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Abstract

The equations of motion and the Bianchi identity of the C-field in M-theory are encoded in terms of
the signature operator. We then reformulate the topological part of the action in M-theory using the
signature, which leads to connections to the geometry of the underlying manifold, including positive
scalar curvature. This results in a variation on the miraculous cancellation formula of Alvarez-Gaumé
and Witten in twelve dimensions and leads naturally to the Kreck-Stolz s-invariant in eleven dimensions.
Hence M-theory detects diffeomorphism type of eleven-dimensional (and seven-dimensional) manifolds,
and in the restriction to parallelizable manifolds classifies topological eleven-spheres. Furthermore, re-
quiring the phase of the partition function to be anomaly-free imposes restrictions on allowed values of
the s-invariant. Relating to string theory in ten dimensions amounts to viewing the bounding theory as
a disk bundle, for which we study the corresponding phase in this formulation.
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1 Introduction

In this paper we show that M-theory encodes geometric invariants via the signature. The index theorem is
a powerful tool in characterizing anomalies of physical theories. The simplest example of an index theorem
in even dimensions is the index of the de Rham operator resulting in the Gauss-Bonnet theorem, which
gives the Euler characteristic as a topological invariant. Due to the presence of spinors in a supersymmetric
theory, it is very common to use the Dirac operator, whose index leads to the Â-genus as a topological
invariant. In odd dimensions, there is a geometric/analytical correction term, namely the eta-invariant in
the Atiyah-Patodi-Singer (APS) index theorem [2]. In this paper we consider instead, in the context of M-
theory, the signature operator on differential forms, whose index is the signature [14]. In the presence of an
odd-dimensional boundary, the APS index theorem for the signature expresses the signature of a Riemannian
manifold with boundary in terms of the integral of the Hirzebruch L-polynomial and the eta-invariant of the
boundary [3].

The C-field in eleven-dimensional M-theory with field strength G4 has a dual field G7, which is just the
Hodge dual at the level of differential forms. Due to the structure of the equation of motion of the C-field, G7

can also be viewed as a potential with a field strength G8 [7] [22] [23] [24] [25]. We show how the signature
operator in eleven dimensions encodes the dynamics of the C-field and its dual. We also consider the index
of this operator. The harmonic part of the C-field C3 is already studied in [28]. In a complementary way,
we consider here the harmonic part of the field strength G4. This is done in section 2, where we provide
observations which serve as preparation for the main discussion in section 3.

Witten [36] wrote the topological part of the action in M-theory on a Spin eleven-manifold Y 11, namely
the combination of the Chern-Simons term and the one-loop term, using index theory. This is done by lifting
to the ‘bounding theory’ on a Spin twelve-manifold Z12 and involves an index of the Dirac operator coupled
to an E8 bundle as well as the index of the Rarita-Schwinger operator, that is the Dirac operator coupled
to the virtual vector bundle TZ12 − 4O. The subtraction of four copies of the trivial line bundle −4O from
the tangent bundle comes from the consideration of ghosts in eleven dimensions. In section 3.1 we give an
alternative description of the topological part of the action, using the Hirzebruch signature theorem, and
hence the Hirzebruch L-polynomial [14]. This leads to a variant of the miraculous cancellation formula of
Alvarez-Gaumé and Witten [1] which we might call “quantum” in the sense that ghosts coming from the
path integral – a quantum effect– are accounted for.

The phase of the partition function in eleven dimensions (as opposed to twelve) involves the eta-invariants
of the E8 Dirac operator and of the Rarita-Schwinger operator. In section 3.2 we show that the above-
mentioned reformulation in terms of the signature and the L-polynomial, when the E8 bundle is trivial,
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leads essentially to the s-invariant of Kreck and Stolz [19], defined in the rational numbers for positive scalar
curvature metrics on our eleven-manifolds. Furthermore, absence of anomalies from the phase imposes a
condition on the allowed values of the s-invariant. Issues of positive scalar curvature in M-theory in relation
to the partition function are studied extensively in [29]. The s-invariant requires the vanishing of the rational
Pontrjagin classes pi. For p1 this is weaker than requiring a String structure, the obstruction to which is
1
2p1 ∈ H4Z, because of possible 2-torsion. Similarly for p2 this is weaker than requiring a Fivebrane structure
[30] [31], the obstruction to which is 1

6p2 ∈ H8Z, because of possible 2- and 3-torsion.

