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Abstract

In a recent paper Hilhorst (1) illustrated that the q-Fourier transform for q > 1 is not
invertible in the space of density functions. Using an invariance principle he constructed a
family of densities with the same q-Fourier transform and claimed that q-Gaussians are not
mathematically proved to be attractors. We show here that none of the distributions constructed
in Hilhorst’s counterexamples can be a limit distribution in the q-CLT, except the one whose
support covers the whole real axis, which is precisely the q-Gaussian distribution.

Keywords: q-central limit theorem, q-Fourier transform, q-Gaussian

1 Introduction

Using a specific invariance principle Hilhorst (1; 2) showed that the q-Fourier transform (q-FT)
is not invertible in the space of densities. He constructed a family of densities containing the q-
Gaussian and with the same q-FT. Any density of this family except the q-Gaussian has a compact
support.

In the present note we establish that a limit distribution in the q-central limit theorem (q-CLT)
proved in (3) (see also (4)) can not have a compact support. This eliminates all the distributions in
Hilhorst’s counterexamples as a valid limiting distribution in the q-CLT, leaving only one, which is
the distribution corresponding to the q-Gaussian density. We also show that, for q > 1, any density
which has the same q-FT as the q-Gaussian and whose support covers the real axis is asymptotically
equivalent to the q-Gaussian.

The q-CLT deals with sequences of random variables of the form

ZN =
SN −Nµq

α(q)N
1

2(2−q)

, (1)

where SN = X1 + · · · + XN , the random variables X1, . . . XN being identically distributed and
q-independent, µq =

∫
x[f(x)]qdx, and α(q) = [ν2q−1σ

2
2q−1]

1/(2−q), with

νq =

∫
[f(x)]qdx, σ2

2q−1 =

∫
(x− µq)

2[f(x)]2q−1dx.
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Without loss of generality we assume that µq = 0. Three types of q-independence were discussed
in paper (3). Namely, identically distributed random variables XN are q-independent (see (3)) of1

Type I: Fq[X1 + · · ·+XN ](ξ) = Fq[X1](ξ)⊗q · · · ⊗q Fq[XN ](ξ); (2)

Type II: Fq[X1 + · · ·+XN ](ξ) = Fq[X1](ξ)⊗q1 · · · ⊗q1 Fq[XN ](ξ); (3)

Type III: Fq[X1 + · · ·+XN ](ξ) = Fq1 [X1](ξ)⊗q1 · · · ⊗q1 Fq1 [XN ](ξ), (4)

if these relationships hold for all N ≥ 2 and ξ ∈ (−∞,∞); q1 = 1+q
3−q . Here the operator Fq is the

q-FT defined as

Fq[X1](ξ) = f̃q(ξ) :=

∫ ∞

−∞

f(x) dx

[1 + i(1− q)xξf q−1(x)]
1

q−1

, (5)

with q > 1.
We recall some facts about the q-exponential and q-logarithmic functions. These functions are

respectively defined as (see for instance (3))

expq(x) = [1 + (1− q)x]
1

1−q

+ (exp1(x) = exp(x)) ,

and

lnq(x) =
x1−q − 1

1− q
, x > 0 (ln1(x) = ln(x)).

It is easy to see (see (3)) that for the q-exponential, the relations expq(x ⊕q y) = expq(x) expq(y)
and expq (x+ y) = expq(x) ⊗q expq(y) hold. In terms of q-log these relations can be equivalently
rewritten as follows: lnq(x⊗q y) = lnq x+ lnq y, and lnq(xy) = lnq x⊕q lnq y. It is not hard to verify
that if 1 < q1 < q2, then

lnq2 (x) ≤ lnq1 (x) for all x > 1, (6)

lnq2 (x) ≥
q1 − 1

q2 − 1
lnq1 (x) for all x > 0. (7)

For q > 1 the q-exponential is defined for all x < 1
q−1 and blows up at the point x = 1

q−1 . The
q-exponential can also be extended to the complex plane and it is bounded on the imaginary axis:
| expq (iy)| ≤ 1. Moreover, | expq (iy)| → 0 if |y| → ∞. Using the q-exponential function, the q-FT
of f can be represented in the form

f̃q(ξ) =

∫ ∞

−∞
f(x) expq (ixξ[f(x)]

q−1) dx. (8)

We refer the reader to papers (3; 4; 5; 6; 7; 8; 9; 10; 11; 12) for various properties of the q-FT.

