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1Institut für Theoretische Physik, Leibniz Universität Hannover,

Appelstraße 2, 30167 Hannover, Germany

2Departamento de F́ısica, Universidade Federal de São Carlos,

C.P. 676, 13565-905 São Carlos (SP), Brazil

(Dated: February 4, 2011)

Based on the exact solution of the eigenvalue problem for the Uq[sl(2|1)] vertex model

built from alternating 3-dimensional fundamental and dual representations by means of the

algebraic Bethe ansatz we investigate the ground state and low energy excitations of the

corresponding mixed superspin chain for deformation parameter q = exp(−iγ/2). The model

has a line of critical points with central charge c = 0 and continua of conformal dimensions

grouped into sectors with γ-dependent lower edges for 0 ≤ γ < π/2. The finite size scaling

behaviour is consistent with a low energy effective theory consisting of one compact and one

non-compact bosonic degree of freedom. In the ’ferromagnetic’ regime π < γ ≤ 2π the critical

theory has c = −1 with exponents varying continuously with the deformation parameter.

Spin and charge degrees of freedom are separated in the finite size spectrum which coincides

with that of the Uq[osp(2|2)] spin chain. In the intermediate regime π/2 < γ < π the finite

size scaling of the ground state energy depends on the deformation parameter.

I. INTRODUCTION

Studies of exactly solvable two-dimensional vertex models or the equivalent (1+1)-dimensional

quantum spin chains can provide important insights into the nature of excitations in strongly

correlated systems and their critical behaviour. Over the years this approach has provided much

to the present understanding of such models based on ordinary Lie algebras whose massless regime

is believed to be described by Wess-Zumino-Witten models on the corresponding group. On the

other hand, many of the physical properties of vertex models based on Lie superalgebras and

their quantum deformations are still not understood in detail. At the same time and in spite of

significant progress in recent years only little is known about the likely candidates for the low energy

effective description of these vertex models, i.e. (1 + 1)-dimensional conformal field theories with

non-compact target spaces. Advances in this direction are highly desirable as they would likely

lead to progress for some problems related to the duality between gauge and string theories (see

Ref. 1 and References therein) but also in statistical mechanics, e.g. for the description of disorder
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driven phase transitions within the superspin approach to non-interacting electron systems, see

e.g. [2, 3].

One possible approach to this problem is based on the observation that a non-compact con-

tinuum limit can arise from lattice models with a finite number of states per site [4–6]. If such

models are integrable the powerful techniques of the quantum inverse scattering method allow for

a detailed analysis of their spectrum and ultimately provide important insights into their contin-

uum limit. Concerning the possible applications mentioned above lattice models with alternation

between conjugate representations of the superalgebra have been found to be particular important.

For the integrable sl(2|1) superspin chain mixing the fundamental representation 3 and its dual 3̄

this approach has led to the identification of the continuum limit with the SU(2|1) WZW model

at level k = 1 [4]. Recently, this has been generalized to find the scattering theory arising in the

continuum limit of the antiferromagnetic gl(n+N |N) spin chains with n,N > 0 [7].

Another direction in which these results may be generalized is by deformation of the underlying

symmetry: in the case of ordinary Lie algebras this has led to models which exhibit critical lines

with anomalous exponents depending continuously on the deformation parameter. Whether such

a behaviour occurs in superspin chains when a deformation parameter is introduced and even

whether the critical behaviour of the mixed superspin chain observed in the undeformed case is

robust against the deformation is the question which we want to address in this paper.

Our paper is organized as follows: below we recall the definition of the mixed Uq[sl(2|1)] vertex
model [8] from which we obtain the integrable superspin Hamiltonian which is then solved by

means of the algebraic Bethe ansatz. Since the analysis of the Bethe equations makes use of the

known properties of the Fateev Zamolodchikov model [9] with twisted boundary conditions we also

summarize what is known about the different critical phases of the latter. In Section IV we present

our results on the low energy properties of the mixed superspin chain in the ’antiferromagnetic’

regime which can be interpreted as a regularization of a continuum theory consisting of a compact

and a non-compact boson, similarly to the sl(2|1) mixed superspin chain discussed in Ref. 4.

The critical behaviour in the ’ferromagnetic’ regime discussed in Section V turns out to be very

different: the corresponding low energy theory exhibits exact spin-charge separation for all values

of the deformation parameter q. Both the spinon and the holon modes are described by U(1)

Gaussian theories. In the isotropic limit restoring sl(2|1) invariance the spin part of the spectrum

acquires a quadratic dispersion above an (completely polarized) reference state while the charge

part of the spectrum remains conformal in the same universality class as the isotropic osp(2|2) spin
chain [5, 10, 11].
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II. MIXED VERTEX MODEL

The weights of the mixed vertex model are based on the R-matrices associated to the three

dimensional vector representation of Uq[sl(2|1)] and its dual, labelled 3 and 3̄ in the following.

These R-matrices act on the tensor products 3⊗ 3, 3⊗ 3̄, 3̄⊗ 3 and 3̄⊗ 3̄ and we shall denote them

by R(33)(λ), R(33̄)(λ), R(3̄,3)(λ) and R(3̄,3̄)(λ) respectively. For a general discussion of R-matrices

alternating between the vector representation of Uq[sl(n|m)] and its dual see for instance [12–15].

In the specific case of the quantum superalgebra Uq[sl(2|1)] the above set of R-matrices have been

explicitly discussed in [8] for a particular grading (models of this type without grading have been

introduced before by Perk and Schultz [16]). In what follows we shall present their expressions for

arbitrary ordering of the Grassmann parities,

R(33)
a,b (λ) =

3
∑

j=1

aj(λ)e
(a)
j,j ⊗ e

(b)
j,j + b(λ)

3
∑

j,k=1

j 6=k

e
(a)
j,j ⊗ e

(b)
k,k + c(λ)















3
∑

j,k=1

j>k

(−1)pjpke
(a)
j,k ⊗ e

(b)
k,j

+ exp(−2λ)

3
∑

j,k=1

j<k

(−1)pjpke
(a)
j,k ⊗ e

(b)
k,j















, (2.1)

R(33̄)
a,b (λ) =

3
∑

j=1

aj(−λ− iγ)e
(a)
j,j ⊗ e

(b)
j,j + b(−λ− iγ)

3
∑

j,k=1

j 6=k

e
(a)
j,j ⊗ e

(b)
k,k

+ c(−λ− iγ)















3
∑

j,k=1

j<k

(−1)pjq−2δj,1e
(a)
j,k ⊗ e

(b)
j,k + exp(2λ+ 2iγ)

3
∑

j,k=1

j>k

(−1)pjq2δk,1e
(a)
j,k ⊗ e

(b)
j,k















,

(2.2)

R(3̄3)
a,b (λ) =

3
∑

j=1

aj(−λ)e
(a)
j,j ⊗ e

(b)
j,j + b(−λ)

3
∑

j,k=1

j 6=k

e
(a)
j,j ⊗ e

(b)
k,k + c(−λ)















3
∑

j,k=1

j>k

(−1)pkf(k, j)−1e
(a)
j,k ⊗ e

(b)
j,k

+ exp(2λ)

3
∑

j,k=1

j<k

(−1)pkf(j, k)e
(a)
j,k ⊗ e

(b)
j,k















, (2.3)
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R(3̄3̄)
a,b (λ) =

3
∑

j=1

aj(λ)e
(a)
j,j ⊗ e

(b)
j,j + b(λ)

3
∑

j,k=1

j 6=k

e
(a)
j,j ⊗ e

(b)
k,k + c(λ)















3
∑

j,k=1

j<k

(−1)pjpke
(a)
j,k ⊗ e

(b)
k,j

+ exp(−2λ)

3
∑

j,k=1

j>k

(−1)pjpke
(a)
j,k ⊗ e

(b)
k,j















, (2.4)

where e
(a)
j,k ∈ End(C3

a) are the standard 3× 3 Weyl matrices. The symbol pj denote the Grassmann

parities distinguishing the bosonic pj = 0 and fermionic pj = 1 degrees of freedom.

The dependence of the Boltzmann weights aj(λ), b(λ) and c(λ) on the spectral parameter are,

aj(λ) =
sinh [λ− i(2pj − 1)γ)]

sinh [λ+ iγ]
, b(λ) =

sinh [λ]

sinh [λ+ iγ]
, c(λ) = exp[λ]

sinh [iγ]

sinh [λ+ iγ]
, (2.5)

while functions f(j, k) depend only on the anisotropy γ as follows,

f(1, 2) = exp[2iγ(1 − p3)], f(1, 3) = exp[2iγp2], f(2, 3) = exp[−2iγp1]. (2.6)

The R-matrices defined above fulfill the Yang-Baxter equation on any tensor product built up

from the 3 and 3̄ representation, namely

R
(ω1,ω2)
12 (λ)R

(ω1,ω3)
13 (λ+ µ)R

(ω2,ω3)
23 (µ) = R

(ω2,ω3)
23 (µ)R

(ω1,ω3)
13 (λ+ µ)R

(ω1,ω2)
12 (λ), (2.7)

where the representations ωj ∈ {3, 3̄} for j = 1, 2, 3.

