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ABSTRACT

We explore a new simple N = 2 SQM model describing the motion over
complex manifolds in external gauge fields. The nilpotent supercharge
Q of the model can be interpreted as a (twisted) exterior holomorphic
derivative, such that the model realizes the twisted Dolbeault complex.
The sum Q + Q̄ can be interpreted as the Dirac operator: the standard
Dirac operator if the manifold is Kähler and a certain “truncated” Dirac
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the Atiyah-Singer theorem.
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1 Introduction

Complexes are the algebraic objects associated with smooth manifolds and studied
in differential geometry [1]. The most known is the de Rham complex involving the
exterior derivative d and the Hermitian-conjugate operator d† = ∗d∗ acting on the
space of p-forms. The operators d and d† are nilpotent, while their anticommutator
{d, d†} coincides with the covariant Laplacian acting on the forms. The other impor-
tant complexes are the Dolbeault complex, which is defined on complex manifolds and
involves holomorphic exterior derivative ∂ and its hermitian conjugate ∂†, and the
Dirac complex associated with the Dirac operator. The complexes may be twisted by
adding background Abelian or non-Abelian gauge fields1.

An important characteristics of all these complexes are their indices. The index
of an elliptic operator O can be defined if the whole Hilbert space of objects (states)
where it acts can be divided into two subspaces (call them HL and HR ) and there
are symmetry operators (commuting with O) that transform a state from HL into a
state from HR and a state from HR into a state from HL.

In such case, one can always define nilpotent projections: an operator that brings
a state from HL into a state from HR and annihilates any state from HR, and its
Hermitian conjugate: the operator bringing a state fromHR into HL and annihilating
the states fromHL. The anticommutator of these nilpotent projections is a symmetry
operator too. In the simplest case, it coincides with O. Then all eigenstates of O with
nonzero eigenvalues are double degenerate (take an eigenstate from HL and act upon
it by a symmetry operator). It is not true for zero eigenvalues. The index is then
defined as the difference between the number of states in the kernel of O belonging
to HL and such a number for HR.

For example, for the de Rham complex, O = −△cov, and the Hilbert space of all
relevant forms can be divided into the subsets of even and odd forms. The relevant
symmetry operators are d and d†. For the Dirac complex2, O = −/D2, the Hilbert
space of all spinors can be subdivided into the left-handed spinors and the right-
handed ones. The symmetry operators are /D and /DγD+1 (the index of O coinciding
with the index of /D can be defined only for even-dimensional manifolds where γD+1,
a multidimensional generalization of γ5, can be defined).

The indices have beautiful integral representations. Consider, e.g., the 2-dim
Dirac operator in an external Abelian field on the plane. Its index coincides with the
magnetic flux,

I/D =
1

2π

∫

B d2x . (1.1)

The integral representations for all indices were systematically derived by Atiyah and
Singer [2]. In their derivation, they used the so called heat kernel method [3] based
on the semiclassical ( small β) expansion of the matrix element 〈x|Γe−βO|x〉, where Γ

1 There are two parallel terminological systems: physical and mathematical. For example, what
a physicist calls Abelian gauge field is called connection on a line bundle by a mathematician. We
will mostly use the physical terminology.

2The sign is chosen so that the operator O is positive-definite with /D = DAγA and Hermitian
γA.
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is the grading operator distinguishing between HL and HR, such that ΓΨ = Ψ when
Ψ ∈ HL and ΓΨ = −Ψ when Ψ ∈ HR.

An interesting, from the physical viewpoint, modification of this method is based
on the observation that the indices of elliptic (Euclidean) operators are associated
via the level crossing picture with the anomalies of certain Minkowski space currents
[4]. For example, the index (1.1) is associated with the anomalous divergence of the
2-dim axial current Jµ = ψ̄γµγ

5ψ,

∂µJµ =
1

4π
ǫαβFαβ . (1.2)

One of the ways to derive (1.2) is to regularize the current by the Schwinger splitting
Jµ → Jµ(ǫ) = ψ̄(x+ ǫ)γµγ

5ψ(x− ǫ) and calculate then the Euclidean fermion propa-
gator in external Abelian field 〈ψ(x − ǫ)ψ̄(x + ǫ)〉A using the Fock-Schwinger gauge
technique [5].

For the index (1.1), the heat kernel calculation is rather explicit, but it is much
more intricate in more complicated cases of mathematical and physical interest.

Back in 1981, Witten noticed [6] that this set of mathematical problems has a
beautiful physical interpretation: the operators O can be viewed of as Hamiltonians
of certain supersymmetric quantum mechanics (SQM) systems, while the nilpotent
projections discussed above are interpreted as supercharges. The index of O coincides
then with the Witten index of the corresponding SQM system,

I = Tr{Γe−βH} = Tr{(−1)Fe−βH} , (1.3)

where β is a parameter having the meaning of inverse temperature and F is an
operator that commutes with H and has even eigenvalues for the states from HL and
odd eigenvalues for the states from HR. Physically, F is interpreted as the fermion
number. Due to degeneracy between the excited states in HL and HR, the index does
not depend on β.

Now, the r.h.s. of (1.3) has a functional integral representation. For small β,
this functional integral can be evaluated by semiclassical methods. As a result, the
Atiyah-Singer integral theorems are reproduced. This program was carried out in [7].

In our paper, we concentrate on complexmanifolds and construct, using the super-
field formalism, the N = 2 SQM model3 which, in our opinion, is most appropriate
for calculating the relevant indices. Its classical N = 2 superfield Lagrangian is a
particular case of the general Lagrangian given in [8]. In the Kähler case, this SQM
model is reduced to the model considered in [7], whereas in a generic complex case
its Lagrangian is different. Also, in the Kähler case, our approach differs from the
approach in Ref. [7] by the choice of supercharges. Instead of the supercharges /D and
/DγD+1 that realize the supersymmetry algebra for any even-dimensional manifold, we
use the (Hermitian) supercharges

i/D = iγADA, S = IABγ
BDA , (1.4)

3Following the convention adopted now by the most practitioners of SQM, N counts the number
of real supercharges. Thus, the minimal interesting case where supersymmetry (double degeneracy
of all excited levels) is present in the spectrum of the Hamiltonian corresponds to N = 2.
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where IAB is the complex structure matrix. The existence of the supercharge S (such
that S2 = H and {S, /D} = 0 ) is specific for Kähler manifolds [9]. The supercharges
(1.4) are naturally obtained in our superfield framework as a real and imaginary part
of a certain complex nilpotent supercharge.

After fixing the complex geometry notations in Sect. 2, we present our model in
Sect. 3. In Sect. 4, we show how this N = 2 SQM model can, in the Kähler case,
be completed to the extended N = 4 SQM model. In Sect. 5, we give a geometric
interpretation (1.4) for the Nöther supercharges derived in Sect. 3. We also observe
that the nilpotent supercharge /D+ iS can be interpreted as the (twisted) operator of
the holomorphic exterior derivative. This allows one to prove, in a rather manifest
way, the known mathematical fact: for Kähler manifolds, the twisted Dirac complex
and the twisted Dolbeault complex are equivalent. Sect. 6 is devoted to the functional
integral derivation of the Atiyah-Singer theorem. The derivation is similar in spirit
to the derivation in Ref. [7], but we do it in a much more detailed way (almost no
details of the calculation were given in [7]), focusing on the Kähler case.

2 Complex geometry

Let us start with recalling some mathematical facts on complex geometry adapted for
immediate use in the next section where the relevant SQM system will be introduced.

We assume the manifold to be even-dimensional of dimension D = 2n and de-
scribed by complex coordinates zN = (zj , z̄k̄). The metric is assumed to have the
Hermitian form ds2 = 2hjk̄dz

jdz̄k̄. In other words4,

gMN =

(

0 hjk̄
hkj̄ 0

)

. (2.1)

The covariant derivative that we will use in the following is defined as

∇ψM = ψ̇ M + żN Γ̂MNLψ
L . (2.2)

It involves generically the affine connections

Γ̂MNK = ΓMNK +
1

2
gMLCLNK , (2.3)

where ΓMNK are the standard Christoffel symbols for the metric gMN and CLNK is the
totally antisymmetric torsion tensor. In the following, we will stick to a special form
of the torsion tensor with the nonvanishing components

Cjkl̄ = ∂khjl̄ − ∂jhkl̄ , Cj̄k̄l = (Cjkl̄)
∗ = ∂k̄hlj̄ − ∂j̄hlk̄ (2.4)

