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Abstract

Four-dimensional CFTs dual to branes transverse to toric Calabi–Yau threefolds have

been described by bipartite graphs on a torus (dimer models). We use the theory of dessins

d’enfants to describe these in terms of triples of permutations which multiply to one. These

permutations yield an elegant description of zig-zag paths, which have appeared in charac-

terizing the toroidal dimers that lead to consistent SCFTs. The dessins are also related to

Belyi pairs, consisting of a curve equipped with a map to P1, branched over three points on

the P1. We construct explicit examples of Belyi pairs associated to some CFTs, including C3

and the conifold. Permutation symmetries of the superpotential are related to the geometry

of the Belyi pair. The Artin braid group action and a variation thereof play an interesting

role. We make a conjecture relating the complex structure of the Belyi curve to R-charges

in the conformal field theory.
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1 Introduction

The AdS/CFT correspondence [1, 2, 3] provides a bridge between gravitational physics and

gauge theory. First formulated as the statement that the maximally supersymmetric four-

dimensional Yang–Mills theory and type IIB string theory on the AdS5×S5 are dual, it was

later understood that more generic versions, in particular with less supersymmetry, can be

constructed if the internal space is replaced by some other positive curvature manifold. To

be precise, one can consider N D3-branes spanning the Minkowski part of R1,3 ×M, where

M is a non-compact conical toric Calabi–Yau threefold. At the singular point of the CY3

moduli space, when the CY3 is R+×B (B being the base of the cone), the low-energy theory

on the D3-branes flows in the infrared (IR) to a four-dimensional superconformal field theory

(SCFT). On the other hand, through the AdS/CFT correspondence, this IR SCFT must be

holographically dual to type IIB supergravity on AdS5 ×B. The first such example was the

celebrated Klebanov–Witten theory [4], which arises in the near-horizon limit of a stack of

D3-branes probing a conifold singularity. In [5] the explicit field theory duals for D3-branes
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probing generic cones over Y p, q manifolds were proposed, while in [6, 7, 8] the examples of

the duality were further extended to the Lp, q, r spaces.

Understanding the details of the IR SCFT dual to the gravity background represents a

priori an enormous challenge. However, in the case of toric CY3, due to tremendous progress

in the last five years (e.g., [8, 9, 10, 11, 12, 13]), it has been shown that these theories can

be encoded in bipartite tilings of a torus, also frequently called a dimers in this context (for

detailed reviews see [14, 15]). In a few words, a dimer on the torus is a graph drawn on T2

consisting of two types of vertices (distinguished, for example, by black or white coloring) and

edges that each connect a black vertex to a white vertex. Similar bipartite constructions have

appeared in statistical physics and mathematics (see, e.g., [16]). The dimer can be thought

of as the dual graph to a periodic quiver. The faces of the dimer represent the equal rank

SU(N) gauge groups of the SCFT.1 The edges represent the fields of the theory, which are

in the bifundamental representation of the two adjacent faces (gauge groups) they separate.

The edges meet at the nodes, which then naturally encode the interactions as superpotential

terms. Encircling the black nodes in a clockwise manner supplies an orientation for the

edges, which is kept fixed and induces the anti-clockwise encircling for the white nodes.

The black nodes correspond to positive terms W+ in the superpotential W while the white

ones correspond to negative terms W−. In this way, the construction ensures that each field

appears precisely two times in W , once with each sign. Thus the dimer captures the toric

character of the theory.

The origin of dimers is understood from several perspectives. As described in [10], two

T-dualities along the appropriate U(1)2 subgroup of the T3 fiber of the Calabi–Yau when

regarded as a toric variety yield a certain five-brane system (see, e.g., the review [15] and

references therein). The distribution of the five-branes on the T2 is then intrinsically related

to the dimer. An alternative perspective, developed in [13], emerges when one considers

the type IIA mirror of the original system of D3-branes probing the CY3. The D3-branes

are mapped into D6-branes wrapping three-cycles. These three-cycles intersect in a given

manner, and a direct connection to the dimer appears.

In this paper we will explore a fascinating interplay between dimer models and the the-

ory of dessins d’enfants and Belyi pairs.2 A dimer, being a bipartite graph on a torus, is a

dessin d’enfant [24]. (See the compilation in [21].) A well-known combinatoric description

characterizes any dessin in terms of three permutations which multiply to one. These are

permutations of natural numbers 1, . . . , d, where d is the number of edges of the bipartite

graph, i.e., we have three permutations in Sd. The condition of three group elements mul-

tiplying to one also defines the fundamental group of a sphere with three punctures. This

1 The addition of fractional branes and the extension of our discussion to non-conformal theories, while

very interesting, is beyond the scope of this paper. Thus, from now on equal SU(N) gauge factors will be

assumed.
2 For earlier work along these lines, see [17]. Dessins and Belyi pairs have also appeared in string theory

in the context of Seiberg–Witten curves for N = 2 theories [18, 19] and Matrix Models [20, 22, 23].
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shows, using standard facts from covering space theory, that the combinatoric data of a dimer

determine a unique (up to equivalences defined later) holomorphic map from the torus T2 to

a projective space P1 with three marked points, which are branch points of the map. This

means that any point on the torus where the derivative of the holomorphic map vanishes is

in the inverse image of one of these three points. These points can be chosen to be fixed

at 0, 1,∞. From the holomorphic map, the dessin d’enfant or dimer can be reconstructed.

The black vertices are inverse images of 0, the white vertices are inverse images of 1, and

the edges are the inverse images of the [0, 1] interval. The graph divides the torus into faces,

each of which contains one inverse image of ∞.

Holomorphic maps from a Riemann surface to P1, branched over three points, play a

distinguished role due to a result of Belyi [25] which provides a deep connection between

these holomorphic maps and Riemann surfaces which can be defined by means of algebraic

equations with coefficients living in Q, the field of algebraic numbers. These are numbers

that arise as solutions to polynomial equations with rational coefficients. This has gener-

ated a substantial interest, in the mathematics literature, in explicit constructions of these

holomorphic maps, in terms of Belyi pairs. A Belyi pair consists of a curve, in our case of

toroidal topology, defined by some algebraic equations and a map, also given by algebraic

equations; so that all the numbers appearing in these equations are algebraic numbers (see,

for example, [21]). Unfortunately, given a dessin, there is no general algorithm for writing

the equations for the curve and the map. Belyi’s theorem only assures the existence of such

a map.

In this paper we set up the study of the implications of the Belyi construction for

AdS/CFT arising from conical toric CY3. We find that the tools developed in the anal-

ysis of dimers, such as zig-zag paths [8, 9, 10, 11, 12, 13], are naturally incorporated in an

efficient way in the combinatorial framework of permutation triples. The Belyi pair provides

a geometric realization of many aspects of the SCFT, in particular discrete permutation

symmetries of the superpotential which are realized as automorphisms of algebraic curves.

It is natural to ask about the physical meaning of the Belyi construction. Our strategy

to approach this question is to focus, in the first instance, on the complex structure of

the Belyi curve. Indeed, the Belyi pair determines a unique complex structure, which we

denote as τB, on the torus supporting the Belyi map. On the other hand the dimer can be

drawn on an arbitrary torus. It is particularly interesting to consider the dimer drawn in an

isoradial embedding, where one considers marking the center of each face and drawing the

dimer such that all nodes surrounding a center lie upon a circle of unit radius [11]. Isoradial

embeddings have also previously appeared in the mathematical literature (see, e.g., [26])

related to statistical mechanics. While it is not understood how this prescription might arise

— if, indeed, it does — from the available brane constructions, it turns out that, remarkably,

one can encode further details of the IR superconformal fixed point by drawing the edges

of the dimer as straight lines and fixing the angles between the edges meeting at a node

in terms of the R-charges [11]. At the superconformal fixed point, there is a unique U(1)R

5



which sits in the same supermultiplet as the stress-energy tensor. Indeed, the R-charges of

fields (under this particular U(1)R) are directly related to the scaling dimension of the chiral

operators in the theory. As is well-known, the corresponding R-charges can be determined

by a-maximization [27], which, from this point of view, selects from the moduli space of

isoradial dimers the R-charges in the SCFT. In particular, the R-charges fixed by the a-

maximization procedure arise from a system of quadratic algebraic equations, and therefore

are algebraic numbers. In turn, through the construction in [11], the dimer drawn according

to this prescription determines a particular complex structure τR for the torus.

The combinatoric data of a toroidal dimer determine two complex structures: on one hand

the Belyi complex structure τB of the curve supporting the Belyi map, and on the other hand

the τR determined by the R-charges. We investigate the relation between these two complex

structures and find two infinite families (including orbifolds) where τB = τR. This motivates

the proposal that τB = τR for all dimers associated with toric SCFTs. While at the moment a

proof of this proposal remains elusive, it is supported by explicit computation in the available

examples and it has interesting implications for algebraic values of the Klein j-function at

transcendental arguments. This is a fascinating avenue for future research.

The structure of the paper is as follows. In Section 2, we introduce the combinatorial

description of the dimer in terms of a triple of permutations. By the Riemann existence the-

orem, this leads to a holomorphic map from the torus T2 to a sphere P1 branched over three

points. We briefly review the connection to algebraic numbers by Belyi’s theorem. In Sec-

tion 3, we explore the (discrete) symmetries of the superpotential arising from permutations

of the chiral fields, which are related to symmetries of the dimer, in terms of the associated

permutation triple and Belyi pair. We also consider the operation of twisting which keeps

fixed the permutation around the black vertices and inverts the permutation around the

white vertices. This provides the combinatoric data for another Belyi pair, which we will

denote as as the untwisted Belyi pair. The source of the holomorphic map here is a curve Σ

in the mirror geometry of the CY3 which has been called the “untwisted” curve [17, 13]. In

Section 4, we illustrate these ideas with simple examples: N = 4 SYM, the conifold, the del

Pezzo zero (dP0), and the suspended pinch point (SPP). In Section 5, we discuss orbifold

theories. In Section 6, we introduce the zig-zag paths, which have played an important role

in AdS/CFT literature in constructing the data of the toric diagram from the dimer. They

have a particularly simple combinatorial description in terms of permutations. We give a

simple algorithmic formulation of the condition that zig-zags do not self-intersect in terms

of strings of permutations. This is one of the consistency conditions on dimers, which mean

that not all toroidal dimers lead to consistent SCFTs. In Section 7, we develop the proposal

of the equality of the complex structure parameter of the Belyi and the R-charge tori. In

Section 8, we summarize our results and discuss future directions. The Appendices collect

background information and additionally present the orbifold constructions in greater detail.
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2 Toric CFTs, dimer models, and permutations

Since toric CFTs have been described by dimers,3 i.e., bipartite graphs on a torus, we will

start with describing general bipartite graphs on Riemann surfaces Σh, which are also known

as dessins d’enfants. We will explain their description in terms of triples of permutations

and to algebraic numbers via Belyi theory.

2.1 Dessins and permutations

The bipartite condition simply means that the vertices (or nodes) in the graph can be divided

into two disjoint sets such that lines connect vertices in one set to vertices in the other, and

that no lines connect vertices within the same set. We color the vertices in the first set

black and the vertices in the second set white. The lines, which are the edges of the graph,

separate the faces, which are topological disks. This graph is called a dessin d’enfant, French

for “children’s drawing.”

Given a bipartite graph with d edges on a Riemann surface, we can label the edges

1, . . . , d. Choosing an orientation on the Riemann surface, we traverse the edges that are

incident on the black vertices in a direction compatible with the orientation. This enables

us to construct a permutation in the symmetric group of d elements, σB ∈ Sd. Traversing

the edges incident on the white vertices in the same way, we construct a second permutation

σW ∈ Sd. It is useful to define σ∞ = (σB σW )−1, so that we have

σB σW σ∞ = 1 . (1)

This can be recognized as a sequence of three permutations which obey the same relation

as the generating elements of the fundamental group of a sphere with three punctures. This

information, by covering space theory (see a physics review with mathematical references

in [28]), is exactly what is required to describe a unique holomorphic branched cover of the

sphere of degree d, with three fixed branch points. These can be chosen to lie at 0, 1,∞.

Each cycle of σi (i ∈ {B,W,∞} ) corresponds to a point in the inverse image, respectively,

of {0, 1,∞}. A cycle of length n corresponds to a point where the map locally looks like

w = zn, with w being a local coordinate on the target P1 and z a local coordinate on the

covering Riemann surface Σh. If n > 1, the point on Σh is said to be a ramification point

and n is called the ramification index. The derivative of the map, calculated using the local

coordinates, vanishes at a ramification point. In the current terminology, which is frequent

but not universal in the literature on branched covers, the points {0, 1,∞} on P1, which are

images of any point where the derivative of the map vanishes, are called branch points. The

points on Σh where the derivative vanishes are ramification points. The branch points are

3 We give a lightning review of the use of dimers in characterizing SCFTs in Appendix A, and refer to,

e.g., [14, 15] for a thorough introduction.
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also often called critical values of the map while the ramification points are called critical

points.

Note that the permutation σ∞ contains information about the faces of the dimer. Indeed,

the number of cycles in σ∞ counts the number of faces, which is in turn the number of gauge

groups of the SCFT. We will elaborate further on the description of the faces in terms of

permutations in Section 6. It turns out that a permutation in S2d, related to σ∞, contains a

precise description of the faces.

2.2 Riemann existence theorem, automorphisms, and Belyi pairs

The one-to-one equivalence between permutation triples and holomorphic maps holds with

the understanding of equivalences on both sides. This is the content of a deep and powerful

theorem called the Riemann Existence Theorem, discussed at length, for example, in [29].

Two permutation triples {σB, σW , σ∞} and {σ′B, σ′W , σ′∞} define equivalent holomorphic

maps β, β′ if

σ′B = γ σB γ
−1 , σ′W = γ σW γ−1 , (2)

for some γ ∈ Sd. Two such holomorphic maps β, β′ are equivalent if there is a holomorphic

one-to-one map φ from the source to itself such that β′ = β ◦ φ, or, in other words, if the

following diagram commutes.
φ

Σh −→ Σh

β′ ↘ ↙ β

P1

(3)

It is appropriate, at this point, to consider permutations γ that leave the pair (σB, σW )

fixed, i.e.,

γ σB γ
−1 = σB , γ σW γ−1 = σW . (4)

These define a group that we denote Aut(σB, σW ). This can be identified with the automor-

phisms of the pair (Σh, β) denoted as Aut(Σh, β), which are holomorphic one-to-one maps

φ : Σh → Σh such that β ◦φ = β. The group Aut(Σh, β) is a subgroup of the group Aut(Σh)

of all one-to-one holomorphic maps from Σh to Σh. For the case h = 1 case, Σh is an elliptic

curve, and much is known about this group, as we describe in Appendix B. When h = 0,

and Σh is a sphere, the automorphism group is PSL(2,C), which is the group of Möbius

transformations

x→ (ax+ b)

(cx+ d)
(5)

with ad − bc = ±1. For Σh of higher genus, the order of the group is bounded by 84(h −
1) [30]. The direct connection between the combinatorially defined automorphism group
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Aut(σB, σW ) and the analytically defined Aut(Σh, β) will lead to a geometrical formulation

of symmetries of the superpotential in Section 3.