One consequence of these set of Yang-Baxter relations is that there exists two different types of

Lax operators obeying the Yang-Baxter algebra with the same R-matrix. For example, this means

that an integrable vertex model combining the R(3,3)(λ) and R(3,3̄)(λ) can be constructed within the

framework of the quantum inverse scattering method. As usual the respective row-to-row transfer

matrix is written as the supertrace [17] over the auxiliary space A ∼ C
3 of the following ordered

product of operators:

T (3)(λ, ξ) = StrA

[

R(3,3)
A2L (λ)R

(3,3̄)
A2L−1(λ− iγ + ξ)R(3,3)

A2L−2(λ) · · · R
(3,3̄)
A1 (λ− iγ + ξ)

]

(2.8)

acting on the Hilbert space (3⊗ 3̄)⊗L ∼ C
2L. The alternation on the spectral parameter can be

introduced since the R-matrices are additive on λ. Note that this choice of inhomogeneity does not

spoil the basic properties such as the symmetry and locality of the interactions of the corresponding

alternating superspin chain with the Hamiltonian obtained by taking the logarithmic derivative of

T (3)(λ, ξ) at λ = 0.
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By the same token a solvable integrable vertex model alternating the R-matrices R(3̄,3)(λ) and

R(3̄,3̄)(λ) can be constructed. The expression of the transfer matrix mixing such operators is

T (3̄)(λ, ξ̄) = StrA

[

R(3̄,3)
A2L(λ+ iγ − ξ̄)R(3̄,3̄)

A2L−1(λ)R
(3̄,3)
A2L−2(λ+ iγ − ξ̄) · · · R(3̄,3̄)

A1 (λ)
]

. (2.9)

acting on the same Hilbert space as (2.8) above. Again, an alternating superspin chain can be

constructed by expansion of the transfer matrix around λ = 0.

It turns out that – in addition to commuting among themselves – the transfer matrices T (3)(λ, ξ)

and T (3̄)(λ, ξ̄) constitute a family of commuting operators when the inhomogeneities ξ and ξ̄ are

the same, i.e.

[

T (3)(λ, ξ), T (3̄)(µ, ξ)
]

= 0, ∀λ, µ . (2.10)

The property (2.10) relies on the fact that we have chosen an identical ordering of representations

3 and 3̄ in the definition of the Hilbert spaces for the transfer matrices (2.8) and (2.9) and follows

from the Yang-Baxter equation (2.7) once we choose the representations ω1 = 3, ω2 = 3̄ and

ω3 = 3, 3̄. In this situation we are able to construct an integrable vertex model that alternates

representations 3 and 3̄ both on horizontal and vertical spaces of states of a square lattice of size

2L × 2L. The respective ’double row’ transfer matrix of such model is obtained by taking the

following product,

T (mix)(λ, ξ) = T (3)(λ, ξ)T (3̄)(λ, ξ) . (2.11)

By construction T (mix)(λ = 0, ξ) is proportional to the translation operator by two lattice sites.

Therefore, we can define an integrable superspin Hamiltonian,

H(mix) = i
∂

∂λ
ln T (mix)(λ, ξ)

∣

∣

∣

∣

λ=0

. (2.12)

The expression for H(mix) in terms of the R-matrices can be obtained by computing the individual

Hamiltonians associated with the transfer matrices T (3)(λ) and T (3̄)(λ). The technicalities entering

this computation are cumbersome but the final result is somehow simple,

H(mix) = i

2L
∑

j=2

mod 2

[

R(3,3̄)
j,j+1(ξ − iγ)

]−1 [

Ṙ(3,3̄)
j,j+1(ξ − iγ) + Pj,j+2Ṙ(3,3)

j,j+2(0)R
(3,3̄)
j,j+1(ξ − iγ)

]

+ i

2L
∑

j=1

mod 2

[

R(3̄,3)
j,j+1(iγ − ξ)

]−1 [

Ṙ(3̄,3)
j,j+1(iγ − ξ) + Pj,j+2Ṙ(3̄,3̄)

j,j+2(0)R
(3̄,3)
j,j+1(iγ − ξ)

]

(2.13)
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where periodic boundary conditions 2L + 1 ≡ 1 and 2L + 2 ≡ 2 are assumed. The operator Pab

is the graded permutation Pab =

3
∑

j,k=1

(−1)pjpke
(a)
j,k ⊗ e

(b)
k,j and Ṙab(λ) denotes the derivative of the

R-matrix Rab(λ) with respect to the spectral parameter λ.

The diagonalization of the above transfer matrix can be carried out by applying the nested

algebraic Bethe ansatz approach [18, 19]. For this particular mixed vertex model the essential

tools to obtain the eigenvalues of T (mix)(λ, ξ) can for instance be found in [20]. We shall not repeat

here these technical details and concentrate our attention only to the main results. As usual

the expressions for the eigenvalues obtained in this approach will depend on the choice of grading

[17, 21–24]. For later convenience we use [p1, p2, p3] = [0, 1, 0] in the following. Let Λ
(mix)
N1,N2

(λ) denote

the eigenvalues of T (mix)(λ, ξ) in the sector of the Hilbert space selected by fixing the two conserved

quantum numbers related to the U(1) subalgebras of Uq[sl(2|1), i.e. charge b = (N1 −N2)/2 and

z-component of the spin s3 = L− (N1 +N2)/2. As a consequence of (2.10) the eigenvalues can be

factorized

Λ
(mix)
N1,N2

(λ) = Λ
(3)
N1,N2

(λ)Λ
(3̄)
N1,N2

(λ) . (2.14)

Here Λ
(3)
N1,N2

(λ) and Λ
(3̄)
N1,N2

(λ) are the corresponding eigenvalues associated to the transfer matrices

T (3)(λ, ξ) and T (3̄)(λ, ξ) respectively.

It turns out that the expressions for the eigenvalues Λ
(3)
N1,N2

(λ) and Λ
(3̄)
N1,N2

)(λ) are given by,

Λ
(3)
N1,N2

(λ) =

[

sinh(λ+ ξ)

sinh(λ+ ξ − iγ)

]L N1
∏

j=1

sinh(λ
(1)
j − λ+ iγ/2)

sinh(λ
(1)
j − λ− iγ/2)

+

[

sinh(λ)

sinh(λ+ iγ)

]L N2
∏

j=1

sinh(λ− λ
(2)
j + iγ)

sinh(λ− λ
(2)
j )

−
[

sinh(λ+ ξ) sinh(λ)

sinh(λ+ iγ) sinh(λ+ ξ − iγ)

]L N1
∏

j=1

sinh(λ− λ
(1)
j − iγ/2)

sinh(λ− λ
(1)
j + iγ/2)

N2
∏

j=1

sinh(λ
(2)
j − λ− iγ)

sinh(λ
(2)
j − λ)

,

(2.15)

and

Λ
(3̄)
N1,N2

(λ) =

[

sinh(λ)

sinh(λ+ iγ)

]L N1
∏

j=1

sinh(λ− λ
(1)
j − ξ + 3iγ/2)

sinh(λ− λ
(1)
j − ξ + iγ/2)

+

[

sinh(λ− ξ + iγ)

sinh(λ− ξ)

]L N2
∏

j=1

sinh(λ
(2)
j − λ+ ξ)

sinh(λ
(2)
j − λ+ ξ − iγ)

−
[

sinh(λ− ξ + iγ) sinh(λ)

sinh(λ+ iγ) sinh(λ− ξ)

]L N1
∏

j=1

sinh(λ
(1)
j − λ+ ξ − 3iγ/2)

sinh(λ
(1)
j − λ+ ξ − iγ/2)

N2
∏

j=1

sinh(λ− λ
(2)
j − ξ)

sinh(λ− λ
(2)
j − ξ + iγ)

,

(2.16)
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where the rapidities λ
(1)
j and λ

(2)
j satisfy the following set of nested Bethe equations,

[

sinh(λ
(1)
j + iγ/2)

sinh(λ
(1)
j − iγ/2)

]L

=

N2
∏

k=1

sinh(λ
(1)
j − λ

(2)
k + iγ/2)

sinh(λ
(1)
j − λ

(2)
k − iγ/2)

, j = 1, · · · , N1,

[

sinh(λ
(2)
j + ξ)

sinh(λ
(2)
j + ξ − iγ)

]L

=

N1
∏

k=1

sinh(λ
(2)
j − λ

(1)
k + iγ/2)

sinh(λ
(2)
j − λ

(1)
k − iγ/2)

, j = 1, · · · , N2.

(2.17)

Note that for the particular choice ξ = iγ/2 these Bethe ansatz equations become symmetrical

on the variables λ
(1)
j and λ

(2)
j . In the following we will concentrate our studies on this case. The

eigenvalues of the Hamiltonian (2.12) corresponding to a solution of (2.17) are

E
(mix)
N1,N2

(γ) = i
∂

∂λ
ln Λ

(mix)
N1,N2

(λ, iγ/2)

∣

∣

∣

∣

λ=0

= 4L cot
γ

2
+ 2

(

N1
∑

k=1

sin γ

cos γ − cosh 2λ
(1)
k

+

N2
∑

k=1

sin γ

cos γ − cosh 2λ
(2)
k

)

.

