found in Anile’s book. It is important to remark tha 0 covariant
variables we have used to write the system of equations aradependent, since they
are related by the constraints

WU, =-1 , b, =0 , 8,(up®—u’h?) =0, (11)
The latter condition, is a covariant representation of tlkergence constraint (EQl 7).

3.1. Wavespeeds and degeneracies

The system of (ideal) RMHD equations have the same severnspagds as in classical
MHD: the entropic, Alfvén, slow magnetosonic, and fast metgsonic waves. They
can be ordered as follows

AT <A <A < e <AL < AF < At 12
f a S S a

where the subscripts a, sandf stand forentropig Alfvén slow magnetosoniandfast
magnetosonicespectively, and the superscripor + refer to the lower or higher value
of each pair. Unlike classical MHD, it is however not possjih general, to obtain
simple expressions for the magnetosonic speeds since thayven by the solutions
of a quartic equation.

As in the case of classical MHD, degeneracies are encounteravaves propa-
gating perpendicular to the magnetic field direction (Tyyend for waves propagating
along the magnetic field direction (Type II). Finally, a peutar subcase of Type I
degeneracy appears when the sound speed is equal to

For Type | degeneracy, the two Alfvén waves, the entropieenand the two slow
magnetosonic waves propagate at the same spged {5 = 1e = A5 = A3). For Type
Il degeneracy, an Alfvén wave and a magnetosonic wave (slofast) of the same
class propagate at the same spegd< A; or 4; = A5 or A{ = A3 or A7 = 7). In
the special Type 1lsubcase, an Alfvén wave and both the slow and fast magmétoso
waves of the same class propagate at the same sppedi; = A5 or A{ = A} = 7).

3.2. Renormalized right eigenvectors

As it is well known in classical MHD, Alfvén and magnetosomigenvectors have a
pathological behaviour at degeneracies, since they bezenacor linearly dependent
and they do not form a basis.|In Anton et al. (2010), we havivelda new set of renor-
malized Alfvén and magnetosonic eigenvectors for RMHDr @mormalized Alfvén
right eigenvectors (following Brio & Wu 1988 methodologyeaa linear combination
of the ones proposed by Komissarov (1999), for the Type ledegacy case. However,
contrary to the Komissarov's choice, our expressions ae @f pathologies not only
in the Type Il degeneracy but also in the Type | degeneracyg.c@sir derivation of
the renormalized magnetosonic right eigenvectors is atgeddly more cumbersome
and reader interested is addressed to Antonlet al. (201@ fifial result of this anal-
ysis allows to have a complete set of right eigenvectorsatigeindependent for all
possible states. Following the same procedure we have asethérmalize the right
eigenvectors, we have derived (see Anton et al. 2010) igéneectors well behaved
for degenerate states.



4. A Full Wave Decomposition Riemann Solver in RMHD (FWD)
Let us summarize the main steps allowing us to derive a FWDnRim Solver in
RMHD:

e Letr, be a generic right eigenvector derived in terms of Anile'satales ).

e The corresponding eigenvector in terms of the primitivealdes [8) is derived
according tor, = (dgV)r,.

e Finally, the corresponding vector in terms of the consemnethbles[(R) is ob-
tained fromR =r, = (dyU)r,,.

¢ Analogously, for the left eigenvectors. This procedurejchtstarts with renor-
malized eigenvectors, allows one to get the full spectrabdegosition of the
Jacobian matrices (associated to the fluxes), and free lnblpgies in the degen-
eracies.

e We use a linearized (Roe’s type) Riemann solver:
= %(f(u'j—i%) 1R ) - 2P 1 | Aa(,ﬁ,)
whereut, uR, are the left and right reconstructed variablas, is the jump of
characteristic variables.

Our FWD linearized Riemann solver has been exhaustivetgdeg\nton et al.
2010).