The restriction of the s-invariant to parallelizable manifolds is given by the Eells-Kuiper invariant [10].
Since this invariant classifies topological spheres, we get in section 3.2 that M-theory classifies topological
eleven-spheres. On the other hand, the extensions to the case when the E8 bundle is no longer trivial suggests
a possible generalization of the Kreck-Stolz invariant and which is defined for manifolds of positive scalar
curvature together with a degree four cohomology class. To make our statements about M-theory will will
rely on the corresponding constructions in [19].

We also relate the geometric/analytical invariants in eleven dimensions to type IIA string theory via
dimensional reduction on the circle S1 in section 4.1. We consider the adiabatic limit of the eta-invariant of
the signature operator, as opposed to that of the (twisted) Dirac operator considered previously in [21] [26]
[29], and building on [8]. The bounding theory is then taken on a disk bundle Z12 over the ten-dimensional
manifold of type IIA string theory. The proof in [3] of the index theorem with boundary assumes that the
Riemannian manifold has a product metric near the boundary. For general manifolds, there is a correction
form [12], which should be used for disk bundles. The signature of a disk bundle is given in terms of the
integral of a characteristic class on the base manifold and a limiting eta-invariant [32]. We discuss this in
section 4.2.

2 The signature (operator) in twelve and eleven dimensions

2.1 The signature (operator) in twelve dimensions

The signature operator on closed twelve-manifolds. Let Z12 be an oriented Riemannian twelve-
manifold. The de Rham operator d and its adjoint d∗ act on differential forms. The operator d+ d∗ acts on
the space Ω∗

Z of all differential forms and anticommutes with the involution τ defined by τφ = −ip(p−1) ∗12 φ
for φ ∈ Ωp

Z a p-form on Z12. Denoting by Ω+
Z and Ω−

Z the ±-eigenspaces of τ , we have that d+d∗ interchanges
Ω+

Z and Ω−
Z and hence defines by restriction the signature operator σ : Ω+

Z → Ω−
Z .

For Z12 closed, Hodge theory gives the equality [14]

sign(Z12) = index(σ) =

∫

Z12

L , (2.1)

where L is the Hirzebruch L-polynomial and the right-hand side is the signature of the quadratic form on

H6(Z12;R) given by the cup product. There is a bilinear form on H6(Z12)⊗H6(Z12)
∪

−→ R, where the cup
product ∪ is symmetric and nondegenerate, and the signature of Z12 is σ(Z12) = σ(∪) with the following
relevant properties

1. Product: σ(M4 ×N8) = σ(M4)σ(N8). This will be useful in compactifications to four dimensions and
to relating the corresponding secondary invariants in eleven dimensions to those in seven dimensions.

2. Bordism invariance: If Z12 = ∂W 13 then σ(Z12) = 0. In this case the integral of the L-genus is zero.

Example: Calabi-Yau compactification. The signature can be used to derive consistency conditions
on realistic compactifications [16]. Consider the bounding theory on Z12 taken to be a product M4 × N8,
where M4 is a four-dimensional manifold and N8 is a Calabi-Yau four-fold N8 = X4

C
. If M4 is flat then the
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signature σ(N4) = 0 so that, by the product property above, the signature of Z12 is zero. If M4 is not flat
then σ(M4) can be nonzero and N8 can be taken so that σ(Z12) does not vanish. The middle cohomology
of X4

C
splits as H4(X4

C
) = B+(X

4
C
) ⊕ B−(X

4
C
) into a selfdual (∗ω = ω) subspace B+(X

4
C
) and anti-selfdual

(∗ω = −ω) subspace B−(X
4
C
), whose dimensions are determined by the Hirzebruch signature as

σ(X4
C) = dimB+(X

4
C)− dimB−(X

4
C)

=

∫

X4

C

L2 =
1

45

∫

X4

C

(7p2 − p21) =
χ(X4

C
)

3
+ 32 .