(2.18)

Considering the above solution one sees that the spectrum at the points γ and 2π − γ are related

to each other by only a sign,

E
(mix)
N1,N2

(γ) = −E
(mix)
N1,N2

(2π − γ) . (2.19)

III. THE TWISTED XXZ SPIN-1 MODEL

The classical vertex model associated to the integrable Heisenberg XXZ spin-1 chain turns out

to be the three-state factorized R-matrix found by Zamolodchikov and Fateev [9]. Considering our

previous notation this operator can be expressed as

Rab(λ) = e
(a)
1,1 ⊗ e

(a)
1,1 + e

(a)
3,3 ⊗ e

(b)
3,3 + f̄(λ)

[

e
(a)
1,1 ⊗ e

(b)
3,3 + e

(a)
3,3 ⊗ e

(b)
1,1

]

,

+ b̄(λ)
[

e
(a)
1,1 ⊗ e

(b)
2,2 + e

(a)
2,2 ⊗ e

(b)
1,1 + e

(a)
2,2 ⊗ e

(b)
3,3 + e

(a)
3,3 ⊗ e

(b)
2,2 + e

(a)
2,2 ⊗ e

(b)
2,2

]

+ c̄(λ)
[

e
(a)
1,2 ⊗ e

(b)
2,1 + e

(a)
2,1 ⊗ e

(b)
1,2 + e

(a)
2,3 ⊗ e

(b)
3,2 + e

(a)
3,2 ⊗ e

(b)
2,3

]

+ d̄(λ)
[

e
(a)
1,2 ⊗ e

(b)
3,2 + e

(a)
2,3 ⊗ e

(b)
2,1 + e

(a)
2,1 ⊗ e

(b)
2,3 + e

(a)
3,2 ⊗ e

(b)
1,2

]

+ h̄(λ)
[

e
(a)
1,3 ⊗ e

(b)
3,1 + e

(a)
2,2 ⊗ e

(b)
2,2 + e

(a)
3,1 ⊗ e

(b)
1,3

]

(3.1)

where the corresponding Boltzmann weights b̄(λ), c̄(λ), d̄(λ), f̄(λ) and h̄(λ) are given by,

b̄(λ) =
sinh(λ)

sinh (λ+ iγ)
, c̄(λ) =

sinh(iγ)

sinh(λ+ iγ)
, d̄(λ) =

sinh(iγ) sinh(λ)

sinh(λ+ iγ2 ) sinh(λ+ iγ)
,

f̄(λ) =
sinh(λ− iγ2 ) sinh(λ)

sinh(λ+ iγ2 ) sinh(λ+ iγ)
, h̄(λ) =

2 cosh( iγ2 )
[

sinh(iγ2 )
]2

sinh(λ+ iγ2 ) sinh(λ+ iγ)
.

(3.2)
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With (3.1) the respective transfer-matrix T (λ) with toroidal boundary conditions can formally

be constructed as follows

T (λ) = TrA [GARAL(λ)RAL−1(λ) · · · RA1(λ)] , (3.3)

where GA denotes a 3× 3 matrix representing the twisted boundary condition.

The diagonal twisted boundary condition compatible with integrability is obtained by choosing

the matrix G as,

GA =











1 0 0

0 eiϕ 0

0 0 e2iϕ











, (3.4)

where the angle ϕ is assumed to be in the interval 0 ≤ ϕ ≤ π.

The transfer matrix (3.3) with (3.4) can be diagonalized with very little difference from the

periodic case since the presence of the diagonal boundary matrix GA preserves the U(1) bulk

symmetry. The respective eigenvalues can be determined either by using the mechanism of fusion

[25–27] or by applying the algebraic Bethe ansatz construction developed in [28]. As a consequence

of the U(1) invariance of the transfer matrix the Hilbert space can be separated in disjoint sectors

corresponding to total magnetization s3. Starting from the state with maximal s3 = L one obtains

the following expression of the corresponding eigenvalues ΛN (λ, ϕ) in the sector s3 = L − N ,

N = 0, · · · , L

ΛN (λ, ϕ) =

N
∏

j=1

sinh(λj − λ+ iγ/2)

sinh(λj − λ− iγ/2)
+ e2iϕ

[

sinh(λ− iγ/2) sinh(λ)

sinh(λ+ iγ) sinh(λ+ iγ/2)

]L N
∏

j=1

sinh(λ− λj + iγ)

sinh(λ− λj)

+ eiϕ
[

sinh(λ)

sinh(λ+ iγ)

]L N
∏

j=1

sinh(λ− λj + iγ) sinh(λ− λj − iγ/2)

sinh(λ− λj + iγ/2) sinh(λ− λj)
,

(3.5)

where the rapidities λj satisfy the following Bethe ansatz equations,

[

sinh(λj + iγ/2)

sinh(λj − iγ/2)

]L

= eiϕ
N
∏

k=1

k 6=j

sinh(λj − λk + iγ/2)

sinh(λj − λk − iγ/2)
, j = 1, · · · , N. (3.6)

At this point we have gathered the basic ingredients allowing to establish a mapping among

part of the spectrum of the mixed transfer matrix (2.11) and the eigenvalues of the XXZ spin-1

model with special toroidal boundary condition for the special choice of ξ = iγ/2 in the transfer

matrix T (mix)(λ) of the mixed spin chain: as mentioned above the Bethe ansatz equations (2.17)

become symmetric between the two levels for this choice of ξ and their structure resembles that of
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the Bethe ansatz equations (3.6) of the XXZ − 1 chain with twist ϕ = π. In particular we find

that in the sector N1 = N2 = N of the Hilbert space of the mixed chain (this is where the total

Uq[sl(2|1)] charge b of the Bethe state is zero) there exists a subset of eigenstates parametrized by

Bethe roots which can be identified with eigenstates of the spin-1 chain in the sector s3 = L−N

by setting λ
(1)
j = λ

(2)
j ≡ λj . A similar correspondence has been observed between a subset of

eigenvalues of the alternating sl(2|1) superspin chain obtained in the limit γ → 0 from the mixed

chain considered here and the SU(2)-invariant spin-1 Takhtajan-Babujian chain [4]. For such

states, a direct inspection of the expressions for the eigenvalues (2.15), (2.16), (3.5) leads us to the

following relation,

Λ
(mix)
N,N (λ) =

[

sinh(λ+ iγ/2)

sinh(λ− iγ/2)

]2L

[ΛN (λ, ϕ = π)]2 . (3.7)

As a consequence, we obtain from (2.18) a relation between the energy eigenvalues of the XXZ

spin-1 chain with L sites and those of the Uq[sl(2|1)] superspin chain with 2L sites of alternating

representations 3 and 3̄:

E
(mix)
N,N = 4L cot(γ/2) + 2E

(XXZ)
N (ϕ = π) (3.8)

where

E
(XXZ)
N (ϕ) = i

∂

∂λ
ln Λn(λ, ϕ)

∣

∣

∣

∣

λ=0

=
N
∑

k=1

sin γ

cos γ − cosh 2λk
(3.9)

is the energy eigenvalue of the XXZ spin-1 chain corresponding to a solution of the Bethe equations

(3.6). As in Eq. (2.19) for the mixed superspin chain the spectrum of the XXZ model is inverted

at anisotropy γ = π, i.e. spec(γ) ↔ −spec(2π − γ).

In the thermodynamic limit L → ∞ the solutions of the Bethe equations (3.6) are grouped into

’strings’ consisting of m complex rapidities λ
(m)
j characterized by a common real center λ(m) and

a parity vm = ±1:

λ
(m)
j = λ(m) + i

γ

4
(m+ 1− 2j) + i

π

4
(1− vm) , j = 1, . . . ,m . (3.10)

The allowed values of (m, vm) depend on the anisotropy γ in an involved way [26, 29]. Here we

shall not go into the details of the string classification: for the range of anisotropies 0 ≤ γ < π

that we are considering in this paper it is found that the most relevant root configurations solving

(3.6) can be organized into strings (1,+), (1,−) and (2,+).
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A. The disordered antiferromagnet regime of the spin-1 chain

Most importantly, the ground state of the system without twist, ϕ = 0, and on an even length

lattice is a condensate of L/2 (2,+)-strings in this regime [25, 26, 30]. In the thermodynamic limit

one can compute the energy per site giving ǫ∞(γ) = −2 cot(γ/2). The finite size spectrum of the

XXZ spin-1 model without twist has been investigated in [31, 32]: in the entire interval 0 ≤ γ < π

the spectrum has gapless excitations with Fermi velocity vF = 2π/γ. The central charge of the

conformal field theory describing the low energy sector is c = 3/2, hence the ground state energy

for even L scales as

E(XXZ)(ϕ = 0)− Lǫ∞(γ) = −πvF
6L

c+ o(
1

L
) = −πvF

4L
+ o(

1

L
) . (3.11)

The operators of this CFT are given by products of Ising operators and U(1) Kac-Moody fields.

The scaling dimensions of these composite fields in the presence of a twist ϕ are [33]

X
(n,m+ϕ/π)
(r,j) (γ) = XI(r, j) + n2Xc +

(

m+
ϕ

π

)2 1

16Xc
, Xc =

π − γ

4π
,

XI(0, 0) ∈ {0, 1} , XI(0, 1) = XI(1, 0) =
1

8
, XI(1, 1) =

1

2
.

