
Hardness, approximability, and exact algorithms for
vector domination and total vector domination in graphs

Ferdinando Cicalese1, Martin Milanič2?, and Ugo Vaccaro1

1Dipartimento di Informatica ed Applicazioni, University of Salerno, 84084 Fisciano (SA), Italy
{cicalese,uv}@dia.unisa.it

2FAMNIT and PINT, University of Primorska, 6000 Koper, Slovenia
martin.milanic@upr.si

Abstract. We consider two graph optimization problems called vector domina-
tion and total vector domination. In vector domination one seeks a small subset
S of vertices of a graph such that any vertex outside S has a prescribed number
of neighbors in S. In total domination, the requirement is extended to all vertices
of the graph. We prove that these problems cannot be approximated to within a
factor of c logn, for suitable constant c, unless every problem in NP is solvable in
slightly super-polynomial time. We also show that two natural greedy strategies
have approximation factor O(log∆(G)), where ∆(G) is the maximum degree
of the graph G. We also provide exact polynomial time algorithms for several
classes of graphs. Our results extend and unify several results previously known
in the literature.

1 Introduction

The concept of domination in graphs has been extensively studied, both in struc-
tural and algorithmic graph theory, because of its numerous applications to a
variety of areas. Informally, a vertex of a graph is said to dominate itself and all
of its neighbors. Generally, one seeks small sets that dominate the whole graph.
Domination naturally arises in facility location problems, in problems involving
finding sets of representatives, in monitoring communication or electrical net-
works, and in land surveying. The two books [9] [10] discuss the main results
and applications of domination in graphs. Many variants of the basic concepts
of domination have appeared in the literature. Again, we refer to [9] [10] for a
survey of the area.

In this paper we provide hardness results and approximation algorithms for
an interesting variant of the basic concept of domination, firstly introduced in
? Supported in part by “Agencija za raziskovalno dejavnost Republike Slovenije”, research pro-

gram P1-0285.

ar
X

iv
:1

01
2.

15
29

v1
 [

cs
.D

M
]

 7
 D

ec
 2

01
0

[8]. Here, a subset of vertices S is said to dominate a vertex v if either v ∈ S,
or there are in S a prescribed number of neighbors of x (see below for formal
definitions). Again, one seeks small subsets that dominate (in this new sense)
the whole vertex set of the graph.

Main Definitions. For a graphG = (V,E) and a vertex v ∈ V , denote byN(v)
the set of neighbors of v, by d(v) the degree of v, and by ∆(G) the maximum
degree of any vertex in G. A dominating set in a graph G = (V,E) is a subset
S of the graph’s vertex set such that every vertex not in the set has a neighbor in
the set. A total dominating set in G is a subset S ⊆ V such that every vertex of
the graph has a neighbor in the set: for every v ∈ V there exists a vertex u ∈ S
such that uv ∈ E.

The vector domination is the following problem: Given a graphG = (V,E),
and a vector (kv : v ∈ V) such that for all v ∈ V , kv ∈ {0, 1, . . . , d(v)}, find a
vector dominating set S of minimum size, that is, a set S ⊆ V minimizing |S|
and such that |S ∩ N(v)| ≥ kv for all v ∈ V \S. The total vector domination
is the problem of finding a minimum-sized total vector dominating set, that is,
a set S ⊆ V such that |S ∩N(v)| ≥ kv for all v ∈ V .

Of special interest for us will be also the following special case of vector
domination: For 0 ≤ q < 1, a q-dominating set in G is a subset S ⊆ V such
that every vertex not in the set has more than a q-fraction of its neighbors in
the set: for every v ∈ V \ S, it holds that |N(v) ∩ S| > q|N(v)|. For 0 ≤
q < 1, a total q-dominating set in G is is a subset S ⊆ V such that every
vertex has more than a q-fraction of its neighbors in the set: for every v ∈
V , it holds that |N(v) ∩ S| > q|N(v)|. By γ(G) (γq(G), γt(G), γ

q
t (G)) we

denote the minimum size of a dominating (q-dominating, total dominating, total
q-dominating) set inG. The problem of finding (for a fixed 0 ≤ q < 1) in a given
graph a dominating (q-dominating, total q-dominating) set of minimum size
will be referred to simply as the domination (q-domination, total q-domination).
Notice that for graphs G, such that ∆(G) satisfies q < 1/∆(G), the (total) q-
dominating sets of G correspond to the graph’s (total) dominating sets. At the
other extreme, for graphs such that q ≥ 1 − 1/∆(G), the q-dominating sets of
G correspond to the graph’s vertex covers.

Clearly, the (total) q-domination corresponds to the special case of the (total)
vector domination, in which kv = bq · d(v)c + 1 for all v ∈ V . In fact, we
shall mainly use q-domination for our inapproximability results, and provide
algorithmic results in terms of the more general problem of vector domination.

Our Results and Related Work. We first provide two natural greedy algo-
rithms for vector domination and total vector domination in general graphs, hav-
ing approximation factor of H2∆(G) and H∆(G), respectively. Subsequently, we
prove that above results are essentially best possible, in the sense that both the
q-domination and its total variant are inapproximable within an O(log |V (G)|)
factor, unless NP ⊆ DTIME(nO(log logn)). Notice that our inapproximability
result is provided for any fixed 0 ≤ q < 1, hence it is not subsumed by the
standard domination and total domination problems (except for q = 0).

We individuate special classes of graphs for which vector domination and to-
tal vector domination can be optimally solved in polynomial time. More specif-
ically, we provide polynomial time algorithms for computing minimum size
vector domination sets for and total vector domination sets for complete graphs,
trees, P4-free graphs and threshold graphs.

Among the plethora of works on domination in graphs, and variants thereof,
we briefly discuss the work more directly related to ours. The algorithmic aspect
of total vector domination in strongly chordal graphs (a super-class of trees) was
studied in [7], where polynomial time algorithms for that purpose were given.
However, the authors of [7] point out that their approach cannot be modified to
handle the case of vector domination, and that a new approach is needed.

Strictly related to our results is also the paper [12]. The authors study
the hardness of approximating minimum monopolies in graphs. Monopolies in
graphs represent an important sub-area in graph theory, with many applications
in distributed computing (see the survey [15]). In our language, a monopoly
corresponds to a total 1/2-dominating set, and a partial monopoly to a 1/2-
dominating set. Therefore, our inapproximability results for q-domination and
total q-domination can be seen as extensions of the results of [12] from the case
q = 1/2 to arbitrary q (the paper [12] obtains better inapproximability mul-
tiplicative constants under stronger complexity assumptions). Conversely, our
algorithmic results on trees extend the corresponding result of [13] from total
1/2-domination to the general vector domination problem.

The paper [6] studies the hardness of approximating k-tuple domination in
graphs. In our framework, this is equivalent to vector domination in which the
input vector (kv : v ∈ V) has all components equal to integer k. The paper [11]
studies the problem of bounding the size of a minimum-cardinality k-tuple total
dominating set.