The symmetric inner product (ω1, ω2) =
∫
X4

C

ω1 ∧ ∗ω2 is positive definite on H4(X4
C
), and H4(X4

C
;Z) is

unimodular by Poincaré duality. The symmetric quadratic form Q(ω1, ω2) =
∫
X
ω1 ∧ ω2 is positive definite

on B+(X
4
C
) and negative definite on B−(X

4
C
). The reduction of the M-theory action is performed in [16]

where the one-loop degree eight polynomial I8 is taken to have components along the Calabi-Yau space,
which leads to a quantization on the values of the Euler characteristic

I = −

∫

X4

C

I8 =

∫

X4

C

(4p2 − p21)/192 =
χ(X4

C
)

24
∈ Z . (2.2)

The C-field in M-theory satisfies [G4]−
1
4p1 ∈ H4(X4

C
;Z) [36]. If G4 is zero then 1

4p1 has to be an integral
class. This implies by Wu’s formula that x2 ≡ 0 mod 2 for any x ∈ H4(X4

C
;Z). From (2.2), this means

that H4(X4
C
;Z) is an even self-dual lattice with signature σ(X4

C
). The requirement that χ = 0 mod 24 is

consistent with the fact that every even self-dual lattice should have σ = 0 mod 8. If 1
4p1 is half-integral

then [G4] has to be half-integral, and a potentially non-integral contribution to the one-point function can
be cancelled also for Calabi-Yau’s for which χ 6= 0 mod 24 [16].

2.2 The signature (operator) in eleven dimensions and the C-field

Now suppose Z12 has a boundary Y 11 and is isometric to a product near the boundary. 2 Then near Y 11,
σ is of the form σ =

(
∂
∂z

+ S
)
with S a self-adjoint operator on Y 11. The restriction of Ω+

Z to Y 11 can be
identified with the space Ω∗

Y of all differential forms on Y 11. On Y 11, the signature operator is defined as [3]

Sφ = (−1)p(ǫ ∗ d− d∗)φ , (2.3)

where ∗ is the Hodge star operator defined by the metric gY and with ǫ = 1 for φ a 2p-form and ǫ = −1
for φ a (2p− 1)-form. The operator S commutes with the parity of differential forms on Y 11 and commutes
with the operator which is essentially the Hodge duality operator φ 7→ (−1)p ∗ φ. When p is even then S
commutes precisely with ∗, and when p is odd then S commutes with ∗ up to a sign. This splits the operator
S, according to form degree, into even and odd parts S = Sev ⊕ Sodd.

The even and odd signature operators. Let (Y 11, gY ) be a compact oriented eleven-dimensional Rie-

mannian manifold. The odd signature operator Sodd
p is defined on

⊕6
p=1 Ω

2p−1, the differential forms of odd
degree, by

Sodd
p = (−1)p+1(∗d+ d∗) . (2.4)

Similarly, the even signature operator Sev
p is defined on

⊕5
p=0 Ω

2p, the differential forms of even degree, by

Sev
p = (−1)p(∗d− d∗) , (2.5)

The operator Sev isomorphic to the operator Sodd [5].