(3.12)

Depending on the parity of L the possible subset of the KM representations is determined by the

selection rules

n = r + L mod 2 , m = j + L mod2 (3.13)

for given parity j and toroidal b.c. (type r) of the Ising sector. The smallest exponents obtained

from (3.12) for even L are

X
(0,0+ϕ/π)
(0,0) (γ) =

(ϕ

π

)2 1

16Xc
,

X
(0,−1+ϕ/π)
(0,1) (γ) =

1

8
+
(

1− ϕ

π

)2 1

16Xc
,

X
(1,0+ϕ/π)
(1,0) (γ) =

1

8
+Xc +

(ϕ

π

)2 1

16Xc
,

(3.14)

and for L odd

X
(0,−1+ϕ/π)
(1,0) (γ) =

1

8
+
(

1− ϕ

π

)2 1

16Xc
,

X
(1,−1+ϕ/π)
(0,0) (γ) = Xc +

(

1− ϕ

π

)2 1

16Xc
,

X
(1,0+ϕ/π)
(0,1) (γ) =

1

8
+Xc +

(ϕ

π

)2 1

16Xc
.

(3.15)

As the twist is varied the energy of the ϕ = 0 ground state ((r, j) = (0, 0), (m,n) = (0, 0) for

even L) increases until there occurs a crossing with the level evolving from (n,m) = (0,−1) at
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0 1 2 3
ϕ

-1/8

0

0.2

0.4

L
 E

/2
πv

F

CFT
(n,m)=(0,0)
(0,-1)
(1,0)
(1,-1) L odd

FIG. 1. Evolution of the ground state and lowest excitation energies of the XXZ spin-1 model with γ = 2π
7

as a function of twist ϕ. Filled (open) symbols in black are for L = 6 (30), respectively; red symbols for

L = 7 (31). Dash-dotted lines indicate the CFT predictions (3.12).

ϕ = (3π−γ)/4 (see Fig. 1). The conformal dimension of this state at twist ϕ = π is X0,0
0,1 = 1/8 for

even and X0,0
1,0 = 1/8 for odd length lattices independent of the deformation parameter γ. Together

with the finite size scaling of the ground state energy (3.11) this gives a state whose energy is

Lǫ∞(γ) without any finite size corrections! Note that the corresponding wave function does vary

with γ. According to (3.9) this can only be realized with a highly degenerate configuration of

Bethe roots, namely λk ≡ 0 for all k = 1, . . . , L. The identification (3.8) implies the existence

of a zero energy eigenstate of the mixed Uq[sl(2|1)] superspin model in the singlet sector of the

latter. For 0 ≤ γ ≤ π/2 this is the ground state of the π-twisted XXZ spin-1 chain and the mixed

superspin chain, implying that the effective central charges of this models are c = 0. For γ > π/2,

the two-fold degenerate level with scaling dimension X
1,−1+ϕ/π
0,0 realized in the XXZ spin-1 chain of

odd length has a lower energy at twist ϕ = π . The consequences of this crossing for the superspin

chain will be discussed below.

B. The disordered ferromagnetic regime of the spin-1 chain

As a consequence of the inversion of the spectrum under γ ↔ γ̃ ≡ 2π − γ we can discuss the

properties of the spin-1 chain in this regime in the same interval 0 < γ < π while changing the
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sign of the energies (3.9). This leaves the string classification (3.10) unchanged. Without twist

in the boundary conditions the configuration of Bethe roots corresponding to the ground state in

the disordered ferromagnetic regime is given by a filled sea of L (1,−)-strings. Above this state

there are gapless low energy excitations with Fermi velocity ṽF = 2π/(2π− γ). The corresponding

conformal field theory has been identified as a U(1) Gaussian model with central charge c = 1 and

scaling dimensions of the primary operators given by [34]

X̃n,m(γ) = n2xp +
m2

4xp
, xp =

γ

4π
(3.16)

where n and m take integer values which determine the magnetization s3 = n and vorticity of

the corresponding state. Note that the compactification radius of the boson R =
√
xp vanishes as

γ → 0 indicating the transition into the non-conformal isotropic ferromagnetic state. For toroidal

boundary conditions with twist ϕ one has to replace m → m+ ϕ/2π in Eq. (3.16). The adiabatic

evolution of the Bethe roots under the twist is rather involved, a detailed study of the corresponding

regime in the spin-1/2 XXZ chain can be found in Ref. 35.

Here our focus is on the antiperiodic twisted chain: choosing ϕ = π implies that the finite

size gaps are given by Eq. (3.16) with integer n but half-odd integer m = ±1/2,±3/2, . . .. As an

immediate consequence the lowest state of the conformal part of the spectrum in the finite system

has an energy (ǫ̃
(XXZ)
∞ is the bulk ground state energy density of the chain in this regime)

E0(L)− Lǫ̃(XXZ)
∞ ≃ −πṽF

6L
+

2πṽF
L

X̃0, 1
2

= −πṽF
6L

+
2πṽF
L

π

4γ
(3.17)

which grows as γ → 0, eventually leaving the range of applicability of the finite size analysis based

on Eq. (3.16).

For additional insights into the properties of the spin-1 chain we have to rely on the analysis

of the Bethe equations (3.6): the configuration of Bethe roots for this state evolves as γ decreases

from π to 0: for γ ∈ (π/(k + 1), π/k) we find that it consists of L − k (1,−)-strings and a single

(k,+)-string according to the classification (3.10), see Fig. 2. In the finite system the configuration

reduces to a single (L,+)-string for γ < π/L. This is a bound state of magnon-excitations over the

ferromagnetic pseudo vacuum state with s3 = L. Based on this observation we propose that for a

system of finite size L there is a level crossing at γ = π/L leading to a fully polarized ground state

at smaller values of the anisotropy. This proposal has been confirmed by numerical diagonalization

of the Hamiltonian.
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γ=2π/3
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γ=2π/5

-2 0 2 4
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FIG. 2. Configuration of Bethe roots for the lowest S3 = 0 state in the ferromagnetic disordered regime of

the XXZ spin-1 chain with L = 8 sites for various values of γ.

IV. ANTIFERROMAGNETIC REGIME OF THE MIXED CHAIN

To discuss the properties of the mixed superspin chain we also need to distinguish two cases:

0 ≤ γ < π: in analogy to the XXZ spin-1 chain we will call this regime ’antiferromagnetic’,

π < γ ≤ 2π: this ’ferromagnetic’ regime will be discussed in the next section.

The solutions to the Bethe equations for the mixed superspin chain (2.17) can be classified into

strings – similarly as for the XXZ spin-1 chain in (3.10): in the large L limit Bethe roots with

Im(λ
(α)
j ) 6= 0 or π/2 have to be combined such that their differences coincide with poles or zeroes

of the bare scattering phase shifts on the right hand sides of Eqs. (2.17). As in the rational case of

the sl(2|1) mixed superspin chain [4] this considerations lead to

(1) 1-strings

just as for the XXZ spin-1 chain there are two types of unpaired roots allowed, namely real

ones and roots on the line Im(λ) = π/2,

and to composites combining roots from both levels:

(2) wide and strange strings

these configurations consist of m roots from both levels of the Bethe ansatz with the same

center λm ∈ R ∪ (R+ iπ/2). For m odd they have been called wide strings in Ref. 4, e.g.

λ
(1)
m,k = λm + i

γ

4
(m+ 3− 4k) , k = 1, . . . ,

m+ 1

2
,

λ
(2)
m,j = λm + i

γ

4
(m+ 1− 4j) , j = 1, . . . ,

m− 1

2

(4.1)
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and a second type obtained by interchanging first and second level roots, {λ(1)
m,k} ↔ {λ(2)

m,j}.
For m even, the so-called strange strings have the unusual property of not being invariant

under complex conjugation, e.g.

λ
(1)
m,k = λm + i

γ

4
(m+ 3− 4k) , k = 1, . . . ,

m

2
,

λ
(2)
m,j = λm + i

γ

4
(m+ 1− 4j) , j = 1, . . . ,

m

2
.

(4.2)

Again, there is a second type of such configurations for givenm obtained by {λ(1)
m,k} ↔ {λ(2)

m,j}.

(3) narrow strings

Finally, there are composites which contain the same number m/2 of roots on either level.

They may be seen as degenerations of two wide or strange strings with the same center λm.

The existence of strings of a given length as well as their parity (i.e. whether they are centered

around the real axis or the line Im(λm) = π/2) depends on the deformation parameter γ, again as

in the XXZ spin-1 chain. For the states with lowest (and highest) energies, we find that 1-strings of

either parity and strange 2-strings centered around the real axis plus their possible degenerations

into narrow ones are sufficient to capture the spectrum (in the ’ferromagnetic’ high energy regime

this is true at least for γ > π/3 as discussed in Section V below).

