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ABSTRACT. The recently proposed first-order parent formalism at éwell
of equations of motion is specialized to the case of Lagemngystems. It is
shown that for diffeomorphism-invariant theories the pafermulation takes
the form of an AKSZ-type sigma model. The proposed formafaitan be
also seen as a Lagrangian version of the BV-BRST extensidheoYVasiliev
unfolded approach. We also discuss its possible intefpratas a multidimen-
sional generalization of the Hamiltonian BFV-BRST forrsali The general
construction is illustrated by examples of mechanicstikesdic particle, Yang—
Mills theory, and gravity.

1 Introduction

The Batalin—Vilkovisky (BV) formalism[[1] 2] allows reforalating nearly any gauge
system as a universal BV theory that has an elegant and ufoguerrespective of the
particular structure of the starting point system. In sandall the information about the
Lagrangian, gauge transformations, Noether identitieshégher structures of the gauge
algebra are encoded in the BV master action. This is achiey@utroducing ghost fields
and antifields in such a way that the entire field-antifieldcepacquires an odd Poisson
bracket (the antibracket). All the compatibility condit®like gauge invariance of the
action, reducibility relation and so on are then encodedhéhaster equation which is
merely equivalent to requiring the BRST transformationémbpotent.

All the ingredients of the BV formalism can be naturally sesmgeometric objects de-
fined on an abstract manifold and the BV formalism makes pestense in the purely ge-
ometrical setting. In the context of local gauge field thebeymanifold in question has an
extra structure: itis the space of suitable maps (field hetpbetween the space-time and
the target-space manifolds. Moreover, all the ingredisath as the Lagrangian, gauge
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generators, structure functions and so on are requiredddvimspace-time derivatives of
finite order. In the BV formalism the locality is usually taketo accountl[3, 4,!5,/5] by
approximating the space of field histories by the respe@iveundle (see e.d.[6] [7,18, 9]
for a review on jet bundle approach). More technically, thifalism involves the total
de Rham differential along with the BRST differential sotttitee naive BRST complex
becomes a part of the appropriate bicomplex.

Although the jet space extension of the BV formalism has edogxtremely use-
ful in studying, e.g., renormalization, anomalies, andststent deformations [3/ 5, 10]
(see [11] for a review) it is not completely satisfactory &ase the jet space approxi-
mation can be too restrictive. For instance, the boundananhycs is not captured in a
straightforward way. In addition, the jet space structash as, e.g., generalized con-
nections and curvatures of [12,/13/ 14] do not have a direstadycal meaning and are
not manifestly realized in the formulation.

An interesting alternative to the jet space descriptionaafge theories is the unfolded
formalism [15, 16] developed in the context of higher spinigmtheories. In this ap-
proach on-shell independent derivatives of fields are éceas new independent fields
and the equations of motion are represented as a free diffgralgebra (FDA)[[17].
The latter structure also underlies somewhat related appes to supergravity [18, [19].
It is within the unfolded framework that the interacting oimg of higher spin fields on
the AdS space has been derived [20,/21, 22]. The unfoldedagipiis also a powerful
tool in studying gauge field theories invariant under onenatlaer space-time symmetry
algebras([23, 24].

At the level of equations of motion the relation between théfBrmalism and the
unfolded approach was establishedin! [25] (see also [2§,f@F]inear systems and in
[28] in the general case by constructing the so-called pdoemulation such that both
the BV and the unfolded formulation can be arrived at viaighthorward reductions.
The parent formulation itself or some of its extensions candnsidered as a new formu-
lation generalizing and unifying both the BV and the unfadermulation at the level of
equations of motion. Moreover, it is the parent formulatioat gives a systematic way to
construct (and proves the existence of) the unfolded forengi¥en theory.

In this paper we specialize the parent formulation to the cdd. agrangian systems
giving a parent extension of the BV formalism. In particulae identify the precise set of
fields and antifields, prescribe the antibracket and cocisthe master action satisfying
the classical master equation. We show that for diffeomisrpfinvariant theories the
parent formulation is a sigma model of Alexandrov—KontsbwiSchwartz—Zaboronsky
(AKSZ) type [29] (see alsa [30, 31, 82,133,384 35/,/36/ 37, 3Bf&r further developments
and applications of AKSZ-type sigma models) for which thgyeéh space is the BV jet
space of the starting point system while the starting poagrangian plays the role of a
potential.



2 Parent Lagrangian

2.1 Preliminaries

Suppose we are given a regular local Lagrangian gauge fielohth Within the BV
formalism the theory is defined by the master actitt, 1*], wherew*, ¢ are fields
and antifields. The space of fields and antifields carry amgéntghost degregh(-) such
that fields of the theory are thoge' with gh(y4) = 0 while the remaining)*-s are ghost
fields, ghosts for ghosts, and so on, and carry positive glexgtees. The master action
S carries vanishing ghost degree and satisfies the mastei@gua

(5,5) =0, (2.1)
with respect to the antibracket defined by

(¥ (@), (") = 050" (& — ), (@), 9P (2) = (Vi(e), ¥p() =0, (2.2)
wherez”, , = 1, ..., n denote space-time coordinates. The ghost numbers andalss-Gr
mann parities of the antifields are determined by those ofidhés throughgh(v%) =
—1 — gh(y*) and|y%| = |¢*] + 1 mod 2 so that the antibracket is Grassmann odd and
carries ghost degrele

We restrict ourselves to the case of theories with closedbaly For such theories
S, y*] can be chosen at most linear in antifields. More preciseban be taken as

s= [datalv)+ [ davioed), (2.3)

wherey is a gauge part of the complete BRST differentiaind L [¢/] is the Lagrangian.
In our case;y is nilpotent and enters the complete BRST differentiat (-, 5) ass =

0 + 7. Here,j is the Koszul-Tate term implementing the equations of nmodietermined
by L, and their reducibility relations. Note that in genesals nilpotent only modulo
equations of motion anel= 6§ + v + ..., where dots refer to terms originating from the
terms inS of the second and higher ordersi).