2The general case will be considered in section 4.1.
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The even signature operator on the fields G4 and G8. We now consider the field G4 and its Hodge
dual G7 in eleven dimensions out of which we build a field G8. The equation of motion for G4,

d ∗G4 =
1

2
G4 ∧G4 − I8(gY ) , (2.6)

involves dG7, which we call G8 (this is called Θ in [7]). The even signature operator S(gY ) = ⊕pSp :
Ω2∗(Y 11) −→ Ω2∗(Y 11) on (Y 11, gY ) acts on even degree forms as

Sp : Ω2p(Y 11) −→ Ω10−2p(Y 11)⊕ Ω12−2p(Y 11)

G2p 7−→ (−1)p(∗d− d∗)G2p . (2.7)

For p = 2 this gives the action on the field strength G4 of the C-field

S2 : Ω4(Y 11) −→ Ω6(Y 11)⊕ Ω8(Y 11)

G4 7−→ ∗dG4 − d ∗G4 , (2.8)

which, upon use of the Bianchi identity dG4 = 0, gives G4 7→ −d ∗G4. This can further be expanded using
the equation of motion (2.6), resulting in

S2 : G4 7−→ I8(gY )−
1

2
G4 ∧G4 . (2.9)

Next, for p = 4, the operator (2.7) acting on the field strength G8 gives

S4 : G8 7−→ ∗dG8 − d ∗G8 . (2.10)

As mentioned above, we take G8 to be the right hand side of the equation of motion of the C-field, i.e.
G8 = d ∗G4 −

1
2G4 ∧G4. Consequently, dG8 = 0 and d ∗G8 = ∆G4 −

1
2d ∗ (G4 ∧G4), so that

S4 : G8 7−→ d ∗G8 = −∆G4 +
1

2
d ∗ (G4 ∧G4) . (2.11)

Here ∆ = (d+ d∗)2 is the Hodge Laplacian, which on G4 and G8 is simply dd∗ since both of these fields are
closed.

The index of S2. Consider the kernel of the operator (2.8). From (2.9), this space is

Ker(S2) = {G4 | d ∗G4 = 0} (2.12)

so that it is given by requiring the eight-form on the right-hand side of the equation of motion (2.6) to be
zero

1

2
G4 ∧G4 − I8(gY ) = 0 . (2.13)

This expression can be easily arranged to hold by requiring each of the two terms to vanish separately. The
quadratic term would be zero if G4 is taken to have specific components which run over less than eight values.
The one-loop term is zero for manifolds (M, gM ) for which the Pontrjagin forms satisfy p2(gM )− 1

4p1(gM )2 =
0. At the level of cohomology this is satisfied for eight-manifolds with nowhere vanishing spinors (see [15])
or with a PU(3) structure (see [33]). The cokernel of the operator (2.8) is the kernel of the adjoint operator

S†
2 so that Coker(S2) = Ker(S2)

† is given by G4 = 0, that is by flat C-fields. The dimension of the space
of C-fields satisfying the equations of motion, when G4 ∧ G4 − I8(gY ) = 0, is given by dim(Ker(S2)). The

dimension of the space of flat C-fields is then given by dim(Ker(S†
2)). The index of the operator S2 is

Index(S2) = dim(Ker(S2))− dim(Coker(S2))

= {“on− shell” C− fields} − {flat C− fields} .
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The index of S4. Now consider the kernel of the operator (2.10) acting on the dual field G8, Ker(S4) =
{G8 | d ∗G8 = 0}. From (2.11), this is given in terms of G4 by

Ker(S4) = {G8 | ∆G4 −
1

2
d ∗ (G4 ∧G4) = 0} . (2.14)

The differential equation giving the condition in (2.14) does not seem to have a general solution. Instead,
we will give a characterization in certain special cases. When G4 ∧G4 = 0, as discussed above for Ker(S2),
the condition in (2.14) is simply that G4 is harmonic. However, when ∗(G4 ∧ G4) is a nonzero three-form,
say proportional to the C-field itself, with dC3 = G4, then the condition is (∆ − m)G4 = 0, that is G4 is
annihilated by the “massive” Laplacian. Here m is the parameter of proportionality, that is ∗(G4 ∧ G4) =
2mC3. This is reminiscent of the phenomenon of odd-dimensional self-duality which appears in supergravity
theories in odd dimensions, where a field strength is (Hodge) dual to a potential. The cokernel of the

operator S4 is the kernel of the adjoint operator S†
4 , where G8 being zero implies that G7 is constant, which

is the same as ∗G4 being a constant. The index can be found similarly to the case of S2 (within the above
specialization).