2 On the support of a limit distribution

For the sake of simplicity we consider a continuous and symmetric about zero density function
f of a random variable X1. Other cases can be considered in a similar manner with appropriate

1See (19) for definitions and properties of the q-product ⊗q and the q-sum ⊕q.
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care. Denote λ(x) = x[f(x)]q−1, where 1 ≤ q < 2. Since f is symmetric, it suffices to consider
λ(x) only for positive x. Suppose λ attains its maximum value m at a point xm > 0, i.e. m =
max0<x≤a{x[f(x)]

q−1} = xm[f(xm)]q−1.

Proposition 2.1. Let f be a continuous symmetric density function with supp f ⊆ [−a, a]. Then

the q-FT of f satisfies the following estimate

|f̃q(η − iτ)| ≤ expq(xmMqτ), (9)

where η ∈ (−∞,∞), τ < 1
m(q−1) , Mq = max[0,a]{[f(x)]

q−1}, and xm is the point where xf q−1

attains its maximum m.

Proof. For f with supp f ⊆ [−a, a], equation (5) takes the form

f̃q(ξ) =

∫ a

−a

f(x)dx

[1 + i(1 − q)xξf q−1(x)]
1

q−1

. (10)

Let ξ = η + iτ where η = ℜ(ξ) is the real part of ξ and τ = ℑ(ξ) is its imaginary part. We assume
that η ∈ (−∞,∞) and τ > − 1

m(q−1) . Then for the denominator of the integrand in (10) one has

[1 + i(1− q)x(η − iτ)f q−1(x)]
1

q−1 = [1 + i(1− q)ηf q−1(x) + (1− q)τxf q−1(x)]
1

q−1

= [1 + (1− q)τxf q−1(x)]
1

q−1 [1 + i
(1− q)ηf q−1(x)

1− (1− q)τxf q−1(x)
]

1
q−1

=
(
expq(τxf

q−1(x))
)−1

(
expq(i

(1− q)ηf q−1(x)

1 − (1− q)τxf q−1(x)
)

)−1

. (11)

Using the inequality | exp(iy)| ≤ 1 valid for all y ∈ (−∞,∞) if q > 1, it follows from (11) that

∣∣∣1 + i(1− q)x(η + iτ)f q−1(x)
∣∣∣

1
q−1

≥
(
expq(τxf

q−1(x))
)−1

. (12)

Now, (10) together with (12) and f(x) being a density function, yield (9).

Remark 2.2. Proposition (2.1) can be viewed as a generalization of the well known Paley-Wiener

theorem. Indeed, if q = 1 then (9) takes the form

|f̃(η − iτ)| ≤ exp(aτ), η + iτ ∈ C, (13)

which represents the Paley-Wiener theorem for continuous density functions.
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Inequality (13) can be used for estimation of the size of the support of f. Consider an example
with f(x) = (2a)−1I[−a,a](x), where I[−a,a](x) is the indicator function of the interval [−a, a]. The

Fourier transform of this function is f̃(ξ) = (aξ)−1 sin(aξ), Mq = M1 = 1, and xm = a. Therefore,
we have |f̃(−iτ)| ≤ eaτ , τ > 0. This inequality yields

2a ≥ 2 sup
ln |f̃(−iτ)|

τ
,

which gives an estimate from below for the size d(f) = 2a of the support of f.
This idea can be used to estimate the size of the support of f using the q-FT and Proposition

2.1. Namely, inequality (9) with η = 0 implies

d(f) = 2a ≥ 2xm ≥
2

Mq
sup
τ

lnq |f̃q(−iτ)|

τ
. (14)

We notice that the integrand in the integral

f̃q(−iτ) =

∫ a

−a

f(x)dx

[1− (q − 1)τxf q−1(x)]
1

q−1

is strictly grater than f(x) if τ > 0, implying |f̃q(−iτ)| > 1, since f is a density function. Therefore,
the right hand side of (14) is positive and gives indeed an estimate of the size of the support of f
from below.