For a covering space of genus h, we have

2h− 2 = d− CσB − CσW − Cσ∞ , (6)

where Cσ is the number of cycles in σ and d is the degree of the map. This is a special case

of the Riemann–Hurwitz relation, which says in general, for a map

β : Σh → ΣG (7)

from a Riemann surface of genus h to one of genus G and branching number B, the following

equation is satisfied

2h− 2 = d (2G− 2) +B . (8)

Let us specialize to the case h = 1, or Σh = T2, and G = 0, corresponding to the target P1.

The torus condition is expressed as

2h− 2 = 0 = −2d+ (d− CσB) + (d− CσW ) + (d− Cσ∞) = d− CσB − CσW − Cσ∞ . (9)

The branching number B is given as

B =
∑

i∈{B,W,∞}
(d− Cσi) . (10)

The above discussion connecting triples of permutations to holomorphic covering maps

branched over three points generalizes to arbitrary tuples of L permutations corresponding

to holomorphic covers branched over L points. The case of three permutations has particular

interest because of Belyi’s theorem [25]. It states that if a Riemann surface admits a map

to P1 branched over three points on the P1, then it can be described by algebraic equations

involving only algebraic number coefficients. Algebraic numbers live in the field Q and are all

possible solutions of polynomial equations with coefficients in Q.4 Conversely, if a Riemann

surface can be defined over Q, then it admits a map to P1 branched over three points.

A Belyi pair is an explicit realization of the holomorphic curve Σh and map β in terms

of algebraic equations involving algebraic numbers. The absolute Galois group Gal(Q/Q)

acts as a symmetry of the field of algebraic numbers, which preserves the rational numbers.

Grothendieck [24] observed that the action of Gal(Q/Q) on the Belyi pair induces a faithful

action on dessins, which were thus a simple combinatoric structure containing information

about a mysterious group of deep number theoretic importance.

To summarize, the data of a bipartite graph on the Riemann surface Σh specify a mero-

morphic function from Σh to P1 with three branch points, chosen to be 0, 1,∞. This is the

4 We recall that almost all real numbers are not algebraic, i.e., they are transcendental.
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Figure 1: Dimer for the N = 4 SYM theory.

Belyi map, which we label as β. The source Riemann surface together with the map (Σh, β)

is called the Belyi pair. From the surface Σh and the map β, we can construct the dessin

d’enfant as follows. We associate to the points β−1(0) the black nodes, and to the points

β−1(1) the white nodes. The edges are the inverse images of the interval [0, 1]. Points which

are the inverse image of infinity correspond to the faces of the dessin.

In this way, all the information about the bipartite graph is captured by the Belyi pair

(Σh, β). Unfortunately, there is no known general algorithm which starts with Σh and the bi-

partite graph and yields the algebraic equations for Σh and the map β. The Belyi pair (Σh, β)

has generally to be constructed on a case-by-case basis, although some general procedures

are known for genus zero covers.

2.3 The basic example: N = 4 SYM and C3

In order to make our discussion more concrete, let us consider the simplest example, namely

D3-branes transverse to C3. The worldvolume theory on the branes is N = 4 SYM, which

is encoded in the dimer shown in Figure 1.

We see that there are three fields corresponding to the edges labelled as 1, 2, 3. As there

is one face corresponding to the SU(N) gauge group, all these fields Φi are in the adjoint

representation (viz. (N,N)). Circling the black node anticlockwise gives the Tr(X1X2X3)

interaction. Circling the white node clockwise, we find the Tr(X1X3X2) interaction. Thus,

the superpotential is

W = Tr (X1X2X3 −X1X3X2) . (11)

Following the procedure explained at the beginning of Section 2.1, from Figure 1, we can

read off the permutation structure

σB = (123) , σW = (123) , σ∞ = (σBσW )−1 = (123) . (12)

Each of these permutations consists of a single cycle. The fact that the dessin lives on a

genus one surface follows immediately from the cycle structures of the three permutations

using the Riemann–Hurwitz formula (9)

2h− 2 = 0 = d− CσB − CσW − Cσ∞ = 3− 1− 1− 1 . (13)

10



Given the connection between dessins and branched covers explained in Sections 2.1 and 2.2,

we infer that this dessin corresponds to a map of degree three, with three ramification points

of degree three each.

In the Weierstrass parametrization, consider a torus given by the defining equation

y2 = x3 + 1 . (14)

As we review in Appendix B.1, the j-function classifies elliptic curves up to isomorphism.

This torus has j-invariant j(τ) = 0. Inverting this, j−1(0) = eπi/3 = 1
2

+ i
√

3
2

gives the

modular parameter of the torus.

In the case of the C3 theory, let us consider

β =
y + 1

2
. (15)

The derivative of the map, defined with respect to local coordinates, vanishes at the rami-

fication points. The images of these ramification points are {0, 1,∞}. Thus, the β defined

in (15) is a Belyi map. The Belyi pair consisiting of (14) and (15) has previously been given

in [31].

To demonstrate explicitly that this is indeed a Belyi pair, let us examine the preimages

of the relevant points.

• β−1(0): the preimage of 0 is y = −1 corresponding to the point (x, y) = (0,−1) on the

elliptic curve. Close to this point, we write (x, y) = (ε,−1 + z) so that

(−1 + z)2 = ε3 + 1 , (16)

or −2z = ε3. A good local coordinate is then x = ε, z = −1
2
ε3. Thus, locally the map

β is

β(−1 + z) = −ε
3

4
. (17)

On the target P1, w = β(−1 + z) − β(−1) = − ε3

4
is a good local coordinate. The

derivative ∂εw vanishes at ε = 0. The cubic power in (17) indicates a ramification

point with ramification index 3 and corresponds to a black node with three incident

edges in the associated dessin.

• β−1(1): the preimage of 1 is y = 1 corresponding to the point (x, y) = (0, 1) on the

elliptic curve. Close to this point, we write (x, y) = (ε, 1 + z) so that

(1 + z)2 = ε3 + 1 , (18)

or 2z = ε3. A good local coordinate is then ε where x = ε, z = 1
2
ε3. Using the map β

β(1 + z) = 1 +
ε3

4
(19)

11



we find the map in terms of the local coordinate w = β(1 + z)− β(1) on P1 as w = ε3

4
.

Again, the derivative ∂εw vanishes at ε = 0. Since the exponent in (19) is 3, we have

another ramification point with ramification index 3, this one corresponding to a white

node with three incident edges in the dessin.

• β−1(∞): the preimage of infinity is the point infinity on the elliptic curve. There,

locally, the torus looks like y2 = x3, so the appropriate local coordinate is y = ε−3,

x = ε−2. Thus, near β ∼ ∞,

β ' 1

2ε3
. (20)

On the target P1, the local coordinate w around this point is

w =
1

β
' 2ε3 . (21)

The derivative of the local coordinate w with respect to ε vanishes at ε = 0. We observe

from (21) that the ramification index of the point at infinity is 3.

• β−1(1
2
): Let us consider a point in P1, which is not in the set {0, 1,∞}. For simplicity,

we choose β = 1
2

corresponding to ( 3
√
−1, 0), though any other point works as well.

Around (−1, 0), we can write the elliptic curve as

z2 = (−1 + ε)3 + 1 , (22)

or z2 = 3ε. Close to this point, a good local coordinate is ε = ε2, z =
√

3 ε. Thus,

β(z) =
1 +
√

3 ε

2
(23)

describes a local coordinate w = β(z) − β(0) =
√

3
2
ε. The derivative ∂εw is non-

vanishing. This point is unramified.

Summarizing, we have a Belyi map from T2 into the marked P1 such that the preimages

of 0 and 1 are a single point each, both with ramification 3, and the preimage of infinity is

again a single point with ramification 3. With these ramification data, the branching number

is B = 2 + 2 + 2 = 6. The Riemann–Hurwitz formula tells us that

2h− 2 = 0 = d (2G− 2) +B = 3×−2 + 6 . (24)

3 Permutation symmetries of superpotential and Au-

tomorphisms of Belyi curves

The dimer encodes the superpotential terms (see the brief discussion in Appendix A). We

will write W = W+ − W− where W+,W− are both sums of positive monomials in the
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fields. Fields are associated with labelled edges. Labelling the edges 1, 2, . . . , d, we have

fields X1, X2, . . . , Xd. A black vertex with k edges labelled (i1i2 . . . ik) read according to the

orientation of the torus gives a monomial TrXi1Xi2 . . . Xik inW+ and a cycle (i1i2 . . . ik) in σB.

A white vertex with l edges labelled (j1j2 . . . jl) read according to the orientation of surface

leads, on the contrary, to a cycle (j1 . . . jl−1jl) in σW and a monomial Tr(XjlXjl−1
. . . Xj1) in

W−. In other words the monomials in W+ are read off from the cycles of σB whereas the

monomials in W− are read off from the cycles of σ−1
W . These remarks have been illustrated

above using the dimer for the N = 4 theory.

The same data of the SCFT gauge groups, matter content, and superpotential can be

encoded alternatively in the permutation triple

{σ̃B , σ̃W , σ̃∞ = (σ̃B σ̃W )−1} = {σB, σ−1
W , σW σ−1

B } (25)

as discussed previously in [17]. This in turn leads to a branched cover β̃ : Σ → P1 with

three branch points at {0, 1,∞}. Following the literature [13] we will call (Σ, β̃) the un-

twisted Belyi pair. So we start with the standard dimer, dual of the periodic quiver,

which lives on a torus T2, to which we have associated a dessin and the permutation triple

(σB, σW , σ∞ = (σB σW )−1). The permutation triple {σ̃B σ̃W , σ̃∞} defines, by the usual asso-

ciation of permutation triples to dessins described in Section 2.1, a dessin on the untwisted

curve Σ, which needn’t be a torus. Indeed, the genus of the untwisted curve is given by the

number of four-cycles in the Calabi–Yau geometry (in other words, by the number of internal

points in the toric diagram) transverse to the D3-branes. The genus can also be computed

by using the Riemann–Hurwitz relation (6) applied to the untwisted triple (σ̃B, σ̃W , σ̃∞).

3.1 Permutation symmetries fixing W+ and W−

In the following, we will consider symmetries of the superpotential which act by permuting

the d fields X1, . . . , Xd. Among such permutation operations, those which leave fixed the

sum of terms W+ as well as the sum of terms W− form a group we call Sym(W+,W−). Note

that these symmetries do not necessarily fix the monomials in W+ (or W−) individually. We

will find various constraints on Sym(W+,W−) using the geometry of Riemann surfaces.

We will derive the following result

Sym(W+,W−) = Aut(T2, β) = Aut(Σ, β̃) , (26)

which implies that

Sym(W+,W−) ⊂ Aut(T2) ,

Sym(W+,W−) ⊂ Aut(Σ) . (27)

This will rely on the Riemann existence theorem, which, as explained in Section 2.2 gives

the combinatoric formulation of the geometrical symmetries in (26):

Aut(σB, σW ) = Aut(σ̃B, σ̃W ) ,
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Aut(T2, β) = Aut(Σ, β̃) . (28)

The group Aut(σB, σW ) consists of permutations γ leaving fixed the pair σB, σW under

the action of conjugation. The permutation γ acting by conjugation on a cycle (i1 i2 . . . ik)

γ(i1 . . . ik)γ
−1 → (γ(i1) . . . γ(ik)) . (29)

Using the correspondence between cycles of σB and monomials in W+, we see that the

monomial Tr(Xi1Xi2 . . . Xik) goes to Tr(Xγ(i1) . . . Xγ(ik)). Now, the condition that γ ∈
Aut(σB, σW ) means that the set of cycles of σB goes back to the same set of cycles, and

the set of cycles of σW goes back to the same set of cycles. Note that this does not neces-

sarily mean that the individual cycles are fixed. To see the connection to Aut(Σ, β̃), we use

the fact that if γ σW γ−1 = σW , then γ σ−1
W γ−1 = σ−1

W . This completes the proof of (26).

For the N = 4 theory, the group is generated by (123) and its powers, thus forming a

Z3. In terms of the fields, this permutation translates into the action

X1 → X2 , X2 → X3 , X3 → X1 . (30)

Making use of the explicit form of the N = 4 SYM superpotential (11), it is clear that these

transformations do indeed leave invariant W±.

In our discussion, we have assumed that the couplings of the terms in the superpotential

are all equal to plus or minus 1. This guarantees that the moduli space is a toric Calabi–

Yau. These couplings can be adjusted while preserving supersymmetry, but typically global

symmetries may be broken and there are also constraints due to conformal invariance. Our

considerations of automorphisms of the Belyi pair in connection with symmetries of the

superpotential apply, in simplest form, to the case where all the couplings are ±1, but

should admit extension to the more general case. We leave the elaboration of this for the

future.

3.2 Symmetries of exchange of W+ and W−

Having related the superpotential terms W+,W− to permutations σB, σW , σ∞, we will turn

to a discussion of symmetries which exchange W+ and W−. This will require, in some sense,

exchanging σB and σ−1
W . The exchange has to be formulated in a way that allows consistent

action on the equation σB σW σ∞ = 1. We wish to develop, in analogy to Section 3.1, an

elegant geometrical picture for the symmetries which include this exchange. We will not

provide a definitive answer in the form a simple geometric characterization to match the

result (26) of Section 3.1. But we will develop some arguments in this direction, supported

by examples in later sections, which will hopefully lead to such a definitive answer in the

near future.

First, we note that, on the geometrical side the exchange of σB with an element in the

conjugacy class of σW (which is the same as that of σ−1
W ) would correspond to exchanging the
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branch points at 0 and 1. On this geometrical side, there is no obvious need to distinguish

between exchanging the branch points 0 and 1 with the operation of exchanging the branch

points 1 and∞. This naturally leads us to consider, on the same footing, all permutations of

the three branch points. The näıve S3 action of permuting (σB, σW , σ∞) does not preserve

the relation σB σW σ∞ = 1. Under this näıve action, only the Z3 subgroup preserves the

relation.

Rather the correct framework, which in fact works for arbitrary sequences of permutations

σ1 σ2 . . . σk = 1 is to consider the Braid group action [29]. The standard braid group relations

are

BiBi+1Bi = Bi+1BiBi+1 ,

BiBj = Bj Bi for |i− j| > 1 , (31)

for i = 1, . . . , k − 1. There is an action of Bi (called the Artin action) on the permutations

which takes

σi → σi+1 ,

σi+1 → σ−1
i+1 σi σi+1 , (32)

and leaves the other permutations fixed. This action obeys the braid relations and pre-

serves the product σ1σ2 . . . σk = 1. Defined as an action on conjugacy classes, i.e., where

γ(σ1, . . . , σk)γ
−1 is regarded as equivalent to (σ1, . . . , σk), one can show that there is an

extra relation

B1B2 . . . Bk Bk Bk−1 . . . B1 = 1 . (33)

This, along with (31), defines the spherical braid group Bk. For the case k = 3, it is in fact

true the two generators also obey B2
1 = B2

2 = 1, when acting on conjugacy classes. In other

words, using

B1(σ1, σ2, σ3) = (σ2, σ
−1
2 σ1σ2, σ3) ,

B2(σ1, σ2, σ3) = (σ1, σ3, σ
−1
3 σ2σ3) , (34)

we can show that

B2
1(σ1, σ2, σ3) = σ3(σ1, σ2, σ3)σ−1

3 ,

B2
2(σ1, σ2, σ3) = σ1(σ1, σ2, σ3)σ−1

1 . (35)

The braid relations along with B2
1 = B2

2 = 1 in fact define the symmetric group S3. So, the

permutation group does act on the triples σ1σ2σ3 = 1 where σi ∈ Sd, not in the obvious way,

but as a degeneration of the spherical braid group action for general k.