In the antiferromagnetic regime this classification is particularly useful in the sector where

the total number of roots on the two levels is the same, i.e. for N1 = N2 in (2.17): here the total

Uq[sl(2|1)] charge of the Bethe state is zero. Many low lying excited states in this sector correspond

to root configurations consisting of strange 2-strings (up to finite size corrections), i.e. sets {λ(1)
k }

and {λ(2)
k } that are mapped onto each other by complex conjugation. This sector also contains the

lowest state in the singlet sector of the model, where N1 = N2 = L. As has been argued above,

this state is also present in spectrum of the XXZ spin-1 chain related by (3.8) and has energy

E(mix) ≡ 0. This is the ground state of the superspin chain for γ < π/2. The corresponding root

configuration solving the Bethe equations (2.17) is λ
(a)
k ≡ 0 for all k = 1, . . . , L and a = 1, 2. The

same observation has been made in the rational model obtained as γ → 0 [4].

A. Small systems

For L up to 4 we have computed the complete spectrum of the mixed chain by exact numerical

diagonalization of the Hamiltonian. As a consequence of the deformation some of the degenerations

present in the sl(2|1)-symmetric superspin chain are lifted. For example, an sl(2|1) octet [b, s] =
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TABLE I. Low energy states of the L = 3 superspin chain in the antiferromagnetic regime for γ = 2π/7

and the identified Bethe configurations. Additional root configurations to these energies can be obtained by

using the symmetries of the Bethe equations.

(N1, N2) Energy E degeneracy Bethe roots

(3, 3) 0 1 Λ(1) = {0, 0, 0} = Λ(2) (XXZ)

(2, 2) 1.2968 2 Λ(1) = {±i0.2386}= Λ(2) (XXZ)

(3, 3) 1.6523 2 Λ(1) = {−0.0110± i0.2348,∞} = −Λ(2)

(3, 2) 2.3027 4 Λ(1) = {±i0.2492, iπ/2}, Λ(2) = {±i0.2255}
(2, 2) 4.9748 4 Λ(1) = {±0.1161+ i0.2704} = (Λ(2))∗

(3, 3) 5.1859± i0.6690 2*2 Λ(1) = {−0.1429− i0.2668, 0.0932− i0.2675, ∞} = −Λ(2)

(3, 2) 6.1084± i0.3325 2*8 Λ(1) = {−0.0889+ i0.2822, 0.1199+ i0.3044, 0.2581− i0.8296}
Λ(2) = {−0.0790− i0.2295, 0.1415− i0.2039}

[0, 1] splits into two charge 0 doublets with s3 = ±1 and s3 = 0 respectively and a quartet with

charge ±1
2 and s3 = ±1

2 :

[0, 1] →{|b = 0, s3 = 1〉, |b = 0, s3 = −1〉} ∪ {|b = 0, s3 = 0〉, |b = 0, s3 = 0〉}

∪ {|b = 1

2
, s3 =

1

2
〉, |b = 1

2
, s3 = −1

2
〉, |b = −1

2
, s3 =

1

2
〉, |b = −1

2
, s3 = −1

2
〉} .

(4.3)

Interestingly, we observe cases where pairs of the s3 = 0 doublets arising from degenerate octets in

the isotropic case split further into pairs with complex conjugate eigenvalues.

For L = 3 we have identified the low energy states in terms of their corresponding configuration

of Bethe roots, see Table I for the spectrum at anisotropy γ = 2π/7 (the degeneracies found in

the numerical solution can be reproduced by applying symmetry operations on the set of Bethe

roots, i.e. Λ(1) ↔ Λ(2) or Λ(a) ↔ −Λ(a) for both a = 1, 2, and by using the global symmetries of

the mixed chain, i.e. reversal of all spins). Although they are strongly deformed in some cases, the

string content of these configurations according to the classification given above can be identified.

Based on the numerical and analytical data the following general picture for the lowest excita-

tions emerges:

As shown in Ref. 4 the low-lying multiplets of the sl(2|1) symmetric chain (γ → 0) are the singlet

ground state with E = 0 in the normalization used here followed by a single sl(2|1) octet as the

lowest excitation. Above these there are two more degenerate octets and a pair of degenerate

indecomposables, each containing 8 states. Upon deformation the degeneracies of these excitations

lifted as described above, see Fig. 3. Note that the s3 = 1 doublet arising from the lowest octet is

part of the XXZ spin-1 subsector of the spectrum which according to Eq. (3.15) has a finite size
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FIG. 3. Low energy part of the spectrum of the L = 3 chain for anisotropy 0 ≤ γ < π: black lines and

filled symbols denote the real eigenvalues, red lines and open symbols the real part of complex eigenvalues

of the Hamiltonian. Full and dashed lines denote eigenvalues obtained by solution of the Bethe equations,

see Table I, whereas the symbols are eigenvalues obtained by numerical diagonalization of the Hamiltonian

for which the corresponding configuration of Bethe roots has not been identified. Dotted lines connecting

numerical data are guides to the eye only.

energy gap ∆E(XXZ) = (2πvF /L)
[

Xc − 1
8

]

in the large L limit. For π/2 < γ < π this doublet is

the ground state of the mixed chain, as expected from the analysis of the XXZ-1 chain with anti-

periodic boundary conditions for odd L. As γ → π all states evolving from this octet degenerate

at E = 0.

The 16 states of the degenerate octets split into a quartet and an octet with real energies and

two doublets with complex conjugate eigenvalues of the Hamiltonian. The latter eigenvalues also

approach 0 as γ → π. Similarly the states of the degenerate indecomposables split into two quartets

and an octet, all with real energies. Increasing γ beyond≈ π/4 the real octets from these two groups

degenerate and turn into two octets with complex conjugate energies. Our numerical data indicate

that this conversion of pairs of real eigenvalues into pairs of complex conjugate ones appears in

several regions of the spectrum. We have not been able to study whether this phenomenon persists

as the system size L is increased, but it is a common feature in non-unitary models.
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FIG. 4. Same as Fig. 3 but for L = 4.

In Figure 4 we present our data for the γ dependence of the low energy spectrum of the L = 4

mixed superspin chain. As γ → 0 the spectrum (ordered by energy) consists of the E = 0

singlet ground state, two degenerate octets, an 8-dimensional indecomposable and another pair of

degenerate octets [4]. The observed splittings and appearance of levels with complex conjugate

eigenvalues fit into the scheme discussed for L = 3 above.

B. Analysis of the finite size spectrum – antiferromagnetic regime

Due to the identification (3.8) of the spectrum of the XXZ spin-1 chain within that of the

superspin chain we already know part of the finite size scaling amplitudes – relative to the E = 0

eigenstate – in the latter:

∆E(mix) =
2πvF
L

(

2X
(n,m)
(r,j) (γ)− 1

4

)

. (4.4)

In translating the energies from the XXZ model we have used that as a consequence of (3.7) the

Fermi velocity remains the same, v
(mix)
F = vF = 2π/γ, and therefore the scaling dimensions of the

superspin chain are twice of those given in (3.12) for the composite fields in the XXZ spin-1 chain.

This is in agreement with the observations in Ref. 4.
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For γ < π/2 the ground state is the unique state with E0(L) = 0, hence the central charge of

the model is

c = − 6L

πvF
E0 = 0 , 0 ≤ γ <

π

2
. (4.5)

The lowest excitation corresponds to the conformal operator with scaling dimension X
(1,0)
(0,0) = Xc

in the π-twisted XXZ spin chain of odd length L (3.15). In the mixed chain this translates into a

scaling dimension with scaling dimension 2Xc − 1/4 = (π − 2γ)/4π according to (4.4).

In the superspin chain this state is realized by (L − 1)/2 narrow 2-strings. As mentioned

above, a narrow string may be viewed as degeneration of two strange 2-strings of opposite type.

Excitations can be created by lifting this degeneracy into configurations with different number of

the two possible types of strange 2-strings, i.e. type ’+’-strings with λ(1) = (λ(2))∗ = λ + iγ/4

and ’−’-strings with λ(1) = (λ(2))∗ = λ − iγ/4. The narrow string state is described by the same

number of ± strange strings, ∆N = N+ −N− = 0. Similar as in Ref. 4 one can show that states

with different but finite ∆N have the same energy in the thermodynamic limit (note, however, that

configurations with ∆N even (odd) are only possible for L odd (even)). Computing the energies of

these states we find a logarithmic fine structure on top of the level corresponding to the operator

(n,m) = (1, 0), i.e.

L

2πvF
∆E(mix) =

π − 2γ

4π
+K(γ, L)(∆N)2 , (4.6)

see Fig. 5 for γ = 2π/7. We have also displayed the L-dependence of the ∆N = 0 level correspond-

ing to the twisted spin chain excitation with (n,m) = (0, 1) for even L (3.14): this state leads to

a scaling dimension 1
4 (π + γ)/(π − γ) in the spectrum of the mixed superspin chain and is part of

the lowest sl(2|1) indecomposable for even L as γ → 0.