Let fN (x) = fSN
(x) be the density function of SN = X1 + · · · +XN , where X1, . . . ,XN are q-

independent random variables with the same density function f = fX1 whose support is [−a, a]. We
show that the q-independence condition can not reduce the support of fN to an interval independent
of N. More precisely, d(fN ) increases at the rate of N when N → ∞.

Theorem 2.3. Let X1, . . . ,XN be q-independent of any type I-III random variables all having the

same density function f with supp f ⊆ [−a, a]. Then, for the size of the density fN of SN , there

exists a constant Kq > 0 such that the estimate

d(fN ) ≥ KqN sup
τ

lnq |f̃q(−iτ)|

τ
(15)

holds.

Proof. Using formula (14) one has

d(fN ) ≥
2

Mq,N
sup
τ

lnq |(̃fN )q(−iτ)|

τ
, (16)

where Mq,N = maxx∈[−Na,Na] f
q−1
N (x). It is clear from probabilistic arguments that Mq,N ≤ Mq for

all N ≥ 2. Therefore, it follows from (16) that

d(fN ) ≥
2

Mq
sup
τ

lnq |(̃fN )q(−iτ)|

τ
, (17)
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Let XN be q-independent of type I (see (2)). Making use of the inequality |z − r| ≥ |z| − r, which
holds true for any complex z and positive integer number r, one has

|(̃fN )q(−iτ)| = |f̃q(−iτ)⊗q · · · ⊗q f̃q(−iτ)|

= |[N
(
f̃q(−iτ)

)1−q
− (N − 1)]

1
1−q |

≥ [N |f̃q(−iτ)|1−q − (N − 1)]
1

1−q

= |f̃q(−iτ)| ⊗q · · · ⊗q |f̃q(−iτ)|.

Taking q-logarith of both sides in this inequality and using the property lnq(g⊗q h) = lnq g+ lnq h,
one obtains

lnq |(̃fN )q(−iτ)| ≥ N lnq |f̃q(−iτ)|. (18)

Now estimate (15) follows from inequalities (17) and (18).
For random variables XN independent of type II, equation (18) takes the form

lnq1 |(̃fN )q(−iτ)| ≥ N lnq1 |f̃q(−iτ)|. (19)

Since 1 < q < q1 and q−1
q1−1 = 3−q

2 , making use of inequalities (6) and (7) and assuming that

|(̃fN )q(iτ)| ≥ 1, one has

lnq |(̃fN )q(−iτ)| ≥
(3− q)N

2
lnq |f̃q(−iτ)|. (20)

Similarly, for variables independent of type III, we have

lnq |(̃fN )q(−iτ)| ≥ N lnq1 |f̃q1 (−iτ)|. (21)

Both (20) and (21) obviously imply estimate (15).

Corollary 2.4. Let X1, . . . ,XN be q-independent of any type I-III random variables all having the

same density function f with supp f ⊆ [−a, a]. If the sequence ZN has a distributional limit random

variable in some sense, then this random variable can not have a density with compact support.

Moreover, due to the scaling present in ZN , the support of the limit variable is the entire axis.

The proof obviously follows immediately from (15) upon letting N → ∞.

3 On Hilhorst’s counterexamples

We want to compare Theorem 2.3 with Hilhorst’s counterexamples in (1). He used the invariance
principle to show that q-FT is not invertible. Let f(x), x ∈ (−∞,∞), be a symmetric density
function, such that λ(x) = x[f(x)]q−1 restricted to the semiaxis [0,∞) has a unique (local) max-
imum m at a point xm. In other words λ(x) has two monotonic pieces, λ−(x), 0 ≤ x ≤ xm, and
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λ+(x), xm ≤ x < ∞. Let x±(ξ), 0 ≤ ξ ≤ m, denote the inverses of λ±(x), respectively. Then the
q-FT (1 < q < 2) of f can be expressed in the form, see (1)

f̃q(ξ) =

∫ ∞

−∞
F (ξ′) exp(iξξ′)dξ′,

where

F (ξ) =
q − 2

q − 1
ξ

1
q−1

d

dξ
[x

q−1
q−2

− (ξ)− x
q−1
q−2

+ (ξ)], ξ ∈ [0,m]. (22)