The odd signature operator on the potential fields C3 and G7. We now consider the signature
operator acting on the odd forms in M-theory. These are the C-field C3 and the field G7, the Hodge dual of
G4. For the first field we have

Sodd
2 : C3 7−→ −(d ∗+ ∗ d)C3 = −G7 , (2.15)

so that the kernel is given by flat dual fields. For the second field we have

Sodd
4 : G7 7−→ −(d ∗+ ∗ d)G7 = − ∗ d ∗G4 , (2.16)

so that the kernel is given by co-closed G4. The cokernels are given by zero C3 and by flat C-fields, i.e. those
for which G4 = 0. Therefore, the indices are given, respectively, by

Index(Sodd
2 ) = {dual flat fields} − {zero C− fields} (2.17)

Index(Sodd
4 ) = {coclosed G4} − {flat C− fields} . (2.18)

Alternative form. Alternatively, instead of the operator d ∗ ± ∗ d, we could use the operator d ± ∗d∗,
which is manifestly (anti) self-adjoint. Then, for example, on G4 we would get G4 7−→ ∗

(
1
2G4 ∧G4 − I8(g)

)
.

The eta-invariant. Since S is self-adjoint and its square S2 = ∆ is the Hodge Laplacian, it is diago-
nalizable with real eigenvalues λn. The eta-invariant η(S(Y 11)), which is a measure of asymmetry of the
spectrum of the operator, is defined as the value at s = 0 of [3]

η(s) =
∑

λn 6=0

signλn

|λn|s
. (2.19)

The fact that the operator Sev isomorphic to the operator Sodd implies, in particular, that the eta-invariant
and number of zero modes corresponding to S can be written in terms of those of Sev as

η(S) = 2η(Sev) , h(S) = 2h(Sev) , (2.20)

and similarly for Sodd. Therefore, in dealing with the eta-invariant, one can formulate expressions using
the ‘total’ signature operator, the odd signature operator, or the even signature operator, with the simple
prescribed way of transforming from one formulation to the other.

Having discussed the effect of the signature operator on the fields, next we turn to the corresponding
effect on the action and partition function of the theory.
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3 The invariants from M-theory

In this section we start by recalling the APS index theorem for the signature operator and then provide our
main arguments in this context in section 3.1 and section 3.2.

The APS index theorem for the signature operator. Let (Z12, gZ) be a compact oriented Riemannian
manifold with boundary (Y 11, gY ), and assume that near the boundary the twelve-manifold is isometric to
a product. Then the APS index theorem relates a topological invariant on one side to a sum of a differential
geometric and a spectral invariant on the other side [3]

sign(Z12, Y 11) =

∫

Z12

L(p(gZ))− η(S(gY )) , (3.1)

where
(i) sign(Z12) is the signature of the nondegenerate quadratic form defined by the cup product on the image
of H6(Z12, Y 11) in H6(Z12). Looking at relative cohomology is appropriate since there are no six-form field
strengths in M-theory in eleven dimensions.
(ii) L(p(gZ)) = L12(p1, p2, p3), where L12 is the 3rd Hirzebruch L-polynomial (of degree twelve) and the pi
are the Pontrjagin forms of the curvature built out of the Riemannian metric gZ .
(iii) η(S(gY )) is the eta-function for the self-adjoint operator Sp on even forms on Y 11 given by G2p 7→
(−1)p(∗d − d∗)G2p. The multiplicity of the zero eigenvalue of Sp is h = dim(Ker(Sp)). For the values
p = 2, 4, we considered this in the previous section.

Notice that if sign(Z12, Y 11) = 0 then the topological quantity is given in terms of the geometric/analytical
quantity

∫
Z12 L(p(gZ)) = η(S(gY )). This can happen, for instance, when Z12 itself is a boundary, as indicated

in the bordism property mentioned in section 2.1.

