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Abstract

The standard model of online prediction deals with serial processing of inputs by a single
processor. However, in large-scale online prediction problems, where inputs arrive at a high rate,
an increasingly common necessity is to distribute the computation across several processors. A
non-trivial challenge is to design distributed algorithms for online prediction, which maintain
good regret guarantees. In [4], we presented the DMB algorithm, which is a generic framework
to convert any serial gradient-based online prediction algorithm into a distributed algorithm.
Moreover, its regret guarantee is asymptotically optimal for smooth convex loss functions and
stochastic inputs. On the flip side, it is fragile to many types of failures that are common in
distributed environments. In this companion paper, we present variants of the DMB algorithm,
which are resilient to many types of network failures, and tolerant to varying performance of
the computing nodes.

1 Introduction

In online prediction problems, one needs to provide predictions over a stream of inputs, while
attempting to learn from the data and improve the predictions. Unlike offline settings, where
the learning phase over a training set is decoupled from the testing phase, here the two are
intertwined, and we cannot afford to slow down.

The standard models of online prediction consider a serial setting, where the inputs arrive
one by one, and are processed by a single processor. However, in large-scale applications,
such as search engines and cloud computing, the rate at which inputs arrive may necessitate
distributing the computation across multiple cores or cluster nodes. A non-trivial challenge is
to design distributed algorithms for online prediction, which maintain regret guarantees as close
as possible to the serial case (that is, the ideal case where we would have been able to process
all inputs using a single, sufficiently fast processor).

In [4], we presented the DMB algorithm, which is a template that allows to convert any serial
online learning algorithm into a distributed algorithm. For a wide class of such algorithms, [4]
showed that when the loss function is smooth and the inputs are stochastic, then the DMB
algorithm is asymptotically optimal. Specifically, the regret guarantee of the DMB algorithm
will be identical in its leading term to the regret guarantee of the serial algorithm, including
the constants. Also, the algorithm can be easily adapted to stochastic optimization problems,
with an asymptotically optimal speedup in the convergence rate, by using a distributed system
as opposed to a single processor.

However, the DMB algorithm makes several assumption that may not be realistic in all
distributed settings. These assumptions are:

• All nodes work at the same rate.

• All nodes are working properly throughout the execution of the algorithm.
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• The network connecting the nodes is stable during the execution of the algorithm.

These assumptions are not always realistic. Consider for example a multi-core CPU. While
the last two assumptions are reasonable in this environment, the first one is invalid since other
processes running on the same CPU may cause occasional delays on some cores (e.g., [7]). In
massively distributed, geographically dispersed systems, all three assumptions may fail to hold.

In this companion paper to [4], we focus on adding robustness to the DMB algorithm,
and present two methods to achieve this goal. In Sec. 3 we present ways in which the DMB
algorithm can be made robust using a master-workers architecture, and relying on the robustness
of off-the-shelf methods such as leader election algorithms or databases. In Sec. 4, we present an
asynchronous version of the DMB algorithm that is robust with a fully decentralized architecture.

2 Background

We begin by providing a brief background on the setting and the DMB algorithm. The back-
ground is deliberately terse, and we refer the reader to [4] for the full details.

We assume that we observe a stream of inputs z1, z2, . . ., where each zi is sampled inde-
pendently from a fixed unknown distribution over a sample space Z. Before observing each
zi, we predict a point wi from a convex set W . After making the prediction wi, we observe zi
and suffer the loss f(wi, zi), where f is a predefined loss function, assumed to be convex in its
first argument. We may now use zi to improve our prediction mechanism for the future (e.g.,
using a stochastic gradient method). The goal is to accumulate the smallest possible loss as we
process the sequence of inputs. More specifically, we measure the quality of our predictions on
m examples using the notion of regret, defined as

R(m) =
m
∑

i=1

(f(wi, zi)− f(w⋆, zi)) ,

where w⋆ = argminw∈W Ez [f(w, z)]. Note that the regret R(m)is a random variable, since it
depends on m stochastic inputs. For simplicity, we will focus on bounding the expected regret.

We model our distributed computing system as a set of nodes, each of which is an independent
processor, and a network that enables the nodes to communicate with each other. Each node
receives an incoming stream of examples from an outside source, such as a load balancer/splitter.
As in the real world, we assume that the network has a limited bandwidth, so the nodes cannot
simply share all of their information, and that messages sent over the network incur a non-
negligible latency.