The invariance principle yields

F (ξ) =
q − 2

q − 1
ξ

1
q−1

d

dξ
[X

q−1
q−2

− (ξ)−X
q−1
q−2

+ (ξ)], ξ ∈ [0,m], (23)

where

X
q−1
q−2

± (ξ) = x
q−1
q−2

± (ξ) +H(ξ), (24)

with H(ξ) being a function defined on [0,m], and such that X
q−1
q−2

± (ξ) are invertible. Denote by Λ(x)
the function defined by the two pieces of inverses of X±(ξ), namely

ΛH(x) =

{
X−1

− (x), if 0 ≤ x ≤ xm,H ,

X−1
+ (x), if x > xm,H ,

where xm,H = [(q − 1)
q−1

2(2−q) +H(m)]−
2−q

q−1 . The function ΛH(x) is continuous, since X−1
− (xm,H) =

X−1
+ (xm,H). Then

fH(x) =

(
Λ(x)

x

) 1
q−1

(25)

defines a density function with the same q-FT as of f. The density fH coincides with f if H(ξ) is
identically zero.

Now assume that f(x) is a q-Gaussian,

f(x) = Gq(x) =
Cq−1
q

[1 + (q − 1)x2]
1

q−1

, 1 < q < 2,

where Cq is the normalization constant. Obviously, Gq(x) is symmetric, and the function λq(x) =

x[Gq(x)]
q−1 considered on the semiaxis [0,∞) has a unique maximum m =

Cq−1
q

2
√
q−1

attained at the

point xm = (q − 1)−
1
2 . Moreover, the functions x±(ξ) in this case take the forms (see (1))

x±(ξ) =
Cq−1
q ± [C

2(q−1)
q − 4(q − 1)ξ2]

1
2

2ξ(q − 1)
, 0 < ξ ≤ m. (26)

We denote the density fH(x) and the function ΛH(x) corresponding to the q-Gaussian by Gq,H(x)
and Λq,H(x), respectively. Hilhorst, selecting H(ξ) = A ≥ 0 constant, constructed a family of
densities

Gq,A(x) =
Cq(x

q−2
q−1 −A)

1
q−2

x
1

q−1 [1 + (q − 1)(x
q−2
q−1 −A)2

q−1
q−2 ]

1
q−1

, (27)

which have the same q-FT as the q-Gaussian for all A. The following statement shows that none
of the densities Gq,A(x) can be a limit distribution in the q-CLT, except the one, corresponding to
A = 0, which coincides with the q-Gaussian, Gq,0(x) = Gq(x).
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Proposition 3.1. Let H(0) > 0. Then the support of Gq,H(x) is compact, and

suppGq,H =
[
−[H(0)]

q−1
q−2 , [H(0)]

q−1
q−2

]
.

Proof. Since limξ→0 x+(ξ) = +∞, the largest value of X+ is equal to limξ→0X+(ξ) = [H(0)]
q−1
q−2 .

Therefore, the inverse of X+ is defined on the interval [x0, [H(0)]
q−1
q−2 ], where x0 > 0 is some number

obtained by a shifting of xm depending on H(m). On the other hand the smallest value of x−
is zero, taken at ξ = 0. Therefore, the inverse of X− is defined on the interval [0, x0]. Hence, by

symmetry, Gq,H has the support
[
−[H(0)]

q−1
q−2 , [H(0)]

q−1
q−2

]
.

Remark 3.2. Note that H(0) can not be negative. In fact, if H(0) < 0, then either X± is not

invertible or, if it is invertible, its inverse does not identify a density function.

Proposition 3.1 implies that if H(0) > 0 then, due to Corollary 2.4, Gq,H(x) can not be the
density function of the limit distribution in the q-CLT. Thus none of the densities in Hilhorst’s
counterexamples2 except the q-Gaussian can serve as an attractor in the q-CLT.

Only one possibility is left, namely H(0) = 0. The next proposition establishes that, in this
case, Gq,H(x) is asymptotically equivalent to Gq(x) ≡ Gq,0(x).

Proposition 3.3. Let H(0) = 0. Then

lim
|x|→∞

Gq,H(x)

Gq(x)
= 1.