We first recall the construction [28] of the parent theoryhat level of the equations
of motion. In the present context it is convenient to con@aton the gauge structure en-
coded iny and temporarily disregard the actual equations of motigiemented through
0 and the antifields)’,. This corresponds to the off-shell truncation of the pafemhu-
lation in [28]. The extended set of fields (including ghosldigeetc.) is given by/;é)[ }
where(\) denotes a symmetric multi-index afd an antisymmetric one. Introducing
bosonic variableg” and fermionic variableg”, all the fields can be packed into the
generating function

k>0
(2.4)



The ghost degrees of the component fields are determinecebyhibst degree af if
one prescribegh(y*) = 0 andgh(6”) = 1. In what follows we also use the condensed
notationy* for all the fields so thatv stands forA, (1), [v] and ranges over an infinite
but countable set. The lowest componefit, is identified withy*. Fieldsy, are
refereed to a8 andy-derivatives (or descendants)of.

We need to introduce some useful operations on the spaceldd fi¢ the parent
theory. Given a differential operat@r on the space af, ¢ andz we associate a functional
vector fieldO* on the space of field$(ﬁm (x) according to (see [28] for more details)

OF () = (-1)I°l0y (2.5)

whereO! is assumed to act from the right. Het@,acts ony, 8, z while O acts on the
space of fieldgbém (x). Relation [2.5) is compatible with the commutator in thesgen
that([Oy, O,))F = [OFf, OF]. To fit with the usual conventions for the master action (see,
e.g., [40]) we have exchanged the left and right action wagpect to[[28]. Usind (2.5)

one definegl”, oF, 2 2" associated to = 0#-2., d = 9*-2., 2 and-Z.. In what

» Dyk o Dor dyr ! dzh ! Jyr! an
follows we need some explicit relations:

or a4 |A] A o A F,A _ F,A
gV = UG et =, g =0 Y =0,

"y, = ()Mot oTug, = ()Ml

(2.6)

We often employ the language of jet spaces (see, €ld.] [&ng]hence replace the
space of field historieg“(x) by the respective jet space with coordinatésy*, and all
z-derivatives)(, . We also use), to denote the total derivative:

0

) . 0
8N:@+wu z T Y
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Functional vector fields defined Hy (R.5) can be also seenaenfields on the jet space.

. 2.7)

The gauge part of the BRST differential can then be naturally seen as aatimg
the space with coordinatw,w&). This is achieved as follows: fap* one defines
4 = v+, where the derivatives v in the HRS are replaced by, . The action
of ¥ on coordinatesog)H is uniquely determined by requirirjgﬁ—u + %, 7] = 0. Finally
the action orﬂ-derivativeswé)[y} and z-derivatives of all the fields is obtained by the
usual prolongatiofy,,, 7] = [, 7] = 0.

Finally, the BRST differential of the parent theory is given[28]

V=d"-o"+75. (2.8)

It was shown in[[28] that the parent formulation is equivalerthe starting point one via
elimination of generalized auxiliary fields (see Secff8for the definition and [41, 25]
for details on this notion of equivalence).
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2.2 Parent master action

To simplify the exposition, we assume for the moment thastheting point Lagrangian
Lo[] is strictly gauge invariant so thatl,, = 0. The general case wherg is gauge
invariant modulo a total derivative is considered next.

Associated to each field* we introduce an antifield, or in component&\(f)m and
postulate the usual antibracket, ghost number and Grasspaaity assignments:

(00 Aala)” = 3350 — ),

(2.9)
gh(Aa) = —gh(va) =1, [As| = |ta| + 1mod 2.
Consider then the following functional

whereLO(wém, x) is the starting point Lagrangian in which derivati\@g)@w‘ are re-
placed with@b{l‘”“. Because space-time derivatives enter only thratfgthis action is a
first-order one.

Proposition 2.1. S* satisfies the master equation along with the usual ghost puarix
Grassmann parity assignments

(s”,87)=0, gh(s") =0, |5"|=0, (2.11)
and hence can be considered a BV master action of a gaugeHbdyt

Proof. It is useful to work in terms of integrands (understood modotal derivatives).
Let K = A.(d" — oF + 7))y and Ly be the integrands of respectively the first and
the second terms i (2.10). The equati(oﬁsi, K)P = 0 is just a consequence of the
nilpotency of the vector field” — o + 7. (LO,LO)P = 0 is obvious becausé, is
independent of the antifields. Finally, nonvanishing cbotions to(LO, K)P can only
originate from terms iri involving A(f)m. But (dF—aF)zp{}L)m = 0 so that(L, K)P =

(Lo7 A%)[O}Wwé)[o})lj = 0 as a consequence of, = 0. 0

The number of fields entering master actibn (2.10) is infinitais complicates the
analysis and makes the interpretation[of (2.10) ambiguBagunately, it turns out that
the action can be consistently truncated to the one invglanly finitely many fields
and finitely many terms. To see this, we consider the dediger- Ny, — Kghr, called
truncation degree, where

Np, = ZW? ...)\l[u]a% ; N, = ZW(A})V " AL ; (2.12)
! ' Uil HOYG,)

l>0 l>0 vy...Vp



andghr is the target space ghost degree defined thrcgﬂ:ghw(ﬁ)[y]) = gh(y4) and K
denotes the maximal degree of a termyithat is homogeneous with respectig, (or,
equivalently, the maximal degree in space time derivatiwéise starting point differential
7). It follows thatd” — o' +7 doesn’t increase the truncation degree. By assignirig,to
conjugate ta)* the same truncation degree as/tband putting all the fields of a degree
higher than a sufficiently hi@integerM to zero, one then ends up with a consistent
master action. In particular, the truncated master actiiisatisfies the master equation.