Given the Artin braid group action, specialized to k = 3 (which as we explained above is

in fact also an S3 action), we may consider this action on the triple (σB, σW , σ∞) describing a

15



toroidal dimer. It will in fact be more fruitful, in terms of finding evidence for the geometric

realization W+,W− exchange, to look at the Artin braid action on the untwisted triple

B̃1(σ̃B, σ̃W , σ̃∞) = (σ̃W , σ̃
−1
W σ̃B σ̃W , σ̃∞) ,

B̃2(σ̃B, σ̃W , σ̃∞) = (σ̃B, σ̃∞, σ̃
−1
∞ σ̃W σ̃∞) . (36)

We will find, in the few examples of Belyi pairs we have been able to explicitly construct,

that this Artin action on the untwisted curve will have a geometric realization in terms of

the untwisted Belyi pair β̃ : Σh → P1.

Before we get to geometric realizations, let us describe an additional braid group action

(which also degenerates to S3) on the permutation triple. To distinguish this action from

the Artin, we will give the Bi a superscript, I, since it involves inversions

BI
1(σB, σW , σ∞) = (σ−1

W , σ−1
B , σ−1

∞ ) ,

BI
2(σB, σW , σ∞) = (σ−1

B , σ−1
∞ , σ−1

W ) . (37)

One checks that these actions preserve the relation σBσWσ∞ = 1 and that the braid group

relation is satisfied

BI
1 B

I
2 B

I
1 = BI

2 B
I
1 B

I
2 , (38)

as well as

(BI
1)2(σB, σW , σ∞) = (σB, σW , σ∞) ,

(BI
2)2(σB, σW , σ∞) = (σB, σW , σ∞) , (39)

which implies the spherical braid group relation, and in fact reduces the group to S3. This

additional action will prove useful in our experimental investigations of the geometric coun-

terpart to W+,W− exchange using the few toroidal Belyi pairs we have been able to construct.

In Section 3.2.1, we will explain the geometrical meaning of these actions, which we have

found to hold in all the explicit examples of Belyi pairs that we constructed.

3.2.1 Braid group actions and geometry

The exchange of 0 and 1 on the target P1 is performed by a holomorphic invertible map

in PSL(2,C), which β → 1 − β. Let us suppose that the corresponding action on Σh is

a holomorphic invertible map B1 in Aut(Σh). In later applications Σh can be either T2

supporting the toroidal dimer or the untwisted curve Σ. B1 maps a point P on Σh to B1(P )

β(P ) = 1− β(B1(P )) . (40)

We might now write P = B1◦B−1
1 (P ). To simplify the notation, let us now call B−1

1 (P ) = P ′.

Then, we have

β(B1(P ′)) = 1− β(B1 ◦B1(P ′)) . (41)
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We could now drop the primes and use (40), so that

1− β(P ) = 1− β(B1 ◦B1(P )) =⇒ β(P ) = β(B1 ◦B1(P )) . (42)

That is, B1 ◦B1 = 1 up to automorphisms of the pair. Comparing with (35), (39) this shows

promise that there can be a matching of geometric transformations of Σh implementing

β → (1− β) with a corresponding braid group action on permutation triples.

Turning to the exchange of 1 and∞ in the target, we consider an element B2 in Aut(Σh),

mapping P to B2(P ), and implementing β → −β
1−β , so

β(P ) =
−β(B2(P ))

1− β(B2(P ))
. (43)

We can then run the same operations as above to have that again B2 ◦ B2 = 1 up to

automorphisms of the pair.

Since we have two operations, it is natural to consider P = B1 ◦ B−1
1 (P ) = B1(P ′), and

substitute this into (43):

β(B1(P ′)) =
−β(B2 ◦B1(P ′)

1− β(B2 ◦B1(P ′))
. (44)

Using (40) and dropping primes we have

1− β(P ) =
−β(B2 ◦B1(P )

1− β(B2 ◦B1(P ))
. (45)

Setting P = B2(P ′), we then obtain

1− β(B2(P ′)) =
−β(B2 ◦B1 ◦B2(P ′))

1− β(B2 ◦B1 ◦B2(P ′))
, (46)

which, upon using (43) and dropping again the primes, becomes

1 +
β(P )

1− β(P )
=
−β(B2 ◦B1 ◦B2(P ))

1− β(B2 ◦B1 ◦B2(P ))
. (47)

Repeating the above steps with the roles of B2 and B1 exchanged, one can show that

β(B1 ◦B2 ◦B1(P )) = β(B2 ◦B1 ◦B2(P )) , (48)

which then implies

B1 ◦B2 ◦B1 = B2 ◦B1 ◦B2 (49)

up to automorphisms of the pair. This, together with the conditions B1 ◦B1 = B2 ◦B2 = 1

reproduce the expected relations (again, up to automorphisms of the pair) for S3.

To summarize, there is an S3 of permutations of the set of branch points {0, 1, ∞} on the

target P1, which are realized by holomorphic automorphisms of P1 living in PSL(2,C). For

each element ψ in this set of transformations, we can look for automorphisms φ in Aut(Σh)

such that the following diagram commutes
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φ

Σh −→ Σh

β ↓ ↓ β

ψ

P1 −→ P1

(50)

In terms of the combinatorial data, we expect that these transformations are implemented

by appropriate braid group actions. The above diagram translates into

γBi σW γ−1
B1

= Bi(σW ) , γBi σB γ
−1
Bi

= Bi(σB) , i = 1, 2 . (51)

A first guess is that the γBi implementing the Artin action on (σB, σW , σ∞) matches the geo-

metrical transformations for the pair (T2, β) and the Artin action on (σ̃B, σ̃W , σ̃∞) matches

the geometrical transformations for the pair (Σ, β̃). While this expectation is borne out

by the available examples of (Σ, β̃), it does not work for our examples of (T2, β). We do

have partial success matching the geometrical braiding transformations for (T2, β) with the

second braid group action (37).

4 Basic examples of SCFT–Belyi pair correspondence

We now describe the dimer description for basic examples of N = 1 SCFTs along with the

permutation triples and Belyi pairs. We demonstrate the geometrical realization, in terms of

the toroidal Belyi pair, of the permutation symmetries fixing W+,W− separately, illustrating

the general result in Section 3.1. We also illustrate the points raised in Section 3.2 with

regard to the geometric realization of symmetries exchanging W+,W−.

4.1 Branes transverse to C3 and Belyi pair

Let us collect our results for N D3-branes transverse to C3. The worldvolume theory on the

branes is maximal super-Yang–Mills theory, where the N = 1 supersymmetry is enhanced

to N = 4. The gauge group, matter content, and superpotential is encoded in the dimer in

Figure 1. The combinatorial data that define the map are the permutations

σB = (123) , σW = (123) , σ∞ = (123) . (52)

The analytic expression for the Belyi pair is

β =
y + 1

2
, y2 = x3 + 1 . (53)
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4.1.1 Automorphisms

We can see the connection between the combinatoric and geometric realizations of automor-

phisms at work in our C3 example. The set of permutations leaving the set {σB, σW , σ∞}
invariant under conjugation according to (4) is given by

Aut(T2, β) = {1, (123), (132)} . (54)

According to our discussion in Section 2.2 , this Z3 is the automorphism group which leaves

both the elliptic curve and the Belyi map invariant. We can check this from an analytic

perspective. The set of transformations leaving invariant the Belyi function and the curve is

of the form

(x, y)→ (ω x, y) , ω3 = 1 . (55)

These transformations generate a Z3, in agreement with the combinatorial calculation. An-

other obvious symmetry of the curve, which lies in Aut(T2) is the operation

(x, y)→ (x, −y) , (56)

which is a symmetry of the curve but crucially not an automorphism of the Belyi pair.

4.1.2 Braid group action

We are firstly interested in exchanging black with white nodes of the dessin, namely the

inverse images under the Belyi map of {0, 1}. Applying (40) to this case, where the curve is

described by an equation involving (x, y) as in (53), we have

β(x, y) = 1− β(B1(x, y)) . (57)

This is implemented by (x, y)→ (ω x, −y). Up to the automorphism group of the pair (55),

we can choose

B1(x, y) = (x, −y) . (58)

It is clear that B2
1 = 1, which is an illustration of (42) from the general discussion.

The braid group action also contains an exchange of {1,∞} on the target P1, leaving 0

fixed. Following (43), this is implemented by an element B2 in Aut(T), obeying the relation

β(x, y) =
−β(B2(x, y))

1− β(B2(x, y))
. (59)

One checks that B2 is given by

B2(x, y) = (
2x

y − 1
,
y + 3

y − 1
) . (60)

This leaves the curve invariant, obeys (59), and satisfies B2
2 = 1. Together with B1, it

satisfies the relations of S3, which is a quotient of the spherical braid group B3.
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In terms of the permutations, the action (37) leads to an answer which matches the above

geometrical discussion. Indeed, to implement the action of B1 according to (37), we look for

γB1 such that

γB1 σW γ−1
B1

= σ−1
B , γB1 σB γ

−1
B1

= σ−1
W . (61)

In this case, since σB = σW , the equation amounts to a single condition for σ = (123),

σ−1 = (132). The solution is γB1 = (1) (23). (Other solutions (13) (2) and (12) (3) are

related to (1) (23) by conjugation with (123), which is part of the symmetry Aut(σB, σW ) =

Aut(T2, β).) So we have, up to the obvious equivalence, one solution γB1 obeying γ2
B1

= 1,

defining an expected Z2. If we try this exercise with the Artin action (34), we do not find a

non-trivial Z2 realized as conjugations by elements of Sd=3.

For the exchange of {1,∞} we solve

γB2 σW γ−1
B2

= σ−1
∞ , γB2 σB γ

−1
B2

= σ−1
B . (62)

In this particular case σ∞ = (123) = σB = σW , so these equations are satisfied again by

γB2 = (1) (23).

It is somewhat puzzling that the geometrical side produces two distinct elements of

Aut(Σh), unrelated by Aut(Σh, β), whereas the combinatoric side produces only one conju-

gacy class which effects the braiding for both B1 and B2. This should be taken into account

in a correct general formulation of the relation between braid group actions for geometry

and combinatorics.

4.2 Branes at conifold and Belyi pair

We are interested in the Klebanov–Witten field theory, which describes D3-branes probing

a conifold singularity. The dimer is shown in Figure 2.1 122

1 122

1 2 21

1 2 21

1 1

2

2
3

4

4

Figure 2: Dimer for the conifold theory.

A unit cell is drawn in red. The four edges labelled 1, . . . , 4 (in blue) correspond to four

chiral multiplets X1, . . . , X4. Following the description at the beginning of Section 3, we
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have a superpotential

W = Tr(X1X2X3X4 −X1X4X3X2) . (63)

There are two faces per unit cell labelled 1, 2. This indicates a gauge group SU(N)×SU(N).

If we choose an orientation on the surface, the edges can be assigned to representations

(N, N) or (N, N). We read off that the theory contains two pairs of chiral superfields in

each of the (N, N) and (N, N) representations. A common convention is to label the fields

with lower indices describing the gauge group, and an additional upper multiplicity. Thus

X1 is written as X1
12 since it has faces 1, 2 incident on it, and an orientation on the torus

fixes the representation (N,N) for SU(N)× SU(N) where the first SU(N) is associated to

the face labelled 1 and the second SU(N) to the face labelled 2. Extending this to all the

edges

1 ∼ X1
12 , 2 ∼ X1

21 , 3 ∼ X2
12 , 4 ∼ X2

21 . (64)

With this notation, the same superpotential can be written in the conventional form as

W = TrX i
12X

m
21X

j
12X

n
21 εij εmn . (65)

Viewing the dimer as a dessin d’enfant, the permutations σB, σW below describe the edges

around the black and white node, traversed anti-clockwise.

σB = (1234) , σW = (1234) , σ∞ = (13) (24) . (66)

The permutation σ∞ is constructed as (σBσW )−1 following the general description in Section

2.1. The fact that there are two faces corresponds to there being two cycles in σ∞.

These data define a Belyi map β, which is a degree four map, i.e., d = 4, from T2 to

P1, with a single ramification point of order four over each of 0 and 1, and two ramification

points of order two over ∞. The Belyi pair is specified by giving an algebraic equation for

T2, which is

y2 = x (x− 1) (x− 1

2
) . (67)

This T2 has j(τ) = 1728. Inverting this, j−1(1728) = τ = eπi/2 = i, which gives the modular

parameter of the elliptic curve. (For more on the j-invariant please refer to Appendix B.1.)

The relevant Belyi map to a P1 is

β(x) =
x2

2x− 1
. (68)

By analyzing β−1(0) = {(0, 0)}, β−1(1) = {(1, 0)}, β−1(∞) = {(1
2
, 0), (∞,∞)}, the above

equations are shown to be a correct description of the Belyi pair with the desired properties.
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4.2.1 Automorphisms

Let us consider a rational transformation preserving the set of points x = {0, 1
2
, 1, ∞} where

the map ramifies

φ± : (x, y) → (
x

2x− 1
, ± i y

(2x− 1)2
) . (69)

It is easy to check that under this transformation both the map and the curve are left

invariant. Therefore, this is an automorphism. Some properties of φ± are

φ4
+ = 1 ,

φ3
+ = φ−1

+ = φ− ,

φ2
+ = φ2

− : (x, y)→ (x, −y) . (70)

We conclude that these geometrical automorphisms form a Z4 generated by φ+ (or φ−)

Aut(T2, β) = Z4 ⊂ Aut(T2) . (71)

From the combinatorial perspective, the element γA = (1234) leaves the pair (σB, σW )

invariant under conjugation and generates the Z4 automorphism group Aut(σB, σW ), which

by the Riemann existence theorem, should be equal to Aut(T2, β).

4.2.2 Braid group action

In order to study the exchange of white and black vertices it is better to switch to the

Weierstrass form of the elliptic curve. For j = 1728, we can consider

y2 = x3 − x . (72)

In these coordinates, the map is

β =
(x+ 1)2

4x
. (73)

One can see that the change of coordinates is just x 7→ 2x − 1, which transforms (73) into

(68). In these coordinates, the automorphisms of the pair are generated by

(x, y)→ (
1

x
, −i y

x2
) , (74)

where we have chosen the positive sign with no loss of generality.

In the new coordinates, the operation of exchanging black and white nodes can be rep-

resented analytically as

φ1(x, y) = (−x, i y) , φ2(x, y) = (−1

x
,
y

x2
) , (75)

under which

β(x, y) = 1− β(φi(x, y)) , i = 1, 2 . (76)
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The two maps φi above can be connected by an automorphism of the pair. Explicitly, upon

considering the transformation in (74) one can go from φ1 to φ2. Note that this element

of the automorphism group exchanges the point at infinity with (0, 0). These points are

indeed the preimages of infinity under β, so the only fixed set of this automorphism are the

branching points corresponding to the puncture at infinity. Since the two elements above

are connected by an automorphism of the pair, we can just keep φ1 = B1, so that we have,

as expected, that up to automorphisms of the pair B2
1 = 1. This is as expected from the

Z2-operation of switching black and white nodes.