Proof. Since H(0) = 0, then obviously

lim
ξ→0

X+(ξ)

x+(ξ)
= lim

ξ→0

(
1 +

H(ξ)

x+(ξ)

)
= 1.

Therefore, for inverses one has

lim
x→+∞

X−1
+ (x)

x−1
+ (x)

= 1.

This implies

lim
x→+∞

Gq,H(x)

Gq(x)
= lim

x→+∞




X−1
+ (x)

x

x−1
+ (x)

x




1
q−1

= 1.

Remark 3.4. Propositions 3.1 and 3.3 establish that Gq,H can identify a limiting distribution in

the q-CLT only if H(0) = 0. However, in this case, independently from other values of H(ξ), the

density Gq,H(x) is asymptotically equivalent to the q-Gaussian, i.e. Gq,H(x) ∼ Gq(x) as |x| → ∞.

2See Examples 2 and 3 in (1). Example 4 is not relevant to the q-CLT, since in this case, (2q − 1)-variance of the

2-Gaussian does not exist, and consequently the q-CLT is not applicable.
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We return to this question in the Conclusion, where we discuss whether Gq,H can, for H not

identically zero, be an attractor in the q-CLT.

The statement of the following proposition can be proved exactly as Proposition 3.3, replacing
X+(ξ), x+(ξ) by functions X−(ξ), x−(ξ), respectively.

Proposition 3.5. Let H(0) = 0. Then

lim
x→0

Gq,H(x)

Gq(x)
= 1.

4 Other relations of Gq,H with the q-Gaussian

In light of Propositions 3.1 and 3.3, we will assume below that H(0) = 0 and clarify other conditions
for H(ξ). As above we use notations Λq,H(x) = x[Gq,H(x)]q−1 and λq(x) = x[Gq(x)]

q−1.

Proposition 4.1. Let H(m) = 0. Then the function Λq,H(x) attains its unique maximum at the

point xm, and Λq,H(xm) = λq(xm) = m.

Proof. If H(m) = 0, then it follows from (24) immediately, that X±(m) = x±(m), which implies
Λq,H(xm) = λq(xm) = m.

The statement below clarifies the range of the values H(ξ).

Proposition 4.2. The function

fq,H(x) =
(Λq,H(x)

x

) 1
q−1

defines a density function if H(ξ) for all ξ ∈ (0,m] satisfies the following condition

−
1

[x+(ξ)]
q−1
2−q

< H(ξ) <

(
Cq−1
q

ξ

) q−1
2−q

−
1

[x−(ξ)]
q−1
2−q

. (28)

Proof. Let 0 < ξ ≤ m. The conditions X−(ξ) > C1−q
q ξ and X+(ξ) < ∞ together with (24)

imply estimate (28).

Remark 4.3. Proposition 4.2 implies that the range of H(m) is restricted to the interval

−(q − 1)
q−1

2(2−q) < H(m) < (q − 1)
q−1

2(2−q) .
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Proposition 4.4. Let H(m) 6= 0. Then the function Λq,H(x) attains its unique maximum at the

point xm,H =
[
(q − 1)

q−1
2(2−q) +H(m)

]− 2−q

q−1
, and Λq,H(xm,H) = λq(xm) = m.

Proof. Since xm,H = X−(m) = X+(m), the statement of this proposition can easily be derived
upon computing X−(m).

Proposition 4.5. Let q ∈ (3/2, 2). The inequality X
′

+(ξ) < 0 holds near zero if and only if H ≥ 0

near zero.

Proof. It is not hard to verify that x+(ξ) =
Aq

ξ + O(ξ) and x
′

+(ξ) = −
Aq

ξ2
+ O(1), as ξ → 0,

where Aq = Cq−1
q /(q − 1). Differentiating both sides of equation (24) for X+, one has

X
′

+(ξ) =

(
X+(ξ)

x+(ξ)

) 1
2−q

x
′

+(ξ)−H
′

(ξ)
(2− q) (X+(ξ))

1
2−q

q − 1
. (29)

Due to Proposition (3.5) X+(ξ) ∼ x+(ξ) as ξ → 0. Therefore,

X
′

+(ξ) ∼ x
′

+(ξ)−H
′

(ξ)
(2− q) (x+(ξ))

1
2−q

q − 1

∼ −
Aq

ξ2
−H

′

(ξ)
Bq

ξ
1

2−q

, ξ → 0, (30)

where Bq =
(2−q)A

1
2−q
q

q−1 . If H(ξ) ≥ 0, then obviously, X
′

+(ξ) < 0 near zero. Now assume that
H(ξ) < 0 near zero (that is in an interval (0, ε) with some ε > 0). Then the second term in (30)
grows faster then the first term near zero if q > 3/2, implying X

′

+(ξ) ≥ 0 near zero.