The ideal (but unrealistic) solution to this online prediction problem is to run a standard
serial algorithm on a single “super” processor that is sufficiently fast to handle the stream of
examples. This solution is optimal, simply because any distributed algorithm can be simulated
on a fast-enough single processor. The optimal regret that can be achieved by such serial
algorithms on m inputs is O(

√
m). However, when we choose to distribute the computation,

the regret performance might degrade, as the communication between the nodes is limited.
Straightforward approaches, as well as previous approaches in the literature, all yield regret
bounds which are at best O(

√
km), where k is the number of nodes in the system. Thus, the

regret degrades rapidly as more nodes are utilized.
In [4], we present the DMB algorithm, which has the following two important properties:

• It can use a wide class of gradient-based update rule for serial online prediction as a black
box, and convert it into a parallel or distributed online prediction algorithm. These serial
online algorithms include (Euclidean) gradient descent, mirror descent, and dual averaging.

• If the loss function f(w, z) is smooth in w (namely, its gradient is Lipschitz), then the
DMB algorithm attains an asymptotically optimal regret bound of O(

√
m). Moreover,
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the coefficient of the dominant term
√
m is the same as in the serial bound, which is

independent of k and of the network topology.

The DMB algorithm is based on a theoretical observation that, for smooth loss functions,
one can prove regret bounds for serial gradient-based algorithms that depend on the variance
of the stochastic gradients. To simplify discussions, we use ψ(σ2,m) to denote such variance
bounds for predicting m inputs, where σ2 satisfies

∀w ∈ W, Ez

[

∥

∥∇wf(w, z)−∇wEzf(w, z)]
∥

∥

2
]

≤ σ2 .

For example, we show in [4] that for both mirror-descent (including classical gradient descent)
and dual averaging methods, the expected regret bounds take the form

ψ(m,σ2) = 2D2L+ 2Dσ
√
m,

where L is the Lipschitz parameter of the loss gradient ∇wf(w, z), and D quantifies the size
of the set W from which the predictors are chosen. As a result, it can be shown that applying
a serial gradient-based algorithm on averages of gradients, computed on independent examples
with the same predictor w, will reduce the variance in the resulting regret bound.

In a nutshell, the DMB algorithm uses the distributed network in order to rapidly accumulate
gradients with respect to the same fixed predictor w. Once a mini-batch of sufficiently many
gradients are accumulated (parameterized by b), the nodes collectively perform a vector-sum
operation, which allows each node to obtain the average of these b gradients. This average is
then used to update their predictor, using some gradient-based online update rule as a black
box. Note that the algorithm is inherently synchronous, as all nodes must use the same predictor
and perform the averaging computations and updates at the same time. A detailed pseudo-code
and additional details appear in [4].

The regret analysis for this algorithm is based on a parameter µ, which bounds the number
of inputs processed by the system during the vector-sum operation. The gradients for these µ
inputs are not used for updating the predictor. While µ depends on the network structure and
communication latencies, it does not scale with the total number of examples m processed by
the system. Formally, the regret guarantee is as follows:

Theorem 1. Let f be an L-smooth convex loss function and assume that the stochastic gradient
∇wf(w, zi) has σ

2-bounded variance for all w ∈ W . If the online update rule used by the DMB
algorithm has the serial regret bound ψ(σ2,m), then the expected regret of the DMB algorithm
over m examples is at most

(b + µ)ψ

(

σ2

b
,

⌈

m

b+ µ

⌉)

.

Specifically, if ψ(σ2,m) = 2D2L + 2Dσ
√
m, and the batch size is chosen to be b = mρ for any

ρ ∈ (0, 1/2), the expected regret is 2Dσ
√
m+ o(

√
m).

Note that for serial regret bounds of the form 2D2L + 2Dσ
√
m, we indeed get an identical

leading term in the regret bound for the DMB algorithm, implying its asymptotic optimality.