Starting from a non-linear sigma model with a supersphere as target space Ikhlef et al. [6]

have proposed that this logarithmic fine structure in the finite size spectrum is the signature of a

non-compact boson in the continuum theory. At intermediate scales, given by the size L of the

lattice regularization, the renormalization of the coupling constant leads to an effective radius of

the non-compact boson given as

(Rnc)
2 ∝ 1

A(γ)
[ln(L/L0)]

2 . (4.7)

This, in turn, generates the logarithmic structure (4.6) observed in the numerical data:

K(γ, L) =
A(γ)

ln(L/L0)2
(4.8)
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FIG. 5. Evolution of the fine structure of the low energy spectrum of the mixed spin chain as a function

of L for γ = 2π/7: circles denote energies scaling to the (n,m) = (1,−1) level of the XXZ spin chain with

odd length, triangles denote the (0, 0) level of the XXZ chain. The dotted lines connecting to L = ∞ are

rational function extrapolations of the numerical data.

In Fig. 6 we present numerical estimates of the amplitude A(γ) for the lowest excitation based

on the finite size spectrum for system sizes up to L = 4095. We find that the amplitude is well

described by

A(γ) =
5

2

π − γ

π + γ
. (4.9)

For γ & 1 the extrapolation of the numerical data is within 1% of this conjecture. For more

convincing evidence, in particular at small values of the deformation parameter γ, one would need

additional information about higher order corrections to (4.8) and have to study system sizes which

are out of reach for this method based on the numerical solution of the Bethe equations (2.17).

For π/2 < γ < π the set of levels (4.6) has energies below the E ≡ 0 eigenstate of the mixed

chain for L sufficiently large, see Fig. 7. As a consequence the model is in a different universality

class with central charge determined by the finite size scaling behaviour of the lowest level in this

set, i.e.

ceff(γ) = − 6L

πvF
E(mix) = 3

2γ − π

π
,

π

2
< γ < π . (4.10)
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FIG. 6. Amplitude of the logarithmic fine structure extracted from comparison of the energies of corre-

sponding states at sizes L = 2L′ + 1 (2L′ for L even) and L′. The line is the conjectured γ-dependence

Eq. (4.9).

Note that this state can be identified with the lowest level of the XXZ spin-1 chain for odd L only.

For even L its realization in the mixed superspin is in terms of a strange string configuration with

∆N = ±1. Immediately above this ground state there is a continuum of states with energy gaps

vanishing as ∝ (∆N)2/
[

L ln(L/L0)
2
]

due to the presence of the non-compact boson: our finite

size analysis indicates that these gaps show the same γ dependence as in (4.9) given above. The

first excitation from the XXZ spin-1 subset of the spectrum above this continuum is the E ≡ 0

state corresponding to a scaling dimension

X =
2γ − π

4π
. (4.11)

V. FERROMAGNETIC REGIME OF THE MIXED CHAIN

Again we use the spectral relation (2.19) to discuss the properties of the mixed superspin chain

in this regime in the interval 0 ≤ γ < π by changing the sign of the energy eigenvalues (2.18).

As for the antiferromagnetic regime above we begin our analysis based on numerical data for the
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FIG. 7. As Fig. 5 but for γ = 2π/3. The dotted line denotes the energy level at E = 0 of the singlet state

without any finite size scaling in the spectrum of the mixed chain for L both even and odd.

spectrum of the L = 3 chain obtained by exact diagonalization of the superspin Hamiltonian, see

Table II for γ = 2π/7 < π/3: according to our discussion of the disordered ferromagnetic regime

of the XXZ spin-1 chain above the lowest state from the XXZ spin-1 part of the spectrum for this

value of γ is the completely polarized reference state with s3 = 3 and energy E = −12 cot(γ/2)

according to (3.8). In Table II we have also listed the level corresponding to the primary field

(n,m) = (0, 12) in the twisted XXZ model (3.16).

The numerical data reveal that below the reference state of the XXZ spin chain there are many

states with lower energies in the spectrum of the mixed superspin chain in the charge-sectors

b = 0,±1/2 and with magnetization 0 ≤ s3 ≤ L: the corresponding Bethe configurations consist

of (N1, N2) roots with N1 −N2 = 0,±1 and Im(λ
(a)
j ) = π/2, i.e. (1,−)-strings. The ground state

in the sector (L,L− 1) (together with the equivalent sector (L− 1, L)) is four-fold degenerate.
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TABLE II. Low energy states of the L = 3 superspin chain in the ferromagnetic regime for γ = 2π/7 and

the identified Bethe configurations.

(N1, N2) Energy E degeneracy Bethe roots

(3, 2) −27.8683 4 Λ(1) = {±1.1935+ iπ/2, iπ/2}, Λ(2) = {±0.4797+ iπ/2}
(3, 3) −27.7508 2 Λ(1) = {−0.7367+ iπ/2, 0.2722 + iπ/2, ∞} = −Λ(2)

(2, 2) −27.4205 4 Λ(1) = {−1.0384+ iπ/2, 0.2015 + iπ/2} = −Λ(2)

(2, 1) −27.1935 4 Λ(1) = {±0.5829+ iπ/2}, Λ(2) = {iπ/2}
(1, 1) −26.4469 4 Λ(1) = {−0.4447+ iπ/2} = −Λ(2)

(1, 0) −25.8814 4 Λ(1) = {iπ/2}
(0, 0) −24.9183 2 (XXZ pseudo vacuum)

(3, 2) −24.8425 8 Λ(1) = {−1.0326+ iπ/2, 0.3894 + iπ/2, 0.6432}
Λ(2) = {−0.2736+ iπ/2, 0.7440}

(3, 3) −24.7595 4 Λ(1) = {−0.5477+ iπ/2, 1.0369,∞}
Λ(2) = {−∞, −0.0189 + iπ/2, 0.5909}

(2, 2) −24.6243 8 Λ(1) = {−0.8222, −0.2226 + iπ/2}
Λ(2) = {−0.7559, 0.8563 + iπ/2}

...

(3, 3) −23.6547 2 Λ(1) = {0.6023± i0.6800, 0.7226}= Λ(2) (XXZ)

A. Thermodynamic limit

Based on this observation we shall now study this ground state in the thermodynamic limit

L → ∞. To make further progress it is convenient to rewrite the rapidities λ
(a)
j as,

λ
(a)
j = µ

(a)
j + i

π

2
, (5.1)

where µ
(a)
j ∈ R for a = 1, 2. Now, by substituting Eq. (5.1) in the Bethe ansatz equations (2.17)

and by taking their logarithms we find that the resulting relations for µ
(k)
j are,

LΦ(µ
(1)
j , γ − π) = 2πQ

(1)
j +

N2
∑

k=1

Φ(µ
(1)
j − µ

(2)
k , γ) , j = 1, . . . , N1

LΦ(µ
(2)
j , γ − π) = 2πQ

(2)
j +

N1
∑

k=1

Φ(µ
(2)
j − µ

(1)
k , γ) , j = 1, . . . , N2

(5.2)

where Φ(x, γ) = 2 arctan (tanh(x) cot(γ/2)). The numbers Q
(a)
j define the many possible branches

of the logarithm. They have to be chosen integer or half-odd integer depending on the parities of

Na according to the rule

Q
(1)
j ≡ N2

2
mod 1 , Q

(2)
j ≡ N1

2
mod 1 . (5.3)



23

For example the ground state in the sector N1 = L and N2 = L− 1 is described by the symmetric

sequences

Q
(1)
j =

L+ 1

2
− j, j = 1, . . . , L,

Q
(2)
j =

L

2
− j, j = 1, . . . , L− 1.

(5.4)

At this point we have the basic ingredients to compute some of the thermodynamic limit prop-

erties. When L → ∞ the number of roots µ
(a)
j tend towards a continuous distribution on the real

axis whose density which we shall denote by ρ(a)(µ). The Bethe equations (5.2) turn into coupled

linear integral relations for the densities ρ(a)(µ) which can be solved by Fourier transform. The fact

that Eqs. (5.2) are symmetric under the exchange of rapidities µ
(1)
j ↔ µ

(2)
j in the thermodynamic

limit implies that ρ(1)(µ) ≡ ρ(2)(µ). The final result for such density is,

ρ(a)(µ) =
1

(π − γ/2)

cos
[

πγ
4(π−γ/2)

]

cosh
[

πµ
π−γ/2

]

cosh
[

2πµ
π−γ/2

]

+ cos
[

πγ
2(π−γ/2)

] , for a = 1, 2. (5.5)

Now from the expressions for the density ρ(a)(µ) and Eq. (2.18) we can compute the ground state

energy density ẽ∞ = E0/L. By writing the infinite volume limit of Eq. (2.18) in terms of its Fourier

transform we find

ẽ∞ = −4 cot(γ/2) − 4

∫ ∞

0
dω

sinh[ωγ/2] cosh[ωγ/4]

sinh[ωπ/2] cosh[ω(2π − γ)/4]
for 0 ≤ γ < π . (5.6)

In addition, we have verified that the low-lying excited states about the ground state are gapless.