4Such a manifold is not necessarily complex in the precise mathematical sense. The genuine
complex manifold is required to be divisible in several maps such that the metric has the form (2.1)
in each map and the coordinates (zj , z̄k̄) in such different overlapping maps are expressed through
each other by means of holomorphic functions. Thus, S4 (in contrast to S2) is not a complex
manifold even though its metric can be represented as in Eq.(2.1) in both the northern and the
southern hemispheres. Sill notice that the requirement for the metric to be representable locally in
the form (2.1) is nontrivial and singles out some subset of even-dimensional manifolds.
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(and those obtained from them by the cyclic permutation of indices). The torsion
(2.4) has a non-zero curl, ∂[MCNPQ] 6= 0 5. Non-vanishing components of ΓM,NP and

Γ̂M,NP are

Γm̄,np =
1

2
(∂nhpm̄ + ∂phnm̄) , Γm,np̄ = Γm,p̄n =

1

2
Cmnp̄, (and c.c.) ,

Γ̂m̄,np = ∂phnm̄ , Γ̂m,np̄ = Cmnp̄ , Γ̂m,p̄n = 0 , (and c.c.) . (2.5)

Let us introduce complex vielbeins as

eake
ā
ī = hkī , ekae

ī
ā = hīk , hīkhkj̄ = δ īj̄ , hkj̄g

j̄l = δlk , (2.6)

eak e
j
a = δjk , eka e

b
k = δba , eāk̄ e

j̄
ā = δj̄

k̄
, ek̄ā e

b̄
k̄ = δb̄ā . (2.7)

The nonzero components of the standard spin connections

ΩM,AB = eAN(∂Me
N
B + ΓNMKe

K
B )

are

Ωj,b̄a = −Ωj,ab̄ = ebp(∂je
p
a + Γpjke

k
a), Ωj,āb̄ =

1

2
es̄āe

k̄
b̄Cjs̄k̄ (2.8)

and complex conjugated Ω̄j̄,bā, Ω̄j̄,ab, with Cjk̄s̄ defined in (2.4).
When the torsion is present, one can define a generalized spin connection related

to the generalized affine connection Γ̂NML:

Ω̂M,AB = eAN(∂Me
N
B + Γ̂NMKe

K
B ) = ΩM,AB +

1

2
eKA e

L
BCMLK . (2.9)

The nonzero components of Ω̂ are

Ω̂i,b̄a = −Ω̂i,ab̄ = ebk∂ie
k
a + et̄b̄e

k
aΓ̂t̄,ik = eka∂ke

b
i − eka∂ie

b
k + ekae

t̄
b̄e
c
i∂ke

c̄
t̄ ,

ˆ̄Ωī,bā = (Ω̂i,b̄a)
∗ , (2.10)

while the components Ω̂j,āb̄ and Ω̂j̄,ab vanish.
The vielbeins and the generalized spin connection satisfy the Maurer-Cartan struc-

ture equation
deA + Ω̂AB ∧ eB = TA , (2.11)

where

eA = eAM dxM , Ω̂AB = Ω̂M,AB dx
M , TA =

1

2
eMA CMNP dx

N ∧ dxP .

The Maurer-Cartan equation for the standard torsion-free spin connection is

deA + ΩAB ∧ eB = 0 . (2.12)

5This is in contrast to Ref. [10] where the Atiyah-Singer theorem on manifolds involving extra
curl-free torsion was considered.
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The equations (2.11) and (2.12) are equivalent, as can be checked using the relation
(2.9). For the Hermitian metric (2.1), with the torsion defined in (2.4), these equations
imply the identity

∂[ke
a
l] − eīā e

d
[k ∂l]e

d̄
ī =

1

2
ej̄āClkj̄ (and c.c.) . (2.13)

For Kähler manifolds, the metric (2.1) is derived from the Kähler potential,

hjk̄(z, z̄) = ∂j∂k̄K(z, z̄) . (2.14)

In this case
∂l̄hjk̄ − ∂k̄hjl̄ = ∂khjl̄ − ∂jhkl̄ = 0 , (2.15)

and, as a result,
CMNK = 0 ⇒ Γ̂MNK = ΓMNK . (2.16)

The only nonvanishing components of ΓM,NP in the Kähler case are:

Γm̄,np = ∂nhpm̄ , Γm,n̄p̄ = (Γm̄,np)
∗ = ∂n̄hmp̄ . (2.17)

The expressions for the non-vanishing components of the spin connections are also
greatly simplified,

Ω̂j,b̄a = Ωj,b̄a = ek̄b̄∂je
ā
k̄

def
= ωj,b̄a ,

ˆ̄Ωj̄,bā = Ω̄j̄,bā = ekb∂j̄e
a
k

def
= ω̄j̄,bā . (2.18)

In the Kähler case, the structure equation (2.13) acquires the form

∂[ke
a
l] − eīā e

d
[k ∂l]e

d̄
ī = 0 (and c.c.) , (2.19)

which is now a non-trivial constraint on the vielbeins eal , e
ā
l̄
( equivalent to the con-

straint (2.15) on the metric). The only non-vanishing components of the Kähler
Riemann tensor are

Rjk̄,lt̄ = ∂j∂k̄hlt̄ − hps̄ Γ
p
j lΓ

s̄
k̄ t̄ = ∂j∂k̄hlt̄ − hs̄n (∂jhls̄) (∂k̄hnt̄)

= eal e
b̄
t̄

(

∂jω̄k̄,ab̄ + ∂k̄ωj,b̄a + ωj,b̄dω̄k̄,ad̄ − ωj,d̄aω̄k̄,db̄
)

. (2.20)

Finally, note the useful generic relations:

Ωi,āb = ωi,āb +
1

2
elbe

t̄
āCilt̄ , Ω̂i,āb = ωi,āb + elbe

t̄
āCilt̄ , (2.21)

where the expressions ωi,āb coincide by form with those defined in (2.18). Note that
the objects ωi,āb can be given a geometric interpretation even in a non-Kähler case.
They coincide with the appropriate components of a generalized spin connection
associated with Γ̃MNK = ΓMNK − 1

2
gMTCTNK .
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3 N = 2 SQM model

We formulate a general complex N = 2, d = 1 SQM sigma model in terms of 2n mu-
tually conjugated chiral and anti-chiral superfields Zj(tL, θ), Z̄

j̄(tR, θ̄) (j, j̄ = 1, · · ·n) ,

D̄Z j(tL, θ) = DZ̄ j̄(tR, θ̄) = 0 , (3.1)

where

D =
∂

∂θ
− iθ̄∂t , D̄ = − ∂

∂θ̄
+ iθ∂t , {D, D̄} = 2i∂t, tL = t− iθθ̄, tR = t+ iθθ̄ . (3.2)

The basic superfields have the following component expansion

Z j = z j +
√
2 θψ j − iθθ̄ ż j , Z̄ j̄ = z̄ ī −

√
2 θ̄ψ̄ j̄ + iθθ̄ ˙̄z j̄ . (3.3)

The N = 2 transformation properties of the component fields are as follows:

δz j = −
√
2ǫψj , δψ j =

√
2i ǭ ż j ,

δz̄ j̄ =
√
2ǭ ψ̄ j̄ , δψ̄ j̄ = −

√
2i ǫ ˙̄z j̄ . (3.4)

The superfield action we start with reads

S =

∫

dtd2θ (Lσ + Lgauge) ,

Lσ = −1

4
hij̄(Z, Z̄)DZ

iD̄Z̄ j̄ , Lgauge = W (Z, Z̄) . (3.5)

Here, hij̄(Z, Z̄) and W (Z, Z̄) are unconstrained functions of the superfields. In
general [8], one can add to L the terms

∼ Bik(Z, Z̄)DZ iDZ k + c.c. . (3.6)

These additional terms do not change the target space metric in the component action
and affect only fermionic terms (introducing some extra non-zero components of the
torsion). For this reason, we shall not consider them in what follows.

The Kähler case corresponds to the choice

hjk̄(Z, Z̄) = ∂j∂k̄K(Z, Z̄) , (3.7)

where the Kähler potential K(Z, Z̄) is an arbitrary real function of the superfields 6.
The component form of the full action is

S ≡
∫

dt (Lσ + Lgauge) =

∫

dt
{

hjk̄

[

ż j ˙̄z k̄ +
i

2

(

ψ j ˙̄ψ k̄ − ψ̇ jψ̄ k̄
)

]

− i

2

[

(

2∂jhtk̄ − ∂thjk̄
)

ż t −
(

2∂k̄hjt̄ − ∂t̄hjk̄
)

˙̄z t̄
]

ψ jψ̄ k̄ +
(

∂t∂l̄hjk̄
)

ψ tψ jψ̄ l̄ψ̄ k̄

+2∂j∂k̄W ψ jψ̄ k̄ − i
(

∂jWż j − ∂j̄W ˙̄z j̄
)}

. (3.8)

6For CP 1 and with the restrictionK =W , this SQM model was earlier considered at the classical
(component and superfield) and quantum levels in Refs.[11].
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The geometric meaning of the different terms in the “sigma-model” part Lσ of
the Lagrangian in (3.8) can be clarified, if rewriting it in the following form

Lσ =
1

2

[

gMN ż
M ż N + igMN ψ

M∇ψN − 1

3!
∂PCMNT ψ

PψMψNψT
]

, (3.9)

where the metric gMN is written in (2.1), the covariant derivative ∇ψN was defined
in (2.2) and the torsion tensor CMNT in (2.4).