3 Robust Learning with a Master-Workers Architecture

The DMB algorithm presented in [4] assumes that all nodes are making similar progress. How-
ever, even in homogeneous systems, which are designed to support synchronous programs, this
is hard to achieve (e.g., [7]), let alone grid environments in which each node may have different
capabilities. In this section, we present a variant of the DMB algorithm that adds the following
properties:
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Algorithm 1: MaWo-DMB worker algorithm.

initialize w
j = 1
count = 0
ĝ = 0
while not end of data do

if master message m = (w, j) and m.j > j then

w := m.w
j := m.j
ĝ := 0
count := 0

end

if did not send message for the past t time–units and count > 0 then

send the message (ĝ, count, j) to the master
ĝ := 0
count := 0

end

predict w
receive input z and suffer loss f(w, z)
compute gradient ∇wf(w, z)
ĝ := ĝ +∇wf(w, z)
count := count + 1

end

• It performs on heterogeneous clusters, whose nodes may have varying processing rates.

• It can handle dynamic network latencies.

• It supports randomized update rules.

• It can be made robust using standard fault tolerance techniques.

To provide these properties, we convert the DMB algorithm to work with a single master
and multiple workers. Each of the workers receives inputs and processes them at its own
pace. Periodically, the worker sends the information it collected, i.e., the sum of gradients,
to the master. Once the master has collected sufficiently many gradients, it performs an update
and broadcasts the new predictor to the workers. We call this algorithm the master-worker
distributed mini-batches (MaWo-DMB) algorithm. For a detailed description of the algorithm,
see Algorithm 1 for the worker algorithm and Algorithm 2 for the master algorithm.

This algorithm uses a slightly different communication protocol than the DMB algorithm.
We assume that the network supports two operations:

1. Broadcast master → workers: the master sends updates to the workers.

2. Message worker → master: periodically, each worker sends a message to the master with
the sum of gradients it has collected so far.

One possible method to implement these services is via a database. Using a database, each
worker can update the gradients it collected on the database, and check for updates from the
master. At the same time, the master can check periodically to see if sufficiently many gradients
have accumulated in the database. When there are at least b gradients accumulated, the master
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Algorithm 2: MaWo-DMB master algorithm.

j = 1
count = 0
ĝ = 0
while not end of data do

receive message m = (ĝ, count, j) from a worker
if m.j = j then

ĝ := ĝ +m.ĝ
count := count + m.count
if count ≥ b then

ḡj := ĝ

count

use ḡj to compute updated predictor wj+1

j := j + 1
count := 0
ĝ := 0
broadcast (wj ,j)

end

end

end

performs an update and posts the result in a designated place in the database. This method
provides nice robustness features to the algorithm, as discussed in Sec. 3.2.

3.1 Properties of the MaWo-DMB algorithm

The MaWo-DMB algorithm shares a similar asymptotic behavior as the DMB algorithm (e.g.
as discussed in Thm. 1). The proof for the DMB algorithm applies to this algorithm as well.
To get the optimal rate, we only need to bound the number µ of inputs whose gradient is not
used in the computation of the next prediction point. A coarse bound on this number can be
given as follows: Let M be the maximal number of inputs per time–unit. Let T be the time
difference between messages sent from each worker to the master, let τu be the time it takes
the master to perform an update, and let τc be the maximal time it takes to send a message
between two points in the network. Using this notation, the number of inputs dropped in each
update is at most M(T + 2τc + τu). Specifically, let t be the time when the master encounters
the b’th gradient. Inputs that were processed before time t−T −τc were received by the master.
Moreover, at time t + τu + τc all of the workers have already received the updated prediction
point. Therefore, only inputs that were processed between t− T − τc and t+ τu + τc might be
dropped. Clearly, there are at most M(T + 2τc + τu) such inputs.

While asymptotically the MaWo-DMB algorithm exhibits the same performance as the DMB
algorithm, it does have some additional features. First, it allows workers of different abilities
to be used. Indeed, if some workers can process more inputs than other workers, the algorithm
can compensate for that. Moreover, the algorithm does not assume that the number of inputs
each worker handles is fixed in time. Furthermore, workers can be added and removed during
the execution of the algorithm.

The DMB algorithm assumes that the update rule is deterministic. This is essential since
each node computes the update, and it is assumed that they reach the same result. However,
in the MaWo-DMB algorithm, only the master calculates the update and sends it to the rest of
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the nodes, therefore, the nodes all share the same point even if the update rule is randomized.