Our results are also somewhat related to the important new area of influ-
ence spread in social networks [5]. In particular, the paper [18] introduced the

problem of identifying a minimum set of nodes that could influence a whole
network within a time bound d. There, a set of nodes S influences a new node
x in one step (d = 1) if the majority of neighbors of x is in S. The paper [18]
mostly studies hardness results for the case d = 1. It is clear that our scenario
corresponds to a much more general model of influence among nodes, similar
to the one considered in [14] for a related but different problem.

2 Approximability results

In this section, we show that vector domination and total vector domination
can be approximated in polynomial time by a factor of H2∆(G) and H∆(G),
respectively. (We denote by Hk =

∑k
i=1

1
i the k-th harmonic number.) Since

Hk ≤ log k + 1 for k ≥ 1, the algorithms given by the theorems below pro-
vide O(log∆(G))-approximation for vector and total vector domination, re-
spectively. (We denote by log the natural logarithm.)

Theorem 1 Vector domination can be approximated in polynomial time by a
factor of H2∆(G).

Proof. For a graph G = (V,E) and a vector (kv : v ∈ V) s.t. for all v ∈ V ,
kv ∈ {0, 1, . . . , d(v)}, we define a function f : 2V → N, as follows:

f(S) =
∑

v∈V
τv(S) , where τv(S) =

{
min{|S ∩N(v)|, kv}, if v 6∈ S;
kv, if v ∈ S.

(1)

The following properties of f can be verified: (i) f is integer-valued; (ii) f(∅) =
0; (iii) f is non-decreasing; (iv) A set S ⊆ V satisfies f(S) = f(V) if and only
if S is a vector dominating set; (v) f is submodular. (Recall that a real-valued set
function f defined on the power set of a finite ground setR is called submodular
if f(X)+f(Y) ≥ f(X∪Y)+f(X∩Y), for any two setsX,Y ⊆ R.) The only
non-trivial result is (v), i.e, the submodularity of f . The proof is given below.

Fact 1 Let G = (V,E) be a graph and let (kv : v ∈ V) be a vector such
that for all v ∈ V , kv ∈ {0, 1, . . . , d(v)}. The function f : 2V → N, given by
f(S) =

∑
v∈V τv(S) , where τv(S) is defined in (1), is submodular.

Proof. It suffices to show that all the functions τv(·) are submodular. We com-
plete the proof by verifying that τv satisfies the following characteristic property
of submodular functions:

For all S ⊆ T ⊆ V and for all w ∈ V ,

τv(T ∪ {w})− τv(T) ≤ τv(S ∪ {w})− τv(S) . (2)

Observe that τv is non-decreasing.

Suppose first that τv(T) = kv. Then τv(T ∪ {w}) = kv and the left-hand
side of inequality (2) is equal to 0. Hence inequality (2) holds since τv is non-
decreasing.

From now on, we assume that τv(T) < kv, which implies τv(T) = |T ∩
NG(v)|. Since τv is non-decreasing, τv(S) < kv, and hence τv(S) = |S ∩
NG(v)|. Inequality (2) simplifies to

τv(T)− τv(S) = |(T \ S) ∩NG(v)| ≥ τv(T ∪ {w})− τv(S ∪ {w}) . (3)

We may assume that τv(T∪{w}) > τv(S∪{w}), since otherwise the right-hand
side of (3) equals 0, and inequality (3) holds.

Therefore, τv(S∪{w}) < kv, implying τv(S∪{w}) = |(S∪{w})∩NG(v)|.
If also τv(T ∪{w}) < kv then τv(T ∪{w}) = |(T ∪{w})∩NG(v)| and equality
holds in (3).

So we may assume that τv(T ∪ {w}) = kv. Note that v does not belong
to T ∪ {w} (since otherwise either τv(T) or τv(S ∪ {w}) would equal to kv).
Suppose that the inequality (3) fails. Then

|(T \ S) ∩NG(v)| < kv − |(S ∪ {w}) ∩NG(v)| ,

which implies
|(T ∪ {w}) ∩NG(v)| < kv .

However, together with the fact that v 6∈ T ∪ {w}, this contradicts the assump-
tion that τv(T ∪ {w}) = kv. ut

Back to the proof of Theorem 1, by (iv) we have that an optimal solution to
the vector dominating set is provided by a minimum size S such that f(S) =
f(V). In other words, we have recast vector domination as a particular case of
the well known MINIMUM SUBMODULAR COVER [17].

Let A denote the natural greedy strategy which starts with S = ∅ and iter-
atively adds to S the element v ∈ V \ S s.t. f(S ∪ {v}) − f(S) is maximum,
until f(S) = f(V) is achieved.

By a classical result of Wolsey [17], it follows that algorithm A is an Hτ -
approximation algorithm for vector domination, where τ = maxy∈V f({y}).
For every y ∈ V , we have f({y}) = ∑

v∈V \{y} τv({y}) + τy({y}) ≤ d(y) +
ky ≤ 2d(y). Hence maxy∈V f({y}) ≤ 2∆(G) yielding the desired result. ut

Theorem 2 Total vector domination (and hence q-domination) can be approx-
imated in polynomial time by a factor of H∆(G).

Proof. The argument is analogous to the one used for Theorem 1. Given a graph
G = (V,E) and vector (kv : v ∈ V) s.t. for all v ∈ V , kv ∈ {0, 1, . . . , d(v)},
we define a function f : 2V → N, as follows:

f(S) =
∑

v∈V
min{|S ∩N(v)|, kv} . (4)

Like (1) also this function f satisfies property (i)-(iii) of the previous result.
Moreover, a set S ⊆ V satisfies f(S) = f(V) if and only if S is a total vector
dominating set. Finally f is submodular, as we will prove below.

Fact 2 Let G = (V,E) be a graph and let (kv : v ∈ V) be a vector such that
for all v ∈ V , kv ∈ {0, 1, . . . , d(v)}. The function f : 2V → N, given by

f(S) =
∑

v∈V
min{|S ∩NG(v)|, kv} ,

is submodular.

Proof. For v ∈ V and S ⊆ V , we set τv(S) = min{|S ∩N(v)|, kv}. Since f is
defined as the sum of the functions τv, and the sum of submodular functions
is submodular, it suffices to show that the functions τv are submodular. For an
arbitrary real number r and an arbitrary submodular function g : 2V → R, the
function g′ : 2V → R defined by g′(S) = min{g(S), r} is submodular. Hence
it suffices to show that the function gv(S) = |S ∩ N(v)| is submodular. But
this is easily seen to be the case since gv can be written as the sum gv(S) =∑

u∈N(v) χu(S), where χu(S) is the (submodular) function taking value 1 if
u ∈ S, and 0 otherwise. Therefore, f is submodular too. ut

Therefore, again by the results of Wolsey [17] the natural greedy strategy
provides an Hτ -approximation algorithm for total vector domination, where
τ = maxy∈V f({y}). It can be seen that maxy∈V f({y}) ≤ ∆(G), which con-
cludes the proof. ut

3 Inapproximability results

Recall the following result on the inapproximability of domination and total
domination, which was derived from the analogous result about the set cover
problem due to Feige [4].