The Lagrangian Lgauge (the last line in (3.8)) describes the interactions with the
Abelian gauge field AM = (−i∂jW, i∂j̄W ) ≡ I N

M ∂NW , the double derivative Fjk̄ =
−Fk̄j = 2i∂j∂k̄W being the magnetic field strength. This Lagrangian can also be
rewritten in a form analogous to (3.9)

Lgauge = AM Ż
M − i

2
FMNψ

MψN . (3.10)

The prepotential W (Z, Z̄) is an arbitrary function. A particularly clever choice is
W ∝ ln det h (see Eq.(5.1) below). The corresponding bundle (−i∂jW, i∂j̄W ) is
called canonical by mathematicians.

The fermion variables ψj, ψ̄k̄ are not canonically conjugated, their Poisson bracket
being equal to −ihk̄j . It is convenient to introduce the canonically conjugated
fermionic fields with the tangent space indices,

ψa = eaj ψ
j , ψ̄ b̄ = eb̄k̄ψ̄

k̄ , (3.11)

such that all the variables have the canonical Poisson brackets,

{z j, Pk}PB = δjk , {z̄ j̄, Pk̄}PB = δj̄
k̄
, {ψ a, ψ̄ b̄}PB = −iδab̄ . (3.12)

Then, using the invariance of the Lagrangian in (3.8) under the transformations
(3.4) (modulo a total time derivative), it is easy to compute the corresponding canon-
ical supercharges

Q =
√
2
[

Πke
k
aψ

a − iψ bψ dψ̄ ā(ekb∂[ke
a
l]e
l
d)
]

,

Q̄ =
√
2
[

Π̄k̄e
k̄
āψ̄

ā − iψ̄ c̄ψ̄ āψ d(ek̄c̄∂[k̄e
d̄
l̄]e
l̄
ā)
]

, (3.13)

where
Πk = Pk + i ∂kW , Π̄k̄ = Pk̄ − i ∂k̄W , (3.14)

and Pk, Pk̄ are the canonical momenta.
Using the definitions (2.8), (2.4) and the relations (2.13), (2.21), these super-

charges can be brought in a more suggestive geometric form

Q =
√
2
[

Πk − iψ̄ āψ bΩk,āb
]

ekcψ
c, Q̄ =

√
2ek̄c̄ ψ̄

c̄
[

Π̄k̄ + iψ̄ āψ d Ω̄k̄,dā
]

. (3.15)

It should be pointed out that the 3-fermionic terms in these supercharges contain
the spin connections Ωk,āb, Ω̄k̄,dā corresponding to the standard symmetric Christoffel
symbols ΓNMK and defined by the relations (2.8), (2.21).

7



Using (3.12), it is easy to find

{Q, Q̄}PB = −2iHcl , {Q,Q}PB = {Q̄, Q̄}PB = [Q,Hcl]PB = [Q̄,Hcl]PB = 0. (3.16)

The canonical classical Hamiltonian Hcl can be represented in the following compact
form:

Hcl = hk̄j
(

Πj − iΩ̂j,b̄a ψ̄
b̄ψ a

)(

Π̄k̄ + i ˆ̄Ωk̄,cd̄ ψ̄
d̄ψ c

)

− 2ejae
k̄
b̄∂j∂k̄Wψ aψ̄ b̄ − etae

j
ce
l̄
b̄e
k̄
d̄(∂t∂l̄ hjk̄)ψ

aψ cψ̄ b̄ψ̄ d̄ . (3.17)

It is interesting to note that, in the generic case, the spin connections entering the
supercharges (3.15) and the classical hamiltonian (3.17) do not coincide with each
other: they differ by a term proportional to the torsion.

In the Kähler case, when the torsion is vanishing, the situation simplifies. Both
the supercharges and the Hamiltonian are expressed through the same connections
(2.18). In addition, the last four-fermionic term in (3.17) vanishes.

We thus obtain

QKähl =
√
2
[

Πk − iψ̄ āψ b ωk,āb
]

ekcψ
c, Q̄Kähl =

√
2ek̄c̄ ψ̄

c̄
[

Π̄k̄ + iψ̄ āψ d ω̄k̄,dā
]

(3.18)

and

HKähl
cl = hk̄j

(

Πj − iωj,b̄a ψ̄
b̄ψ a

)(

Π̄k̄ + iω̄k̄,cd̄ ψ̄
d̄ψ c

)

− 2ejae
k̄
b̄ ∂j∂k̄Wψ aψ̄ b̄ . (3.19)

The expression for the Lagrangian also simplifies a lot in the Kähler case. The
four-fermionic term in (3.8), (3.9) vanishes. The remaining terms in Lσ can be pre-
sented as

LKähl
σ = hjk̄ż

j ˙̄zk +
i

2
(ψa ˙̄ψā − ψ̇aψ̄a) + i

(

˙̄zk̄ω̄k̄,ab̄ − żkωk,b̄a

)

ψaψ̄b̄ . (3.20)

Let us now turn to quantum theory. The Poisson brackets (3.12) are replaced by
the (anti)commutators:

[zj , Pk] = iδjk , [z̄
j̄ , Pk̄] = iδj̄

k̄
, {ψa, ψ̄b̄} = δab̄ . (3.21)

As is well known, there exist, generically, many different quantum theories corre-
sponding to a given classical one, due to ordering ambiguities. To make a selection,
we require that the supersymmetry algebra (3.16) remains intact at the quantum
level and that Qqu and Q̄qu are Hermitian conjugate to each other. As was noticed
in [12], these two requirements can be simultaneously fulfilled only provided that
the classical expressions for the supercharges are Weyl-ordered in the quantum case.
The correct expression for the quantum Hamiltonian is obtained as the anticommu-
tator of the Weyl-ordered Qqu and Q̄qu. Note that this correct quantum Hamiltonian
does not coincide with the operator obtained through Weyl-ordering of the classical
Hamiltonian defined by the relations (3.16).
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We thus obtain

Qflat =
1√
2

[

{Πk, e
k
a}ψ a + i{ψ bψ d, ψ̄ ā}ekb Ωk,ād

]

,

Q̄flat =
1√
2

[

{Π̄k̄, e
k̄
ā}ψ̄ ā + i{ψ̄ c̄ψ̄ ā, ψ d}ek̄c̄ Ω̄k̄,dā

]

. (3.22)

These Weyl-ordered supercharges were dubbed “flat” because they act on the
wave functions normalized by the condition [12]

∫

∏

k

dzkdz̄k̄
∏

a

dψadψ̄ā exp{ψ̄āψa} Ψ̄(zk, z̄k̄, ψ̄ā)Ψ(z̄k̄, zk, ψa) = 1 (3.23)

with the flat Hilbert space measure. In particular, it is straightforward to see that
the Weyl-ordered supercharges Q and Q̄ are Hermitian-conjugate to each other with
respect to such flat inner product7.

It is more natural, however, to deal with the covariant supercharges Qcov, Q̄cov

which act on the Hilbert space in which the inner product is defined with the covariant
integration measure

∫

∏

k

dzkdz̄k̄ det h
∏

a

dψadψ̄ā exp{ψ̄āψa} Ψ̄(zk, z̄k̄, ψ̄ā)Ψ(z̄k̄, zk, ψa) = 1 (3.24)

(note that det h ∝ √
det g). They are related to the flat supercharges by a similarity

transformation

(Qcov, Q̄cov ) = (det h)−1/2 (Qflat, Q̄flat )(det h)1/2 , (3.25)

which yields the expressions:

Qcov =
√
2ψcekc

[

Πk −
i

2
∂k(ln det ē) + iψ bψ̄ āΩk,āb

]

Q̄cov =
√
2ψ̄ c̄ek̄c̄

[

Π̄k̄ −
i

2
∂k̄(ln det e) + iψ̄ b̄ψ a Ω̄k̄,ab̄

]

. (3.26)

Here,

Πk = −i
(

∂

∂zk
− ∂kW

)

, Π̄k̄ = −i
(

∂

∂z̄ k̄
+ ∂k̄W

)

. (3.27)

The supercharges obey the relations of the N = 2, d = 1 Poincaré superalgebra

{Qcov, Q̄cov} = 2Hcov
qu , {Qcov, Qcov} = {Q̄cov, Q̄cov} = [Qcov, Hcov

qu ] = [Q̄cov, Hcov
qu ] = 0 .