3.2 Adding Fault Tolerance to the MaWo-DMB algorithm

The MaWo-DMB algorithm is not sensitive to the stability of the workers. Indeed, workers may
be added and removed during the execution of the algorithm. However, if the master fails, the
algorithm stops making updates. This is a standard problem in master-worker environments. It
can be solved using leader election algorithms such as the algorithm of [5]. If the workers do not
receive any signal from the master for a long period of time, they start a process by which they
elect a new leader (master). [6] proposed a leader election algorithm for ad-hoc networks. The
advantage of this kind of algorithm for our setting is that it can manage dynamic networks where
the network can be partitioned and reconnected. Therefore, if the network becomes partitioned,
each connected component will have its own master.

Another way to introduce robustness to the MaWo-DMB algorithm is by selecting the master
only when an update step is to be made. Assume that there is a central database and all workers
update it. Every T time–units, each worker performs the following

1. lock the record in the database

2. add the gradients computed to the sum of gradients reported in the database

3. add the number of gradients to the count of the gradients reported in the database

At this point, the worker checks if the count of gradients exceeds b. If it does not, the worker
releases the lock and returns to processing inputs. However, if the number of gradients does
exceed b, the worker performs the update and broadcasts the new prediction point (using the
database) before unlocking the database and becoming a worker again.

This simple modification we just described creates a distributed master such that any node
in the system can be removed without significantly affecting the progress of the algorithm. In a
sense, we are leveraging the reliability of the database system (see e.g., [1, 2, 3]) to convert our
algorithm into a fault tolerant algorithm.

4 Robust Learning with a Decentralized Architecture

In the previous section, we discussed asynchronous algorithms based on a master-workers
paradigm. Using off-the-shelf fault tolerance methods, one can design simple and robust vari-
ants, capable of coping with dynamic and heterogeneous networks.

That being said, this kind of approach also has some limitations. First of all, access to a
shared database may not be feasible, particularly in massively distributed environments. Second,
utilizing leader election algorithms is potentially wasteful, since by the time a new master
is elected, some workers or local worker groups might have already accumulated more than
enough gradients to perform a gradient update. Moreover, what we really need is in fact more
complex than just electing a random node as a master: electing a computationally weak or
communication-constrained node will have severe repercussions. Also, unless the communication
network is fully connected, we will need to form an entire DAG (directed acyclic graph) to relay
gradients from the workers to the elected master. While both issues have been studied in the
literature, it complicates the algorithms and increases the time required for the election process,
again leading to potential waste. In terms of performance guarantees, it is hard to come up
with explicit time guarantees for these algorithms, and hence the effect on the regret incurred
by the system is unclear.

In this section, we describe a robust, fully decentralized and asynchronous version of DMB,
which is not based on a master-worker paradigm. We call this algorithm asynchronous DMB,
or ADMB for brevity. We provide a formal analysis, including an explicit regret guarantee, and
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show that ADMB shares the advantages of DMB in terms of dependence on network size and
communication latency.

4.1 Description of the ADMB Algorithm

We assume that communication between nodes takes place along some bounded-degree acyclic
graph. In addition, each node has a unique numerical index. We will generally use i to denote
a given node’s index, and let j denote the index of some neighboring node.

Informally, the algorithm works as follows: each node i receives examples, accumulates
gradients with respect to its current predictor (which we shall denote as wi), and uses batches
of b such gradients to update the predictor. Note that unlike the MaWo-DMB algorithm, here
there is no centralized master node responsible for performing the update. Also, for technical
reasons, the prediction themselves are not made with the current predictor wi, but rather with
a running average w̄i of predictors computed so far.

Each node occasionally sends its current predictor and accumulated gradients to its neigh-
boring nodes. Given a message from a node j, the receiving node i compares its state to the
state of node j. If wi = wj , then both nodes have been accumulating gradients with respect to
the same predictor. Thus, node i can use these gradients to update its own predictor wi, so it
stores these gradients. Later on, these gradients are sent in turn to node i’s neighbors, and so
on. Each node keeps track of which gradients came from which neighboring nodes, and ensures
that no gradient is ever sent back to the node from which it came. This allows for the gradients
to propagate throughout the network.