This observation gives master action (2.10) the followimgiipretation:S* is to be
understood as a usual master action involving a finite nurabéelds. However, it is
useful not to fix the truncation bound and work as if all neaegdields were present.
Here and below we assume thatand L, involve derivatives up to a finite order and
the ghost degree of fields" is also finite. In particular, this is necessary for the above
truncation to exist.

In what follows we refer to the local gauge field theory deteed by S (or its
generalizations considered below) as the parent fornomathccording to the principles
of the BV formalism the fields of the parent formulation aregé fields among, A,,
that have the vanishing ghost degree. The respective cdssitionS?’ is obtained from
ST by putting all the fields of a nonvanishing ghost degree to.z8auge transformations
for the fields are then read off from the complete BRST diffiéieg s” = (-, S”) by
d¢' = sP¢', where in the Right-Hand Side we put all the fields of ghosteleg different
from 0, 1 to zero and replace degrédields with gauge parameters.

It turns out that the parent formulation determinedddyis equivalent to the starting
point theory determined h§ through the elimination of generalized auxiliary fieldsisIt
then a BV master action for the parent theorylof [28] in theeaskere the starting point
theory is Lagrangian (recall also that, = 0 and the gauge algebra is closed on our set-
ting). Moreover,S” is a proper solution to the master equation provided théstgpoint
S is a proper one. In the rest of the paper we extend the cotisinuo generic gauge
theories, identify the structure of the parent formulafmrdiffeomorphism-invariant the-
ories, prove the equivalence to the starting point theargl, idustrate the constructions
by concrete examples.

2.3 Equivalence proof

According to the definition from[41] fields’, x; are generalized auxiliary fields for
the master actiord if they are canonically conjugate in the antibracket andatiqns

58 . .
oxf Ixi=0 = 0 can be algebraically solved fgf.

Proposition 2.2. The BV formulation determined &/, (-, -)P and the starting point

1Compared to the maximal order of space-time derivativesiv@d in the starting point Lagrangidn.
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theorysS, (-, ) are equivalent via elimination of generalized auxiliarydge

Proof. All the fields vy}, save fory* = ¢, can be grouped into two seis' andv®
such that"w® = v®. The set of fields and antifields can then be splitAsA 4, w, v, w’, v*

a’ “a"

Let us show that?, w®, v¥, w’ are generalized auxiliary fields. More preciselyyasnd

Y ra?

X; we take respectively®, w! andv?, w®.

Varying first with respect ta} and puttingv*, w to zero, we find
[(d" ="+ )] oo =0 & "= [[d"+F)w"] lu=o.  (2.13)

It is almost clear from the last formula that it can be solvadf The detailed proof uses
the extra degrees (ghost degree ang) and was given in detail in [28]. In particular, one
finds that allb® vanish except fwam. If the theory is not truncated th@[q‘;m = O™,
For the truncated theory this is only true for lower orderiviives [28]. However, if
the truncation degree is high enough this does not affectettieced action becaudg
involvesy-derivatives of bounded order.

Varying then with respect to” and puttingv*, w to zero gives:

R
wi = 2 [wp(dF +7)u® + Ayt + Lol ’ . (2.14)

ovl w=0

The second and the third terms cannot spoil the solvabiliti vespect tow’ because
they do not involvev?. To see that this is also true for the first term, we use thevioiig
modification of the truncation degre&Vs, + Ny, — (K + 1)ghr. In the linear order,
we then find that(d"" + 4)w”)|,—o can only involve variables of the degree lower
than that ofw®. It follows that(&% (w; (d¥ + 7)w®)| =0 can only involvew*-variables

of degree higher then that af*. Because5” is assumed truncated and hence does not
involve fields of sufficiently high degree the equation carsblred order by order using
the above degree and the homogeneity in the fields.

Finally, putting to zero alb}, w* as well as alb* exceptyy),;; = d(,y¢* the master
actionS” reduces to
S = So[4] + Aayyp?, (2.15)

which is exactly the starting point master actibn{2.3) ieadentifiesA 4 with ¢%. O

2.4 Generalization

In order to allow for Lagrangians that aseclosed only modulo a total derivative we
need some more technique. In the setting of the starting tlodéory, we introduce the
algebra of local forms) that are forms orx-space with values in local functions. As a
usual technical assumption we in addition exclude fielc&epehdent forms frorf¥. Local
forms can be seen as functions in the fields, their derivaitivee coordinateg”, and the
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fermionic variableg” standing for basic differentialé:”. As is implied by the notation,
the variable®* are to be identified with thé” of the previous sections.

In the usual local BRST cohomology considerations (see, [A.f]) it is quite useful
to employ the extended BRST differential (recall thatcts from the right)

F
'Ay/: —dH—|—’}/, dH: 8u9”, (216)

wheredy is often refereed to as total de Rham differential. For imstghe ghost degreg-
cohomology ofy in the space of local functionals is in fact isomorphic to¢bbomology

of v in degreeg + n (the total degree such thatcarries unit degree is assumed) in the
space of local forms without field-independent terms.