Theorem 3 [1] For every ε > 0, there is no polynomial time algorithm approx-
imating domination (total domination) within a factor of (1− ε) log n, unless
NP ⊆ DTIME(nO(log logn)).

Our inapproximability results are given in terms of the q-domination prob-
lem. In fact, it turns out that both the q-domination and its total variant are
inapproximable within a log |V (G)| factor as shown in Theorems 4 and 5 be-
low. A fortiori the same results hold for the vector domination problem. Hence
the approximations results of the previous section are basically best possible.
We shall use the following lemma which is basically an ad hoc extension of the
hardness of approximating domination within c log |V (G)| given in [1].

Lemma 1 There exists a constant c > 0 such that for every integerB > 0 there
is no polynomial time algorithm approximating domination on input graphs
G satisfying γ(G) ≥ B∆(G) within a factor of c log |V (G)|, unless NP ⊆
DTIME(nO(log logn)).

Proof. Let B be a positive integer. We make a reduction from domination on
general graphs. Let G be a graph with |V (G)| ≥ B that is an instance to
domination. We transform G into a graph G′ which consists of r = B∆(G)
disjoint copies of G, say G1, . . . , Gr. Then clearly γ(G′) = rγ(G), while
∆(G′) = ∆(G). In particular, since γ(G) ≥ 1, the graph G′ satisfies γ(G′) ≥
r = B∆(G′).

Let ε ∈ (0, 1), and let c = (1 − ε)/3. For brevity, let us write n = |V (G)|
and n′ = |V (G′)|. Suppose that there exists an algorithm A that computes a
c log n′-approximation to domination in G′. Let S′ be the set computed by A.
Then |S′| ≤ c(log n′)γ(G′).

For i = 1, . . . , r, let S′i = S′∩V (Gi), and let S = S′i∗ such that |S′i| ≤ |S′i∗ |
for all 1 ≤ i ≤ r. Then S is a dominating set in (the i∗-th copy of)G. Moreover,

we can bound the size of S from above as follows:

|S| ≤ (1/r) · |S′| (by the definition of S)
≤ (1/r) · c(log n′) · γ(G′) (by the assumption on A)
≤ (1/r) · c(log(rn)) · rγ(G) (by the properties of G′)
= c log(rn)γ(G)
≤ c log(n3) (since r ≤ n2)
= 3c log n
= (1− ε) log n .

This shows that there is no polynomial time algorithm approximating domina-
tion on input graphsG satisfying γ(G) ≥ B∆(G) within a factor of c log |V (G)|,
unless NP ⊆ DTIME(nO(log logn)). ut

Theorem 4 There exists a constant c > 0 such that for every 0 ≤ q < 1 there
is no polynomial time algorithm approximating q-domination within a factor of
c log |V (G)|, unless NP ⊆ DTIME(nO(log logn)).

Proof. Let 0 ≤ q < 1, and let B = d q
1−q e. Let G be a graph with γ(G) ≥

B∆(G) and such that |V (G)| ≥ 4B . We transform G into a graph G′ which
consists of G together with a complete graph K on k = B∆(G) vertices such
that K is disjoint from G. In addition, every vertex v from G is adjacent to
precisely kv = b qdG(v)

1−q c vertices in K. (This assignment is done in an arbitrary
way.) Finally, every vertex in the cliqueK has a private neighbor outside V (G).
We denote by X the set of all these private neighbors. (See Fig. 1.)

G

clique K

· · ·

v

kv edges

X

Fig. 1. The graph G′ in the proof of Theorem 4

Notice that kv =
⌊
qdG(v)
1−q

⌋
≤
⌈
qdG(v)
1−q

⌉
≤
⌈

q
1−q

⌉
∆(G) = k. Hence it is

indeed possible to assign to v precisely kv neighbors in K.

In addition, kv is an integer satisfying kv
dG(v)+kv

≤ q < kv+1
kv+dG(v) , which are

instrumental to the following result.

Claim: γq(G′) = γ(G) + k .

Proof. Let S′ be an optimal q-dominating set in G′. Then, the set S :=
S′∩V (G) is a dominating set in G. Indeed, suppose for contradiction that there
exists a vertex v in G such that S misses the closed neighborhood of v. Then
|NG′(v) ∩ S′| ≤ kv. The degree of v in G′ is equal to dG′(v) = dG(v) + kv.
Therefore

|NG′(v) ∩ S′|
dG′(v)

≤ kv
dG(v) + kv

≤ q ,

contrary to the assumption that S′ is q-dominating. Notice also that |S′\V (G)| ≥
k since S′ must meet each of the k edges connecting X to K. This implies that
|S| ≤ |S′| − k and consequently γ(G) ≤ γq(G′)− k.

Conversely, let S be an optimal dominating set in G. The set S′ := S ∪K
is then a q-dominating set in G′ such that |S′| = γ(G) + k. To see that S′ is
q-dominating in G′, observe that:

– For every v ∈ V (G)\S′, the set NG′(v) ∩ S′ is the disjoint union of sets
NG(v) ∩ S and NG′(v) ∩K. Hence

|NG′(v) ∩ S′| = |NG(v) ∩ S|+ |NG′(v) ∩K| ≥ 1 + kv >

> q(dG(v) + kv) = qdG′(v) .

The second inequality holds by the choice of kv.
– Every v ∈ K is contained in S′.
– For every v ∈ X , the unique neighbor of v is contained in S′ and therefore
|NG′(v) ∩ S′| = 1 > q = qdG′(v).

This shows that γq(G′) ≤ γ(G) + k and completes the proof of the claim.

Let c be the constant given by Lemma 1, and let c′ = c/4. Again, let us write
n = |V (G)| and n′ = |V (G′)|. Note that, by the assumption |V (G)| ≥ 4B, it
follows that n′ = n+2k = n+2B∆(G) ≤ 1/2n2+1/2n2 = n2 . Suppose, by
contradiction, that there exists an algorithm A which computes a q-dominating
set S′ for G′ such that |S′| ≤ c′(log n′)γq(G′).

Let S = S′ ∩ V (G). It is not hard to see that S is a dominating set in G.
Moreover, we can bound the size of S as follows:

|S| ≤ |S′| ≤ c′(log n′)γq(G′) ≤ c′(log(n2))(γ(G) + k) ≤ 2c′(log n)(2γ(G)),

where the second inequality follows by the assumption on A; the third one by
n′ ≤ n2 and γq(G′) = γ(G) + k; the fourth one by k = B∆(G) ≤ γ(G).
Finally, by the choice of c′ we get |S| ≤ c(log n)γ(G), and the conclusion
follows by Lemma 1. ut

By means of a slightly more involved construction, we now prove the anal-
ogous result for total q-domination.