An additional twist is that in the ADMB algorithm, we no longer insist on all nodes sharing
the exact same predictor at any given time point. Of course, this can lead to each node using a
different predictor, so no node will be able to use the gradients of any other node, and the system
will behave as if the nodes all run in isolation. To prevent this, we add a mechanism, which
ensures that if a node i receives from a neighbor node j a “better” predictor than its current one,
it will switch to using node j’s predictor. By “better”, we mean one of two things: either wj was
obtained based on more predictor updates, or j < i. In the former case, wj , w̄j should indeed be
better, since they are based on more updates. In the latter case, there is no real reason to prefer
one or the other, but we use an order of precedence between the nodes to determine who should
synchronize with whom. With this mechanism, the predictor with the most gradient updates is
propagated quickly throughout the system, so either everyone starts working with this predictor
and share gradients, or an even better predictor is obtained somewhere in the system, and is
then quickly propagated in turn - a win-win situation.

We now turn to describe the algorithm formally. The algorithm has two global parameters:

• b: As in the DMB algorithm, b is the number of gradients whose average is used to update
the predictor.

• t: This parameter regulates the communication rate between the nodes. Each node i will
send message to its neighbor every t time–units.

Each node i maintains the following data structures:

• A node state Si = (wi, w̄i, vi), where

– wi is the current predictor.

– w̄i is the running average of predictors actually used for prediction.

– vi counts how many predictors are averaged in w̄i. This is also the number of updates
performed according to the online update rule, in order to obtain wi.

• A vector gi and associated counter ci, which hold the sum of gradients computed from
inputs serviced by node i.
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• For each neighboring node j, a vector gji and associated counter cji , which hold the sum of
gradients received from node j.

When a node i is initialized, all the variables discussed above are set to zero, The node then
begins the execution of the algorithm. The protocol is composed of executing three event-driven
functions: the first function (Algorithm 3 below) is executed when a new request for prediction
arrives, and handles the processing of that example. The second function (Algorithm 4) is
executed every t time–units, and sends messages to the node’s neighbors. The third function
(Algorithm 5) is executed when a message arrives from a neighboring node. Also, the functions
use a subroutine update predictor (Algorithm 6) to update the node’s predictor if needed.
For simplicity, we will assume that each of those three functions is executed atomically (namely,
only one of the function runs at any given time). While this assumption can be easily relaxed, it
allows us to avoid a tedious discussion of shared resource synchronization between the functions.

Algorithm 3: ADMB Algorithm: Handling a new request

Predict using w̄i

Receive input z, suffer loss and compute gradient ∇wf(wi, z)
gi := gi +∇wf(wi, z) , ci := ci + 1

if ci +
∑

j c
j

i ≥ b then

update predictor

end

Algorithm 4: ADMB Algorithm: Sending Messages (Every t Time–Units)

For each neighboring node j′, send message
(

i, Si, gi +
∑

j 6=j′ g
j
i , ci +

∑

j 6=j′ c
j
i

)

Algorithm 5: ADMB Algorithm: Processing Incoming Message

Let (j, Sj , g, c) be the received message
if Sj .vj > vi or (Sj.vj = vi and Sj.wj 6= wi and j < i) then

Si := Sj , gi := 0 , ci := 0

∀j gji := g , cji := c

else

if Sj.wj = wi then

gji = g , cji = c

if ci +
∑

j c
j

i ≥ b then

update predictor

end

end

end

It is not hard to verify that due to the acyclic structure of the network, no single gradient
is ever propagated to the same node twice. Thus, the algorithm indeed works correctly, in the
sense that the updates are always performed based on independent gradients. Moreover, the
algorithm is well-behaved in terms of traffic volume over the network, since any communication
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Algorithm 6: update predictor Subroutine

use averaged gradient
gi+

∑
j g

j

i

ci+
∑

j c
j

i

to compute updated predictor wi

w̄i := vi
vi+1

w̄i +
1

vi+1
wi

vi := vi + 1 , gi := 0 , ci := 0

∀j gji := 0 , cji := 0

link from node i to node j passes at most 1 message every t time–units, where t is a tunable
parameter.

As with the MaWo-DMB algorithm, the ADMB algorithm has some desirable robustness
properties, such as heterogeneous nodes and adding/removing new nodes, and communication
latencies. Moreover, it is robust to network failures: even if the the network is split into two (or
more) partitions, it only means we end up with two (or more) networks which implement the
algorithm in isolation. The system can continue to run and its output will remain valid, although
the predictor update rate will become somewhat slower, until the failed node is replaced. Note
that unlike the MaWo-DMB algorithm, there is no need to wait until a master node is elected.