A particularly important representative of the local BRSdhomology is the La-
grangian density itself. It can be represented by a Iocahff)hp, x, 0] of the total degree
n such thaﬁf = 0. The usual Lagrangian is just a coefficientﬁrproportional to the
volume formé! ...6". More preciselyLo[i, z] = fd@"...d@lf[w,x,e] and3yL = 0
impliesyLo = 9,5, vjt = 0,j5", etc. with somg***, gh(j,) = k. Note that because
of the above isomorphism any, that is+-closed modulo a total derivative can be rep-
resented by such Tacocyclef. Obtainingf can be also seen as solving the respective
descent equation (see, e.Q.,/[11]) with . . 6" L, being the local form of maximal degree.

Representing the Lagrangian density throﬁg\he easily generalize the above parent
master action by

SP = / A"z [Aa(dF —of + )y + / d"@f(@é),x,é)} : (2.17)

where by a slight abuse of notation we have dendfgg =3 507 9"11pé)ylmyk =
v],,A
"1
To see thatS” indeed satisfies the master equation modulo total derastive first
observe that

/d@“...d@li(ig),x,e) - [6?...8,25@3),:5,9)] ‘9:0, (2.18)
whereaz = a%u — (E;’Ti is a total right derivative with respect tty. It is then useful to

employ the extended parent differential [28]:

S F
F)P = —(2 +g—y#)0“+dF—aF+7, (2.19)

oz

which is nilpotent and satisfig§)"|o—, = 7" and[?, (7)7] = —0,.



Using then[d’,, (3)"] = —[8", d] gives

LWy 0) | = (0" [0 o dn Ly 0)] | =

(—1)" / 20 dy LI, 2.60), (2.20)

so that the master equation is indeed satisfied modulo adetafative. Finally one can
check that the equivalence proof of Sectdf is not affected by the extra terms in the
parent Lagrangian.

The structure of the parent formulation can be simplified &gking the fieldsAff’M
into superfields\ ! (4) such that\ i = A(A“)[”}wa)[y] = fd"@f\(f{‘){pvé). It is then useful
to employ the language of supergeometry. Namely, considemparmanifoldV with
coordinates being?, andA, gh(A%’) = —gh(¥/)) + n — 1 and equipped with the

(odd) Poisson bracket defined by
(v A} = a30s). (2.21)

The bracket carries ghost degriee n and the Grassmann parity — n) mod 2.

We consider the function
Sne(w, A, 2,0) = AP 30l + L, 2.0), (2.22)

where as beforé(wa), z,6) is obtained fromL[] by replacingd(,)y** with @b@). Note
thatgh(Sy) = n and|Sy| = nmod 2. Master action[(2.17) can then be written as

St = / d"xd™0 [K?d{ﬁg) — AV A + Sur(v, A2, 0)| . (2.23)

The space of field histories can be identified in this repradiem with the space of maps
from the source supermanifold with coordinaté’s6* into the target-space superman-
ifold with coordinate&pé),Aﬂf). In particular, the antibrackef (2.9) is induced on the
space of maps from the target space bradket(2.21) (se@#&,89] for details on brack-
ets related in this way). If, ~ can be chosen, f-independent and the 2nd term can be
removed by a field redefinition, then the above master actefimes what is known as
the AKSZ sigma model. As we are going to see next this is exadtiat happens if the
starting point theory is diffeomorphism invariant.

2.5 Diffeomorphism-invariant theories

We now specialize to the case where the starting point theatjfeomorphism invariant
and diffeomorphisms are in the generating set of gaugeftranations so thaj contains
a piecey’ such thaty'y* = (9,44)¢¢, whereé* are diffeomorphism ghosts angd' all
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the fields including:”. We assume in addition that this is the only termyimvolving
undifferentiated*. Under this condition it is known [42] that by changing caoates on

the space of local forms &% — 6* — &+, the—(gu — 8%# )6 term in5 can be absorbed

+—

by v so thaty = a%ﬂ@” + 7 after the redefinition. It then follows that representagioé
they cohomology can be assumedl-independent as we do from now on. Note that in
many case¢ can be taken in the for! . .. £"L[¢)], whereL is a Lagrangian density.

Turning to the parent formulation and following [28] we indatibn redefine the)-
descendants af* accordingly, i.e.,f;’é‘)y — §é‘)y — 0¥ while keeping all the other fields
unchanged. By this field redefinition, the tesh in v is absorbed intg. The following
statement follows frorﬁ?f = 0 and the representatidn (2]123) of the parent master action

Proposition 2.3. Let the starting point theory be diffeomorphism invariaf; defined
by (2.22)is x, 6-independent and hence defines a functiodns), satisfies the master
equation

{Sy,Sn}=0. (2.24)

Parent master actio2.17)can be represented in the explicitly AKSZ form
SP — / dxd™0 [KW@Z;‘ + Sne(9, 7\)] (2.25)
where the tilde indicates that the variables are now fieldsetheling on both:* and6”.

We stress that in order for (2.25) to define a theory equivdae@.17), we need to
restrict to field configurations where tlﬁgy(x) invertible. Note also that just like in the
non-Lagrangian case considered|in/[28] once the theorywstten in the form of an
AKSZ sigma model one can use generic coordinateg® on the source space that are
not at all related to the starting point coordinatés Fieldgga(x) is then identified as the
respective frame field.

To complete the discussion of the diffeomorphism invargvee note that similarly
to [28] any theory can be reformulated as an AKSZ sigma moglatldingy“, £# as extra
variables in the target space and replacingith 7 where the role of*, #* is played by
y*, &, In this way one arrives at the parametrized parent fornaratn the Lagrangian
setting under consideration now, the parametrized paoemiuiation should also involve
antifields/momenta conjugate 46, £# and theird-descendants. For instance, in the well-
known case of a 1-dimensional system (mechanics) thesdamamenta conjugate to
time variable and the reparametrization ghost momenta.