From the combinatorial perspective, following the discussion in Section 3.2.1, we look for

solutions γB1 to

γB1 σW γ−1
B1

= σ−1
B , γB1 σB γ

−1
B1

= σ−1
W . (77)

Since in the conifold σW = σB = (1234), we have to solve

γB1 (1234) γ−1
B1

= (1432) . (78)

The solutions to this equation are

γ
(1)
B1

= (13)(2)(4) ,

γ
(2)
B1

= (1)(3)(24) ,

γ
(3)
B1

= (14)(23) ,

γ
(4)
B1

= (12)(34) . (79)

Now observe the first two are conjugate to each other by (1234) which is in Aut(σB, σW ).

Likewise the second pair are conjugate to each other by (1234). Further note that

γ
(4)
B1

= (1234)γ
(1)
B1

(1234)2 . (80)

Since any solution γB1 for the braiding generates other solutions γ1γB1γ2 by multiplication

with (γ1, γ2) which are any pair in Aut(σB, σW ), we should count solutions modulo left and

right multiplication by the automorphism of the pair. This is because the permutations σB
and σW are only defined up to conjugation equivalence. Hence, we have only one equivalence

class of combinatoric solution. This matches the analytic discussion.

4.3 Branes at dP0 and Belyi pair

Consider the Z3 orbifold of C3 which acts like

C3/Z3 = { (x, y, z) ∈ C3 / (x, y, z) ∼ (ω x, ω y, ω z), ω3 = 1 } . (81)

This orbifold leaves invariant the natural holomorphic three-form in C3, and thus preserves

N = 1 supersymmetry. Moreover, this geometry is an O(−3) bundle over P2, and thus

corresponds to dP0, the cone over the zeroth del Pezzo surface.5 All the information is
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Figure 3: Dimer for the dP0 theory.

encoded in the dimer in Figure 3. From the dimer one can see that the dual SCFT has three

gauge nodes. The matter content involves three triplets of chiral superfields respectively in

the (N, N, 1); (1, N, N); (N, N, 1) representation. The superpotential is

W = TrX i
12X

j
23X

k
31 εijk . (82)

From the dimer, we have a dessin with three black and three white nodes, both with

ramification three, and three faces, also with ramification three. The associated permutations

are

σB = (147) (258) (369) , σW = (123) (456) (789) , σ∞ = (195) (276) (384) . (83)

Note that the first permutation is obtained from the canonically ordered σW by taking the

first element of each cycle, the second element of each cycle, and the third element of each

cycle to write the cycles in σB. The explicit permutations for this and a class of related Belyi

pairs was studied in [23].

One can check that the isomorphism group of these permutations is generated by

γA1 = (1 4 7) (2 5 8) (3 6 9) , γA2 = (1 5 9) (2 6 7) (3 4 8) . (84)

These operators satisfy

γ3
A1

= γ3
A2

= 1 . (85)

Moreover, one can verify that they commute, so that the automorphism group is Z3 × Z3.

The relevant Belyi map in this case can be obtained as a special case of examples discussed

in [32]. Consider the Fermat cubic in P2,

F = {(x, y, z) ∈ P2/ x3 + y3 = z3} . (86)

This is the projective closure of the affine variety

F aff = {(x, y) ∈ C2/ x3 + y3 = 1} . (87)

5 The n-th del Pezzo surface is a blowup into P1 of n points on P2, where n = 0, . . . , 8. These are

manifolds of complex dimension two with positive first Chern class.
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We can now consider the function

f : F aff → C , (88)

which takes (x, y) into x. On the other hand, x3 = 1 − y3 generically has three solutions.

However, when x is one of the three cubic roots of unity, y can only take one value y = 0.

Thus, any of the cube roots of one is a critical point of f . However, at these critical points

f is clearly not 1. But composing f with g = x3 we have β = g ◦ f = x3, which is a Belyi

map

β(x, y) = x3 . (89)

One can check that it satisfies the ramifications expected from the dessin specified by (83).

The automorphisms of the Belyi pair are

γA1 : (x, y)→ (ω1 x, y) , γA2 : (x, y)→ (x, ω2 y) , ω3
i = 1 , (90)

and these commute. We thus generate the expected Z3 × Z3.

Note that the fixed points under γ1 are of the form (0, y). The only such point in the

curve is (0, 1), which corresponds to a critical point of the Belyi map. The fixed points under

γ2 are of the form (x, 0). This time, only (1, 0) lies on the curve, and actually coincides

with a critical point of the Belyi map. Thus the automorphisms do not have (regular) fixed

points : the only fixed points being at critical points of the map. This is as expected from

covering space theory.

4.3.1 Braid group action

As discussed above, in order to exchange the black and white nodes we must find solutions

to

γB1 σW γ−1
B1

= σ−1
B , γB1 σB γ

−1
B1

= σ−1
W . (91)

In terms of the combinatorial data (83), a solution is

γB1 = (3) (5) (7) (19) (26) (48) . (92)

One can check that γ2
B1

= 1, so the action exchanging black and white nodes is a Z2

action. On the other hand, from the point of view of the W the action exchanging black and

white nodes (thus contributing an overall minus sign to W ) is

(X1
12, X

2
12, X

3
12) → (X1

12, X
3
12, X

2
12) ,

(X1
23, X

2
23, X

3
23) → (X1

23, X
3
23, X

2
23) , (93)

(X1
31, X

2
31, X

3
31) → (X1

31, X
3
31, X

2
31) .

Note how this action mimics the γB1 above: in each triplet a member is kept fixed and the

other two are exchanged. Furthermore, the square of this transformation is the identity.
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The transformation (93) is not unique. For example, we could have chosen to keep fixed

not the first element of each triplet but say the second. Conversely, from the more abstract

point of view starting from γB1 , any pair γ, γ′ ∈ Aut(T2, β), generates additional solutions

γ′γB1 γ which effect the exchange of black and white vertices. We can check that all the

solutions are indeed obtained from a single one by these left-right multiplications, so that

modulo these multiplications, there is a unique equivalence class of braiding transformations

corresponding to B1. Any product of two elements among the possible γB1 yields an element

in Aut(Σh, β), reflecting the relation B2
1 = 1 in the braiding action the 3-punctures sphere

(35).

From an analytic point of view, the B1 arises in this case from

1−B1(x, y)3 = x3 . (94)

One can check that

B1(x, y) = (y, x) . (95)

As it is obvious, B2
1 = 1, we have, as expected, a Z2 symmetry. Thus, we have again

Auts(T2, β) = Z2 . (96)

Furthermore, we can consider the exchange of the puncture corresponding to ∞ with

that corresponding to 1, that is, β → −β/(1− β). The transformation implementing this is

B2(x, y) = (−x
y
,

1

y
) . (97)

It is clear that B2
2 = 1. Furthermore, one may verify that the two transformations B1 and

B2 again satisfy the spherical braid group relations. From a combinatorial perspective, the

corresponding permutation implementing this action should satisfy

γB2 σW γ−1
B2

= σ−1
∞ , γB2 σ∞ γ

−1
B2

= σ−1
W . (98)

One solution to this equation is

γB2 = (25) (39) (47) (6) (1) (8) . (99)

Other solutions are related to this by multiplication on left and right by elements in Aut(σB, σW ).6

So we have a unique equivalence class for B2 on the combinatoric side, in agreement with

the geometry.

6 These statements are checked explicitly using computational number theory software such as SAGE [34].
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4.4 Branes at SPP and Belyi pair

So far we have considered orbifolds of theories with just one superpotential term. Let us

now consider a more generic theory. We will now consider the suspended pinch point (SPP),

which is defined in terms of {(x, y, u, v) ∈ C} such that

SPP = {(x, y, u, v) / x y = u v2} . (100)

The gauge theory associated to N D3-branes at the SPP singularity is studied in [35, 36].

The dual theory is encoded in the dimer in Figure 4. From the dimer we read off that the
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Figure 4: Dimer for the SPP theory.

theory has three gauge groups and seven matter fields, one of which is in the adjoint under

the first gauge group. The superpotential is

W = Tr
(
X11X12X21 −X11X13X31 +X31X13X32X23 −X21X12X23X32

)
. (101)

Note that now we have superpotential terms with three and four fields in each, that is,

cycles in white (and black) nodes of different length. The corresponding permutations are

σW = (123) (4567) , σB = (156) (3742) , σ∞ = (153) (27) (46) . (102)

The ramification is 2+3+2+3+2+1+1 = 14, while the degree is seven, thus corresponding

as it should to a dimer drawn on a genus one curve. We have not been able to construct the

Belyi pair for this case. This is a very interesting open problem, especially in the light of

the discussion in Section 7.

4.5 Untwisting of the toroidal Belyi pair

In Section 3 we briefly described the procedure of untwisting. As described in [17], this pro-

cedure has a very natural translation into the combinatorial language, since it just amounts

to encircling the white nodes in the opposite direction as the black ones, that is, we should

consider {σ̃B, σ̃W} = {σB, σ−1
W }. In view of our preceding discussion, it is natural to define

yet a third permutation σ̃∞ such that σ̃B σ̃W σ̃∞ = 1. This way we obtain another holomor-

phic map to a marked P1. This time the source of the map is not a fixed genus one T2, but

rather a Riemann surface Σg whose genus is given by the number of internal points in the
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toric diagram of the original CY3, that is, the number of four-cycles. This Σg corresponds

to the untwisted curve introduced in [13], over which the (untwisted) dimer lives. Using the

theory of dessins, we have here a specific complex structure on Σg along with a holomorphic

map to P1. The geometric and combinatoric realizations of the exchange of black and white

nodes described in Section 3.2, in connection with symmetries that exchanges W+ and W−
apply equally well here. We will now give the explicit form of this untwisted Belyi pair and

its properties in some examples.

4.5.1 Untwisted Belyi map for branes at C3

The first example we consider is the N = 4 SYM case for 3-branes transverse to C3. Untwist-

ing the dimer translates to considering the orientation of the black vertices to be reversed

with respect to that of the white vertices. That is to say, we circle one vertex clockwise and

the other anticlockwise. The combinatorial data are now

σ̃B = (132), σ̃W = (123), σ̃∞ = (1) (2) (3) . (103)

Now the branching number is B = 2 + 2 = 4. With degree d = 3, the Riemann–Hurwitz

formula (6) shows that this dimer now lives on a P1. This is to be expected, since, as

anticipated, the genus of the Riemann surface coincides with the number of four-cycles in

the geometry; for C3 there are none. We can write the Belyi map from the source P1 to the

target P1

β̃ =
x3

x3 + (x− 1)3
. (104)

The automorphisms of the map are given by

φ̃(x) =
2x

−1 + i
√

3 (x− 1) + 3 x
=

x(i+
√

3)/2

x
√

3 + (i−
√

3)/2
, (105)

which is obtained by solving β = β(φ) and, as expected is in PSL(2,C). Because φ̃3 = 1

Ãut(P1, P1) = Z3 , (106)

where the tilde stresses that we are considering the untwisted dimer.

We now turn to the map which exchanges black and white dots. In this case, modulo

automorphisms, it reads

B1(x) = −x+ 1 . (107)

This map squares to one, thus yielding the expected Z2.

From the combinatorial side, the braiding action in the untwisted curve is given by the

Artin action

γB1 σ̃W γ−1
B1

= σ̃W , γB1 σ̃B γ−1
B1

= σ̃−1
W σ̃B σ̃W . (108)

The solution is γB1 = (1) (23), which reproduces the Z2.

The Artin exchange B2 is not performed by any γB2 since σ̃W and σ̃∞ are in different

conjugacy classes.
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4.5.2 Untwisted Belyi map for branes at the conifold

Our next example will be the conifold. The untwisted permutations are

σ̃B = (1432) , σ̃B = (1234) , σ̃∞ = (1) (2) (3) (4) . (109)

By using the Riemann–Hurwitz formula (6), one can see that these permutations encode

maps from P1 to P1, again to be expected given that in the conifold b4 = 0. The appropriate

Belyi map in this case is

β̃ =
x4

x4 + (x− 1)4
. (110)

In this case, the automorphisms are generated by

φ̃(x) =
i x

−1 + (1 + i)x
. (111)

It follows that φ̃4 = 1, and so

Ãut(P1, P1) = Z4 . (112)

Turning to the action exchanging black and white nodes. In this case, there are two trans-

formations in PSL(2,C), the group of holomorphic automorphisms of the sphere, namely

φ1(x) = 1− x ,
φ2(x) =

1− x
1− 2x

, (113)

which both satisfy 1 − β(x) = β(φi(x)). We can further verify that φi(φi(x)) = x for i = 1

or i = 2.

On the combinatoric side, the Artin action

γB1σ̃Bγ
−1
B1

= σ̃W ,

γB1σ̃Wγ
−1
B1

= σ̃−1
W σ̃Bσ̃W (114)

becomes

γB1(1234)γ−1
B1

= (1432) ,

γB1(1234)γ−1
B1

= (1432) , (115)

which has solutions γB1 = (13)(2)(4); (24)(1)(3); (14)(32). The condition coming from con-

jugation of σ̃∞ is also satisfied, since γB1γ
1
B1

= 1. The first two are related by conjugation.

So there are two independent solutions, each of which squares to 1. This gives a geometrical

counterpart for each of the two permutation operations on the fields of the conifold theory,

which have the effect of exchanging W+ and W−.

For the braid group element B2, we look for

γB2σ̃Wγ
−1
B2

= σ̃∞ ,

γB2σ̃∞γ
−1
B2

= σ̃−1
∞ σ̃W σ̃∞ . (116)

There is no solution since σ̃W and σ̃∞ are in different conjugacy classes. Correspondingly,

on the analytic side, solving 1
β(x)

= β(φ(x) does not yield any φ in PSL(2,C)
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5 Orbifolds, automorphisms, and complex structures

Starting from the periodic tiling corresponding to a given dimer describing the SCFT for a

Calabi–Yau, the operation of orbifolding the Calabi–Yau amounts to an enlargement of the

unit cell of the tiling [11]. This corresponds to going to an unbranched cover of the T2.

This has in turn has implications for the associated Belyi pairs. We recall that the Belyi

map is a branched cover from T2 to P1:

β : T2 → P1 . (117)

with degree d equal to the number of edges in the dimer and ramifications over {0, 1,∞}
related to the structure of the dimer. Consider now an unbranched cover T̂2 of the torus T2:

f : T̂2 → T2 . (118)

of degree N . Such a map f has N inverse images for every point on T2 and its derivative is

never vanishing. These properties are clear from the picture of enlarging the unit cell.

We consider the composition of β and f

βf : T̂2 → P1 , (119)

where

βf = β ◦ f . (120)

With a local coordinate z on T̂2 we have that

∂zβf = ∂zβ(f(z)) = ∂fβ∂zf (121)

The only zeros of ∂zβf occur when ∂fβ(f)) = 0 where β(f) ∈ {0, 1,∞}. We deduce that βf
is also a Belyi map. Each ramification point of β lifts to N ramification points of βf with the

same ramification number at each. The number of faces of the new dimer is N times that

of the original dimer. This translates into multiplying the number of factors in the gauge

group by N as expected [37]. Thus, the pair ( T̂2, βf ) is the Belyi pair associated to the

orbifolded SCFT.