4.2 Analysis

We now turn to discuss the regret performance of the algorithm. Before we begin, it is important
to understand what kind of guarantees are possible in such a setting. In particular, it is not
possible to provide a total regret bound over all the examples fed to the system, since we have
not specified what happens to the examples which were sent to malfunctioning nodes - whether
they were dropped, rerouted to a different node and so on. Moreover, even if nodes behave
properly in terms of processing incoming examples, the performance of components such as
interaction with neighboring nodes might vary over time in complex ways, which are hard to
model precisely.

Instead, we will isolate a set of “well-behaved” nodes, and focus on the regret incurred on the
examples sent to these nodes. The underlying assumption is that the system is mostly functional
for most of the time, so the large majority of examples are processed by such well-behaved nodes.
The analysis will focus on obtaining regret bounds over these examples.

To that end, let us focus on a particular set of k′ nodes, which form a connected component
of the communication framework, with diameter d′. We will define the nodes as good, if all those
nodes implement the ADMB algorithm at a reasonably fast rate. More precisely, we will require
the following from each of the k′ nodes:

• Executing each of the three functions defining the ADMB algorithm takes at most one
time–unit.

• The communication latency between two adjacent nodes is at most one time–unit.

• The k′ nodes receive at most M examples every time–unit.

As to other nodes, we only assume that the messages they send to the good nodes reflect a
correct node state, as specified earlier. In particular, they may be arbitrarily slow or even
completely unresponsive.

First, we show that when the nodes are good, up-to-date predictors from any single node
will be rapidly propagated to all the other nodes. This shows that the system has good recovery
properties (e.g. after most nodes fail).

Lemma 1. Assume that at some time point, the k′ nodes are good, and at least one of them has
a predictor based on at least v updates. If the nodes remain good for at least (t+2)d′ time–units,
then all nodes will have a predictor based on at least v updates.
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Proof. Let i be the node with the predictor having at least v updates. Counting from the time
point defined in the lemma, at most t + 2 time–units will elapse until all of node i’s neighbors
will receive a message from node i with its predictor, and either switch to this predictor (and
then will have a predictor with v updates), or remain with the same predictor (and this can
only happen if its predictor was already based on v updates). In any case, during the next t+2
time–units, each of those neighboring nodes will send a message to its own neighbors, and so
on. Since the distance between any two nodes is at most d′, the result follows.

The next result shows that when all nodes are good and have a predictor based on at least
v updates, not too much time will pass until they will all update their predictor.

Theorem 2. Assume that at some time point, the k′ nodes are good, and every one of them
has a predictor with ≥ v updates (not necessarily the same one). Then after the nodes process
at most

b+ 2(t+ 2)d′M

additional examples, all k′ nodes will have a predictor based on at least v + 1 updates.

Proof. Consider the time point mentioned in the theorem, where every one of the k′ nodes, and
in particular the node i0 with smallest index among them, has a predictor with ≥ v updates.
We now claim that after processing at most

(t+ 2)d′M (1)

examples, either some node in our set had a predictor with ≥ v + 1 updates, or every node has
the same predictor based on v updates. The argument is similar to Lemma 1, since everyone will
switch to the predictor propagated from node i0, assuming no predictor obtained a predictor
with more updates. Therefore, at most (t + 2)d′ time–units will pass, during which at most
(t+ 2)d′M examples are processed.

So suppose we are now at the time point, where either some node had a predictor with
≥ v+1 updates, or every node had the same predictor based on v updates. We now claim that
after processing at most

b+ (t+ 2)d′M (2)

examples, any node in our set obtained a predictor with ≥ v + 1 updates. To justify Eq. (2),
let us consider first the case where every node had the same predictor based on v updates. As
shown above, the number of time–units it takes any single gradient to propagate to all k′ nodes
is at most (t + 2)d′. Therefore, after T time–units elapsed, each node will accumulate and act
upon all the gradients computed by all nodes up to time T−(t+2)d′. Since at mostM examples
are processed each time–unit, it follows that after processing at most b+ (t+ 2)d′M examples,
all nodes will update their predictors, as stated in Eq. (2).

We still need to consider the second case, namely that some good node had a predictor with
≥ v + 1 updates, and we want to bound the number of examples processed till all nodes have
a predictor with ≥ v + 1 updates. But this was already calculated to be at most (t + 2)d′M ,
which is smaller than Eq. (2). Thus, the time bound in Eq. (2) covers this case as well.