We finally comment on the interpretation of the (odd) symixananifoldM equipped
with { - | - } andSy. In the 1d case the structure pf (2.25) coincides with the ZKype
representation in_[31] of the BV master action associateal ¢onstrained Hamiltonian
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system with the trivial Hamiltonian. Moreove¥[ is an extended phase space of the re-
spective Batalin—Fradkin—Vilkovisky (BFV) formulatiod3,/44,45] with{ - , - } being
the extended Poisson brackét; being the BRST charge, arld (2.24) the BFV version of
the master equation. Note that this interpretation is cdijeavith the ghost degree and
Grassmann parity agi(Sy) = |Sw| = 1 and the bracket has zero degrees in this case. Of
course, to relaté! to the usual extended phase space, one first needs to ekmiaaty
trivial pairs (see, e.g., the example in Secfiod 3.2). It édeady master actioh (2.23)
can be interpreted in terms of the Hamiltonian BFV formaligynrelating the second
term in (2.28) to a Hamiltonian (indeed it can be represeated term linear i#*) in
agreement with [31]. In the general case it is natural to icem$\{ equipped with the
bracket andb, as a multidimensional generalization of the BFV extendegsplspace.

3 Examples

3.1 Mechanics

Consider the mechanical system described by a Lagrangierdq), whereo denotes
total time derivative. If there is no gauge symmetry différal v vanishes and parent
action [2.10) truncated at degre¢akes the familiar form [46]

SP =57 =/ [p(8q — qy) + 2V (Baq) — 4) + L(g, aw)] (3.1)
whereqg) = (aF)lq p = (%q)*, andp) = (Z7q0))*. The total set of variables is given
by ¢, g1y, 9(2)- P, pM, which have zero ghost degree, and their conjugate in thigraoket

variablesg* .l =1,2 and2- 5 q, aeq of ghost degree-1. These last are to be inter-
preted as antifields. Note that the parent master actforcoincides with the classical
actionSJ” because there is no gauge symmetry.

The variablesp, p'* and q1), qc2) are clearly auxiliary fields and their elimination
brings back the starting point Lagrangian with replaced by the “true” time derivative
dq. This argument is essentially a specific realization of teegal equivalence proof in
Sectiori2.3

A general feature that can be seen already in this naive drais\phat a different
reduction is also possible. To see this, we first ellmlra@tﬁp as before and suppose
for simplicity that there are no constraints so that equmgtic= %(UL can be solved for

(1)- The variabley; is then an auxiliary field. Indeed, varying with respecttg gives
p= %(DL. Solving this forg(,, gives

Spt = /dt (pOq — (paq)(q; p) — L(q,90)(q:p))) » (3.2)

11



which is easily recognized as a Hamiltonian action whepdays the role of momenta.
We also note that the respective phase space can be seemlastireof the manifoldvt
while the canonical Poisson bracket is simply the reducesiae of the brackef (2.21).

This example has a straightforward generalization to tlse «d field theory with-
out gauge symmetry. Taking for definiteness the scalar fiéd the Lagrangian., =
%8@8% — V(¢) and reducing the resulting parent action as in the above jgieaome
arrives at

Sred — / 4" [W”@qu — (gt V(@) - (3.3)

This is a usual first-order action of the scalar field. We nb& by separating space and
time components, this action is seen to become a Hamilt@uaon.

Although the construction is almost trivial in this simpbeaeple, it is much less ob-
vious in the case of gauge theories. From the perspectiieecdlbove example, parent
action [2.17) is a natural generalization|of (3.1) to theeaafgauge field theories. More-
over, this generalization maintains (general) covariasfabe starting point formulation
in a manifest way.

We also mention an interpretation of action (3.3) as a camaitHamiltonian action
of the De Donder-Weyl (DW) formalism (see, e.q.,/[47) 48]br khstance the second
term is identified with the DW Hamiltonian while* as the polymomenta. Moreover,
the polysymplectic form of [47] can be related to the (oddisBon brackef{(2.21) of the
parent formulation. A similar interpretation can be givarthe general case and will be
discussed elsewhere.

3.2 Relativistic particle

The relativistic particle is defined by the Lagrangian
SIX A =5 / dr[A1g,, (X)OX XY + Am?] = / drL. (3.4)
The BRST description is achieved by introducing the gljastd the BRST differential
VXH = E0X", A =0(EN), & =08, (3.5)

Note thatyL = 9(¢L) so thatL = (¢ — )L, which become$-independent after the
redefinition and can be used [n (2.22).

Because of the diffeomorphism invarianee;” containsdy“¢ and the parent the-
ory is an AKSZ-type sigma model with the target space beingpeinanifold with the
coordinates\*, £, A, all their derivatives(,, {u), A¢) considered as independent coordi-
nates, and canonically conjugate momentac!”, A" (these are momenta not antifields
because the brackét (2]121) has zero ghost degree and Gresganrdy). Here we use the
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notation such that)) refers to the order of the-derivative, e.9.0q) = (%)U\. The source
space is simply given by a time line with a coordinatextended by the Grassmann odd
variabled. The target space functidy, is given by

* * * 1 — v
Syt = puéX(py — §7€€w) + AEA @) + A A + 5€(A L X (1 Xy +Am?) + ... (3.6)

where dots refer to terms mi?w(f;) with [ > 1 and whose explicit form is in fact not
needed.