Automorphisms of the cover as automorphisms of the orbifold

There is a permutation description of the covers f in terms of pairs s1, s2 ∈ SN such that

s1 s2 s
−1
1 s−1

2 = 1 , (122)

where equivalent pairs are related by conjugation. Automorphisms correspond to γsiγ
−1 =

si. These correspond to holomorphic automorphisms φ : T̂2 → T̂2 of the covering map f

which obey

f ◦ φ = f . (123)
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Figure 8: A 6-fold map of a torus with windings 3 and 2

transform l → l + mk. Therefore the total number of inequivalent tori is

Cn =
∑

k|n

k−1∑

l=0

1 =
∑

k|n
k =

∑

q|n

n

q
, (6.12)

where k|n ⇔ k divides n. The symmetry factor associated with an n-fold cover of this type

is always n, so the sum of the symmetry factor over all covers is given by

ξn,0
1,1 =

∑

q|n

1

q
, (6.13)

We can now calculate the leading term in W+(1, λA) as

lim
N→∞

W+(1, λA) =
∞∑

n=1

∑

q|n

1

q
xn =

∞∑

m=1

∞∑

q=1

1

q
xmq = −

∞∑

m=1

ln(1 − xm), (6.14)

where x = exp[−λA/2]. Exponentiating the sum of connected maps then gives us the sum

of all maps including disconnected ones. This should give the leading contribution to the

QCD partition function on a torus as N → ∞.

lim
N→∞

Z+(1, λA) =
∏

m

1

(1 − xm)
= η(x) =

∑

n

p(n)xn, (6.15)

where p(n) is the number of partitions of n. This is easily seen to be identical to the QCD

calculation,

Z+(1, λA) =
∑

n

∑

R∈Yn

e− λAC2(R)

2N =
∑

n1≥n2≥...

xn1+n2+···
(
1 + O(

1

N
)
)

(6.16)
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Figure 5: Unit cell for the torus.

A simple manipulation with the Belyi maps shows that these lead to automorphisms of the

Belyi pair corresponding to the orbifolded theory

βf ◦ φ = β ◦ f ◦ φ = β ◦ f = βf . (124)

which in turn, following the discussion in Section 3, correspond to permutation symmetries

preserving W+,W− in the SCFT for the orbifold

In Appendix C we consider a class of orbifolds with ZN automorphism. In particular,

the permutation triples (ΣB,ΣW ,Σ∞ = (ΣBΣW )−1) for the orbifolds will be explicitly de-

scribed. The expected ZN conjugation symmetries demonstrated. While we will use the

picture of enlarging unit cells to write these down in some examples, they are determined

from the permutation data (σB, σW ) for the original dimer along with (s1, s2) describing the

unbranched cover. We expect that it should be possible to construct a general formula ex-

pressing ΣB,ΣW in terms of (σB, σW , s1, s2). It would be a useful technical tool in studying

orbifolds of toric Calabi–Yaus to find this construction, especially in connection with the

investigations in [38, 39, 40]. We leave this for the future.

Complex structure of the cover

The complex structure of the cover T̂2 can be described as a function of the complex

structure of T2. The covers of degree N are known to be in one-to-one correspondence with

positive integers k, p, l, such that k p = N and l ≤ N (we refer to, e.g., [41]). (See Figure 5.)

For each such (p, k, l), the complex structure of the cover τcover is given in terms of the

complex structure of the target torus τ by

τcover(p, k, l) =
l + i p τ

k
. (125)

Note that while covers of the toroidal Belyi curve play an important role in understand-

ing the orbifolded theory, there is no such role for covers of the untwisted curve that is

immediately obvious.
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6 Consistent dimers and zig -zag paths

While consistent four-dimensional SCFTs are associated with bipartite graphs on a torus, it

is not true that all such graphs determine a four-dimensional SCFT. The known consistency

conditions are expressed in terms of zig-zag paths.7 Zig-zag paths are also used to construct

the (p, q)-web which gives rise to the SCFT. The (p, q) charges can be easily extracted from

the toric diagram. This yields a string construction in terms of NS5-branes via the so-called

“fast-inverse algorithm” [11].

It is important to understand the zig-zag paths and their consistency conditions in terms

of the permutation triples. This will be the topic of this section.

6.1 Zig-zag paths from permutations

Zig-zags will be described in terms of permutations of 2d objects {1−, 2−, . . . , d−, 1+, . . . , d+}.
A related combinatoric discussion has appeared in the literature in [42, 43]. The contribution

here is to develop that into a simple formulation in terms of operations on symmetric group

elements.

Let us recall how the zig-zag paths are defined in terms of the dimer. Pick any edge. Start

a zig-zag path by approaching a black vertex, while staying close to the edge and choosing

to be on the side of the edge such that the black vertex is on the left. The corresponding

string is (i− . . .), where i is the label of the edge on which we start. We turn right at the

black vertex, cross the next edge, and approach a white vertex on the right. We append

the label j of that edge to the string with a plus sign to get (i−j+ . . .). Turning left at the

white vertex, we find ourselves along the edge labelled k. We cross that edge and extend the

string to (i−j+k− . . .), continuing in this manner until the starting point is again reached.

We then repeat the procedure at another edge to construct another zig-zag path and an

associated cyclic string of numbers labelled alternately by − and + until all the edge labels

are exhausted with both signs.

The corresponding construction in terms of permutations is as follows. Define a permu-

tation Z(σB, σW ) of the 2d objects {1−, 2−, . . . , d−, 1+, . . . , d+} by

Z(k−) = σB(k)− ,

Z(k+) = σ−1
W (k)+ , (126)

where 1 ≤ k ≤ d. Equivalently we can describe this as a permutation of {1, . . . , 2d}. Given

σB, σW which are permutations in Sd define a permutation Z(σB, σW ) in S2d as follows:

Z(k) = σB(k) + d 1 ≤ k ≤ d , (127)

Z(k) = σ−1
W (k − d) d+ 1 ≤ k ≤ 2d .

7 Historically, these were called train tracks or rhombus loops in the mathematics literature [26].
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It is easy to put these ideas to work in our C3 example. Inspection of σB and σW tells us

that the zig-zag paths are

z1 = (1− 2+) , z2 = (2− 3+) , z3 = (3− 1+) . (128)

Since σB and σW are by definition (see Section 2) giving the permutations of edges around

the black and white nodes, and given the use of j = σB(i), and k = σ−1
W (j) in (126), it follows

that the standard zig-zag construction [26, 11, 42, 43] agrees with what we have given.

We will now make a few observations about Z.

• The number of cycles in Z is the number of zig-zag paths in the dimer and it is equal

to the number of cycles of σBσ
−1
W . This is the number of faces in the untwisting of the

dimer.

• Z2(k) = σBσ
−1
W (k) maps {1, . . . , d} to {1, . . . , d}. Similarly, Z2 maps {d + 1, . . . , 2d}

to itself, where the permutation σ−1
W σB of Sd is embedded in S2d by shifting {1, . . . , d}

to {d+ 1, . . . , 2d}.

• Given a cycle in S2d, we may reduce to a string with possibly repeated indices by taking

the integers modulo d. A cycle with repeated indices is a self-intersecting zig-zag path.

Any dimer defined by a pair σB, σW , which leads to such a self-intersecting zig-zags is

inconsistent.

• There is another condition on consistency invoking pairs of zig-zag paths. This says

that a pair can intersect only once when lifted to the universal cover. We have yet to

find an elegant description of this condition in terms of the permutation group.

• Zig-zags can as well be defined for the pair (σB, σ
−1
W ). Z(σB, σ

−1
W ) gives the zig-zag

paths on the untwisted curve. Here we get a permutation in S2d with the same number

of cycles as σBσW or σWσB. For the case ofN = 4, the Z(σB, σ
−1
W ) = (1−2+3−1+2−3+).

This permutation gives a precise description of the face in the toroidal Belyi curve of

N = 4. Indeed this procedure gives the edges around each face, hence the fields charged

under each gauge group, for the SCFT. This gives the set of fields appearing in each of

the equations for a-maximization, which is reviewed in Appendix A. In the IIA brane

picture the faces correspond to D5-branes cut-out by NS5-branes on T2.

The method we have described is a more convenient way of generating the zig-zag paths

than listing and comparing perfect matchings. An important simplification was already

achieved in [42, 43]. Using the description of dimers in terms of permutation triples in Sd,

we have found a further simplification of the zig-zag generating algorithm in terms of a

permutation in S2d. Relations between permutations triples in Sd and those in S2d play a

role in Belyi theory, where they reflect the operation of cleaning a Belyi map. Cleaning is

used to construct Galois invariants such as the cartographic group [21].

33



Cleaning amounts to associating to any dessin a related dessin, called a cleaned version

where the black and white vertices are all turned into black vertices, and white vertices are

introduced in the middle of the edges [44]. Then we get, by the construction described in

Section 2, data associated to the dessin as permutation triples in S2d. Equivalently, we can

stick with the original dessin and rather than attaching labels to the edges, we attach them to

half-edges, i.e., there are two numbers on each edge, one near the black vertex and one near

the white (see for example [29] where this is described under the heading of constellations).

This is illustrated for the C3 dimer Figure 6. From here we read off the permutation triple
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Figure 6: S6 description for C3 dimer.

in S6 as

α = (15) (26) (34) σ = (132) (465) ϕ = (163524) (129)

The permutation Z(σB, σ
−1
W ) we discussed earlier corresponds to ϕ here. The procedure we

described for constructing Z earlier is seen as implementing the multiplication of a permu-

tation in S2d, constructed by collecting the cycles of σB and σW , with another permutation

in S2d which is of cycle structure [2d].

The permutation descriptions can also be connected to other constructions such as trian-

gulations and rhombi that have appeared in the literature. Given a dessin we can construct

a triangulation in the covering space T2 or the untwisted Σ by choosing a point inside each

polygon and joining it with the neighboring black and white dots (see, e.g., [26] in the sta-

tistical physics context and [44] in the Galois theory context). This defines a triangulation

such that one of the edges of each triangle is an edge of the dimer. Since each such dimer

edge has a number between 1 and d and each edge has two adjacent triangles, it is natural

to label each triangle by the edge number. Thus, the dessins determine a triangulation, with

faces labelled 1+, 1−, 2+, 2−, . . . , d+, d−. The zig-zag paths can be described as a sequence

of integers of alternating signs. Note that, had we be considering the isoradial embedding,

these triangles would form the rhombic lattice of [11], where each rhombus is labelled by the

number of the dimer edge it has as its diagonal.

6.2 Homology and (p, q) webs from zig-zag permutations

We have described the zig-zags as permutations in the group S2d of {1+, . . . , d+, 1−, . . . , d−}.
We wish to obtain a basis for the homology H1(T2,Z) and (p, q) webs from an analysis of the
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zig-zag permutations. The cycles in this permutation each describe a single zig-zag path. Let

us label these cycles zi, i = 1, . . . ,M . We can express the zi in homology of the T2, as linear

combinations of the a-cycle and the b-cycle: zi = pi a+ qi b, where pi, qi ∈ Z define the (p, q)

web that yields the theory (see for example the review [15]). The combinatoric description

of zig-zags we have given as cycles in S2d gives a natural way to construct the intersection

matrix of these homology cycles, which we now describe. If α− appears in the cycle zi and

α+ appears in the cycle zj, this contributes +1 to the intersection zi ∩ zj. When β+ appears

in zi while β− appears in zj this contributes −1 to the intersection. Given a set of zig-zag

paths, we can construct the intersection matrix Iij, which counts the total intersection of zi
with zj. Clearly, Iij = −Iji := 〈zi, zj〉.

The above construction alows us to prove an interesting property of the intersection

matrix Iij which is expected from physical considerations. We will show that the elements

in any given row or a given column of the intersection matrix must sum to zero. Suppose

Z = z1 . . . zM = (e−1,1 . . . e
+
1,i1

)(e−2,1 . . . e
+
2,i2

) . . . (e−M,1 . . . eM,iM ). The integers ei,m within the

cycle zi are unique, otherwise there would be a self-intersection. There are an equal number

of minus and plus signs within each cycle. Each element e−i,m in zi contributes +1 to the

intersection with some other cycle zj. Likewise, e+
i,n contributes −1 to the intersection with

some other cycle zk. These contributions sum to zero. Thus, fixing i, we see that
∑

j Iij = 0.

Fixing conventions for the generators of H1(T2,Z) so that 〈a, b〉 = 1, we have 〈a, zi〉 = qi
and 〈b, zi〉 = −pi. Noting that Iij = piqj − qipj, summing on j implies that

pi

M∑

j=1

qj = qi

M∑

j=1

pj . (130)

Because this is true for any i, if the matrix I is itself non-zero, it follows that

M∑

i=1

(pi, qi) = 0 . (131)

This is expected from toric geometry as well as from the brane constructions [15].

Another general property of the matrix Iij is that it always has rank two. This follows

because the zi are linear combinations of the a- and b-cycles of the torus on which the dimer

sits. When we diagonalize the intersection matrix, which is skew-symmetric, we find that

there are two non-zero eigenvalues λ± = ±iλ 6= 0 and M − 2 zero eigenvalues. We denote

the null eigenvectors as N
(a)
i and the non-zero eigenvectors E±i . The physical meaning of the

null vectors is that they express the linear combinations of the zig-zag paths that vanish in

homology. That is to say, N
(a)
i zi = 0. Näıvely, one might expect that E

(±)
i zi = ξ(a ± b i),

where ξ is some constant of proportionality fixed by the requirement that 〈a, b〉 = 1. This is

not the case. Proceeding in this manner does not guarantee that pi and qi are integers.

Rather, the simplest way to construct a homology basis given the zi and Iij obtained from

the permutations (σB, σW ), is to choose j, k such that the element Ijk is a minimal entry
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of the intersection matrix greater than zero. We then assign zj = α Ijk a and zk = α−1 b.

Consider any zi = pi a+ qi b. We have

Iij = 〈zi, zj〉 = 〈pi a+ qi b, α Ijk a〉 = −α Ijk qi =⇒ qi = −α−1 Iij
Ijk

, (132)

Iik = 〈zi, zk〉 = 〈pi a+ qi b, α
−1 b〉 = α−1 pi =⇒ pi = α Iik . (133)

We can choose α, which divides Ijk, so that all the pi and qi are integers. The constraint

from the null vectors is that N
(a)
i Iij = N

(a)
i Iik = 0. We find in all the examples we studied

explicitly that this assignment is SL(2,Z) equivalent to the (p, q)-web discussed in [11].

Once we have expressed zi = pia + qib, we know the outward pointing normals of the

toric diagram. The toric diagram is expressed as the dual cone by a standard algorithm [45].

Knowing the vertices of the dual cone, we may construct the Newton polynomial [46].

6.2.1 Examples

Let us illustrate this by working out the examples of the N = 4, conifold, and SPP theories.

N = 4: The N = 4 theory has zig-zag paths, constructed according to the description in

Section 6.1, given by z1 = (1− 2+), z2 = (2− 3+), z3 = (3− 1+). The intersection matrix is

IC3 =




0 −1 1

1 0 −1

−1 1 0


 . (134)

The eigenvector corresponding to the zero eigenvalue is (1, 1, 1)T . This implies that z1 +

z2 + z3 = 0. We notice that I13 = I21 = I32 = 1 are the minimum positive elements of the

intersection matrix. We may therefore select the first option and put z1 = a and z3 = b. We

then compute

z2 = p a+ q b = −〈z3, z2〉a+ 〈z1, z2〉b = I23 a−
I21

I13

b = −a− b . (135)

The result satisfies the constraint from the null vector.