5. A note on RMHD convexity

For the sake of conciseness let us remind some definitions.hatacteristic field
C.(@=12,..,d) (dis the number of equations) satisfying

d
Co d—i‘ = (@=12..d) (13)
is said to begenuinely nonlineaor linearly degeneratéf, respectively,
6u /l(k’ * ra/ ¢ 0, (14)
6u /l(l * ra/ = 0 (15)

where the operatd?u acts on the space of conserved variables.

In a convex system, all the characteristic fields are gehumman-linear or linearly
degenerate. Non-convexity is associated to those stategfoh the condition[(14) is
not fulfiled.

For the system of equations governing relativistic (idéalys it can be shown that
the convexity is strongly dependent on the second derastdf pressure (or the first
derivatives of the sound speed). In the following, we amalihen genuinely nonlinear
fields become linearly degenerate, by examining the predRict= Vi Ax (W) -1 (w).
After some algebra, we find
0Cs p dcg

e 2a-d) (16)
o

P.==T(ab,c (ap +p2 P



being
T(ab,cs) = (@cs = Y22 (1-a)2 Y2 W? (17)

wherea andb stand for, respectively, the spatial components of thecityidield in the
x-direction and the tangential one. The quandiig defined by = W2(1 — & — b2c2).

¢ From the above relatiorls {{6],17) it turns out that the lbssvexity is closely
related with the properties of the equation of state (setemd in Eq[16). The first and
second thermodinamical derivatives of pressure play agfomgghtal role regarding with
this issue (that was noticed by Meniké& Plohr (1989), for equations of state having
phase transitions). Furthermore, we realize that
i) In the purely one-dimensional cade£ 0), non-convexity only appears in the ultra-
relativistic regime 4 — 1):

T@0,c)=(1+ac)?W?; a— 1= T(a0,cs) — 0,0(W? (18)
i) Likewise, if a = 0, non-convexity arises in the ultrarelativistic regirbe+$ 1):
T(O,b,c) =A=2W?; b > 1= T(0,bcs) — 0,0W™?) (19)

Brio & Wu (1988) noted that the equations of classical MHDrama-convex at the
degenerate states (magnetosonic waves change from ggnoimelinear to linearly
degenerate) . We have faced on the problem of non-conveadkearof RMHD, and
preliminar results allows one to conclude that the dege@estates are, as in the classi-
cal MHD, non-convex, being the magnetosonic fields the oheaging their character.
We refer the reader to Anton (2008) (appendix G), where atyais of the character-
istic fields of RMHD in terms of Anile’s covariant variables presented. Much more
theoretical work is necessary in order to asses all the eshrof other possible non-
convex states in RMHD. The previous analysis in speciatividéic hydrodynamics
serves us as a road-map to the full characterization of RMEtidgiogical behaviours
(we remind the reader that the non-convex character of betblassical and relativistic
MHD equations is source of several pathologies, as the dewent of the so-called
compound waves).

Acknowledgments. Work supported by the grants AYA2007-67626-C03-01 and
CSD2007-00050 from the Spanish MICINN and PROMETEM9103 of the Gener-
alitat Valenciana.

References

Anile, A. M. 1989, Relativistic fluids and magneto-fluids (@lridge, England: Cambridge
University Press)

Anton, L. 2008, Ph.D. thesis, Universitat de Valencia

Anton, L., Miralles, J. A., Marti, J. M., Ibafiez, J. M.Jay, M. A., & Mimica, P. 2010, ApJS,
188, 1

Balsara, D. 2001, ApJS, 132, 83

Brio, M., & Wu, C. C. 1988, J. Comput. Phys., 75, 400

Giacomazzo, B., & Rezzolla, L. 2006, J. Fluid Mech., 562, 223

Koldoba, A. V., Kuznetsov, O. A., & Ustyugova, G. V. 2002, MNR, 333, 932

Komissarov, S. S. 1999, MNRAS, 303, 343

Marti, J. M., & Mlller, E. 2003, Living Rev. Relativity, &,

Menikoff, R., & Plohr, B. 1989, Rev. Mod. Phys., 61, 75

Romero, R., Marti, J. M., Pons, J. A,, Ibafiez, J. M., & Mas, J. A. 2005, J. Fluid Mech., 544,
323