Theorem 5 There exists a constant c > 0 such that for every 0 ≤ q < 1,
there is no polynomial time algorithm approximating total q-domination within
a factor of c log |V (G)|, unless NP ⊆ DTIME(nO(log logn)).

Proof. Let 0 ≤ q < 1, and let B = d q
1−q e. We make a reduction from total

domination on graphs G satisfying γt(G) ≥ max{3, B, 2/q}.
Let G be a graph satisfying

γt(G) ≥ max{3, B, 2/q} . (5)

Let n = |V (G)|. We transform G into a graph G′ as follows: G′ consists of
n3 disjoint copies of G, say G1, . . . , Gn3 , together with a complete graph K on
Bn3 vertices such that K is disjoint from the n3 copies of G. Every vertex in
the clique K also has a private neighbor outside the copies od G. We denote
by X the set of all these private neighbors. (See Fig. 2.) To describe the re-
maining edges, we first partition the vertex set of K into n2 equally-sized parts
K1, . . . ,Kn2 . (In particular, |Ki| = Bn for all i = 1, . . . , n2.) Finally, for every
j ∈ {1, . . . , n3}, we make every vertex v ∈ V (Gj) adjacent to precisely kv
vertices in Kdj/ne where kv is an integer satisfying

kv
dG(v) + kv

≤ q < kv + 1

kv + dG(v)
.

Similarly as in the proof of Theorem 4, observe that we can take kv = b qdG(v)
1−q c.

Also notice that since kv ≤ Bn, it is indeed possible to assign to every v ∈
V (Gj) precisely kv neighbors in Kdj/ne. (This assignment is done in an arbi-
trary way.)

Claim: γqt (G
′) = n3γt(G) +Bn3 .

Proof of Claim:

Let S′ be an optimal total q-dominating set in G′, that is, |S′| = γqt (G
′). For

every j = 1, . . . , n3, let S′j = S′ ∩ V (Gj) denote the part of S′ that belongs to
to the j-th copy of G in G′. Pick an index j∗ ∈ {1, . . . , n3} for which the value
of |S′j | is the smallest.

clique K

· · ·
X

· · ·
· · · · · ·

K1 Kn2

Gn3−n+1 Gn3Gn+1G1 Gn

K2

· · ·
G2n

· · · · · ·
· · ·

nB︷ ︸︸ ︷

Fig. 2. The graph G′ in the proof of Theorem 5

First, we argue that the set S := Sj∗ is a total dominating set in Gj∗ (and
thus in G). Indeed, suppose for contradiction that there exists a vertex v in Gj∗
such that S misses the neighborhood of v. Then |NG′(v) ∩ S′| ≤ kv while the
degree of v in G′ is equal to dG′(v) = dG(v) + kv. Therefore

|NG′(v) ∩ S′|
dG′(v)

≤ kv
dG(v) + kv

≤ q ,

contrary to the assumption that S′ is total q-dominating. This implies that γt(G) ≤
|S|.

Notice that K ⊆ S′ since otherwise there would exist a vertex v ∈ X which
would not be q-dominated by S′. Therefore,

|S′| ≥
n3∑

j=1

|S′j |+ |K| ≥ n3|S|+Bn3 ≥ n3γt(G) +Bn3 ,

which shows that γqt (G
′) ≥ n3γt(G) +Bn3 .

Conversely, let S be an optimal total dominating set inG. For j = 1, . . . , n3,
let Sj denote the copy of S in Gj , and let S′ = K ∪ ⋃n3

j=1 Sj . The set S′ ⊆
V (G′) satisfies |S′| = n3γt(G)+Bn

3. Moreover, S′ is a total q-dominating set
in G′:

– For every j = 1, . . . , n3 and for every v ∈ V (Gj), the set NG′(v) ∩ S′ is
the disjoint union of sets NGj (v) ∩ Sj and NG′(v) ∩K. Hence

|NG′(v)∩S′| = |NGj (v)∩Sj |+|NG′(v)∩K| ≥ 1+kv > q(dGj (v)+kv) = qdG′(v) .

The second inequality holds by the choice of kv.

– Let v ∈ K. By construction of G′, v is adjacent to every other vertex in K,
to precisely one vertex in X and to at most n2 remaining vertices. Hence
dG′(v) ≤ (|K| − 1) + 1 + n2 = Bn3 + n2. Moreover, |NG′(v) ∩ S′| ≥
|K| − 1 = Bn3 − 1. Then

|NG′(v) ∩ S′|
dG′(v)

≥ Bn3 − 1

Bn3 + n2
> q .

Indeed, the inequality Bn3−1
Bn3+n2 > q is equivalent to the inequality B(1 −

q)n3 > 1 + qn2, which holds true since

Bn3(1− q) ≥ qn3 ≥ 2n2 > 1 + qn2 ,

as can be seen using the fact that B ≥ q
1−q and the assumption that n ≥

γt(G) ≥ 2/q.
– For every v ∈ X , the unique neighbor of v is contained in S′ and therefore
|NG′(v) ∩ S′| = 1 > q = qdG′(v).

This shows that γqt (G
′) ≤ n3γt(G)+Bn3 and completes the proof of the claim.

Let ε ∈ (0, 1) and let c = (1− ε)/10.

Let us write n′ = |V (G′)| = n4 + 2Bn3. By Assumption (5) we have
n ≥ B and n ≥ 3 and hence

n′ = n4 + 2Bn3 ≤ n4 + 2n4 = 3n4 ≤ n5 .

Suppose that there exists an algorithmA that computes a c log n′-approximation
to total q-domination in G′. Let S′ be the set computed by A. Then |S′| ≤
c(log n′)γqt (G

′).

Similarly as in the proof of the claim above, let S′j = S′ ∩ V (Gj) and pick
an index j∗ ∈ {1, . . . , n3} for which the value of |S′j | is the smallest. Then,
setting S = S′j∗ results in a total dominating set in Gj (and hence in G).

We can bound the size of S from above as follows:

|S| ≤ 1
n3 |S′| (by the choice of j∗)

≤ 1
n3 c(log n

′)γqt (G
′) (by the assumption on A)

≤ 1
n3 c(log(n

5))(n3γt(G) +Bn3) (since n′ ≤ n5 and γqt (G
′) = n3γt(G) +Bn3)

= 5c(log n)(γt(G) +B)
≤ 10c(log n)γt(G) (since B ≤ γt(G))
= (1− ε)(log n)γt(G) .