The expression for the quantum Hamiltonian Hcov
qu can be obtained in two ways:

(i) By directly calculating the anticommutator of quantum supercharges (3.26) or

7The same concerns the fermion operators ψa and ψ̄ ā = ∂
∂ψa

. They are Hermitian-conjugated

with a particular Berezin integration measure in (3.23), (3.24) involving the factor exp{ψ̄āψa}.
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(ii) by Weyl-ordering the Grönewold-Moyal bracket [13] of the classical supercharges
(3.15) and performing then the similarity transformation, like in (3.25).

We obtain

Hcov
qu = −1

2
△cov +

1

8

(

R− 1

2
hk̄jhl̄thīnCj t īCk̄ l̄ n

)

− 2〈ψaψ̄b̄〉 ekael̄b̄∂k∂l̄W − 〈ψaψcψ̄b̄ψ̄d̄〉 etaejcel̄b̄ek̄d̄ (∂t∂l̄ hjk̄) . (3.28)

Here, 〈. . .〉 denotes the Weyl-ordered products of fermions, R is the standard scalar
curvature of the metric hjk̄, and △cov is the covariant Laplacian calculated with the
“hatted” affine connections in (2.5) and including also the (hatted) spin connections,

−△cov = hk̄j
(

PjP̄k̄ + iΓ̂q̄
jk̄
P̄q̄ + P̄k̄Pj + iΓ̂sk̄jPs

)

, (3.29)

where Pj = Πj + iΩ̂j,b̄a〈ψaψ̄b̄〉 and P̄k̄ = Π̄k̄ − i ˆ̄Ωk̄,ab̄〈ψaψ̄b̄〉 . Note that the scalar cur-
vature R is related to its “hatted” counterpart R̂ associated with the non-symmetric
affine connection Γ̂ by the simple formula

R̂ = R− 1

4
CMNPC

MNP = R− 3

2
hk̄jhl̄thīnCj t ī Ck̄ l̄ n .

In the Kähler case, the expression for the quantum Hamiltonian greatly simplifies:

Hcov
Kähl = −1

2
△cov +

R

8
− 2〈ψaψ̄b̄〉 ekael̄b̄∂k∂l̄W , (3.30)

where now −△cov = hk̄j
(

PjP̄k̄ + P̄k̄Pj
)

and Ω̂, ˆ̄Ω are reduced to Ω, Ω̄ = ω, ω̄ ac-
cording to the relations (2.18).

An important remark is to the point here. The Lagrangian (3.20) can also be
expressed through real variables,

L =
gMN

2

[

ż M ż N + iψM∇ψN
]

=
1

2

[

gMN ż
M ż N + iψA(ψ̇A + ΩM,AB ż

MψB)
]

.(3.31)

This Lagrangian is well-known [7]. It can be (and was) also considered for a generic
(not necessarily complex) manifold. In a generic case, it is manifestly invariant only
under N = 1 supersymmetry transformations (with a real Grassmann parameter).
The corresponding Nöther supercharge is

Q = ψAeMA

[

PM − i

2
ΩM,BCψ

BψC
]

. (3.32)

The covariant quantum supercharge (obtained by Weyl-ordering of the classical su-
percharge and taking a correct account of the measure factor as in (3.25)) is given by
the same expression, where now {ψA, ψB} = δAB. It can be interpreted as the Dirac
operator. By construction, it is Hermitian with the Hilbert space metric including
the factor

√
det g .
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The corresponding quantum Hamiltonian [3] coincides, up to a proper similarity
transformation, with (3.30) rewritten in real notations.

As was mentioned in the Introduction (and we will return to the discussion of this
issue in Sect. 6), for an even-dimensional manifold, the second real supercharge

Q̃ = 2D/2Q
D
∏

A=1

ψA (3.33)

associated with /DγD+1 can also be defined. However, for D ≥ 4, this second super-
charge has nothing to do with the supercharges (3.26).

To recapitulate:

• For any even-dimensional manifold, the system (3.31) admits two real quantum
supercharges (3.32) and (3.33).

• For any manifold with Hermitian metric (2.1), a generically different system
(3.8) involves a different pair of supercharges (3.26). We will show in Sect. 5
that these supercharges can be interpreted as an exterior holomorphic derivative
and its complex conjugate.

• We will also show in Sect. 5 that, in the Kähler case, the real and imaginary
parts of the supercharge Q in (3.26) can be interpreted as the Dirac operator
/D and the operator S defined in Eq. (1.4).

• Thus, for Kähler manifolds, when the Lagrangians (3.8) and (3.31) coincide, two
different N = 2 supersymmetry structures (/D2 ; /D , /DγD+1) and (/D2 ; /D , S)
are possible. Note that this does not imply an extended N = 4 supersymmetry
because the anticommutator {S, /DγD+1} does not vanish.

• Note, however, that, for hyper-Kähler manifolds where three different complex
structures are present, one can construct three different new supercharges

S(f) = iI
A(f)
B γBDA , f = 1, 2, 3 , (3.34)

such that the Lagrangian (3.20), (3.31) enjoys an N = 4 supersymmetry [9].

• There exists also an N = 4 completion of the system (3.20) for any Kähler
manifold, as will be discussed in Sect. 4.

3.1 Examples

Here we consider two examples of SQM on complex manifolds.

1. CP
n model. This is a Kähler manifold, so the torsion (2.4) vanishes and many

formulas look simpler. The corresponding Kähler potential is

K = ln(1 + zz̄) , zz̄ ≡ z j z̄ j̄ . (3.35)

11



We choose
W = −c0

2
K = −c0

2
ln(1 + zz̄) . (3.36)

The metric is given by the well known Fubini-Study expressions:

hjk̄ = ∂j∂k̄ ln(1 + zz̄) =
1

1 + zz̄

(

δjk̄ −
z kz̄ j̄

1 + zz̄

)

,

hk̄j = (1 + zz̄)
(

δk̄j + z j z̄ k̄
)

. (3.37)

Note the specific for CPn relation

K = − 1

n + 1
ln det h . (3.38)

We choose the vielbeins in the form [9]:

eal =
1√

1 + zz̄

(

δal −
zaz̄ l̄√

1 + zz̄(1 +
√
1 + zz̄)

)

,

elb =
√
1 + zz̄

(

δlb +
zlz̄b̄

1 +
√
1 + zz̄

)

,

el̄ā =
√
1 + zz̄

(

δ l̄ā +
zaz̄ l̄

1 +
√
1 + zz̄

)

,

eāl̄ =
1√

1 + zz̄

(

δāl̄ −
zlz̄ā√

1 + zz̄(1 +
√
1 + zz̄)

)

. (3.39)

The supercharges (3.26) in this special case look as follows

Qcov =
√
2ψcekc

[

Π̃k + iψ bψ̄ āωk,āb

]

, Q̄cov =
√
2ψ̄ c̄ek̄c̄

[

¯̃Πk̄ + iψ̄ āψ bω̄k̄,bā

]

, (3.40)

where

Π̃k =
1

i

[

∂

∂zk
+

1

2

(

c0 −
n+ 1

2

)

z̄ k̄

1 + zz̄

]

,

ˆ̄Πk̄ =
1

i

[

∂

∂z̄ k̄
− 1

2

(

c0 +
n+ 1

2

)

zk

1 + zz̄

]

(3.41)

and ωk,āb , ω̄k̄,bā were defined in Eq.(2.18).

2. S4 model. As a second example, we consider a 4-dimensional conformally flat
manifold with the metric

ds2 =
2 dzjdz̄j̄

f 2
, j = 1, 2 . (3.42)
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When f = 1 + zz̄, this is the metric of S4. Under a natural choice of vielbeins,
det e = det ē = 1/f 2 and the non-zero components of the spin connection Ωk,āb are

Ω1,1̄1 = Ω2,2̄1 = −∂1 ln f , Ω1,1̄2 = Ω2,2̄2 = −∂2 ln f . (3.43)

This is not a Kähler manifold. Taking the general expression (3.26) for the super-
charges, we derive for W = 0 ,

Q = −i
√
2ψa[f∂a − (∂af)]− i

√
2ψ1ψ2[(∂2f)ψ̄

1 − (∂1f)ψ̄
2] . (3.44)

AnN = 4 SQMmodel describing the motion over any conformally flat 4-dimensional
manifold with the metric (3.42) with or without background gauge field was con-
structed in [14] based on the action given in [15] (see also [16]). In the case when
the gauge field is absent, the flat (in the Hilbert space sense, as discussed above)
supercharges have the form

Qα = (σµψ̄)αPµ − i(∂µf)ψγψ̄
γ(σµψ̄)

α , Q̄α = (ψσ†
µ)
αPµ + i(∂µf)(ψσ

†
µ)
αψγψ̄

γ ,(3.45)

where σµ = (i, ~σ), σ†
µ = (−i, ~σ).