As usual, these states can be obtained by inserting holes in the density distribution of µ
(a)
j by

making alternative choices for Q
(a)
j . This procedure is nowadays familiar to many integrable models

solved by Bethe ansatz and for technical details see for example ([36–38]). We find that the low-

momenta dispersion relation among the energy ǫ(a)(µ) and momenta p(a)(µ), both measured from

the ground state, has a relativistic behaviour

ǫ(a)(µ) ∼ ṽ
(mix)
F p(a)(µ) (5.7)

The common slope at p(a)(µ) = 0 is the corresponding Fermi velocity of the excitations. It is

determined by

ṽ
(mix)
F =

ǫ̇(a)(µ)

2πρ(a)(µ)

∣

∣

∣

∣

∣

µ=∞

=
2π

2π − γ
. (5.8)

As expected from (3.7) it coincides with the velocity ṽF of low energy excitations of the XXZ spin-1

chain in the disordered ferromagnetic regime, see Section IIIB.
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B. Analysis of the finite size spectrum – ferromagnetic regime

From our investigation of the behaviour of the Bethe ansatz roots associated to the low-lying

excitations we found that they can be well described in terms of real rapidities. The roots with fixed

imaginary part at iπ2 can easily be mapped on real roots by means the straightfoward shift (5.1).

We remark however that some excitations have the peculiar feature that some of the their roots

have the real part located at infinity. This scenario suggests us that a first insight on the structure

of the finite-size corrections can be obtained by applying the standard density root method, see for

instance [38–42]. This technique explores the Bethe ansatz solution and it allows to compute the

O
(

L−2
)

corrections to the densities of roots ρ(k)(µ). This approach predicts that the finite-size

corrections to the low-lying energies eigenvalues have the following form,

E(L, γ) − Lẽ∞ =
2πṽF
L

[

−1

6
+Xm1,m2

n1,n2
(γ)

]

+ o
(

L−1
)

, (5.9)

where the scaling dimensions Xm1,m2

n1,n2
(γ) depend on the anisotropy γ as

Xm1,m2

n1,n2
(γ) =

1

4

(

1− γ

2π

)

(n1 − n2)
2 +

1

4

(

1− γ

2π

)−1
(m1 −m2)

2

+
1

4

( γ

2π

)

(n1 + n2)
2 +

1

4

(

2π

γ

)

(m1 +m2)
2 .

(5.10)

In (5.10) the integers n1 and n2 are related to the number of roots at each level of the Bethe

equations by N1 = L−n1 and N2 = L−n2. Therefore (n1±n2)/2 are associated to the conserved

U(1) spin s3 and charge b of the model: the scaling dimensions (5.10) exhibit exact spin charge

separation in the low energy effective theory. The corresponding excitations of the model are free

bosons with compactification radii R2
s ∼ γ/2π and R2

h ∼ (1 − γ/2π), usually denominated spinon

and holon modes.1 The indices m1 (m2) are related to macroscopic momentum of the excitation

due to backscattering processes on the first (second) level of the Bethe ansatz and they are usually

called vortex excitations. As a consequence of (5.3) they take integer (half-odd integer) values

depending on the parity of N1 + N2 leading to the following constraint connecting spinon and

vortex numbers:

• for n1 ± n2 odd → m1,m2 = 0,±1,±2, . . .

• for n1 ± n2 even → m1,m2 = ±1

2
,±3

2
,±5

2
, . . . .

(5.11)

Let us now investigate the validity of the formulae (5.10) for the conformal dimensions together

with the selection rule (5.11). In order to do that we have solved the Bethe ansatz equations for a

1 A similar observation has been made in one of the critical phases of a Temperley Lieb model with staggered spectral

parameters where the effective field theory consists of a compact boson and two Majorana fermions [43]. In this

model, however, the low energy degrees of freedom cannot be related to U(1) charges of the microscopic model.
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TABLE III. Finite size sequences 5.12 of the anomalous dimension X0,0
1,0 (γ) for γ = π/6, π/3, π/2, 2π/3

from the Bethe ansatz. The expected exact conformal dimension is X0,0
1,0 (γ) =

1
4 .

X0,0
1,0 (γ)

π

6
π

3
π

2
2π
3

4 0.20487467 0.23017601 0.24810873 0.24554137

8 0.23375071 0.24621304 0.24978827 0.24940359

12 0.24319443 0.24843089 0.24992216 0.24976865

16 0.24643218 0.24913601 0.24995927 0.24987579

20 0.24780188 0.24945223 0.24997482 0.24992223

24 0.24850243 0.24962151 0.24998285 0.24994660

28 0.24891117 0.24972275 0.24998754 0.24996104

32 0.24917161 0.24978814 0.24999053 0.24997031

Extrap. 0.2503(2) 0.250003(1) 0.250002(2) 0.250001(2)

Exact 0.25 0.25 0.25 0.25

number of low-lying states up to L = 32. From the numerical data we compute the sequence

X(L) =
L

2πṽF
(E(L, γ) − Lẽ∞) +

1

6
(5.12)

which in the thermodynamic limit is expected to extrapolate to the dimensions (5.10).

In Table III we show the finite-size sequences (5.12) for the ground state E0(L, γ) in the case

of various values of γ. The extrapolated value of the corresponding conformal dimension turns out

to be independent of the anisotropy γ whose value is in good accordance with the one predicted

by Eq. (5.10) for X0,0
1,0 (γ) = X0,0

0,1 (γ) ≡ 1
4 . From this result we find that the ground state energy

scales as

E0(L, γ)− Lẽ∞ =
πvF
6L

+ o
(

L−1
)

, (5.13)

which leads us to conclude that the continuum limit of the superspin chain in the disordered

ferromagnetic regime should be described by a conformally invariant theory with central charge

c = −1. The respective anomalous dimensions X̄m1,m2

n1,n2
(γ) of the theory have to be measured from

the ground state (5.13) and therefore they should be given by,

X̄m1,m2

n1,n2
(γ) = Xm1,m2

n1,n2
(γ)− 1

4
. (5.14)

We have also analyzed the corrections to scaling due to the presence of irrelevant operators in the

lattice Hamiltonian [44]. For all values of γ we found the leading corrections to the finite size

estimate (5.12) for X0,0
0,1 (γ) to be of order L−2 arising from the conformal block of the identity

operator which explains the good convergence of the extrapolation.
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TABLE IV. Finite size sequences 5.12 of the anomalous dimension X
1

2
,−

1

2

0,0 (γ) for γ = π/6, π/3, π/2, 2π/3

from the Bethe ansatz. The expected exact conformal dimension is X
1

2
,−

1

2

0,0 (γ) = π/(4π − 2γ).

X
1

2
,−

1

2

0,0 (γ) π

6
π

3
π

2
2π
3

4 0.23109569 0.28352514 0.33170562 0.36094436

8 0.25745093 0.29695955 0.33325340 0.37254539

12 0.26633674 0.29875319 0.33331810 0.37397623

16 0.26938340 0.29931576 0.33332857 0.37443588

20 0.27066931 0.29956684 0.33333139 0.37464230

24 0.27132594 0.29970094 0.33333245 0.37475283

28 0.27170870 0.29978104 0.33333283 0.37481895

32 0.27211767 0.29983274 0.33333303 0.37486165

Extrap. 0.27273(2) 0.300004(2) 0.3333332(2) 0.375001(2)

Exact 0.272727 . . . 0.3 0.333333 · · · 0.375

We now turn our attention to the excited states in order to bring extra support to the proposal

(5.10), (5.11). The first excitation above the ground state (5.13) occurs in the sector n1 = n2 = 0.

Our analysis of the L = 3 system (see Table II) indicates that among the corresponding Bethe

roots there is a pair of rapidities (λ(1), λ(2)) which takes values (±∞,∓∞). The presence of such

infinities leads to an effective scattering phase shift of exp[±iγ] for the remaining roots. Due to

this peculiarity we shall present explicitly the form of the Bethe equations for the finite roots

LΦ(µ
(1)
j , γ − π) = 2πQ

(1)
j + γ +

L−2
∑

k=1

Φ(µ
(1)
j − µ

(2)
k , γ) , j = 1, . . . , L− 1

LΦ(µ
(2)
j , γ − π) = 2πQ

(2)
j − γ +

L−1
∑

k=1

Φ(µ
(2)
j − µ

(1)
k , γ) , j = 1, . . . , L− 1 .

(5.15)

For this state the numbers Q
(a)
j are given by

Q
(1)
j =

L+ 1

2
− j, j = 1, . . . , L− 1 ,

Q
(2)
j = −L+ 1

2
+ j, j = 1, . . . , L− 1 .

(5.16)

In table (IV) we present the finite-size estimates associated to the state described by Eqs. (5.15)

with (5.16). We observe that the the extrapolated values agree with the proposal (5.10), (5.11)

which predicts that the lowest conformal dimension is X̄
1

2
,− 1

2

0,0 (γ) = γ
4(2π−γ) .

In Tables V-VIII we present the finite-size sequences for several low-lying excitations in other

sectors. We observe that the extrapolated values corroborate the result predicted by (5.10).
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TABLE V. Finite size sequences 5.12 of the anomalous dimension X
1

2
,−

1

2

1,1 (γ) for γ = π/6, π/3, π/2, 2π/3

from the Bethe ansatz. The expected exact conformal dimension is X
1

2
,−

1

2

1,1 (γ) = γ

2π + π

2(2π−γ) .