Therefore, S approximates the total domination within a factor of (1− ε) log n.
This shows that there is no polynomial time algorithm approximating total q-
domination within a factor of c log |V (G)|, unless NP ⊆ DTIME(nO(log logn)).

ut

4 Polynomial algorithms for particular graph classes

4.1 Complete graphs

Proposition 1. LetG be a complete graph with vertex set V (G) = {v1, . . . , vn}
and assume that n−1 ≥ k(v1) ≥ · · · ≥ k(vn) ≥ k(vn+1) := 0 with k(v1) > 0.
Then, a minimum vector dominating set for (G, k) is given byD = {v1, . . . , vp}
where p = min{i : 1 ≤ i ≤ n, i ≥ k(vi+1)}.

Proof. Clearly,D = {y1, . . . , vp} as above is a vector dominating set for (G, k)
since every v ∈ V (G)\D is of the form v = vj for some j ≥ p+1 and therefore
|N(vj) ∩ D| = |D| = p ≥ k(vp+1) ≥ k(vj). Conversely, if D is a set of at
most p − 1 vertices, then there exists a vertex vi ∈ V (G) \D such that i ≤ p.
By definition of p, we have p− 1 < k(vp). Therefore, |N(vi) ∩D| ≤ p− 1 <
k(vp) ≤ k(vi), hence D is not a vector dominating set for (G, k). ut

Corollary 1 For complete graphs, the vector domination problem is solvable in
time O(p log n), where p = min{i : 1 ≤ i ≤ n, i ≥ k(vi+1)}.

Total vector domination is even simpler, and solvable in O(n) time.

Proposition 2. LetG = (V,E) be a complete graph. LetK = max{k(v) : v ∈
V (G)} and letM = {v ∈ V : k(v) = K}. If |M | ≤ |V |−K, then a minimum
total vector dominating set for (G, k) is given by any subset of K vertices con-
tained in V \M . Otherwise, a minimum total vector dominating set for (G, k)
is given by any subset of K + 1 vertices.

4.2 Trees
Since trees are strongly chordal, total vector domination is solvable in time
O(n + m) on trees [7, 16], where n = |V (G))| and |E(G)|. As mentioned
in [7], their approach does not apply to the vector domination problem. In this
section we describe an O(n2) algorithm that solves vector domination in trees.
The algorithm is based on an efficient solution to the following problem:

CARDINALITY-CONSTRAINED PARTITION (CCP):
Given n ordered pairs of real numbers (a1, b1), (a2, b2), . . . , (an, bn) and an
integer k such that 0 ≤ k ≤ n, find a partition (I, J) of the set {1, . . . , n} with
|I| = k that minimizes the sum

∑
i∈I ai +

∑
j∈J bj .

This problem admits an O(n(k + 1)) solution by dynamic programming:
For 1 ≤ i ≤ n and 0 ≤ j ≤ min{i, k}, let vi,j denote the optimum value of
the CCP problem with the input (a1, . . . , ai, b1, . . . , bi; j) . Clearly, vn,k is an
optimal value of the above CCP problem. The values vi,j can be computed in
O(n(k + 1)) time using the following straightforward recurrences:

– v1,0 = b1, v1,1 = a1;
– vi,0 = vi−1,0 + bi for all 2 ≤ i ≤ n;
– vi,i = vi−1,i−1 + ai for all 2 ≤ i ≤ k;
– vi,j = min{vi−1,j−1 + ai, vi−1,j + bi} for all 2 ≤ i ≤ k and 1 ≤ j ≤

min{i, k}.

As usual, an optimal solution can be obtained by a standard backtracking pro-
cedure.

In what follows, we will denote by CCP(A, k) the optimal value
of the CCP problem on the input ((a11, a21), . . . , (an1, an2); k), where

A =

(
a11 · · · an1
a21 · · · an2

)
is a 2× n matrix and k ≤ n is a non-negative integer.

Theorem 6 A minimum vector dominating set in a tree can be found in time
O(n2).

Proof. We claim that Algorithm 1 below computes a minimum vector domi-
nating set for (T, k), where T is a tree. Let us root T at an arbitrary vertex r.
For v ∈ V (T), we denote by Tv the subtree of T induced by v and all its de-
scendants. For a subgraph H of G, we denote by k|H the restriction of k to
V (H). The algorithm will compute, using a bottom-up traversal of the tree, the
following values, for all v ∈ V (T):

– γ(v): the minimum size of a vector dominating set for (Tv, k|Tv);
– γ+(v): the minimum size of a vector dominating set for (Tv, k|Tv) that con-

tains v;
– γ−(v): the minimum size of a vector dominating set for (Tv, k

−
v), where

k−v : V (Tv)→ Z is given by k−v (u) =
{
max{k(v)− 1, 0}, if u = v;
k(u), otherwise.

The following proposition establishes a way to compute these values:

Proposition 3. Let v be an internal node of T , and let C(v) denote the set of
children of v. LetA be the 2×|C(v)| matrix withA1j = γ+(j) andA2j = γ(j)
for all j ∈ C(v). Then:

(i) γ+(v) =
∑

j∈C(v) γ
−(j) + 1.

(ii) If k(v) > |C(v)| then γ(v) = γ+(v). Otherwise, γ(v) =
min{γ+(v),CCP(A, k(v))}.

(iii) If k(v) > |C(v)| + 1 then γ−(v) = γ+(v). Otherwise, γ−(v) =
min{γ+(v),CCP(A,max{k(v)− 1, 0})}.

Proof. (i). For all j ∈ C(v), letDj denote a minimum vector dominating set for
(Tj , k

−
j). Then, the set ∪jDj ∪{v} is a vector dominating set for (Tv, k|Tv) that

contains v; hence γ+(v) ≤∑j∈C(v) γ
−(j)+1. Conversely, ifD is a minimum-

sized vector dominating set for (Tv, k|Tv) that contains v, then for every j ∈
C(v), the set D ∩ V (Tj) is a vector dominating set for (Tj , k

−
j). Therefore,

|D ∩ V (Tj)| ≥ γ−(j) and consequently γ+(v) = |D| ≥∑j∈C(v) γ
−(j) + 1.

(ii). If k(v) > |C(v)| then every vector dominating set for (Tv, k|Tv) con-
tains v, so we have γ(v) = γ+(v) in this case. Suppose now that k(v) ≤ |C(v)|.
First, we show the inequality “≤”. It follows from the definitions that γ(v) ≤
γ+(v). Let (I, J) be an optimal solution for CCP(A, k(v))}. For all j ∈ C(v)
define

Dj =

{
a minimum vector dominating set for (Tj , k|Tj) that contains j, if j ∈ I ;
a minimum vector dominating set for (Tj , k|Tj), otherwise.

Then, j ∈ Dj for all j ∈ I . Therefore, since |I| = k(v), the set D :=
∪j∈C(v)Dj is a vector dominating set for (Tv, k|Tv). Consequently, γ(v) ≤
CCP(A, k(v)).