It is straightforward to see that, after performing the similarity transformation
(3.25), the supercharge (3.44) coincides with Q̄1 in (3.45) under the identification

z1 =
x3 + ix4√

2
, z2 =

x1 − ix2√
2

,

or with Q̄2, under the identification

z1 =
x1 + ix2√

2
, z2 =

ix4 − x3√
2

.

These two possibilities reflect the presence of two different N = 2 Poincaré superal-
gebras in the N = 4 superalgebra.

4 Completion to Kähler N = 4 SQM model

Our starting point is the N = 2 SQM model with the superfield Lagrangian Lσ in
(3.5) involving the Kähler metric (3.7). We do not add the gauge part Lgauge. So we
choose

hjk̄(Z, Z̄) = ∂j∂k̄K(Z, Z̄) , W = 0 (4.1)

in (3.5). The corresponding component Lagrangian was written in (3.20).
Using the chirality properties of Zj , Z̄ k̄ and the algebra of N = 2 spinor deriva-

tives, it will be convenient to rewrite the corresponding superfield Lagrangian in the
following three equivalent (they coincide up to a total time derivative) forms:

LK = −1

4
∂j∂k̄K(Z, Z̄)DZj D̄Z̄ k̄ ≃ − i

2
Ż j∂jK

≃ i

2
˙̄Z k̄∂k̄K ≃ i

4

(

˙̄Z k̄∂k̄K − Ż j∂jK
)

. (4.2)
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Now consider an extended Lagrangian

L̃K = LK +
1

4
hjk̄ Φ

j Φ̄k̄ , (4.3)

where Φj , Φ̄k̄ are chiral and anti-chiral fermionic N = 2 (0+1)-dimensional super-
fields, D̄Φj = D Φ̄k̄ = 0 . It is straightforward to check that (4.3) is invariant, modulo
a total derivative, under the following extra N = 2 supersymmetry transformations:

δZj = −ζ Φj , δZ̄ k̄ = ζ̄ Φ̄ k̄ , δΦj = 2i ζ̄ Ż j , δΦ̄ k̄ = −2i ζ ˙̄Z k̄ . (4.4)

These variations form the same algebra with respect to Lie brackets as the variations
(3.4) corresponding to the manifest world-line N = 2 supersymmetry. Thus, they
extend the latter to off-shell (0+1)-dimensional N = 4 supersymmetry.

The superfields Φj , Φ̄k̄ have the following θ expansions

Φj =
√
2χ j + θdj − i

√
2θθ̄ χ̇ j , Φ̄k̄ =

√
2χ̄ k̄ + θ̄d̄ k̄ + i

√
2θθ̄ ˙̄χ k̄ . (4.5)

We observe that they contain no new bosonic fields of physical dimension, only the
auxiliary bosonic fields d j, d̄ k̄ as well as the extra physical fermionic fields χ j , χ̄ k̄.
Thus, in this model we deal with n off-shell N = 4 supermultiplets (2, 4, 2), the
subsequent numerals standing, respectively, for the numbers of the physical bosonic,
physical fermionic and auxiliary bosonic fields8. The manifest N = 2 supersymmetry
acts on the component fields in (4.5) as

δχj = − 1√
2
ǫ dj , δdj = 2

√
2iǭ χ̇ j , δχ̄k̄ = − 1√

2
ǭ d̄ k̄ , δd̄ k̄ = 2

√
2iǫ ˙̄χ k̄ . (4.6)

The second supersymmetry transformations (4.4) has the following realization in
components:

δz j = −
√
2 ζ χ j , δψ j =

1√
2
ζ d j , δχ j =

√
2iζ̄ ż j , δd j = −2

√
2iζ̄ ψ̇ j ,

δz̄ k̄ =
√
2ζ̄ χ̄ k̄ , δψ̄ k̄ =

1√
2
ζ̄ d̄ k̄ , δχ̄ k̄ = −

√
2iζ ˙̄z k̄ , δd̄ k̄ = −2

√
2iζ ˙̄ψ k̄ .(4.7)

After going to the component fields in the action corresponding to the modi-
fied superfield Lagrangian (4.3) and eliminating the auxiliary fields d j, d̄ k̄ by their
equations of motion,

d j = 2hp̄j∂l htp̄ χ
tψ l , d̄ k̄ = 2hk̄p∂l̄ hpj̄ ψ̄

l̄χ̄ j̄ , (4.8)

the contribution of the second term in (4.3) to the total component Lagrangian reads:

∆L =
i

2
hjk̄

(

χ j∇χ̄ k̄ −∇χ jχ̄ k̄
)

+Rj k̄ l p̄ ψ
jψ̄ k̄χ lχ̄ p̄ . (4.9)

8In this notation, the N = 2 multiplets corresponding to the superfields Zi and Φi can be denoted
as (2,2,0) and (0,2,2).
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Here,
∇χ̄ k̄ = ˙̄χ k̄ + ˙̄z p̄Γk̄p̄ j̄χ̄

j̄ , ∇χ j = χ̇ j + ż lΓjl pχ
p , (4.10)

and Rj k̄ l p̄ is the Riemann tensor for the Kähler metric defined in (2.20). Its appear-
ance in the Lagrangian is an important new feature of the N = 4 case compared to
Eq.(3.20).

The total N = 4 supersymmetric component Lagrangian can be concisely written
as

L = hjk̄

[

ż j ˙̄z k̄ +
i

2

(

ψ j∇ψ̄ k̄ + χ j∇χ̄ k̄ −∇ψ jψ̄ k̄ −∇χ jχ̄ k̄
)

]

+Rj k̄ l p̄ ψ
jψ̄ k̄χ lχ̄ p̄ .

(4.11)
The N = 4 supersymmetry closes on shell, since we have eliminated the auxiliary
fields d j, d̄ k̄.

The Lagrangian (4.11) is well known. It coincides with the Lagrangian obtained
by deleting spatial derivatives in the (1+1)-dimensional N = 2 σ-model Lagrangian
[17] and discussed, e.g., in [18, 12] (there, fermionic fields ψ j , χ j were combined into
a SU(2) doublet). We refer the reader to [12] for the expressions for the classical and
quantum supercharges, the Hamiltonian, etc.

It is worth also recalling that the Lagrangian (4.11) coincides with the generic
SQM sigma-model Lagrangian involving D supermultiplets (1, 2, 1 ) [20],

L = gMN

(

1

2
żM żN + i ψ̄M∇ψM

)

+
1

2
RMNPQ ψ̄

MψN ψ̄PψQ . (4.12)

For a generic metric, the latter Lagrangian enjoys only N = 2 supersymmetry, but
in the Kähler case, a second pair of supercharges can be found. Note also that,
when an external gauge field is present, there is no such second pair. A related
almost equivalent statement is that no N = 4 completion based on the linear chiral
N = 4, d = 1 multiplets (2, 4, 2) is possible for the theory (3.5) with W 6= 0 . Note
that such a completion becomes possible, if extending the N = 2 chiral multiplets
(2, 2, 0) to nonlinear versions of the N = 4 multiplets (2, 4, 2) or (4, 4, 0) [19].

5 Quantum supercharges and geometry

Let us assume that det ē = det e =
√
det h 9 and choose

W =
c0

2(n+ 1)
ln det h . (5.1)

Then the general supercharges (3.26) take the form (3.40), (3.41) where we should
replace ωk,āb → Ωk,āb and

z̄k

1 + zz̄
→ − 1

n + 1
∂k (ln det h) ,

zk

1 + zz̄
→ − 1

n+ 1
∂k̄ (ln det h) . (5.2)

9Such a choice amounts to fixing a gauge with respect to the local frame U(1) transformations
of the vielbeins.
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We see that there are special values c0 = ±(n+ 1)/2 where either Π̃k or ¯̃Πk coincide
with the usual holomorphic or antiholomorphic derivatives. Consider first the case
c0 = (n+1)/2. It is not difficult to check that the action of Qcov on the wave functions

Ψ(zk, z̄k;ψa) = A(0)(zk, z̄k)+ψaA(1)
a (zk, z̄k)+ . . .+ψa1 · · ·ψanA(n)

[a1···an]
(zk, z̄k) (5.3)

is isomorphic to the action of the exterior holomorphic derivative ∂ on the set of
n + 1 holomorphic (p,0)-forms (the term ∝ Ω in Qcov cancels out the term com-
ing from differentiation of the vielbeins in virtue of the structure equation (2.12)).
The Hermitian-conjugate operator Q̄cov is then isomorphic to ∂†. In other words, in
this case the supercharges (3.40) realize the standard untwisted (i.e. involving no
additional gauge field) Dolbeault complex.

Likewise, in the case c0 = −(n + 1)/2, the action of the operator Q̄cov on anti-
holomorphic wave functions Ψ(zk, z̄k; ψ̄a) is isomorphic to the action of the operator
∂̄ on antiholomorphic (0,p)-forms, the operator Qcov playing the role of ∂̄†. Thus, in
this case we are dealing with the anti-holomorphic untwisted Dolbeault complex.