It turns out that all the variables except p, &, &* are trivial in the sense that all
the fields they give rise to (i.e. thefrderivatives) are generalized auxiliary fields. By
inspecting the definition of generalized auxiliary field®itows that it is enough to show
that these variables are generalized auxiliary fieldsSfeiconsidered as a master action.
In turn, this can be easily seen using a new coordinate systeare X, A are unchanged
while ¢ is replaced byC' = A¢. The derivativesX(;), Ci), Ag) and conjugate momenta
p,(f), Cil), AY are then defined as before but starting from the new cooelreatd hence
are related to the original ones through a canonical tramsfbon. In terms of the new

coordinate systenfy,, takes the form
— * 1 — v
S = pu AT CX() + N Cay + 5 O g X Xy +m?) + . (3.7)

It is now obvious that’(;), A — 1 as well asC,,;.1), A for n > 1, and their conjugate
momenta are all generalized auxiliary fields (we chbsel because is assumed invert-
ible). Moreover, the variabIeK(’j) andpff) for [ > 2 are also generalized auxiliary fields
(note, however, that if one works with the truncated acti@nttuncation is to be done as
X = p) = 0forn>2and even).

After the elimination we are left with
1 v
Sy = C(puX(“l) + §gu,,X€‘1)X(1) +m?). (3.8)

In fact X(;) andp)) are also generalized auxiliary fields because the equ%@é‘ﬂ can

be algebraically solved fok!' (C' is to be considered invertible because it céntains an
invertible einbein as it§ descendant). The reduction then gifes: —1C/(¢"p,p, —m?)
which is a BRST charge of the particle model. It is easy to batthe Poisson bracket of
the remaining variables is not affected by the redu@timd is given by

{XM’pV} = 657 {Cv P} =1, (3.9

where we denoted', by P to agree with the usual conventions of the BFV formalism.

2Strictly speaking the elimination of generalized auxilifields x¢, x? is the reduction to the second
08

o = 0 so that the reduced bracket is the Dirac bracket (s€e [25] for

class surface defined by, = 0 and
more details).
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In this way we have reduced the theory to the 1d AKSZ sigma el the target
space being the BFV phase space of the relativistic partigleépped with the BRST
charge(? and the extended Poisson bracket. This AKSZ model is knodiht{8be just
the BV formulation of the respective first-order Hamiltamiction.

The example we have just described is the Lagrangian/Hammlt version of the one
in [28] (see also [13] for the respective BRST cohomologgtimeent). We stress that al-
though the algebraic procedure that leads from the LagaartgiHamiltonian description
of a particle is somewhat analogous to the usual Legendnsftan it is in fact applied
to the gauge theory and is operated in terms of BRST theopatticular, it allows iden-
tifying constraints and constructing the correspondinyBBRST formulation without
actually resorting to the Dirac—Bergmann algorithm andsegliently constructing the
BRST charge.

The last observation in fact remains true in field theory alé \Bg explicitly extract-
ing the “time” coordinate and treating the spatial coortisamplicitly the parent master
action can be represented as a 1d (generalized) AKSZ sigrdalrabthe type proposed
in [31]. Its target space comes equipped with the respeBiR®8T charge and the BRST-
invariant Hamiltonian so that by eliminating the genemdiauxiliary fields in the target
space one arrives at the usual BFV description.

3.3 Yang—Mills-type theory

The set of fields for Yang—Mills-type theory are the compdsaei a Lie algebra valued
1-form H,, and a ghost’. The gauge part of the BRST differential is given by

1
YH, =0,C +[H,,C], C=3[C,C]. (3.10)

The dynamics is determined by a gauge invariant LagrantiéH .

We explicitly identify the field content and the action of tharent formulation. At
ghost number zero we have fieldd,) ) (z) andCy (7). Itis useful to keep thg
variables and to work in terms of the following generatingdtions:

Au(zly) = =Coyu(@)y™ , Bu(zly) = (H,) oy (@)y™) (3.11)
The parent action takes the form (for simplicity we keep didigds of zero ghost number)
sy = [ dval (o4 =0 At Ay
0= TIN5 Oy Byl il T g L Au

y 9 9
(00,8, = 55 By = 5. Av = [Bu Al) + Lo[B] | . (3.12)
where we have introduced the notation

T (xlp) = 7V (@)pey, T (xlp) = TV (2)pe) (3.13)
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for the generating functions involving antifields conjugdb respectivelyC',),, and
(H,)n)w and for the inner produgt,) comprising the natural pairing between the Lie
algebra and its dual and the inner product (contraction dites) between polynomials
in y* andp,. The gauge transformation for all the fields including thgrlaamge multi-
pliers, II can be read off from the complet®” for which the aboves! is the classical
action. We note that actiofiy” was implicit in [16]. We also mention a somewhat related
formulations in terms of bi-local fields [49, 50,/51].

Following the same logic as in the above examples, we eliminantractible pairs
for —o% + 7 and their conjugate antifields. As in 28] it is useful to itincontractible
pairs for—o! + 7 as thed-descendants of-trivial pairs in the starting point jet space.
All the jet space coordinates are known to engtdrivial pairs except foC = C — 9"H 9
replacing the undifferentiated ghast curvaturery, = 2= H, — 2= H, + [H,, H,] and
the independent components of its covariant derivativesrehve identified jet space
coordinates (beside®, 2') with the y-derivatives ofC, H,,. After eliminating the trivial

pairs the reduced differential is determined by the “Rus&amula’ [52]

JC.CI—Fr,  FY=LFue, (3.14)

:?C = 2 224
and further relations defining the actiompbn independent components of the (covariant
derivatives of)/’,. Note that after the reductiof?, are independent coordinates.