Proposition 4.6. Let xa1 and xa2 be two numbers such that 0 < xa1 < xm,H < xa2, and

Λq,H(xa1) = Λq,H(xa2) = a,

then xa1x
a
2 = const for all values of a ∈ (0,m] if and only if H(ξ) is identically zero.

Proof. Let H(ξ) ≡ 0. Then

Λq,H(x) = λq(x) =
Cq−1
q x

1 + (q − 1)x2
.

In this case the conclusion of the proposition can be established by direct calculation. Indeed,
xa1x

a
2 = (q− 1)−1, which is independent of the values of a. Now assume that H(ξ) 6= 0. Then, using

(24) it is readily seen that

X+(a)X−(a) =
(
[x+(a)x−(a)]

q−1
q−2 + µ(a)

) q−2
q−1

9



where µ(a) = H(a)

(
x

q−1
q−2

+ (a) + x
q−1
q−2

+ (a) +H(a)

)
. Since x−(a) and x+(a) equal respectively xa1 and

xa2 corresponding to the case H(ξ) ≡ 0, it follows that

X+(a)X−(a) = (const+ µ(a))
q−2
q−1 . (31)

Now inverting X±(x) we obtain that the product xa1x
a
2 is dependent of a.

Equation (31) also implies the necessity of the condition H(ξ) ≡ 0 for xa1x
a
2 to be independent

on a.

5 Conclusion

Concluding, we would like to note some key points related to the limiting distribution in the q-
CLT, the role of the q-FT in this as well as other relevant theorems, and also briefly address other
concerns raised by Hilhorst in his paper (1).

1. In the proof of the q-CLT (see (3)), the q-FT is used only to establish the existence of a
limiting distribution. If we assume that there is another (non unique) limiting distribution,
then, due to Propositions 3.3 and 3.5, this distribution shares the same value at the origin
and the same asymptotic behavior at infinity as the q-Gaussian. Therefore, such a density
may be seen as a (slight) deformation of the q-Gaussian.

However, can a distribution defined byGq,H , ifH is not identically zero, be a limit distribution
in the q-CLT? Our belief is that this can not happen. Two strong arguments in favor of this
belief are the following ones:

(i) Proposition 4.5 states that H(ξ) can not be negative near the origin for 3/2 < q < 2.
Due to the plausible nature of attractors, it is very unlikely that H(ξ) has non-smooth
points and drastic changes including sign changes. If H(ξ) is not smooth at some points
then Gq,H will have singular points. A change of sign adds a new inflection point in
the graph of the density of a limiting distribution. Therefore, if H is not negative in
some small interval then it is not negative on the whole interval [0,m]. All these facts
essentially restrict the set of functions H(ξ) used in the invariance principle (possibly
reducing this set to {0}), for which Gq,H would be an attractor.

(ii) Due to the strong dependence between q-independent random variables, a possible sym-

metry-like relationship between probabilities for small values and those for large values
of the scaled sums ZN is expected. Since the function λq(x) = x[Gq(x)]

q−1 is used
extensively, this function may possess such a ”symmetry”, if it exists. In fact if xa1 and
xa2 are two numbers such that 0 < xa1 < xm < xa2, and λq(x

a
1) = λq(x

a
2) = a, then

the product xa1x
a
2 = 1

q−1 is constant for all values of a ∈ (0,m]. We call this property

the hyperbolicity property (since xa2 = 1
(q−1)xa

2
is a hyperbola in (xa1, x

a
2)-plane). This

heuristic argument leads to the following conjecture:

Conjecture: The limit distribution of the sequence ZN in equation (1) for q-independent
random variables XN possesses the hyperbolicity property.