Suppose we had made some other choice. If, for example, we put z2 = a and z1 = b, we

will find that z3 = −a− b. We have

(
0 1

−1 −1

)(
a

b

)
=

(
b

−a− b

)
. (136)

The matrix on the left hand side is in SL(2,Z). It maps z1 = a, z3 = b corresponding to

using I13 to define the basis in homology to z1 = b, z3 = −a− b corresponding to using I21

to define the basis. Hanany and Vegh [11] choose z1 = −a, z2 = −b, z3 = a + b. This is as

well SL(2,Z) equivalent to the identifications we have listed.
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Conifold: The conifold theory has the zig-zag paths, z1 = (1− 2+), z2 = (2− 3+), z3 =

(3− 4+), z4 = (4−, 1+). The intersection matrix is

Iconifold =




0 −1 0 1

1 0 −1 0

0 1 0 −1

−1 0 1 0


 . (137)

For the conifold, the null vectors are (1, 0, 1, 0)T and (0, 1, 0, 1)T . Thus, z1 +z3 = z2 +z4 = 0.

Our algorithm presents four choices: (z1, z4) = (a, b), (z2, z1) = (a, b), (z3, z2) = (a, b), or

(z4, z3) = (a, b). The first option yields the result of [11]:

z2 = I24 a−
I21

I14

b = −b z3 = I34 a−
I31

I14

b = −a . (138)

The null-vector constraints are directly checked to be satisfied. The other choices are

SL(2,Z) equivalent to this one.

SPP: The suspended pinch point has the zig-zag paths, z1 = (1− 3+ 7− 6+), z2 = (2− 1+ 5− 4+),

z3 = (3− 2+), z4 = (4− 7+), and z5 = (6− 5+). The intersection matrix is

ISPP =




0 1 −1 1 −1

−1 0 1 −1 1

1 −1 0 0 0

−1 1 0 0 0

1 −1 0 0 0




. (139)

For SPP, the null vectors are (1, 1, 0, 0, 1)T , (−1,−1, 0, 1, 0)T , (1, 1, 1, 0, 0)T . Hence, z1 +z2 +

z5 = −z1 − z2 + z4 = z1 + z2 + z3 = 0. Noting that I12 = 1, we have

z1 = a , z2 = b , z3 = −a− b , z4 = a+ b , z5 = −a− b . (140)

In [11], the zig-zags are expressed as

z1 = a+ b , z2 = −a , z3 = −b , z4 = b , z5 = −b . (141)

We see that (
1 1

−1 0

)(
a

b

)
=

(
a+ b

−a

)
. (142)

The two choices of homology basis are therefore SL(2,Z) equivalent.

Orbifolds: The examples we have given are somewhat trivial since the intersection matrix

contains only 0,±1. This is no longer true for the orbifold theories, which we discuss in

Appendix C. The same recipe allows us to write the zig-zag paths in terms of the a- and the

b-cycles of the torus.
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Figure 7: The isoradial embedding; the dashed lines are of equal length.

7 A conjecture about Belyi complex structure and R-

charges

We have so far introduced a very convenient set of tools which allow for an efficient com-

binatorial/analytic codification of the low energy theory on D3-branes probing a toric CY3

cone. The analytic description is under the form of a Belyi pair, in which we should specify

a torus as well as a holomorphic map from this torus into a marked P1. This torus contains,

in turn, the dimer, which can be then thought of as a dessin d’enfant. It is then natural to

ask for the physical significance of this construction, which in particular requires a specific

choice of the torus where the dimer lives. Various brane or geometrical interpretations for the

dimer have been provided in the literature. However, none of them affords a first principles

understanding of the isoradial dimer. Let us first discuss these isoradial dimers.

The edges of the bipartite graph are associated to fields in the gauge theory. Each field

has an R-charge in the IR. The R-charge is determined by a-maximization [27]. Not all

bipartite graphs give consistent CFTs. For some bipartite graphs, the a-maximization can

result in vanishing R-charges. A consistency condition is that the bipartite graphs must

admit isoradial embeddings [11]. The isoradial embedding demands that the lines from the

center of a face to a vertex in the graph be of equal length. These are the dashed lines in

Figure 7. We normalize this distance to unity. This condition constrains the lengths of the

edges in the graph.

We first restrict to these isoradial bipartite graphs. Then, we implement the a-maximization

procedure (reviewed briefly in Appendix A) to determine the charges. It was observed that,

if we associate the R-charges to angles in the bipartite graph in the isoradial setup, then

the vanishing of the beta function guarantees that the bipartite graph lives on a torus, or
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equivalently can be drawn as a periodic structure on the plane.

To get τR, we draw what may be called the R-dimer, which is simply the bipartite graph,

drawn according to the rule that each edge has a length determined by the R-charge of the

corresponding field. To compute the complex structure parameter of the torus, one computes

the lengths of the edges and relative angles that prescribe the unit cell.

The angle X that the line from the centre of the face makes to a vertex associated with

the edge x is fixed by the R-charge of the associated quantum field:

X =
πRx

2
. (143)

The angle between two edges x1 and x2 that meet at a vertex is X1 + X2. The sum of the

angles at a vertex is 2π. This is simply the condition that the combinations of fields that

appear in the superpotential have a total R-charge two. Dropping a perpendicular from the

center of the face to the midpoint of an edge, it is clear that the length associated to x is

2 cosX.

We can start with any chosen edge to be horizontal and draw the remaining edges accord-

ing to the above to generate a periodic lattice. A unit cell can be chosen to have its corners

at one of the vertices of the dimer. Because of the double periodicity, there are two lattice

displacements which can take the original vertex to nearest copies of the same vertex. Each

of these lattice displacements is a sum of displacements along edges of the dimer, which are

drawn as straight lines joining a black vertex to a white vertex. Each of these edge displace-

ments can be represented as a complex number. Adding the edge displacements we get the

lattice displacements. The ratio of the two lattice displacements gives a τ parameter, which

is the complex structure of the base torus as determined by the R-charges. This is what we

call τR.

For C3, τR = 1
2

+ i
√

3
2

. Very interestingly the same value is obtained for the complex

structure of the Belyi curve, using the explicit construction of the Belyi pair in Section 2,

i.e., τB = 1
2

+ i
√

3
2

. This is the value such that j(τ) = 0. A similar story applies to the

conifold. We find that τR = τB = i. This is the value such that j(τ) = 1728. As explained

in Section 5, for any orbifold, there is an associated unbranched cover T̂2 of the original

T2. The unbranched cover is specified combinatorially by a pair of commuting permutations

up to conjugation equivalence, or alternatively by three integers as shown in Figure 5. The

complex structure τ of the cover T̂2 is determined by this combinatoric data of the cover,

along with the original complex structure, using (125). The same relation gives τB(T̂2) in

terms of τB(T2) and τR(T̂2) in terms of τR(T2). This means that, once we know τB = τR for

a given toric Calabi-Yau, the agreement will continue for their orbifolds. So for branes at

C3 and the conifold, as well as their orbifolds, we have τB = τR.

Rather than being more explicit about the simpler examples, let us illustrate the calcu-

lation with the SPP theory. In Figure 4, we choose the origin to be the vertex where the

edges 2, 3, and 7 meet. The endpoints of the torus that describe the unit cell are at the
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black vertices where the same edges meet. Thus, to determine the complex structure, one

must compute the vectors:

P = ~x2 − ~x3 , U = ~x3 + ~x1 + ~x6 + ~x7 . (144)

For the case of SPP, consistent with a-maximization [27], there are three angles associated

to the fields:

α = X1 =

(
1− 1√

3

)
π , β = X2 = X3 = X5 = X6 =

1

2
√

3
π , γ = X4 = X7 =

(
1

2
− 1

2
√

3

)
π .

(145)

The subscripts denote the edges. The edges that meet at the vertices in the graph enable us

to deduce that

π = α + 2β = 2β + 2γ . (146)

In this way, all the angles can be expressed in terms of γ. After a bit of trigonometry, we

may succinctly express

P = χ3 − χ−1 , U = χ3 + 2χ+ 2χ−1 − χ−3 , (147)

where χ = eiγ. The modular parameter is then the ratio

τSPP =
P

U
=

1− e2πi/
√

3

1− 2eπi/
√

3 + 2e2πi/
√

3 + eπi/
√

3
≈ −0.0737 + 0.528i . (148)

We may, of course, perform a similar calculation for a more complicated dimer. Consider

the Laba theories [8], whose bipartite graph is shown in Figure 8.

Here, the R-charges consistent with a-maximization are

R(u1) = R(y) =
1

3

b− 2a+ w

b− a , R(u2) = R(z) =
1

2
R(v1) =

1

3

2b− a− w
b− a , (149)

where w =
√
a2 + b2 − ab. The angles associated to the edges may therefore be expressed in

terms of U1 = π
2
R(u1) and U2 = π

2
R(u2), etc. with relations π = U1+U2+Y +Z = U1+V1+Y .

Placing the origin at the top left corner of the fundamental cell, we must therefore compute

P = ~y − ~u1 , U = a(~u1 + ~u2) + (b− a)(~u1 + ~v1) . (150)

After a bit of geometry, we find that

P = (χ1+χ−1
1 )(1+χ−2

2 ) , U = b(χ1+χ−1
1 )χ−2

2 −a(χ2+χ−1
2 )χ1χ2−(b−a)(χ2

2+χ−2
2 )χ1 , (151)

where χj = eiUj . The modular parameter τLaba = P
U

.

The theory L121 is the same as SPP. We find

τL121 =
−1 + e−2πi/

√
3

3− 2e−πi/
√

3 + eπi/
√

3
. (152)
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Figure 8: Dimer for the Laba theory.

One can check computationally that j(τSPP) = j(τL121). Thus, the two values of τ are related

by a modular transformation. We derive the relation:

τSPP =
τL121

τL121 + 1
. (153)

The two fundamental cells we have used (the red and the blue domains in Figure 9) are

SL(2,Z) equivalent.

7.1 A number theoretic consistency check of τR = τB

While our conjecture that τB = τR works in the simple examples checked, we would like

to verify it in the more involved case of SPP, already involving irrational R-charges and

thus exhibiting much of the generic properties of the La b c theories. That would require
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Figure 9: Dimer for the L121 theory with equivalent fundamental domains sketched.

explicit knowledge of the SPP Belyi pair, which unfortunately is currently not available. It

is possible however to develop arguments to rule out τB = τR in any specific case where τR
is known by investigating some number theoretic properties of τR. We will explain this type

argument for SPP and will show that the argument fails to rule out the equality thanks to

the transcendentality of τR

Let us first note that, upon writing the torus for the dimer as

y2 = x(x− 1)(x− λ) , (154)

the modular invariant j(τ) for the elliptic curve is expressed in terms of λ by algebraic

operations (see equation (178)). For a Belyi curve, the parameter λ is in Q. Since the field

Q is closed under the algebraic operations used to determine j from λ, this means that, for

a Belyi curve, j itself is algebraic. Furthermore, it is known that if j(τ) is algebraic and τ

is also algebraic, then τ has to satisfy a quadratic equation with rational coefficients [47].

Thus, one way to prove the proposed equality wrong would be to show that τR is algebraic

but not a solution of a quadratic equation. Happily, we show, assuming a conjecture in

the theory of transcendental numbers, that τR is actually transcendental, thus disposing

of this possible counterargument against τB = τR for SPP. To prove that, we first show

that x = e
iπ√
3 is transcendental. This proceeds by assuming a widely accepted conjecture

in the mathematical literature [49, 50, 51] which goes under the name of four exponentials

conjecture, for which there is no counterexample known.

It is known that if (x1, . . . , xm) is a set of m complex numbers that are linearly inde-

pendent over the rational numbers and (y1, . . . , yn) is a set of n complex numbers that

are linearly independent over the rational numbers and mn > m + n, then at least one of

exp(xiyj) must be transcendental. The minimal case, m = 3, n = 2, is known as the six
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exponentials theorem [49, 50]. A conjecture replaces the strict inequality in the hypothesis

by mn ≥ m + n, which permits m = n = 2 as a minimal case. Thus, the four exponentials

conjecture states that if (x1, x2) and (y1, y2) are two pairs of complex numbers, with each

pair linearly independent over the rational numbers, then at least one of exp(xi yj) must be

transcendental.

Writing χ = e
iπ√
3 we have

τR(SPP) =
χ3 − χ−1

χ3 + 2χ+ 2χ−1 − χ−3
. (155)

Putting x1 = 1, x2 = 1√
3
, y1 = iπ, y2 = iπ√

3
, the four exponentials conjecture tells us that

one of eiπ, e
iπ√
3 , e

iπ
3 is transcendental. The first is −1 and the last solves x3 + 1 = 0, so

this implies that χ is transcendental. Similarly, we may conclude that χ3 and χ−1 are also

transcendental. If the four exponentials conjecture is true, then τ is a ratio of combinations

of transcendental numbers.

The equation for τR can be recast as

(τR − 1)χ6 + 2τRχ
4 + (2τR + 1)χ2 − τR = 0 . (156)

If τR were algebraic, since Q is algebraically closed, it would follow that χ is algebraic. But

we have shown, assuming the four exponentials conjecture, that χ is transcendental, so we

conclude that τR is transcendental. We have thus ruled out a possible argument against

τB = τR. A stronger argument in favor would be to show that j(τR) in this case is algebraic

for this transcendental τR.

7.2 Discussion of the conjecture

To summarize, we have found that for the N = 4 and the conifold, as well as their orbifolds,

there is the equality τR = τB. We have shown, using the four exponentials conjecture, that

the complex structure parameter τR is transcendental for the SPP theory, but we cannot

compare this directly with τB, since we do not have the explicit Belyi pair.

A word of caution is in order at this point. The identification of complex structures is

not intended to imply a straightforward identification of the R-dimer with the dessin. Recall

that the dessin is defined as the inverse image of the interval [0, 1]. Close to a vertex, the

Belyi map will go like zn, where n is the number of edges incident on the vertex. This implies

that the angle between these lines is 2π
n

. In the R-dimer construction, the angle between

two edges is determined by the R-charges of the corresponding fields (see (143)). These

R-charges are themselves solved by a-maximization, which leads to a quadratic system of

equations. There is, in general, no reason for the angles at a vertex to be equal. For the

case of C3 and the conifold, it so happens that the angles are equal. So one might suspect

that the equality τR = τB is a consequence of this rather special circumstance and should be
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easy to rule out for any case where the angles are not equal in the R-dimer. This makes the

SPP case discussed above is a particularly interesting laboratory for testing our conjecture.

The calculation of τR from the R-dimer, and indeed the definition of the R-dimer, relies

on the geometry of geodesics on the torus, which are straight lines when the torus is realized

as the unit cell of a periodic tiling of the plane. The calculation of τB arises from the

holomorphic geometry of Belyi pairs. More precisely, when a topological torus is realized

as a branched cover of P1, there is a natural complex structure induced on it which is the

pull-back of the standard complex structure on the P1.

The string theory construction of the toric SCFT offers a number of different approaches.

Among the different regions of string theory moduli space, there are D3-branes at the Calabi–

Yau singularity. There is the picture of D5-branes and NS5-branes in type IIB string theory.

There is the T-dual type IIA system in terms of D6-branes. At weak coupling type IIB

provides a picture featuring a T 2 in spacetime and holomorphic surfaces. At strong coupling

type IIB provides a picture where NS5-branes form geodesic zig-zags on T2, which enclose

the vertices of the dimer. It may be expected that the different regimes of string theory

moduli space will provide realizations of the holomorphic geometry of Belyi pair and the

geodesic geometry of R-dimer. In this way, the question of equality of τB and τR can be

translated into a physical question about the moduli of string theory which allow different

realizations of the same superconformal gauge theory.