For any other value of c0, an extra Abelian gauge field is present in the framework
of both the holomorphic and antiholomorphic Dolbeault interpretations, i.e.

Ak =
i

4

(

1− 2c0
n+ 1

)

∂k ln det h (5.4)

in the holomorphic case and

Ak̄ =
i

4

(

1 +
2c0
n+ 1

)

∂k̄ ln det h (5.5)

in the antiholomorphic case. We face what is called twisted Dolbeault complex.
Until now we dealt with the general (non-Kähler) N = 2 SQM model, the only

restriction was the relation (5.1). If the manifold is Kähler, the supercharges admit
another even more interesting geometric interpretation: when c0 = 0, the sum Qcov +
Q̄cov can be interpreted as the untwisted Dirac operator. When c0 6= 0, an extra
Abelian gauge field is present.

Indeed, the standard untwisted Dirac operator in the real notations is [cf. (3.32)]

/D = γAeMA

(

∂M +
1

4
ΩM,BCγ

BγC
)

≡ γADA . (5.6)

When splitting M ≡ (k, k̄), A ≡ (a, ā) and introducing
√
2ψa ≡ γa,

√
2ψ̄ā ≡ γā,

one can be convinced that, for Kähler manifolds, one can represent

/D = /DHol −
(

/DHol
)†

, (5.7)

where

/DHol =
√
2ψbekb

[

∂k +
1

2
ωk,ād(ψ̄

āψ d − ψ dψ̄ ā)

]

(5.8)
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and
(

/DHol
)†

= −
√
2ψ̄b̄ek̄b̄

[

∂k̄ +
1

2
ω̄k̄,ad̄(ψ

aψ̄ d̄ − ψ̄ d̄ψ a)

]

. (5.9)

These operators coincide, up to the factor i, with the supercharges (3.26), (3.27) in
which one chooses Ω = ω and W = 0:

/DHol = iQcov ,
(

/DHol
)†

= −iQ̄ cov , (Ckil̄ = c0 = 0) . (5.10)

For c0 6= 0, an additional Abelian gauge field is present, and we are facing the twisted
Dirac operator in this case. Note that the definition of “twisting” or “untwisting” is
different in the interpretations in terms of Dolbeault and Dirac complexes. E.g., the
choice c0 = 0 corresponds to an untwisted Dirac complex, but to the twisted Dolbeault
complex (as is seen from (5.4), (5.5)).

The operator /D is anti-Hermitian. Consider now the real part of /DHol,

S = /DHol +
(

/DHol
)†
. (5.11)

One can be convinced that instead of
√
2ψADA ≡ γADA ( with the imaginary ≡

anti-Hermitian part of /DHol), we obtain the structure

S = γBIABDA , (5.12)

where IAB, I
2 = −1 , is the complex structure: I = diag(iσ2, . . . , iσ2) under the

natural conventions. The pair of supercharges (1.4) is thus reproduced. We emphasize
again that the existence of the supercharge S is specific for Kähler manifolds.

A by-product of this analysis is a physical proof of the purely mathematical fact:
for Kähler manifolds, the twisted Dirac complex is equivalent to the twisted Dolbeault
complex, bearing in mind that the twisting (the adding of Abelian gauge fields) in
the Dirac complex and in the Dolbeault complex is different. This fact is known to
mathematicians, see e.g. the Propositions 1.4.23 and 1.4.25 in the book [21].

If the manifold is not Kähler, the decomposition (5.7) - (5.9) is no longer valid.
Besides the connections Ωk,ād, Ω̄k̄,ad̄, there are also the nonzero connections Ωk,āb̄ and
Ω̄k̄,ab [see Eq.(2.8)]. The sum Q+ Q̄ does not thus coincide with the full Dirac oper-
ator, but represents a certain “truncated” Dirac operator, where the terms involving
the connections Ωk,āb̄ and Ω̄k̄,ab are suppressed, thus breaking the full local tangent
space group O(2n) down to U(n) . For the moment, it is unclear to us whether this
truncated operator is related to the non-truncated one, and if so, then how. A further
analysis of this interesting question is necessary.

6 Index

The Euclidean path integral representation for the index (1.3) of our system is

I =

∫

∏

jτ

dπj(τ)dπ̄j̄(τ)dz
j(τ)dz̄j̄(τ)

(2π)2

∏

aτ

dψa(τ)dψ̄ā(τ)

× exp

{
∫ β

0

[

iπj ż
j + iπ̄j̄ ˙̄z

j̄ + ˙̄ψāψa −H(πj, π̄j̄ , z
j , z̄j̄; ψ̄ā, ψa)

]

}

, (6.1)
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where both bosonic and fermionic variables satisfy the periodic boundary conditions,
zj(β) = zj(0), etc. Expand all the variables in the Fourier series,

zj(τ) = zj(0) +
∑

m6=0

zj(m)e2πimτ/β z̄j̄(τ) = zj̄(0) +
∑

m6=0

z̄j̄(m)e−2πimτ/β , (6.2)

and similarly for πj(τ), π̄j̄(τ) and ψ
a(τ), ψ̄ā(τ). If β is small, we seemingly (see below)

can neglect the nonzero modes in the expansion, neglect thereby the terms with time
derivatives in (6.1), and rewrite (6.1) as an ordinary integral [22]:

I =

∫

∏

j

dπ
(0)
j dπ̄

(0)

j̄
dzj(0)dz̄j(0)

(2π)2

∏

a

dψa(0)dψ̄ā(0)

× exp
{

−βH(π
(0)
j , π̄

(0)

j̄
, zj(0), z̄j̄(0);ψa(0), ψ̄ā(0))

}

. (6.3)

The functional integral is reduced to the ordinary one in the semiclassical limit β → 0.
However, the index (1.3) does not depend on β, and the estimate (6.3) should be true
for any β.

Substituting here the Hamiltonian (3.17) with the choice (5.1) (remember that,
for Kähler manifolds, the last term in (3.17) vanishes), we can easily integrate over
∏

j dπjdπ̄j̄ and over
∏

a dψ
adψ̄ā to obtain

I =

(

1

2π

)n ∫
∏

j

dzjdz̄j̄ det ‖hjk̄‖ det ‖iFab̄‖ , (6.4)

where iFab̄ = −2ejae
k̄
b̄
∂j∂k̄W is related to the 2-form describing the magnetic field

strength. In the simplest CP
n case under the choice (5.1), we have iFab̄ = c0δab̄

leading to

I =
( c0
2π

)n
∫

∏

j

dzjdz̄j̄ (det h) . (6.5)

The calculation with the Fubini-Study metric (3.37), i.e. with det h = 1
(1+zz̄)n+1 , gives

ICPn
?
=

(c0)
n

n!
. (6.6)

This result looks suspicious. Indeed, to make it integer (the index should be integer
for the Dirac operator to make sense: only in this case the manifold admits spin
structure), c0 should depend on n in an odd way.

Actually, the estimate (6.6) is wrong. The correct estimate for any (not necessarily
Kähler) even-dimensional manifold reads [2, 7]

I =

∫

eF/2πdet−1/2

[

sin R
4π

R
4π

]

, (6.7)

18



where F is the field strength 2-form and R is the matrix 2-form associated with the
Riemann curvature,

F =
1

2
FMN dx

M ∧ dxN , RAB =
1

2
RAB

MN dx
M ∧ dxN , (6.8)

A,B being the tangent space indices.
The precise meaning of the representation (6.7) is that the volume integral in its

r.h.s. projects out only the forms of the maximal rank D from the Taylor expansion
of the integrand. Thus, for 4-dimensional manifolds, the index is represented as the
sum of two terms,

Id=4 =
1

8π2

∫

F ∧ F +
1

192π2

∫

Tr{R ∧R} . (6.9)

The topological invariants in the r.h.s. are known as the second Chern class c2 and
the Hirzebruch signature τ (the latter enters with the coefficient −1/8). For higher
dimensions, the index is a sum of many different invariants.

It is convenient to represent the determinant factor in (6.7) as

det−1/2[· · · ] =

n
∏

α=1

λα/(4π)

sinh(λα/(4π)
, (6.10)

where λα are the eigenvalues of the antisymmetric matrix RAB. This can be derived
by diagonalizing,

R −→ (iσ2λ1, . . . , iσ2λn) ,

and noting that, for any even function f(R),

det−1/2f(R) =

n
∏

α=1

1

f(iλα)
.

The estimate (6.6) for CP
n would be reproduced, if ignoring this curvature-

dependent determinant factor in (6.7). When including this factor, we obtain instead

ICPn =

(

c0 + (n− 1)/2
n

)

, (6.11)

where c0 must be integer for odd n and half-integer for even n. The index is given
by Eq.(6.11) when c0 ≥ (n+ 1)/2. For negative c0 ≤ −(n+ 1)/2, it is given by

ICPn(c0 < 0) = (−1)n
(

|c0|+ (n− 1)/2
n

)

. (6.12)

The index vanishes for |c0| < (n+ 1)/2 10.