It then follows that all the parent theory fields are geneealiauxiliary except for
the 6-descendants af;, FY, and its covariant derivatives, and their associated alalsfie
Moreover, the action of the reducear” + 5 can be read off fron1(3.14) and its analog
for the curvatures (see [28] for more details). In particufgd.14) implies

(=0 +3)*Copur = ~[Coywr Cowl + Flty + - (3.15)

where the dots stand for the terms involving fields of norstainig ghost degree.

Assuming that the Lagrangian depends on undifferentiatedature only one finds
that all thef-descendants of other curvatures along with their congugatifields are also
generalized auxiliary fields because the correspondingteans of motion merely ex-
press the higher curvatures through théderivatives of the lower ones. After eliminating
all the above generalized auxiliary fields one stays with fudescendants af', undif-
ferentiated curvaturé? and their conjugate antifields. The action for ghost-nurzeeo
fieldsm = 3(Clyw)*, A, = —C,, FY, takes then the form

Syt = [ [(m, 0,4, — 0,4, + A A~ FY) + Lo(F)] . (3.46)

By eliminatingr, I’ through their equations of motion one gets the starting tploena
grangian formulation wheré in Ly(F"¥) is replaced with the usual curvatutel +
34, Al
2 L4 L3
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Another reduction of((3.16) depends on the particular fofnL.@ Taking for defi-
nitenessly(F) = —in**n*?(F,,, F,,) where by slight abuse of notatidn ) denotes a
nondegenerate invariant form on the gauge algebra, onevalssbat varying with respect
to F¥ allows expressing™ throughm asFY, = —,,n,,7" where the identification of
the gauge algebra and its dual through the invariant fornrmgdied. It follows F¥ is an
auxiliary field and the reduced action takes the well-knoamf (see, e.g.| [53])

Sort = /dnx«ﬂwj» DAy — O Ay + [Ay, AL]) + Wwﬂw) : (3.17)

We note that the formulation il (3.1.6) has an advantage &&#) because it allows for
more general Lagrangians, not necessarily of the foFitt, F,,). Further generaliza-
tions can be achieved using the parent Lagran@ian|(3.12).

3.4 Metric Gravity

In the BRST description of metric gravity, the fields are theerse metrig®® and a ghost
field £&¢ that replaces the vector field parametrizing an infinitesalifleomorphism. The
gauge part of the BRST differential is given by

19" = Leg™ = €0,g" — g0E" — g 0L, A€ = (0.£)€°. (3.18)

The dynamics is specified by the diffeomorphism-invariaagiangianL[g| that is as-
sumed to satisfy L = 0,(£*L) along with the standard regularity conditions.

For metric gravity;y X containgd, X )&® for any field X so that the general discussion
of diffeomorphism-invariant theories applies. In partasuthe Lagrangian representative
L can be chosen ab = ¢l €"Lylg] and parent formulation can be represented as the
AKSZ sigma model. Its target space has coordiné@e;sggf) along with their canonically
conjugate antifields/moments” anduff).

It is useful to work in terms of generating functions. Forsthive introduce formal
variablesp, in addition toy® and consider the algebra of polynomialsiifp equipped
with the standard Poisson bracKet*, p"} = .. The target space coordinaig$ , and

¢ . canthen be encoded in

C1...Cp
1 a C — a (&
G = 59(5)9( )PaPIH == f(c)?/( )Pm (3.19)
and the action of on these coordinates can be compactly written as

A _
T== 5{‘:7 :} ) f}/G = {G7 ‘:} : (320)

The same variables can be used to encode antifields/momeatthe generating
functions:

a 1 c a
I =7pey®, U= §Uib)p(c)y Y. (3.21)
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In addition, we introduce the natural symmetric inner piidy) on the space of poly-
nomials iny, p such that e.g.(y*, py) = J¢. In components it simply amounts to natural
contraction between indices of the coefficients. The parexgter action then becomes

P = / d"zd"0 [(ﬁ,dF@) + (IL, d"E) + Sx(G, 2, U, ﬁ)] ,
(3.22)
S = (0, {G.Ep+5 (I {EEH +& ... &'Lo[].

where as before the tilde indicates that the fields are fonstofz, § and¢ enters= as a
y-independent term.

We now concentrate on the classical actitjh FieldsF, A of vansihing ghost degree
enter the expansions 6f, = in 0 as

G(x,0ly,p) = F(x,y,p)+..., Z(z,0ly,p) = Z(aly,p)+Au(zly,p)0"+... . (3.23)

As regards the antifields/momenta, the- 1-form P andn — 2 form = components
of respectivelyU andII are of vanishing ghost degree and play the role of Lagrange
multipliers. The classical action then can be then written a

SP = / d"wd"0 [(P,dF+{F,A}>+<7r,dA+%{A,A}>+el...e"L0[F] . (3.24)

wheree® = e (x)0" entersA(x, 0]y, p) asA = 0"e;,(v)p. + . .. and is to be identified as
the frame field. The actiof (3.24) was implicitly in |[16]. M&mn also somewhat related
descriptions from [54, 55].

We now perform the reduction of the parent formulation foawfy leading to its
frame like form. We are going to implement the Lagrangiarsiger of the analogous
reduction considered i [28] (see alsol[16] 25]). Detailsdamtification of trivial pairs
for the BRST differential can be found in [12,(4,/42]. In peuiar, all the variables i&
andG excepr), &, metricg®®, and (independent components of the covariant derivatives
of) the curvature are contractible pairs far All their 6-descendants as well as all the
associated antifields are then the generalized auxilialdsfier the parent formulation.
Moreover, under the usual assumption that metric (enteximg ag*p,p;) is close to a
flat metricn?®, the components of the differeng& — »** together with the symmetric
part of £47*® and their associated antifields give rise to generalizediaryfields and
hence can also be eliminated.