A reasonable guess is that the holomorphic type IIA or type IIB constructions would

provide natural setups to explore a derivation of the Belyi pair in string theory. The strong

coupling limit of type IIB, which incorporates geodesic zig-zags on T2, is a natural setting

for exploring a derivation of the geodesic geometry of the R-dimer. There are important

challenges along the way: the physics of systems containing both D5- and NS5-branes is not

well-understood from a worldsheet string point of view. Furthermore, the R-dimer is based

on R-charges which only become well-defined in the deep infrared.

These ideas could be explored, in the first instance, in the more symmetric cases of C3

and its orbifolds which preserve N = 2 supersymmetry, notably C2/Zn × C. The structure

of N = 2 theories is much more constrained, since the Kähler potential is also under control.

Thus, one might hope for a deeper understanding of the Belyi pair, which might be related to

the Seiberg–Witten curve of the theory under consideration, perhaps along the lines of [19].

8 Summary and outlook

In this paper we have initiated the study of dimer models for D3-branes at toric CY3 sin-

gularities in terms of Belyi theory. This involves an elegant description of the combinatoric

data for the dimer in terms a triple of permutations, as well as algebraic equations for the

Belyi curve and Belyi map, which are defined over algebraic numbers. The permutation de-

scription allows for a neat description of zig-zag paths, and should provide a new approach to
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the computational classification of consistent dimers, a problem recently considered in [52].

The explicit construction of the Belyi curve and Belyi map provides a geometric realiza-

tion of physical data, such as the permutation symmetries of superpotential terms. Here,

we have considered symmetries which leave the positive terms and negative terms of the

superpotential separately invariant as well as symmetries which exchange these terms. Au-

tomorphisms of the elliptic curve supporting the Belyi map play an interesting role in both

cases. Braid group actions on covers, which can be described combinatorially and geometri-

cally, are key to the latter problem. These themes were explored in some basic examples of

C3, conifold, and SPP, as well as orbifolds. We have made general remarks about superpo-

tentials of orbifold theories, relating them to automorphisms of unbranched covers of a torus

by a torus.

The counting of torus covers appears in the context of two-dimensional SYM [41]. The

zero area limit, which has particular interest as a topological point [28], involves these un-

branched covers. Another connection to matrix models is that permutation triples appear in

the computation of correlators of observables in Hermitian or complex matrix models [23, 53].

An interesting problem is to express the consistency condition of dimers, such as non-self-

intersection of zig-zags, in the matrix model language. This would allow a matrix model

counting for toric CFTs.

The analytic Belyi pair constructions will also be very interesting to explore in the context

of orbifolds. We would hope to find an algorithm that would generate the Belyi pair for any

orbifold, using as data an analytic description of the unbranched cover along with the original

Belyi pair. This could be very helpful in connection with the inverse algorithm, given that

one can always embed the threefold singularity of interest in a sufficiently large orbifold.

In that respect, studying the realization of RG flows whereby the singularity is partially

resolved would also be a very interesting and important aspect. Multiple quiver diagrams

can map to a single toric diagram [54]. The different toric phases of a given theory are

believed to manifest Seiberg duality [55]. It would be enlightening to make these ideas

explicit in the language of permutation triples and Belyi pairs, particularly in connection

with our conjectured equality of τR and τB.

Given a dessin d’enfant on a genus g Riemann surface, finding the associated Belyi map

is an open problem in mathematics. In the physical examples of which we are aware, whereas

the cycle structures of σB and σW may differ, the number of cycles in the permutations is

the same. This is to say that there are an equal number of black and white nodes in the

dimer. Such bipartite graphs are called balanced in the mathematics literature. It may be

that the special properties of balanced graphs are essential to understanding the physics of

supersymmetric gauge theories.

From a mathematical point of view, much of the interest in Belyi theory stems from the

role of the absolute Galois group. It is known that this group acts faithfully on the set of

all dessins. It is also known that it acts faithfully on subsets such as genus zero dessins, or
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genus one dessins, or tree-like dessins on genus zero [29]. It is natural to ask if the set of

“consistent dimers” which arise in AdS/CFT, characterized in terms of properties of zig-zag

paths, form closed Galois orbits, and, if so, whether they provide a faithful action.

We have explored an intriguing equality between the complex structure of the Belyi

curve and a complex structure determined by the R-charges, which was found to hold true

for the conifold and C3 as well as their orbifolds. It is tempting to conjecture that this

equality holds for all toric varieties. Since explicit constructions of Belyi pairs are not easy

in general, such an equality would give non-trivial data about the Belyi complex structure

for Belyi curves corresponding to all consistent dimers. If true, the equality would also give

a large class of values of (generically transcendental) τ for which the Klein j-invariant j(τ)

is algebraic. Since it might be argued that the agreement of the two complex structures is

an accident due to symmetry reasons, we made some consistency checks for the case of SPP.

Remarkably, these consistency checks relate our problem to the well-known mathematical

problem of proving certain numbers to be algebraic. Using the four exponentials conjecture,

we have been able to argue that both conjectures are compatible. This deep relation with

number theory is intriguing, and deserves further study.

Perhaps the most important open problem is to find a derivation of the Belyi pair from

string theory constructions associated with branes or geometries associated with the SCFT

for D3-branes at toric Calabi–Yau singularities. Given the relations we have uncovered

between the complex structure of the Belyi curve and that of the curve which supports the

R-dimer, this question is closely related to the outstanding question of constructing the R-

dimer, or as a first step identifying the corresponding torus complex structure, in the physics

of strings and branes related to the toric Calabi–Yaus.

Finally, while our investigations here have been entirely in the context of four dimensional

SCFTs, extensions to other dimensions can be considered. In, e.g., [56, 57, 58, 59] it has

been noted that three-dimensional SCFTs dual to M2-branes probing CY4 singularities might

also be encoded in bipartite graphs drawn on a torus. While a number of issues regarding

these proposals remain to be clarified8, it seems that the tools we have introduced could

be applied to these theories. In particular, a combinatorial description and the application

of the Belyi theorem should be possible. However, it remains to be understood how to

encode the Chern–Simons levels, and we point out that many such theories would involve

self-intersecting zig-zags.

We leave these very interesting questions for future investigations.

8A partial list would include in particular the actual SCFT character of the theories given that no efficient

analog of a-maximization is available, and the role of the collapsing eleven dimensional circle potentially

giving rise to non-isolated singularities which might suggest the inclusion of fundamental fields (see [60, 61]).
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A Dimers and SCFTs in a nutshell

For the sake of completeness, let us collect some relevant facts about dimers and their relation

with brane physics. A thorough explanation can be found in the reviews, e.g., [14, 15] and

references therein.

Dimers provide an economic way of encoding the SCFT dual to D3-branes probing a given

toric CY3. As emphasized in the text, dimers are bipartite graphs drawn on a torus. They

can be obtained as the dual graph to the periodic quiver. Because of this, faces represent

gauge groups while edges represent chiral multiplets. More specifically, an edge separating

face i from face j corresponds to a bifundamental chiral multiplet which transforms in the

(Ni, N j) representation. The superpotential terms are encoded in the vertices of the dimer.

Choosing an orientation on the torus, one can go around the black nodes according to the

ordering thus induced. Each node gives rise to a cyclic sequence of fields which corresponds

to a gauge invariant trace of the fields. One goes around the white nodes according to the

orientation opposite to that induced by the torus and similarly constructs another list of

gauge invariant operators. The terms coming from the black nodes are added together to

form W+. The terms from the white nodes are added to form W−. The superpotential

is W = W+ − W−, i.e., the black nodes contribute positive terms while the white nodes

contribute negative terms.

As an example consider the N = 4 case given in Figure 10. There are three edges

and a single face. Thus, there are three adjoint chiral multiplets of a single gauge group.

Since there are two vertices, the superpotential contains two terms, one positive and one

negative. Choosing to encircle the black node anticlockwise and the white node clockwise,

and following the above rules we obtain the standard N = 4 superpotential

W = Tr(X1X2X3 −X1X3X2 ) . (157)

Sometimes this is written as Tr(X1
11X

2
11X

3
11−X1

11X
3
11X

2
11), where the lower indices label the

gauge groups; in this case there is only one.

In connecting the dimer to dessin d’enfant, we label the edges 1, 2, 3 as usual, and con-
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Figure 10: Dimer for the N = 4 SYM theory with its three zig-zag paths.

struct permutations σB and σW , where both permutations are read according to the ori-

entation of the surface. The connection between dessin d’enfants and branched covers also

motivates the definition of σ∞ = (σBσW )−1, which in this case is (123). With these data,

there is a simple relation between the genus of the surface and the cycle structure of the

permutations. Since we are considering genus one here, this relation (given in general form

in (9)) becomes

0 = 3− 1− 1− 1 . (158)

The two permutations σB, σW contain all the information about the faces, which can be

described using a permutation in S2d constructed from σB, σW using a construction we de-

scribe in section 6. A closely related construction gives an elegant combinatoric description

of zig-zag paths without referring to the picture. These arise in characterizing consistent

dimers, which form the subset of toroidal dimers which give rise to consistent SCFTs. For

the case of N = 4 there are three zig-zag paths, which are drawn in Figure 10.

Due to the high degree of symmetry of this example, the R-charges of all fields under the

relevant U(1)R are 2
3

as can be deduced from the superpotential. In particular, this means

that the isoradially drawn dimer has edges meeting at each node with an equal 2π
3

angle.

Indeed, as computed in the main text, it follows that

τR =
1

2
+ i

√
3

2
. (159)

More generically, the R-charges at the superconformal fixed point can be found by a-

maximization [27]. This proceeds by assigning trial R-charges to all the fields and enforcing

the vanishing of the β-functions for all couplings. This amounts to setting to zero the NSVZ

exact β function9 for the gauge coupling xI = 8π2

g2I
of the I-th gauge group

β(xI) = 3Nc −
∑

i

T2(ri) (1− γi) , (160)

9As discussed in, e.g., [62], it is convenient to match supergravity conventions to keep the vector fields

holomorphically normalized while imposing canonic normalization for the chiral multiplets.
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where the sum runs to all fields charged under the I-th gauge group in the representation ri,

where T2(ri) is its quadratic Casimir. At the superconformal fixed point the scaling dimen-

sions are related to R-charges as ∆ = 3
2
R. It then follows that the anomalous dimensions

of the fields can be expressed in terms of the R-charges at the superconformal fixed point as

γ = 3R− 2 . (161)

Thus, the vanishing of the NSVZ gauge fields beta function imposes the condition

Nc −
∑

i

T2(ri) (1−Ri) = 0 ∀ gauge groups . (162)

Furthermore, the vanishing of the β function superpotential couplings requires (see, e.g., [14])

∑

i

Ri = 2 ∀ monomials in W , (163)

where the sum runs to all fields on each superpotential monomial. This set of equations,

together with the vanishing of the NSVZ β-functions, generically admits a continuous set

of solutions. The a-maximization procedure allows to uniquely fix the exact superconformal

R-charge among all these possibilities by selecting that which maximizes the central charge

a. More explicitly, the central charge a reads, in terms of the trial R-charges

a =
3

32

(
3
∑

i

(Ri − 1)3 −
∑

i

(Ri − 1)
)
. (164)

where the minus one stands for the fact that only the fermions (which have one less unit

of R-charge than the bosons) contribute to the central charge. Upon inserting in (164) the

solutions from the vanishing of the β functions, the unique solution which maximizes a is

guaranteed to be the exact R-charge assignation. Indeed, it is straightforward to check that

the assignation for N = 4 above coincides with the one arising from a-maximization. Note

also that the construction of the faces, starting from (σB, σW ) in terms of a permutation in

S2d in Section 6.1, gives the information about the fields entering the summation for each

gauge group.

B Some remarks on elliptic curves

Tori are elliptic curves defined over C. For most of the purposes, the relevant form of an

elliptic curve is given by the Weierstrass equation

y2 = x3 + Ax+B , 4A3 + 27B2 6= 0 , (165)

where y, x and A, B are elements in C. One can show that this curve describes a Riemann

surface of genus one, that is, a torus.
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The above expression can be embedded in P2:

Y 2 Z = X3 + AX Z2 +B Z3 (166)

by using the relation between projective and affine coordinates

x =
X

Z
, y =

Y

Z
. (167)

Embedding the affine curve into projective space thus includes the closure, which is the point

at infinity Z = 0. That point is usually denoted as O.

Given two points P1(x1, y1) and P2(x2, y2) in the curve, there is an operation which gives

a third point P3(x3, y3). This is denoted as P1 +P2 = P3. It turns out that the set of points

on the curve together with this “+” operation, upon the addition of the point at infinity,

forms a group. Indeed, the point at infinity has the same properties as the “zero.” One can

then see that in the Weierstrass form −P (x, y) = (x, −y).

Another standard form (Legendre form) for the elliptic curve is

y2 = x(x− 1)(x− λ) , λ 6= 0, 1 . (168)

We will be interested in morphisms of the curve. Let us begin in a generic way, and

consider two elliptic curves E1, E2, between which we can consider a generic morphism

F : E1 → E2 . (169)

A special subclass of such morphisms are those, denoted as φ, which preserve O

φ : E1 → E2 , φ(O) = O . (170)

This type of morphisms is called an isogeny. An important result is that for isogenies we

have

φ : E1 → E2 / φ(O) = O =⇒ φ(P +Q) = φ(P ) + φ(Q) . (171)

We will be particularly interested in the case where E1 = E2 = E. When φ is invertible, it

defines an isomorphism of the curve to itself. Isogenies of this type are called automorphisms

of E, which we will denote as Autg(E), where the subscript indicates that they preserve the

group structure of the elliptic curve.

Another particularly important type of morphism between a curve and itself is the

translation-by-P map τP defined as

τP : E → E , (172)

Q 7→ τP (Q) = P +Q .

Making use of the translation-by-P map, we can turn any isomorphism of the curve into

an isogeny as

φ = τ−F (O) ◦ F . (173)
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Since the inverse of the translation-by-P is the translation-by(−P ), we can therefore write

any isomorphism F of a curve as

F = τF (O) ◦ φ . (174)

That is, we have that any isomorphism of a curve is a composition of an isogeny and a

translation. More precisely, Aut(E) = E n Autg(E). Since for every point in the curve we

have a translation, the set of translations is naturally identified with E. Thus, we have a

natural bijection

E n Autg(E)→ Aut(E) . (175)

The composition of two elements gives the group law in Autg(E) as

(P1, φ1) · (P2, φ2) = (P1 + φ1 P2, φ1 ◦ φ2) . (176)

This can be understood as follows. A generic isomorphism is the composition of an isogeny

and a translation. Thus, setting F1(P ) = φ1(P ) +Q1, F2(P ) = φ2(P ) +Q2, the composition

is

F2 ◦ F1(P ) = F2(φ1(P ) +Q1) = φ2(φ1(p) +Q1) +Q2 = φ2 ◦ φ1(P ) + φ2(Q1) +Q2 , (177)

which reproduces the result above.10

We have used the letter E here for the elliptic curve, as conventional in discussions of

the group structure of the torus. We use T2 in the bulk of the paper. The group Aut(E) =

Aut(T2) contains as a subgroup the automorphism of any covering map which realizes T2 as

a cover. These subgroups can be computed from the combinatorial data of permutations as

in Section 2.

B.1 j-function

Klein’s j-invariant is the primitive modular invariant function on the upper half plane.