10Note in passing that the index (6.11) is closely related to the Witten index in 3d supersymmetric
Yang-Mills-Chern-Simons theory [23]. See [24] for detailed discussion.
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The result (6.11) for the index in CP
n can also be derived directly, simply by

counting the number of independent ground states [25, 9], i.e. the number of the
normalized (with the measure (3.24), in which det h = 1/(1 + zz̄)n+1 ) solutions to
the equations

QcovΨ0 = Q̄covΨ0 = 0 , (6.13)

with Qcov and Q̄cov defined in (3.40), (3.41). Choosing, e.g., the holomorphic repre-
sentation (5.3) for the wave functions, we find that, in the sector of zero fermionic
charge, the equation Q̄covΨ0 = 0 is satisfied identically, while the equation QcovΨ0 = 0
implies

∂kΨ0 = − sz̄k̄

1 + zz̄
Ψ0 , (6.14)

with

2s = c0 −
n+ 1

2
. (6.15)

We see that the normalized solutions exist only at s ≥ 0. They have the form

Ψ0 = Ψ(z, z̄) = (1 + zz̄)−sΦ(z̄) , (6.16)

where Φ(z̄) is a polynomial of z̄j̄ of the rank not higher than 2s. Then the number
of independent ground states is given by the binomial coefficient

(n+ 2s)!

n!(2s)!
=

(c0 +
n−1
2
)!

n!(c0 − n+1
2
)!
, (6.17)

which exactly coincides with Eq. (6.11). For negative c0, the vacuum states are
present in the sector of fermion charge F = n, hence the factor (−1)n in Eq. (6.12).

What was wrong then in the calculation having led to (6.6)? The answer is that
the recipe [22] that allowed us to replace the functional integral (6.1) by the ordinary
integral (6.3) and that works well for many SQM and supersymmetric field theory
systems fails in this case. To obtain the correct estimate for the index, one should
take into account the nonzero Fourier modes in the expansion (6.2) and integrate
them over in the Gaussian (see below) approximation. This integral gives exactly the
determinant factor in (6.7).

To perform the actual calculation 11, we assume β to be small, impose periodic
boundary conditions, subdivide the interval (0, β) into a large number N of integra-

tion points and integrate first over
∏

jτ

dπj(τ)dπ̄j̄ (τ)

2π
to obtain

I =

∫

∏

τ

det h(z̄j̄(τ), zj(τ))
∏

j

dz̄j̄(τ)dzj(τ)

2π(β/N)

∏

a

dψa(τ)dψ̄ā(τ)

× exp

{

−
∫ β

0

LE(τ)dτ

}

, (6.18)

11 It is rather similar in spirit to the calculation of the functional integral for SQM describing the
complex (/D2; /D, /Dγ5) [7]. However, because almost no details of the calculation were presented in
[7], we decided to describe these details at some length here concentrating on the Kähler case.
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with

LE = hjk̄ż
j ˙̄zk̄ +

1

2
(ψa ˙̄ψā − ψ̇aψ̄a) +

(

˙̄zk̄ωk̄,ab̄ − żkωk,b̄a

)

ψaψ̄b̄ . (6.19)

The product
∏

τ in (6.18) runs over N discrete points τr = βr/N, r = 0, . . . , N−1 .
For simplicity, we suppressed the gauge part that was already successfully handled
earlier by the Cecotti-Girardello method. It is the determinant factor depending only
on the Riemannian manifold geometry that is of interest for us now.

Substitute now the expansion (6.2) into (6.19). If the number of points N is large,
but finite, we have also to keep the number of Fourier modes finite, so that the sum
in (6.2) runs over m = −M, . . . , 0, . . . ,M , where N = 2M + 1. To calculate the
functional integral in the Gaussian approximation 12 (we will justify the validity of
this approximation later), we keep only quadratic (in z̄j̄m, z

j
m, ψ̄

ā
m and ψam) terms and

do the τ -integral. The quadratic part of the Lagrangian gives
∫ β

0

L
(2)
E dτ = −iβ

′
∑

m

Ωmψ
a
mψ̄

ā
m − iβ

′
∑

m

Ωm

[

ψa(0)ω
(0)

k,b̄a
ψ̄b̄mz

k
m − ψ̄b̄(0)ψamz̄

k̄
mω

(0)

k̄,ab̄

]

+ β

′
∑

m

zjmz̄
k̄
m

[

Ω2
mh

(0)

jk̄
− iΩmψ

a(0)ψ̄b̄(0)(∂jω
(0)

k̄,ab̄
+ ∂k̄ω

(0)

j,b̄a
)
]

− iβ

′
∑

m

Ωm

[

ψa(0)ω
(0)

k̄,ab̄
z̄k̄mψ̄

b̄
−m − ψ̄ā(0)zkmψ

b
−mω

(0)
k,āb

]

− iβ
′
∑

m

Ωm ψ
a(0)ψ̄b̄(0)

[

∂kω
(0)

j,b̄a
zjmz

k
−m + ∂k̄ω

(0)

j̄,ab̄
z̄j̄mz̄

k̄
−m

]

, (6.20)

with Ωm = 2πm/β. The sum
∑′

m runs over all nonzero modes. When writing this, we
assumed m≪M . If m ∼M , one is not allowed to approximate the finite differences
in the Euclidean action entering the finite-number-of-point approximation (6.18) of
the path integral by time derivatives. An accurate analysis displays that the only
change one should implement for large m is to substitute

Ωm −→ Ω̃m = −iN
β

(

1− e−2πim/N
)

(6.21)

in Eq.(6.20). However, as we will see later, this replacement affects only the overall
coefficient in the functional integral that is fixed separately, while the nontrivial
dependence of the integrand on the metric is determined by the contribution of only
first few Fourier modes.

Thus, we keep for the moment Ωm = 2πm/β and diagonalize the sum in (6.20)
by the substitution

ψbm ⇒ ψbm + ψa(0)[z̄k̄−mω
(0)

k̄,ab̄
− zkmω

(0)

k,b̄a
] ,

ψ̄b̄m ⇒ ψ̄b̄m + ψ̄ā(0)[zk−mω
(0)
k,āb − z̄k̄mω

(0)

k̄,bā
] . (6.22)

12Incidentally, the result (6.18) can also be reproduced by trading the variables πj(τr) and π̄j̄(τr)

for their Fourier modes and performing then the Gaussian integral over
∏

′

m dπ
(m)
j dπ̄

(m)

j̄
. In this

case, the factor NN seen in (6.18) appears as the Jacobian of the variable change (6.2).
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It brings (6.20) to the simple form

∫ β

0

L
(2)
E dτ =

′
∑

m

Amab̄ ψ
a
mψ̄

b̄
m +

′
∑

m

Dmjk̄ z
j
m z̄

k̄
m , (6.23)

where

Amab̄ = −iβ Ωmδab̄ , Dmjk̄ = β
[

Ω2
mh

(0)

jk̄
− iΩmRjk̄,ab̄ ψ

a(0)ψ̄b̄(0)
]

(6.24)

and Rjk̄,ab̄ is the Riemann tensor defined in (2.20). In the process of passing from
(6.20) to (6.23) we used the property Ω−m = −Ωm and also the identity

∂[lωk],b̄a − ω[l,d̄aωk],b̄d = 0 (and c.c.) (6.25)

(the l.h.s. of Eq.(6.25) is none other than the component Rlkb̄a of the Riemann tensor
that vanishes for Kähler manifolds).

Note that the matrix of the partial derivatives corresponding to the substitution
(6.22) is triangle and so has a unit superdeterminant. The super-Jacobian for the
variable change (6.2) is also equal to unity, because the bosonic and fermion determi-
nants cancel each other. The functional integral over non-zero modes is then given by
a product of a large (in the continuous limit, infinite) number of finite-dimensional
determinants, which can be symbolically written as

grav. factor = µ

′
∏

m

∏

j

dzjmdz̄
j̄
m

2π

∏

a

dψamdψ̄
ā
m exp

{

−Amψmψ̄m −Dmzmz̄m
}

= µ

′
∏

m

det ‖Am‖ · det−1‖Dm‖ , (6.26)

where

µ =
(

det ‖h(0)
ik̄
‖
)N

M
∏

m=1

Ω2n
m (6.27)

is the appropriate measure. The factor
(

det ‖h(0)
ik̄
‖
)N

in (6.27) comes from the factor
∏N−1

r=0 det ‖hik̄(τr)‖ in (6.18), where the dependence of zj(τ), z̄j̄(τ) on higher Fourier
harmonics has been suppressed. This suppression can be justified by noticing that
the characteristic values of zm in the integral

∏

mj dz
j
mdz̄

j̄
m exp{−

∫ β

0
L
(2)
E dτ} are zm ∼

1/Ωm
√
β ∼ √

β, which is small at small β. The dimensional factor β−2Mn in (6.27)
comes from the factor β−nN = β−2nM × β−n in (6.18) (the factor β−n having been
borrowed to be displayed in the constant mode integral (6.3) after performing the
integration over momenta). To derive from (6.18) the correct numerical factor in the
measure, notice that the coefficient NN present in (6.18) can be represented as

NN =

M
∏

m=1

(βΩ̃m)(βΩ̃−m) , (6.28)

22



which follows in turn from the known identity 13

N−1
∏

r=1

(1− wr) = N , if w = e2πi/N . (6.29)

Then, bearing in mind that only first few values m are relevant (see below), we can
replace Ω̃m → Ωm, which yields (6.27). It is much easier, of course, to fix the factor
in (6.27) from the condition that the r.h.s. of Eq.(6.26) is equal to 1 in the flat case
hjk̄ = δjk̄ .