X
1

2
,−

1

2

1,1 (γ) π

6
π

3
π

2
2π
3

4 0.31054918 0.44669719 0.58683657 0.74133601

8 0.33974964 0.46283122 0.58433551 0.71638581

12 0.34923933 0.46507338 0.58378663 0.71189057

16 0.35248317 0.46578873 0.58358979 0.71032924

20 0.35385561 0.46610987 0.58349789 0.70960905

24 0.35455798 0.46628188 0.58344777 0.70921857

28 0.35496794 0.46638478 0.58341748 0.70898230

32 0.35522923 0.46645125 0.58339779 0.70883087

Extrap. 0.35603(2) 0.466665(2) 0.5833334(1) 0.708332(2)

Exact 0.356060 . . . 0.466666 · · · 0.583333 · · · 0.708333 · · ·

TABLE VI. Finite size sequences 5.12 of the anomalous dimension X0,0
1,2 (γ) for γ = π/6, π/3, π/2, 2π/3

from the Bethe ansatz. The expected exact conformal dimension is X0,0
1,2 (γ) =

1
4 + γ/π

X0,0
1,2 (γ)

π

6
π

3
π

2
2π
3

4 0.36660004 0.56006032 0.75496874 0.95242531

8 0.39901997 0.57907838 0.75200345 0.92788809

12 0.40929983 0.58158419 0.75094335 0.92183973

16 0.41280124 0.58237304 0.75054074 0.91961495

20 0.41428312 0.58272535 0.75034904 0.91856536

24 0.41504200 0.58291356 0.75024350 0.91798979

28 0.41548512 0.58302599 0.75017939 0.91764084

32 0.41576759 0.583098552 0.75013758 0.91741358

Extrap. 0.4166(2) 0.583332(1) 0.750001(2) 0.916662(2)

Exact 0.41666 · · · 0.58333 · · · 0.75 0.91666 · · ·

Of rather special nature is the state considered in Table VIII: this is the lowest excitation from

the XXZ spin-1 part of the spectrum. As in the antiferromagnetic regime the finite size scaling of

these states can be deducted using the spectral relation (3.8). Using the same reasoning as above

the scaling dimensions X̃n,m(γ) of the spin-1 chain in the ferromagnetically disordered regime,

Eq. (3.16), should appear doubled in the spectrum of scaling dimensions of the superspin chain.

Comparison with (5.10) shows that this is indeed true (remember that m in (3.16) takes half-odd
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TABLE VII. Finite size sequences 5.12 of the anomalous dimension X1,−1
1,0 (γ) for γ = π/6, π/3, π/2, 2π/3

from the Bethe ansatz. The expected exact conformal dimension is X1,−1
1,0 (γ) = 1

4 + 2π
(2π−γ) .

X1,−1
1,0 (γ) π

6
π

3
π

2
2π
3

4 2.78965545 1.76360998 1.5577620 1.59077025

8 1.99919576 1.58255107 1.5863263 1.70990754

12 1.69307777 1.51547069 1.5856105 1.73214654

16 1.55596049 1.48826402 1.5848095 1.73994982

20 1.48454418 1.47493397 1.5843369 1.74356556

24 1.44315270 1.46748697 1.5840527 1.74553075

28 1.41720088 1.46292463 1.5838718 1.74671607

32 1.39992651 1.45993403 1.5837506 1.7474855

Extrap. 1.3404(3) 1.45003(1) 1.5834(2) 1.75002(1)

Exact 1.340909 · · · 1.45 1.58333 · · · 1.75

TABLE VIII. Finite size sequences 5.12 of the anomalous dimension X
1

2
,
1

2

0,0 (γ) for γ = 2π/7, 2π/5, 2π/3,

5π/6 from the Bethe ansatz. The expected exact conformal dimension is X
1

2
,
1

2

0,0 (γ) = π

2γ .

X
1

2
,
1

2

0,0 (γ) 2π
7

2π
5

2π
3

5π
6

4 1.84589078 1.29492470 0.75018486 0.54556892

8 1.76868129 1.25924483 0.75002911 0.58757296

12 1.75782587 1.25398066 0.75001177 0.59492733

16 1.75432209 1.25248723 0.75000640 0.59722733

20 1.75274406 1.25141093 0.75000403 0.59824616

24 1.75189751 1.25097723 0.75000277 0.59878935

28 1.75139056 1.25071683 0.75000203 0.59911369

32 1.75106290 1.25054825 0.75000154 0.59932298

Extrap. 1.75002(2) 1.25003(1) 0.7500002(3) 0.600003(1)

Exact 1.75 1.25 0.75 0.6

integer values for twist ϕ = π):

Xm,m
n,n = 2X̃n,m = n2 γ

2π
+m2 2π

γ
(5.17)

is exactly the pure spinon part of the low energy spectrum of the mixed superspin chain.

As an example, we have computed the finite size sequences (5.12) for the dimension X
1

2
, 1
2

0,0 (γ) =

π
γ . This is the state discussed at the end of Section IIIB: its root configuration changes at γ = π/k,

k = 2, 3, . . . evolving into single narrow string of L roots on both levels of the Bethe ansatz for
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γ < π/L.

In the isotropic limit, γ → 0, this state is an sl(2|1)-descendent of the (completely polarized)

reference state of the superspin chain with charges (b, s3) = (0, L) and lies outside of the low energy

part of the spectrum. Unlike the XXZ spin-1 chain the superspin chain remains conformal in the

isotropic limit of the disordered ferromagnetic regime: the holon sector, i.e. states from (5.9), (5.10)

with m1 = −m2, remains conformal for γ = 0. Taking into account (5.11) their scaling dimensions

are

Xm1,−m1

n1,n2
(0) =











1
4 (2n + 1)2 +m2 if n1 − n2 = 2n+ 1 and m1 = m,

n2 + 1
4 (2m+ 1)2 if n1 − n2 = 2n and m1 = m+ 1

2

(5.18)

with integer m. These are the conformal dimensions of the isotropic osp(2|2) spin chain [5, 10, 11].

We have also studied the finite size scaling behaviour of several states with configurations which,

apart from (1,−) strings, contain real roots and inifinite roots on one or both levels (the existence

of such configurations in the low energy sector of the ferromagnetic regime is indicated by our small

system analysis, see e.g. Table II). In all cases we have considered these levels corresponded to

descendents of the primary conformal fields identified before, i.e. with scaling dimensions X̄m1,m2

n1,n2
+n

with integer n.

VI. CONCLUSION

In this paper we have studied an integrable Uq[sl(2|1)] vertex model built from alternating

fundamental and dual three-dimensional representations first introduced by Gade [8]. Based on its

solution by means of the algebraic Bethe ansatz we have computed the properties of this model

in the thermodynamic limit and analyzed the finite size scaling of the low energy spectrum. From

the latter we conclude that the critical point with central charge c = 0 of the undeformed model

identified before [4] is stable against variation of the anisotropy γ: as long as γ ∈ [0, π/2) the

ground state energy vanishes exactly without any finite size effects. In the continuum limit we

find that the model displays a continuous spectrum of exponents in the sector with Uq[sl(2|1)]-
charge b = 0. As in the isotropic sl(2|1) superspin chain the lower edges (4.4) of the continua can

be identified with the scaling dimensions in an antiperiodically twisted spin-1 chain, in this case

the Fateev-Zamolodchikov model. The continuous part of the conformal spectrum leads to a fine

structure (4.6) in the spectrum of the large but finite superspin chain. This fine structure can

be explained as signature of the presence of a non-compact degree of freedom in the continuum
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theory with coupling constant renormalized to an intermediate scale of the order of the length L

of the superspin chain. The γ-dependence of the coupling constant has been identified based on

our numerical solution of the Bethe equations. At γ = π/2 a level crossing occurs changing the

ground state and leading to an effective central charge taking values 0 ≤ ceff(γ) < 3 depending on

the deformation parameter γ ∈ [π/2, π). Again, this critical behaviour mirrors that of the XXZ

spin-1 chain of odd length L in the antiferromagnetically disordered regime subject to antiperiodic

twisted boundary conditions.

The spectrum in the ferromagnetic regime π < γ ≤ 2π (or, equivalently, that of the chain

with opposite sign of the exchange constant for anisotropies γ̃ = 2π − γ) of the superspin chain

is completely different: our finite size scaling analysis indicates that it is the same as for the

Uq[osp(2|2)] spin chain with central charge c = −1. It displays separation of spin and charge

degrees of freedom in the low energy excitations with the spin part of the spectrum turning non-

relativistic as γ → 2π. Unlike in the antiferromagnetic regime there are no signs of a non-compact

degree of freedom in the continuum limit: the zero charge sector of the low energy spectrum can

be identified exactly with that of the Fateev-Zamolodchikov model in its disordered ferromagnetic

phase.

In summary we have presented a comprehensive study of the critical properties of the mixed

Uq[sl(2|1)] superspin chain. The appearance of non-compact degrees of freedom in the continuum

limit of such lattice models has been shown to be stable against deformation although it is limited

to the antiferromagnetic regime of the model. As for the staggered six-vertex model studied in

Ref. 6 our computation of the corresponding coupling constant (4.9) relies on the numerical solution

of the Bethe equations and its derivation within an analytical approach remains an open problem.

More general phases can be expected to be found when one considers mixed chains based on

higher-dimensional representations of the superalgebra (and its deformation). We note, however,

that already in the corresponding XXZ spin-S chains this leads to a growing number of phases

(unitary and even non-unitary) as the deformation parameter is varied [26, 27, 32, 45].
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