Defining q = e2πiτ , we have the expressions

j(q) := 256
(1− λ(q) + λ(q)2)3

λ(q)2(1− λ(q))2
= 1728 J(

√
q) , (178)

where

λ(q) =

(
ϑ2(q)

ϑ3(q)

)4

. (179)

Note that, because of the definition of the function j in terms of λ as a rational function, if

λ ∈ Q we will automatically have that j is also an algebraic number.

This function is invariant under

τ 7→ τ ′ =
aτ + b

cτ + d
, ad− bc = 1 , a, b, c, d ∈ Z . (180)

10We have used that for an isogeny φ(P1 + P2) = φ(P1) + Φ(P2).
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Thus j(τ) defines a map from the fundamental domain H/SL(2,Z) to the complex numbers

C. Any meromorphic function invariant under SL(2,Z) is a function of j(τ).

More generally, instead of considering j as function on the fundamental domain of the

upper half plane, it can be defined purely algebraically. Given an elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (181)

over any field, define

b2 = a2
1 + 4a2 , b4 = a1a3 + 2a4 , b6 = a2

3 + 4a6 , b8 = a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4 ,

c4 = b2
2 − 24b4 , c6 = −b3

2 + 36b2b4 − 216b6 , ∆ = −b2
2b8 + 9b2b4b6 − 8b3

4 − 27b2
6 . (182)

The j function in terms of the coefficients in the elliptic curve is then

j =
c3

4

∆
= 1728

c3
4

c3
4 − c2

6

, (183)

where the last equality applies for fields with characteristic k 6= 2, 3. Two elliptic curves are

isomorphic if and only if their j-invariants are the same. When the elliptic curve is written

as

y2 = x(x− 1)(x− λ) (184)

the j-invariant of the curve may be found simply by substituting this λ into the expres-

sion (178).

Any elliptic curve of the form (184) enjoys an invariance under (x, y) 7→ (x,−y). Thus

there is a Z2 symmetry of the curve. The values j = 0 and j = 1728 are special because

these correspond to the enhancement of symmetries.

• In the former case, j = 0, the elliptic curve Σ can be written as

y2 = x3 + A . (185)

This is invariant separately under (x, y) 7→ (x,−y) and (x, y) 7→ (ω3x, y), where ω3 is

a cubed root of unity. Thus, j = 0 implies that Σ enjoys a Z2 × Z3 symmetry.

• In the latter case, j = 1728, the elliptic curve Σ can be written as

y2 = x3 + Ax . (186)

This is invariant under (x, y) 7→ (−x, iy). Thus, j = 1728 implies that Σ enjoys a Z4

symmetry.

The function j(τ) can be inverted. We have

j−1(z) = i
r( z

1728
)− s( z

1728
)

r( z
1728

) + s( z
1728

)
, (187)
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where r and s are expressed in terms of the standard 2F1 hypergeometric functions:

r(z) = Γ(
5

12
)2

2F1(
1

12
,

1

12
;
1

2
; 1− z) , s(z) = 2(

√
3− 2) Γ(

11

12
)2
√
z − 1 2F1(

7

12
,

7

12
;
3

2
; 1− z) .(188)

In particular, j−1(0) = 1
2

+ i
√

3
2

= eπi/3 and j−1(1728) = 1 + i ' i = eπi/2.

In the examples we consider in Section 4, j = 0 arises for the Belyi curve associated with

N = 4 SYM for branes transverse to C3, and j = 1728 arises for the case of the conifold.

C Orbifolds of the basic examples

C.1 C2

Zn
× C orbifolds of C3

The C2

Zn × C orbifolds of C3 are defined by

C2

Zn
× C = { (x, y z) ∈ C3 / (x, y z) ∼ (ω x, ω−1 y, z), ωn = 1 } . (189)

These orbifolds preserve the natural holomorphic three-form in C3, and thus are at least

N = 1 supersymmetric. (In fact, they areN = 2.) There is also a natural brane construction

for them, which makes them especially interesting.

The corresponding dimer is obtained by adjoining n copies of the fundamental cell of the

C3 dimer (along a given direction). We may write the structure of the permutations defining

the dimer as follows:

σB = (123) (456) . . . ((3n−2)(3n−1)(3n)) , σW = (1MC2 3) (4MC3 6) . . . ((3n−2)MC1 (3n)) ,

(190)

where MCi is the “middle element” in each permutation. That is, if we consider the permu-

tation ((i) (i+ 1) (i+ 2)), Mσi = (i+ 1). Put in words, the procedure amounts to writing n

copies of the fundamental three-cycle cell in the canonical order11 for σW , and constructing

from there σW by shuffling in a cyclic way the middle element. From here we see that the

combinatorial data predicts a Belyi map with n preimages of 0, all with ramification two, n

preimages of 1, all with ramification two, and n preimages of ∞, all with ramification two.

The total ramification of such a map is then B = 6n, while the degree is d = 3n, so this

indeed corresponds to a graph drawn on a torus.

The automorphism group of the pair is given by

γA = (1 4 . . . (3n− 2)) (2 5 . . . (3n− 1)) (3 6 . . . (3n)) . (191)

11We will refer to a permutation with the structure (123)(456) . . . ((n−2) (n−1)n) as “having the canonical

order.”
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Figure 11: C2

Z3
× C dimer.

One can check that γn = 1. Furthermore, from the structure of γ one can see that none

of the cycles composing the σB, σW permutations is left fixed (indeed, these fundamental

cycles are just shuffled).

Importantly, note that, since the ramification structure is the same over all the three

points in the target P1, we should expect a “symmetry” which exchanges 0↔ 1 and 0↔∞.

C.1.1 C2

Z3
× C

The dimer for the C2

Z3
× C theory is shown in Figure 11. The permutations are

σB = (153) (486) (729) , σW = (123) (456) (789) , σ∞ = (165) (273) (498) , (192)

which coincides with the general formula above. Furthermore, the automorphism group is

generated by

γA = (147) (258) (369) , (193)

and it is such that γ3
A = 1. These statements have been checked with SAGE.

C.1.2 C2

Z5
× C

The dimer for the C2

Z3
× C theory is shown in Figure 12. The permutations are

σB = (153) (486)(7 11 9) (10 14 12) (13 2 15) , σW = (123) (456) (789) (10 11 12) (13 14 15) ,

(194)

and the γ generating the automorphism group

γA = (1 4 7 10 13) (2 5 8 11 14) (3 6 9 12 15) , (195)

which satisfies γ5
A = 1.

54



1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

5

1

2

4

5

1

1

2

3

5

1

2
1

4

5

1

1 2

2

3

4
4 5

6

7

8
9

10

10 11
12

7

13

13 14
15

Figure 12: C2

Z5
× C dimer.

C.1.3 Zig-zags in orbifolds C2/Zn × C of N = 4

For the orbifold of N = 4, we have seen that

σB = (123)(456) . . . ((3n−2)(3n−1)(3n)) , σW = (1(MC2)3)(4(MC3)6) . . . ((3n−2)(MC1)(3n)) .

(196)

The zig-zag paths are then given by the cycles

z1 = (1−2+(3n− 2)−(3n− 1)+(3n− 5)−(3n− 4)+ . . . 4−5+) ,

z2 = (2−3+5−6+ . . . (3n− 1)−(3n)+) ,

z3 = (3−1+) , z4 = (6−4+) , . . . , z2+n = ((3n)−(3n− 2)+) . (197)

We therefore have two long zig-zags along the skeleton of the dimer and n zig-zags of length

two. The long zig-zags intersect each other n times. The short zig-zags intersect each of the

long ones once with opposite signs and the short ones do not intersect each other at all. The

intersection matrix may be readily computed from these observations.

For C2/Z3 × C, for example, the intersection matrix is

IC2/Z3×C =




0 −3 1 1 1

3 0 −1 −1 −1

−1 1 0 0 0

−1 1 0 0 0

−1 1 0 0 0




. (198)

The constraints from the null vectors are z1 + z2 + 3zi = 0, i = 3, 4, 5. A solution is z1 = a,

z2 = −a− 3b, z3 = b, z4 = b, and z5 = b.
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Figure 13: Zn orbifolds of the conifold for n = 2, 3.

C.2 Orbifolds of the conifold

C.2.1 Non-chiral Zn orbifolds of the conifold

The conifold is given by

C(T 11) = {x, y, u, v / x y = u v } . (199)

The non-chiral Zn orbifolds are quotients under

(x y) ∼ (ω x, ω−1 y) , ωn = 1 . (200)

In order to make the discussion concrete, let us explicitly consider the n = 2, 3 cases.

Their dimers (with the cycles and of the nodes in the dimer suitable prepared to compute

the Kasteleyn matrix) appears in Figure 13. One can explicitly check from those dimers that

the determinant of the corresponding Kasteleyn matrix obtained in each case does indeed

reproduce the expected Newton polynomial of each toric variety.

Let us now redraw the dimer in Figure 14, labelling the edges in a way to read the

permutation structure describing this graph as a dessin.
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57



In the Z2 case we have

σB = (1674) (5238) , σW = (1234) (5678) . (201)

In the Z3 case we have

σB = (1 10 11 4) (5 2 3 8) (9 6 7 12) , σW = (1234) (5678) (9 10 11 12) . (202)

We don’t write the σ∞ permutation explicitly: as usual, it is (σBσW )−1.

From these two examples we read off the pattern for the Zn orbifold:

σW = (1234) . . . ((4n−4) (4n−3) (4n−2) (4n−1) 4n) , σB = (1MCn 4) . . . ((4n−3)MC1 4n) .

(203)

We can now turn to the endomorphisms. The matrix γ generating the automorphism

group is

γA = (1 5 . . . (4n− 3)) (2 6 . . . (4n− 2)) (3 7 . . . (4n− 1)) (4 8 . . . 4n)) . (204)

One can check that γn = 1, and that again no fundamental cycle is left fixed.

C.2.2 Zig-zag paths

Recalling the permutations for the orbifold of the conifold, we have

σB = (1234)(5678) . . . ((4n− 3)(4n− 2)(4n− 1)(4n)) , (205)

σW = (1(MC2)4)(5(MC3)8) . . . ((4n− 3)(MC1)(4n)) .

We use Section 6.1 to write the zig-zags:

z1 = (1−2+(4n− 3)−(4n− 2)+(4n− 7)−(4n− 6)+ . . . 5−6+) ,

z2 = (3−4+7−8+ . . . (4n− 1)−(4n)+) , (206)

z3 = (2−3+) , z4 = (6−7+) , . . . , z2+n = ((4n− 2)−(4n− 1)+)

z3+n = (4−1+) , z4+n = (8−5+) , . . . , z2+2n = ((4n)−(4n− 3)+) .

The only intersections are short zig-zags with long ones; this happens once for each pair

(zi, zj), i = 1, 2, j = 3, . . . , 2 + 2n. Thus the intersection matrix always contains elements

0,±1. We can then define a- and b-cycles zj = a, zk = b by choosing any element Ijk = 1.

C.2.3 Chiral orbifold: F0

Let us rewrite the conifold in terms of

x = z2 + i z1 , y = z2 + i z2 , u = z4 + i z3 , v = −z3 − i z4 , (207)
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such that the defining equation becomes

z2
1 + z2

2 + z2
3 + z2

4 = 0 . (208)

In these coordinates, the holomorphic three-form is

Ω =
dz2 ∧ dz3 ∧ dz4

z1

. (209)

In view of this, zi → ω zi will be a supersymmetric orbifold only if ω2 = 1, that is, only

for a Z2 orbifold. Let us now consider precisely this Z2 orbifold, in other words the chiral

orbifold of the conifold leading to the cone over the zeroth Hirzebruch surface F0

F0 = {(x, y, u, v) ∈ C / x y = u v, (x, y, u, v) ∼ (−x, −y, −u, −v) . (210)

The dual theory is encoded in the dimer in Figure 15 below. From the dessin, we read
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Figure 15: Dimer for the phase 1 of F0.

the permutations at each of the nodes:

σB = (1638)(5274) , σW = (1234) (5678) , σ∞ = (17) (28) (35) (46) . (211)

The ramification is B = 3 + 3 + 3 + 3 + 1 + 1 + 1 + 1 = 16, while the degree is eight, thus

corresponding to a dessin on a genus one surface. We can explicitly construct the Belyi pair.

We find

β =
i (i+ x)4

8x (1− x2)
. (212)

The curve is the same as in the unorbifolded case, namely y2 = x3 − x. The generators of

the automorphism group leaving the pair invariant are

φ±(x, y) = (
x+ 1

1− x, ±
2 i y

(1− x)2
) . (213)
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Since φ4
± = 1 and φ− ◦ φ+ = φ+ ◦ φ−, we have that Aut(T2, β) = Z4 × Z4.

From a combinatorial perspective we find that there are two permutations (modulo con-

jugatios) which leave the pair invariant

γA1 = (1234) (5678) , γA2 = (1638) (5274) . (214)

Clearly γ4
Ai

= 1 while [γA1 , γA2 ] = 0, and thus we recover the expected Z4×Z4 automorphism

group of the pair.

We can now turn to the exchange of black and white nodes. One can check that auto-

morphisms bi in Aut(T2) obey 1− β = β ◦ bi corresponding to the B1 braiding operation

b1 : (x, y)→ (−x, ±i y) , b2 : (x, y)→ ( 1
x
, ± i y

x2
) ,

b3 : (x, y)→ (1−x
1+x

, ± 2 y
(1+x)2

) , b4 : (x, y)→ (−1+x
1−x , ±

2 y
(1−x)2

) .

(215)

However, after taking into account the automorphisms of the pair, it follows that we can

just keep

b1(x, y) = (−x, i y) . (216)

This transformation squares to b2
1(x, y) = (x, −y), which is, up to the action of an automor-

phism of the pair (essentially this is due to φ+ ◦ φ−(x, y) = (x, −y)), equivalent to (x, y),

thus recovering the expected Z2.

From a combinatorial perspective, modulo conjugation, we find, like in the unorbifolded

case, two permutations implementing the expected twisted action of B1:

γ+ = (13) (26) (48) (75) , γ− = (28) (46) (1) (3) (5) (7) . (217)

As in the unorbifolded case, we can obtain γ1 starting with γ2 and acting with an automor-

phism, so that we can keep

γB1 = (13) (26) (48) (75) , (218)

which squares to one. In this case, as in the unorbifolded case, the B2 transformation is not

implemented by any γB2 since σW and σ∞ have different cycle structures. These statements

have as well been verified with SAGE mathematical software.

C.3 Nonchiral Zn orbifolds of SPP

Let us now consider the SPP non-chiral orbifolds:

(u, v) ∼ (ω u, ω−1 v) , ωn = 1 . (219)

The dimer for n = 2 is shown in Figure 16 below. The permutations are now

σB = (1 5 6) (4 9 10 7) (8 12 13) (11 2 3 14) , σW = (123) (4567) (8 9 10) (11 12 13 14) .

(220)
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Figure 16: Z2 orbifold of SPP

Thus, we again see the common pattern of the orbifolds: we repeat the original (unorbifolded)

σW n times ordering it in a canonical way. As for σB, we take another copy of this orbifolded

σW , take the middle elements of the longest cycle and cyclically permute them.

The γA generating the automorphisms are as well computed according to the usual pat-

tern: we group together in σW the cycles of the same size and take first element of each

permutation for each length of cycles. In the particular n = 2 case, this is

γA = (1 8) (2 9) (3 10) (4 11) (5 12) (6 13) (7 14) . (221)

Once again, we can check that γnA = 1 and that no elementary cycle is left fixed.
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