Proposition 4.6 shows that the only density with this property in the class of functions
Gq,H , H(0) = 0, is the q-Gaussian. If the above conjecture is true, then the uniqueness
of a limit distribution in the q-CLT will immediately follow from Proposition 4.6.

10



2. Regarding the paper (4), we recall that it is devoted to the asymptotical analysis of limiting
distributions of (q, α)-stable distributions, explicitly addressing the ”asymptotic equivalence.”
This paper, like (3), essentially uses the q-FT technique to establish the existence of a limiting
distribution. To this end, we recall that even the usual FT (i.e., the 1-FT) can not be used for
the rigorous proof of the uniqueness of solution in many situations, even though it is invertible.
Therefore, in the classical theory the Fourier series or Fourier transform techniques are used
for the existence of a solution. The use of this technique for the uniqueness is restricted to
classes of functions which are representable as a Fourier series or Fourier transformable. For
the uniqueness usually other methods are involved, like the ”maximum principle”, ”energy
integral”, etc. Concluding this remark, we would like to note that in the references (7; 4; 8)
mentioned by Hilhorst in his paper (1), the q-FT is used only for existence purposes.

3. Another question raised by Hilhorst in his papers (1; 2) is the lack of examples of q-independent
random variables and their applications. Mathematically, a non-vacuous definition of some
notion is a recipe for producing examples. The notion of q-independence generalizes the notion
of usual independence, hence, containing as a trivial particular case the usual independence.
Non-trivial examples can be produced at will using the definition of q-independence. As an
example, for practical applications, paper (13) proves that sequences of independent random
variables mixed with the help of a chi-square distribution are asymptotically q-independent.
Paper (14) shows that such sequences can be considered as variance mixtures of normals,
a wide class of distributions with applications in Beck-Cohen superstatistics (15). It is not
surprising that sequences of variance mixtures of normals have limit distributions with q-
Gaussian densities (see (14)).

4. Last but not least. It is definitively clear that no experimental, observational or computational
results will ever determine an analytical function unless we have strong (physical) reasons to
severely restrict its class. Independently from the q-CLT, a wide spectrum of experimental and
computational distributions have been interpreted in the literature as q-Gaussians. Hence,
various strong analytical reasons do exist which make q-Gaussians quite special. These
include:

(i) Under simple width constraints, q-Gaussians extremize the nonadditive entropy Sq,
whose uniqueness (under natural axioms) and physical relevance has been repeatedly
exhibited in the literature from many standpoints (see (16; 17; 18; 19; 20));

(ii) q-Gaussians have been shown to exactly solve, for all values of space and time, the so-
called Porous Medium Equation (21; 22), a very basic nonlinear Fokker-Planck equation
(which satisfies the H-theorem precisely for the entropy Sq (23; 24), and which can be
deduced from a quite simple non-Markovian Langevin equation) (25);

(iii) Scale-invariant probabilistic models have been analytically shown to yield q-Gaussian
limiting distributions for large systems, in a way totally analogous to how the de Moivre-
Laplace theorem yields Gaussians, with the latter result being recovered as the q = 1
case of these models (26; 27);

(iv) q-Gaussians consistently are attractors of q-CLTs that do not use the q-FT in their
proofs (13; 14).

We acknowledge worthful remarks from M. Hahn, X. Jiang, and K. Nelson.
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Lévy distributions for q > 1, J. Math. Phys. 51, 033502 (2010) (23 pages).

[5] C. Tsallis and S.M.D. Queiros, Nonextensive statistical mechanics and central limit theorems

I - Convolution of independent random variables and q-product, in Complexity, Metastability

and Nonextensivity, eds. S. Abe, H.J. Herrmann, P. Quarati, A. Rapisarda and C. Tsallis,
American Institute of Physics Conference Proceedings 965, 8-20 (New York, 2007).

[6] S.M.D. Queiros and C. Tsallis, Nonextensive statistical mechanics and central limit theorems

II - Convolution of q-independent random variables, in Complexity, Metastability and Nonex-

tensivity, eds. S. Abe, H.J. Herrmann, P. Quarati, A. Rapisarda and C. Tsallis, American
Institute of Physics Conference Proceedings 965, 21-33 (New York, 2007).