The calculation gives

grav. factor =
(

det ‖h(0)
ik̄
‖
)N

′
∏

m

Ω2n
m

det ‖h(0)
ik̄
‖det‖Ω2

mδ
q
j − iΩmR

q
j‖

= det ‖h(0)
ik̄
‖

∞
∏

m=1

Ω2n
m

det ‖Ω2
mδ

q
j +Rs

jR
q
s‖

, (6.30)

where
Rq
j = gqk̄Rjk̄lp̄ψ

l(0)ψ̄p̄(0) (6.31)

and we took into account the relation N = 2M +1 and sent M → ∞ afterwards. We
see that only one power of the determinant det h(0) is left.

The infinite m-product in (6.30) can be done by writing the determinant as the
product of the eigenvalues and using the identity

∞
∏

m=1

(2πm)2

(2πm)2 + a2
=

a

2 sinh(a/2)
. (6.32)

For a ∼ 1, only few first values of m are essential in this product, and it justifies as
promised the assumption m≪ M under which Eq.(6.20) was derived.

We finally obtain

Ipure gravity =
1

(2πβ)n

∫ n
∏

j=1

dz̄j̄dzjdψjdψ̄j̄ det
βR/2

sinh(βR/2)
, (6.33)

where we suppressed the superscripts (0) and passed back to the integration over
the fermionic zero modes with the world indices ψj , ψ̄j̄ (this absorbs the remaining
factor det h in (6.30)). Multiplying the integrand by exp{−iβFjk̄ψ

jψ̄k̄} and doing
the fermion integral, we arrive at (6.10) and hence to (6.7) 14. It is clear now why, in

13Consider P (x) = xN − 1 =
∏N−1
r=0 (x− wr) and calculate P ′(1).

14 To establish the exact correspondence, one has to keep in mind that the skew-symmetric matrix
R defined in (6.8) is represented in the Kähler case as

RAB =

(

0 −Rab̄
Rbā 0

)

, (6.34)

where
Rab̄ = eai e

b̄
k̄
Rik̄jt̄ dz

j ∧ dz̄ t̄ . (6.35)
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this particular case, we had to insert the 1-loop gravitational factor in the tree-level
integral (6.3) for the index. Formally, the factor (6.30) tends to 1 for small β and,
naively, the corrections involving β and its higher powers can be neglected. We see,
however, that each factor β in the expansion is multiplied by a bi-fermion structure
∼ ψψ̄, as is also the case for the expansion of the integrand in (6.3). For the fermion
integral not to vanish, we have to pick up the terms ∼ βn(ψψ̄)n in the expansion of
both the factor exp{−iβFψψ̄} inside the tree-level integral and of the 1-loop factor
(6.30) — they come on equal footing.

On the other hand, the possible semiclassical corrections involving more powers
of β than those coming from ψψ̄ are not relevant (cf. a remark in the paragraph after
(6.27)). This justifies neglecting two-loop and higher-loop effects in the functional
integral (6.1).

7 Final comments

In the previous Section, we have constructed the proof of the Atiyah-Singer theorem
based on the analysis of our SQM model for the Kähler manifolds and for Abelian
gauge fields. The same method can be and was used, however, to prove it for any
even-dimensional manifold. To this end, one should consider the system defined by
the Lagrangian (3.31) accompanied by the external gauge field Lagrangian (3.10).

As was discussed above, in the generic case, the N = 2 supersymmetry algebra
is realized not by the supercharges (1.4), but by the supercharges /D and /DγD+1.
The Witten index (1.3) of this model still coincides with the Atiyah-Singer index
of /D. One can be easily convinced in it by introducing the holomorphic variables
χ1 = ψ1−i2/

√
2, χ2 = ψ3−i4/

√
2, etc, and noting that

γD+1 ≡ (2i)D/2
D
∏

A=1

ψA =

D/2
∏

a=1

(χ̄aχa − χaχ̄a) ≡ (−1)F . (7.1)

Then we have to expand the Euclidean version of the Lagrangians (3.31) and (3.10)
into the modes and to perform basically the same calculation as described above. It
gives the same answer (6.7). Exploring somewhat more complicated SQM systems,
this method can be generalized to non-Abelian gauge fields too.

Our model (3.9) coincides with the model (3.31) in the Kähler case, but, for a
generic complex (or “quasi-complex”, like S4 ,) manifold, its Lagrangian is different.
As was explained in Sect. 5, the corresponding supercharges in all cases realize
the twisted Dolbeault complex. It would be interesting to generalize the functional
integral calculation of the index, which was done in the previous section for the Kähler
manifolds, for the generic Lagrangians (3.9), (3.10). One should reproduce in this
way the known integral representation for the index of the Dolbeault complex.

We want also to mention here that there is another way to evaluate the curvature-
dependent corrections to the naive leading order semiclassical result (6.6). One can
proceed in the framework of the Hamiltonian formalism and notice that the index
is given by the phase space integral of the Weyl symbol of the operator e−βH . The
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point is that, generically,
[

e−βH
]

W
differs from e−βHW , there appear corrections which

involve higher powers of β . The simplest correction of this type for a generic SQM
system with the phase space variables (pj, qj ; ψ̄a, ψa) is expressed as [26]

[

e−βH
]

W
= e−βHW

(

1 + δ +O(β4)
)

(7.2)

with

δ(pj, qj ;ψa, ψ̄a) =
β2

48

[

∂2

∂Ψa∂ψ̄a
− ∂2

∂ψa∂Ψ̄a

+ i

(

∂2

∂qj∂Pj
− ∂2

∂Qj∂pj

)]2

×H(pj, qj; ψ̄a, ψa)H(Pj, Qj; Ψ̄a,Ψa)|P=p,Q=q;Ψ̄=ψ̄,Ψ=ψ . (7.3)

In most cases, this correction is suppressed at small β and so is irrelevant. However,
in our case, it gives a relevant β-independent contribution,

∆δI = − 1

96π2

∫

∏

j

dzjdz̄j̄ gkl̄gpt̄ǫmsǫn̄q̄Rkt̄mn̄Rpl̄sq̄ = −τ
8
, (7.4)

where τ is the Hirzebruch signature. This coincides with the second term in (6.9).
We see that the Lagrangian method is much more convenient than the Hamil-

tonian one: the one-loop correction manifestly seen within the Lagrangian method
corresponds to a complicated series in β on the Hamiltonian side. To find a relevant
∝ β4 term in the expansion (7.2) is already a pretty difficult task.

Finally, it is worth mentioning that there are also other cases when the index
cannot be expressed as the simple phase space integral (6.3).

First of all, this concerns the systems with the continuous spectrum, like super-
conformal quantum mechanics [27] or super-Yang-Mills quantum mechanics, where
the integrals like (6.3) give meaningless fractional values [28]. In these cases, due to
the absence of the gap, such integrals cannot be “focused” on zero energy normalized
states, but are “contaminated” by the states from continuum.

The systems with continuous spectrum are widely known and discussed in the
literature. There is, however, another interesting class of systems, the SQM systems
related to Abelian [29] and non-Abelian [30] chiral supersymmetric 4D gauge theories.
In the latter case, the spectrum seems to be discrete, the index is well-defined, and
still the integral (6.3) gives a fractional value. It would be rather interesting to see
whether this “anomaly” can be cured by taking into account the 1-loop determinant
in the spirit of (6.7).

There is also a problem in the index calculation for “symplectic” supersymmetric
N = 4 σ-models with bosonic part describing the motion over a 3D conformally
flat manifold [31]. For example, for S3, the index is equal to 2, while the integral
(6.3) gives a meaningless irrational number. One of us has shown in [26] that the
corrections to (6.3) are present in this case and that they are of the same order as the
tree-level contribution. It would be interesting to try to sum up all such corrections
by the Lagrangian functional integral method.
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