Adding Eq. (1) and Eq. (2), the theorem follows.

With these results in hand, we can now prove a regret bound for our algorithm. To do so,
define a good time period to be a time during which:

• All k′ nodes are good, and were also good for (t+2)d′ time–units prior to that time period.

• The k′ nodes handled b+ 2(t+ 2)d′M examples overall.

As to other time periods, we will only assume that at least one of the k′ nodes remained
operational and implemented the ADMB algorithm (at an arbitrarily slow rate).
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Theorem 3. Suppose the gradient-based update rule has the serial regret bound ψ(σ2,m), and
that for any σ2, 1

mψ(σ
2,m) decreases monotonically in m.

Let m be the number of examples handled during a sequence of non-overlapping good time
periods. Then the expected regret with respect to these examples is at most

⌈m/µ⌉
∑

j=1

µ

j
ψ

(

σ2

b
, j

)

,

where µ = b+2(t+2)d′M . Specifically, if ψ(σ2,m) = 2D2L+2Dσ
√
m, then the expected regret

bound is

2D2L(b+ 2(t+ 2)d′M)(1 + log(m)) + 4Dσ

√

(

1 +
2(t+ 2)d′M

b

)

m

When the batch size b scales as mρ for any ρ ∈ (0, 1/2), we get an asymptotic regret bound
of the form 4Dσ

√
m+o(

√
m). The leading term is virtually the same as the leading term in the

serial regret bound. The only difference is an additional factor of 2, essentially due to the fact
that we need to average the predictors obtained so far to make the analysis go through, rather
than just using the last predictor.

Proof. Let us number the good time periods as j = 1, 2, . . ., and let w̄j be a predictor used by
one of the nodes at the beginning of the j-th good time period. From Lemma 1 and Thm. 2,
we know that the predictors used by the nodes were updated at least once during each period.
Thus, w̄j is the average of j′ ≥ j predictors w1, w2, . . . , wj′ , where each wp+1 was obtained
from the previous wp using bp ≥ b gradients each, on some examples which we shall denote as
zp,1, zp,2, . . . , zp,bp . Since wp is independent of these examples, we get

E





1

bp

bp
∑

q=1

f(wp, zp,q)− f(w⋆, zp,q)
∣

∣wp



 = E[f(wp, z)− f(w⋆, z)
∣

∣wp].

Based on this observation and Jensen’s inequality, we have

E [f(w̄j , z)− f(w⋆, z)]

≤ 1

j′
E





j′
∑

p=1

f(wp, z)− f(w⋆, z)





=
1

j′
E





j′
∑

p=1

1

bp

bp
∑

q=1

f(wp, zp,q)− f(w⋆, zp,q)



 . (3)

The online update rule was performed on the averaged gradients obtained from zp,1, . . . , zp,bp .

This average gradient is equal to the gradient of the function 1

bp

∑bp
q=1 f(wp, zp,q). Moreover,

the variance of this gradient is at most σ2/bp ≤ σ2/b. Using the regret guarantee, we can upper
bound Eq. (3) by

1

j′
ψ

(

σ2

b
, j′

)

.

Since j′ ≥ j, and since we assumed in the theorem statement that the expression above is
monotonically decreasing in j′, we can upper bound it by

1

j
ψ

(

σ2

b
, j

)

.
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From this sequence of inequalities, we get that for any example processed by one of the k′ nodes
during the good time period j, it holds that

E [f(w̄j , z)− f(w⋆, z)] ≤ 1

j
ψ

(

σ2

b
, j

)

. (4)

Let µ = b + 2(t + 2)d′M be the number of examples processed during each good time period.
Since m examples are processed overall, the total regret over all these examples is at most

⌈m/µ⌉
∑

j=1

µ

j
ψ

(

σ2

b
, j

)

. (5)

To get the specific regret form when ψ(σ2,m) = 2D2L+2Dσ
√
m, we substitute into Eq. (5),

and substitute µ = b+ 2(t+ 2)d′M to get

⌈m/µ⌉
∑

j=1

(

2D2L
µ

j
+

2Dσµ√
b

1√
j

)

≤ 2D2Lµ(1 + log(m)) +
4Dσµ√

b

√

m

µ

= 2D2L(b+ 2(t+ 2)d′M)(1 + log(m)) + 4Dσ

√

(

1 +
2(t+ 2)d′M

b

)

m.
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