The action of the reduceglon the remaining coordinates, ¢¢, R¢,, andR?

cy...cpaiazas’
where the latter denote the covariant derivatives of theature iy, is given by (see
e.g. [28] 12| 42] for more details)

~ca a¢c ~ca a ¢-c 1 (& a

¥§¢ = &:€°, Y& = &y — 55 fd bed ) (3.25)
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and

TR =Ry

€oC1...CL010203 gd ci.. Cka1a2as+

+ gcl Rdckalagag -+ 5 cl .cparazd * (326)

C1...cpa1a2a3

If L, depend on undifferentiated curvature only all the field®eisded to the covariant
derivatives of the curvature are generalized auxiliardekd, it follows from[(3.26) that
the respective equations of motion exprégs . . ..., throughR? . . . . so that

0-derivatives ofR? . . ..., With & > 0 and all the associated antifields can be elimi-

nated. In this way one ends up with orflyderivatives off“, &', R; ., and the associated
antifields/momenta.

We then introduce the component fields enteﬁh@, Ngvcd:

Na a a 1 17 a
£z, 0) =¢ —9“6#%—56’ &, + -

(3.27)
ca a a L a Da a
fb(xﬁ) :gb _euwub+§9 Hugbuu+"‘ ) b,cd(xve) = b,cd+“‘

where dots stand for terms of higher ordeminIn particular, fieldsey,, wi,, B ., carry
vanishing ghost degree. Besides them antifielis = (¢%,)* andz)* = (¢j,,)* also
carry vanishing ghost degree and play the role of Lagrangaptiers. After the reduc-
tion action [(3.24) takes the following form

Seed[r? il e, w™) = /d”xd"@ |:7Ta(d€ + wie)+
+ w (dwd + wiw§ — —e e’Re )+ el .e"LO(R)] , (3.28)

where antifieldsr, and=’ are represented in a dual waysas- 2-forms. Fieldst>* and
i, are clearly auxiliary ones. By eliminating them the secarahtis gone and we get

Sped=tre, e W] = /dnxwg”(a[l, ey +wiiey) + /d"xd”ﬁ et .. e"Lole,w]. (3.29)

Just like in other examples, it is now easy to explicitly gatl the starting point
Lagrangian. Indeed, the fieldsandw are auxiliary because varying with respectty
gives the conditionle® + wie® = 0 that is uniquely solved fop¢ in terms ofe¢. At the
same time variation with respectdd, gives equationr”eb + (r -independent terms=
0 which can be uniquely solved for*”. Substituting the solutions back to (3129) one
finds that only the term witli,, expressed througit stays.

If the starting point’ is the precisely Einstein-Hilbert Lagrangian another ctidun
is also possible that leads to the usual first order action

Sl [ea’ wab] — /dnxdne Eal...anfzan71an€a1 L eMn—2 (dwan—lan + w?n—lwcan> , (330)
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depending or“, wi as independent fields. The difference with (8.29) is onlyhim first
term in (3.29) and its extra dependencerdfi. That [3.29) is equivalent td (3.30) via
eliminating auxiliary fields is obvious if one eliminates” andw;jb in (3.29) as explained
above and eIiminatesgb through its own equations of motion in_(3130).

In fact (3.30) can be obtained froin (3129) via a straightEmdweduction. Indeed, let
us change the field variables such théit = o0’ (e)+w%” wherea®’[e] is a unique solution
to de®+age® = 0 so that fieldo?” is related to torsion in an invertible way. In termsugf
action [3.30) decomposes 8ge, a(e)] + Sa[e, w] whereS, is bilinear in undifferentiated
@Zb. Using this representation for the second term[in_(3.29) ameerves thaa‘a;jb is
an auxiliary field and can be expressed throagh andej. Using then an invertible
field redefinition such that a new’[e, 7] replacesr’” the reduced actiof (3.29) can be

brought to the form(3.30).

4 Conclusions

In this paper, we have specialized the parent formulatid@&jfto the Lagrangian level.
More precisely, for a given Lagrangian gauge theory, we ltavstructed the first-order
parent BV formulation by explicitly specifying the field-t#reld space, the antibracket,
and the BV master action. As a technical assumption, weicesdrourselves to the case
of theories with a closed gauge algebra. But the parent flation can also be defined in
general. Indeed3” can be defined in exactly the same way, and the only differisrtbat

in the general case, it satisfies the master equation onlylnake parent equations of
motion. These last are determined by the classical a&arwhich is also well defined
in general and can be obtained frgifi by putting all the fields of nonzero ghost degrees
to zero. The complete master action can then be obtainedeiadual BV procedure
starting fromS?” and its gauge symmetries.

Although the construction of the parent formulation applie an already specified
gauge theory, our hope is to use this formulation to constrtaw models in the parent
form (or related forms) from the very beginning. This stggtbas proved fruitful [56, 57,
58] in the context of higher-spin gauge theories, where siorf the parent formulation
at the level of the equations of motion [25] 28| 27] was susfcdély used. Among possible
applications of the present results, Vasiliev’s interagthigher-spin theory [20, 21, 22],
where the Lagrangian formulation is currently unknownnseéo be the most attracting.
We hope that the present approach gives the correct frarkdaroaddressing this issue.
This is supported by a concise parent-like formulation efbnlinear higher-spin theory
at the off-shell level[59] (see alsb [16]). Another intdneg perspective is to relate the
parent action to that of the recently proposed double fieddy [60, 61].
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