[7] S. Umarov, C. Tsallis. On multivariate generalizations of the q-central limit theorem consis-

tent with nonextensive mechanics, in Complexity, Metastability and Nonextensivity, eds. S.
Abe, H.J. Herrmann, P. Quarati, A. Rapisarda and C. Tsallis, American Institute of Physics
Conference Proceedings 965, 34-42 (New York, 2007).

[8] S. Umarov and S.M.D. Queiros, Functional-differential equations for the q-Fourier transform
of q-Gaussians, J. Phys. A 43, 095202 (2010) (15 pages).

[9] K.P. Nelson and S. Umarov, Nonlinear statistical coupling, Physica A 389, 2157-2163 (2010).

[10] M. Jauregui and C. Tsallis, New representations of π and Dirac delta using the nonextensive-

statistical-mechanics q-exponential function, J. Math. Phys. 51, 063304 (2010).

[11] A. Chevreuil, A. Plastino and C. Vignat, On a conjecture about Dirac’s delta representation

using q-exponentials, J. Math. Phys. 51, 093502 (2010).

[12] M. Jauregui and C. Tsallis, On the role of q-Fourier transform on physical complexity,
preprint (2010), 1010.6275 [cond-mat.stat-mech].

[13] C. Vignat and A. Plastino, Central limit theorem and deformed exponentials, J. Phys. A 40,
F969-F978 (2007).

[14] M.G. Hahn, X.X. Jiang and S. Umarov, On q-Gaussians and exchangeability, J. Phys. A 43

(16), 165208 (2010) (11 pages).

[15] C. Beck and E.G.D. Cohen, Superstatistics, Physica A 322, 267-275 (2003).

[16] M. Gell-Mann and C. Tsallis, eds., Nonextensive Entropy - Interdisciplinary Applications

(Oxford University Press, New York, 2004).

12



[17] F. Caruso and C. Tsallis, Nonadditive entropy reconciles the area law in quantum systems

with classical thermodynamics, Phys. Rev. E 78, 021101 (2008) (6 pages).

[18] A. Saguia and M.S. Sarandy, Nonadditive entropy for random quantum spin-S chains, Phys.
Lett. A 374, 3384-3388 (2010).

[19] C. Tsallis, Introduction to Nonextensive Statistical Mechanics - Approaching a Complex

World (Springer, New York, 2009).

[20] C. Tsallis, Entropy, in Encyclopedia of Complexity and Systems Science, ed. R.A. Meyers
(Springer, Berlin, 2009), 11 volumes [ISBN: 978-0-387-75888-6].

[21] A.R. Plastino and A. Plastino, Non-extensive statistical mechanics and generalized Fokker-

Planck equation, Physica A 222, 347 (1995).

[22] C. Tsallis and D.J. Bukman, Anomalous diffusion in the presence of external forces: exact

time-dependent solutions and their thermostatistical basis, Phys. Rev. E 54, R2197 (1996).

[23] V. Schwammle, F.D. Nobre and E.M.F. Curado, Consequences of the H-theorem from non-

linear Fokker-Planck equations, Phys. Rev. E 76, 041123 (2007) (8 pages).

[24] V. Schwammle, E.M.F. Curado and F.D. Nobre, Dynamics of normal and anomalous diffu-

sion in nonlinear Fokker-Planck equations, Eur. Phys. J. B 70, 107-116 (2009).

[25] M.A. Fuentes and M.O. Caceres, Computing the non-linear anomalous diffusion equation

from first principles, Phys. Lett. A 372, 1236-1239 (2008).

[26] A. Rodriguez, V. Schwammle and C. Tsallis, Strictly and asymptotically scale-invariant

probabilistic models of N correlated binary random variables having q–Gaussians as N → ∞
limiting distributions, JSTAT P09006 (2008).

[27] R. Hanel, S. Thurner and C. Tsallis, Limit distributions of scale-invariant probabilistic mod-

els of correlated random variables with the q-Gaussian as an explicit example, Eur. Phys. J.
B 72, 263-268 (2009).

13


	1 Introduction
	2 On the support of a limit distribution
	3 On Hilhorst's counterexamples
	4 Other relations of Gq,H with the q-Gaussian
	5 Conclusion