To see the converse inequality, suppose that γ(v) < γ+(v) (otherwise, we
are done). For every minimum vector dominating set D for (Tv, k|Tv) it holds
that v 6∈ D and also |D ∩ C(v)| ≥ k(v). Hence, it is enough to show that

γ(v) ≥ min
I⊆C(v)
|I|=k(v)

∑

i ∈I
γ+(i) +

∑

i ∈C(v)\I

γ(i)

 . (6)

Let D be a minimum vector dominating set for (Tv, k|Tv) and let I ⊆ D∩C(v)
such that |I| = k(v). Then, for all i ∈ I , the set D ∩ V (Ti) is a minimum-
sized vector dominating set for (Ti, k|Ti) that contains i (otherwise, a smaller

such set, sayD′i, could be used to produce a vector dominating set for (Tv, k|Tv)
smaller than D – namely (D \ V (Ti)) ∪D′i). Therefore |D ∩ V (Ti)| = γ+(i).
Similarly, |D ∩ V (Ti)| = γ(i) for all i ∈ C(v) \ I . Summing up over all i, we
get
∑

i ∈I γ
+(i) +

∑
i ∈C(v)\I γ(i) =

∑
i ∈C(v) |D ∩ V (Ti)| = |D| = γ(v).

Inequality (6) follows.

The proof of (iii) is similar to that of (ii). ut

Algorithm 1 Vector domination in trees
Input: A tree T = (V,E), a function k : V → Z.
Output: The minimum size of a vector dominating set for (T, k).
1: Let R = {v ∈ V (T) : k(v) > d(v)}.
2: Set T to T −R and k to k′ : V (T −R)→ Z, given by k′(v) = k(v)− |N(v) ∩R| for all
v ∈ V (T)−R.

3: if T −R is disconnected, with components T1, . . . , Tp

4: Solve the problem recursively on all (Ti, k|Ti), for all i.
5: Let γi denote the minimum size of a vector dominating set for (Ti, k|Ti).
6: return

∑p
i=1 γi + |R|.

7: Let r ∈ V (T) and root T at r.
8: for all leaves ` of T (other than the root) do
9: set γ(`) = k(`). (since at this point k(`) ∈ {0, 1}.)

10: set γ+(`) = 1.
11: set γ−(`) = 0.
12: for all internal nodes v of T (traversed in a bottom-up manner) do
13: let C(v) be the set of children of v.
14: set γ+(v) =

∑
j∈C(v) γ

−(j) + 1.
15: let A be the 2× |C(v)| matrix with A1j = γ+(j) and A2j = γ(j) for all j ∈ C(v).
16: if k(v) > |C(v)|
17: set γ(v) = γ+(v).
18: else
19: set γ(v) = min{γ+(v),CCP(A, k(v))}.
20: if k(v) > |C(v)|+ 1
21: set γ−(v) = γ+(v).
22: else
23: set γ−(v) = min{γ+(v),CCP(A,max{k(v)− 1, 0})}.
24: return γ(r).

The correctness of the procedure follows from Proposition 3.

To analyze the time complexity, observe that at each leaf, a constant amount
of computation is performed. The total time spent at an internal node v is pro-
portional to O(|C(v)|(k(v) + 1)) = O(d(v)2). Altogether, this results in the
time complexity of O(n2). Finally, an optimal solution can be computed with a
standard backtracking procedure, via a top-down traversal of the tree. ut

4.3 P4-free graphs

In this section we give a polynomial time algorithm to solve the vector domi-
nation and total vector domination problems in P4-free graphs. P4-free graphs
(also known as cographs) are graphs without an induced subgraph isomorphic
to a 4-vertex path. A polynomial-time algorithm for the vector domination and
total vector domination problems in P4-free graphs can be developed based on
the following well-known characterization of P4-free graphs [2]: a graph G is
P4-free if and only if for every induced subgraph F of G with at least two ver-
tices, either F or its complement is disconnected. A co-component of a graph
G = (V,E) is the subgraph of G induced by the vertex set of a connected com-
ponent of the complementary graphG = (V, {uv | u, v ∈ V, u 6= v, uv 6∈ E}).
The above characterization implies that every P4-free graph G = (V,E) admits
a recursive decomposition into one-vertex graphs by taking components or co-
components. Such a decomposition can be computed in linear time [3], and a
tree representing such a decomposition is called a cotree. For our purposes, it
will be more convenient to assume that G is represented by a modified cotree,
which is obtained from the cotree by replacing every node representing a decom-
position of an induced subgraph F of G into p ≥ 3 co-components C1, . . . , Cp
with p− 1 nodes in sequence, with i-th node representing the decomposition of
Fi := F − (C1 ∪ · · · ∪ Ci−1) into Ci and Fi − Ci.

Proposition 4. Let G, G1, G2 be graphs such that G is obtained from the dis-
joint union ofG1 andG2 by adding all edges of the form {uv : u ∈ V (G1), v ∈
V (G2)}. Then,

γ(G, k) = min
0≤i≤|V (G2)|
0≤j≤|V (G1)|

(
max{γ(G1, ki), j}+max{γ(G2, k

′
j), i}

)

γt(G, k) = min
0≤i≤|V (G2)|
0≤j≤|V (G1)|

(
max{γt(G1, ki), j}+max{γt(G2, k

′
j), i}

)
,

where ki(v) = max{k(v)− i, 0} for all v ∈ V (G1) and k′j(v) = max{k(v)−
j, 0} for all v ∈ V (G2).

Proof. Let m denote the value of the first minimum above. First, we show that
m ≤ γ(G, k). Let D be a minimum vector dominating set for (G, k), that is,
|D| = γ(G, k). Let Di = D ∩ V (Gi), for i = 1, 2, and let i∗ = |D2| and
j∗ = |D1|. Take a vertex v ∈ V (G1) \D1 such that ki∗(v) > 0. Then

|NG1(v)∩D1| = |NG(v)∩D|−|D2| = |NG(v)∩D|−i∗ ≥ k(v)−i∗ = ki∗(v) .

Therefore D1 is a vector dominating set for (G1, ki∗) and consequently
γ(G1, ki∗) ≤ |D1| = j∗. Similarly, we can show that γ(G2, k

′
j∗) ≤ |D2| = i∗.

It follows that

γ(G, k) = |D| = j∗+i∗ = max{γ(G1, ki∗), j
∗}+max{γ(G2, k

′
j∗), i

∗} ≥ m.

To see the converse inequality, let (i∗, j∗) be a pair of indices where the value of
m is attained. Let D1 be a vector dominating set for (G1, ki∗) such that |D1| =
max{γ(G1, ki∗), j

∗}. Similarly, let D2 be a vector dominating set for (G2, k
′
j∗)

such that |D2| = max{γ(G2, kj∗), i
∗}. Then, the set D := D1 ∪D2 is a vector

dominating set for (G, k): Let v ∈ V (G) \D. Assuming that v ∈ V (G1) \D1,
we have

|NG(v)∩D| = |NG1(v)∩D1|+|D2| ≥ ki∗(v)+|D2| ≥ k(v)−i∗+|D2| ≥ k(v) .

We can show similarly that |NG(v) ∩ D| ≥ k(v) for all v ∈ V (G2) \ D2.
Therefore, γ(G, k) ≤ |D| = |D1|+ |D2| = m, which completes the proof.

The proof of the other relation is analogous. ut

Theorem 7 Vector domination problem and total vector domination problem
are solvable in polynomial time on P4-free graphs.

Proof. We claim that Algorithm 2 below computes a minimum vector dom-
inating set for (G, k), where G is a P4-free graph. The following notations
are used: For a non-negative integer r and for an induced subgraph H of G,
we denote by D(H, r) a minimum vector dominating set for (H, kr), where
kr(v) = max{k(v)− r, 0} for all v ∈ V (H).

In lines 1–2, the algorithm computes the set R of required vertices in every
feasible solution, and reduces the problem to a smaller graph. Notice that once
the required vertices have been removed, it holds that k(v) ≤ d(v) for all v. In
particular, for an induced subgraph H of the reduced graph G − R, it suffices
to compute the sets D(H, r) for r ≤ ∆(G), since D(H, r′) = ∅ for every
r′ ≥ ∆(G).

The correctness of the algorithm is straightforward, using the above-
mentioned characterization of P4-free graphs and Proposition 4 together with
the arguments given in its proof. It is also easy to see that the algorithm runs in
time O(∆(G)n3).

The algorithm can be modified slightly so that it computes a minimum total
vector dominating set. Suppose that an induced subgraph H of G contains a

Algorithm 2 Vector domination in P4-free graphs
Input: A P4-free graph G = (V,E), a function k : V → Z.
Output: A minimum vector dominating set for (G, k).
1: Let R = {v ∈ V (G) : k(v) > d(v)}.
2: Set G to G−R and k to k′ : V (G−R)→ Z, given by k′(v) = k(v)− |N(v) ∩R| for all
v ∈ V (G)−R.

3: Compute a modified cotree T of G.
4: for all leaves ` of T do
5: let v ∈ V (G) be the vertex corresponding to `.
6: for 0 ≤ r ≤ ∆(G) do

7: set D({v}, r) =
{
∅, if k(v) ≤ r;
{v}, otherwise.

8: for all internal nodes of T (traversed in a bottom-up manner) do
9: let H be the subgraph of G corresponding to the current node of T .

10: if H is disconnected, with connected components C1, . . . , Cm then
11: for 0 ≤ r ≤ ∆(G) do
12: set D(H, r) = ∪1≤i≤mD(Ci, r) .
13: else
14: let C be a co-component of H and let H2 = H − C.
15: for 0 ≤ r ≤ ∆(G) do
16: for 0 ≤ i ≤ |V (H2)| do
17: let Di = D(C,min{r + i,∆(G)}).
18: for 0 ≤ j ≤ |V (C)| do
19: let D′j = D(H2,min{r + j,∆(G)}).
20: let (i∗, j∗) be a pair of indices such that

max{|Di∗ |, j∗}+max{|D′j∗ |, i∗} = mini,j

(
max{|Di|, j}+max{|D′j |, i}

)
.

21: let D̂1 = Di∗ ∪ J where J ⊆ V (C) \Di∗ such that |J | = max{j∗ − |Di∗ |, 0}.
22: let D̂2 = D′j∗ ∪ J where J ⊆ V (G2) \D′j∗ such that |J | = max{i∗− |D′j∗ |, 0}.
23: set D(H, r) = D̂1 ∪ D̂2.
24: return D(G, 0) ∪R.

vertex v such that k(v) − r > d(v). In this case, we set D(H, r) = Inf where
Inf is a special symbol denoting the infeasibility of the problem (we also set
|Inf| = ∞); moreover Inf is invariant under taking unions: A ∪ Inf = Inf for
every A. We need the following modifications:

– replace lines 1–2 with the following:

if there exists a vertex v such that k(v) > d(v) then return Inf.

– replace line 7 with the following:

set D({v}, r) =
{
∅, if k(v) ≤ r;
Inf, otherwise.

ut

4.4 Threshold graphs

Threshold graphs form a subclass of P4-free graphs, therefore vector domina-
tion and total vector domination problems are solvable in polynomial time on
threshold graphs. Since threshold graphs are strongly chordal, the total vec-
tor domination problem is solvable in time O(n +m) on threshold graphs [7,
16]. We develop in this section an O(n2) algorithm for the vector domina-
tion problem in threshold graphs, using the following characterization: A graph
G = (V,E) is threshold if and only if there is an ordering v1, . . . , vn of V such
that for every i, vertex vi is either isolated or dominating in the subgraph Gi
of G induced by {v1, . . . , vi}. Such an ordering of a threshold graph G can be
found in linear time by recursively removing dominating or isolated vertices.

We will also need the following proposition similar to Proposition 4. Recall
that for a subgraph H of G, we denote by k|H the restriction of k to V (H).

Proposition 5. LetG be a graph with a dominating vertex v. LetG′ = G−{v}
and k′ : V (G′)→ Z be given by k′(u) = max{k(u)− 1, 0} for all u ∈ V (G′).
If k(v) > d(v) then every minimum vector dominating set D for (G, k) is of
the form D′ ∪ {v} where D′ is a minimum vector dominating set for (G′, k′).
Otherwise,

γ(G, k) = min{max{γ(G′, k|G′), k(v)}, 1 + γ(G′, k′)} .

More specifically, if D′ is a minimum vector dominating set for (G′, k|G′) then
and D′′ is a minimum vector dominating set for (G′, k′) then a minimum vector
dominating set D for (G, k) can be computed as follows:

D =

{
D′ ∪ J, if max{|D′|, k(v)} ≤ 1 + γ(G′, k′);
D′′ ∪ {v}, otherwise,

where J ⊆ V (G′) \D′ such that |J | = max{k(v)− |D′|, 0}.

Proof. If k(v) > d(v) then every minimum vector dominating set D for (G, k)
must contain v, and the first statement follows.

Suppose now that k(v) ≤ d(v). Let D be a minimum vector dominating
set for (G, k). If v ∈ D then D′ = D \ {v} is a vector dominating set for
(G′, k′). Therefore, in this case γ(G′, k′) ≤ γ(G, k) − 1 and the inequality
γ(G, k) ≥ min{max{γ(G′, k|G′), k(v)}, 1+ γ(G′, k′)} follows. If v 6∈ D then
D′ = D \ {v} is a vector dominating set for (G′, k|G′), moreover |D′| ≥ k(v);
therefore the inequality γ(G, k) ≥ min{max{γ(G′, k|G′), k(v)}, 1+γ(G′, k′)}
holds in this case too.

To see the converse inequality, suppose first that max{γ(G′, k|G′), k(v)} ≤
1 + γ(G′, k′), and let D′ be a minimum vector dominating set for (G′, k|G′).
Let D = D′ ∪ J where J ⊆ V (G′) \D′ such that |J | = max{k(v)− |D′|, 0}.
Then, the set D contains at least k(v) neighbors of v, therefore D is a vector
dominating set for (G, k). Similarly, if max{γ(G′, k|G′), k(v)} > 1+γ(G′, k′),
then letting D′′ be a minimum vector dominating set for (G′, k′), we can define
D = D′′ ∪ {v} to obtain a vector dominating set for (G′, k′). In summary,
γ(G, k) ≤ min{max{γ(G′, k|G′), k(v)}, 1 + γ(G′, k′)}; hence equality holds,
and the set D is also a minimum vector dominating set for (G, k). ut

Proposition 5 leads to Algorithm 3 below for the vector domination problem
on threshold graphs.

Algorithm 3 Vector domination in threshold graphs
Input: A threshold graph G = (V,E), a function k : V → Z.
Output: A minimum vector dominating set for (G, k).
1: Let R = {v ∈ V (G) : k(v) > d(v)}.
2: Set G to G−R and k to k′ : V (G−R)→ Z, given by k′(v) = k(v)− |N(v) ∩R| for all
v ∈ V (G)−R.

3: Compute an ordering v1, . . . , vn of V (G) such that vi is either isolated or dominating in Gi.
4: Compute the values pj for all j ∈ {1, . . . , n}.
5: for 0 ≤ j ≤ p1 do

6: set D1,j =

{
∅, if k(v1) ≤ j;
{v1}, otherwise.

7: for i = 2, . . . , n do
8: if vi is isolated in Gi

9: for 0 ≤ j ≤ pi do

10: set Di,j =

{
Di−1,j , if k(vi) ≤ j;
Di−1,j ∪ {vi}, otherwise.

11: else
12: for 0 ≤ j ≤ pi do
13: if max{|Di−1,j |, k(v)− j} ≤ 1 + |Di−1,j+1|
14: let J ⊆ V (Gi−1) \Di−1,j such that |J | = max{k(v)− j − |Di−1,j |, 0}.
15: set Di,j = Di−1,j ∪ J .
16: else
17: set Di,j = Di−1,j+1 ∪ {vi}.
18: return Dn,0 ∪R.

Theorem 8 A minimum vector dominating set in a threshold graph can be
found in time O(nm).

Proof. We claim that Algorithm 3 computes a minimum vector dominating set
for (G, k), where G is a threshold graph. We use similar notation as in the proof

of Theorem 7, except that we denote by Di,j a minimum vector dominating set
for (Gi, kj) where kj(v) = max{k(v)− j, 0} for all v ∈ V (Gi). The algorithm
will compute, by dynamic programming, all sets Di,j , for all i ∈ {1, . . . , n}
and all j ∈ {0, 1, . . . , pi} where pi is the number of indices j > i such that vj
is dominating in Gj .

The correctness of the algorithm follows by induction on i, using Proposi-
tion 5. Notice that for all i ≥ 2 such that vi is dominating inGi, we have pi−1 =
pi + 1, therefore j + 1 ≤ pi−1 in lines 13 and 17, so Di−1,j+1 has already been
computed at that point. The total time complexity is O(n

∑n
i=1 pi) = O(nm),

and can be improved to O(n +m) if only the minimum size of a vector domi-
nating set is needed. ut

5 Concluding remarks

We have studied some algorithmic issues related to natural extensions of the
well known concepts of domination and total domination in graphs. We have
shown that the problems are approximable to within a logarithmic factor, and
proved that this is essentially best possible. We have also provided exact polyno-
mial time algorithms for several interesting classes of graphs, namely, complete
graphs, trees, P4-free graphs and threshold graphs.

References

1. M. CHLEBÍK and J. CHLEBÍKOVA. Approximation hardness of dominating set problems in
bounded degree graphs. Information and Computation 206 (2008) 1264–1275.

2. D.G. CORNEIL, H. LERCHS and L. STEWART BURLINGHAM. Complement reducible
graphs. Discrete Appl. Math. 3 (1981) 163–174.

3. D.G. CORNEIL, Y. PERL and L.K. STEWART. A linear recognition algorithm for cographs.
SIAM J. Comput. 14 (1985) 926–934.

4. U. FEIGE. A threshold of lnn for approximating set cover. Journal of ACM 45 (1998)
634–652.

5. D. KEMPE, J.M. KLEINBERG, E. TARDOS. Influential Nodes in a Diffusion Model for
Social Networks. ICALP 2005, 1127-1138

6. R.KLASING and C. LAFOREST. Hardness results and approximation algorithms of k-tuple
domination in graphs. Inf. Process. Lett. 89(2): 75-83 (2004)

7. C.S. LIAO and G.J. CHANG. k-tuple domination in graphs. Inform. Process. Lett. 87 (2003)
45–50.

8. J. HARANT, A. PROCHNEWSKI, and M. VOIGT. On dominating sets and independent sets
of graphs. Combinatorics, Probability and Computing 8 (1999), 547-553

9. T.W. HAYNES, S. HEDETNIEMI and P. SLATER Fundamentals of Domination in Graphs.
Marcel Dekker, 1998.

10. T.W. HAYNES, S. HEDETNIEMI and P. SLATER (Eds.) Domination in Graphs: Advanced
Topics. Marcel Dekker, 1998.

11. M.A. HENNING AND A.P. KAZEMI, k-tuple total domination in graphs. Discrete
Appl. Math. 158 (2010) 1006–1011.

12. S. MISHRA, JAIKUMAR RADHAKRISHNAN and S. SIVASUBRAMANIAN. On the hardness
of approximating minimum monopoly problems. FST TCS 2002 LNCS Vol. 2556 2002,
277-288

13. S. MISHRA and S. B. RAO. Minimum monopolies in regular and trees graphs. Discrete
Mathematics 306 (2006). 1586-1594.

14. E. MOSSEL, and S. ROCH. On the submodularity of influence in social networks. Proc.
39th Ann. ACM Symp. on Theory of Comp., ACM, 2007, pp. 128–134.

15. D. PELEG. Local majorities, coalitions and monopolies in graphs: a review. Theoretical
Computer Science 282 (2002) 231–257.

16. R. UEHARA. Linear time algorithms on chordal bipartite and strongly chordal graphs Proc.
ICALP 2002, LNCS 2380, 993-1004, 2002.

17. L.A. WOLSEY. An analysis of the greedy algorithm for the submodular set covering prob-
lem. Combinatorica 2 (1982) 385–393.

18. F. ZOU, J. K WILLSON, Z. ZHANG, and W. WU. Fast information propagation in social
networks. Discrete Mathematics, Algorithms and Applications 2 (2010) 1-17.