3.1 A variation on the miraculous cancellation formula in twelve dimensions

The topological part of the action in M-theory, namely the combination of the Chern-Simons term and the
one-loop term

I = ICS + I1−loop =
1

6

∫

Z12

G4 ∧G4 ∧G4 −

∫

Z12

I8 ∧G4 , (3.2)

is formulated in [36] in terms of index theory. This involves IE8 , the index of the Dirac operator coupled to
an E8 bundle, as well as IRS , the index of the Rarita-Schwinger operator, that is the Dirac operator coupled
to the virtual vector bundle TZ12−4O. The subtraction of four copies of the trivial line bundle, −4O, comes
from the inclusion of effect of ghosts required to fix the gauge invariances of the Rarita-Schwinger operator
in eleven dimensions. The exponent in the phase of the partition function is [36]

1

2π
I =

1

2
IE8 +

1

4
IRS . (3.3)

The factor of 1/2 on the right hand side is due to a Mojorana-Weyl (MW) condition. The factor of 1/4
is due to a MW condition and the fact that the characteristic class should to be related to half of the
gravitino-dilatino anomaly (in comparing to heterotic string theory).

We now provide our alternative description, using the the Hirzebruch signature theorem, and hence the
Hirzebruch L-polynomial. We start with the Rarita-Schwinger index in twelve dimensions. This is given by

IRS
12 = Â(Z12)ch(TZ12

C − 4O)

=
1

210 · 33 · 5 · 7

(
−31p31 + 44p1p2 − 16p3

)
· 8 +

1

27 · 32 · 5

(
7p21 − 4p2

)
· p1

−
1

23 · 3
(p1) ·

1

22 · 3
(p21 − 2p2) + 1 ·

1

23 · 32 · 5

(
p31 − 3p1p2 + 3p3

)

=
1

23 · 33 · 5 · 7

(
2p31 − 13p1p2 + 62p3

)

6



On the other hand, the degree-twelve part of the Hirzebruch L-polynomial is given by (see e.g. [14])

L12 =
1

33 · 5 · 7

(
62p3 − 13p1p2 + 2p31

)
. (3.4)

Now we get a formula which is a variation on the miraculous anomaly cancellation formula of Alvarez-Gaumé
and Witten [1]. This relies on the curious degree twelve expression 3

8IRS
12 = L12 . (3.5)

To some extent, our formula can be viewed as a quantum counterpart of the classical miraculous cancellation
formula By “quantum” we mean in the sense of accounting for ghosts coming from the path integral are
accounted for. However, a fully quantum version would involve setting up effective actions as in [11], which
will be discussed separately elsewhere. Note that for a twelve-manifold M with tangent bundle TM the
miraculous cancellation formula is [1]

L(M) = 8Â(M,TM)− 32Â(M) , (3.6)

where Â(M,TM) = Â(M)ch(TM), with ch(TM) =
∑

j e
xj + e−xj =

∑
j 2coshxj . It is easily seen that

L(M) = 8Â(M)[ch(TM) − 4]. We now rewrite (3.3), the exponent in the phase of the partition func-
tion, arriving at the alternative expression which trades the Rarita-Schwinger index with the Hirzebruch
L-polynomial via (3.5)

1

2π
I =

1

2
IE8 +

1

32
L12 . (3.7)

To motivate what might be gained by doing this, let us consider the case when the E8 bundle is trivial. In
this case the top degree component of (3.7) reduces to

1

2π
I = 124

(
Â12 +

1

27 · 31
L12

)
. (3.8)

Absence of anomalies requires that the right hand side be an integer (as it is a phase in the effective action),
so that we arrive at the condition

〈
Â12 +

1

27 · 31
L12, [Z

12]

〉
∈ Z/124 . (3.9)

Proposition 1 (i). The miraculous cancellation formula in twelve dimensions can be written as 8IRS
12 = L12,

where IRS
12 is the Rarita-Schwinger index and L12 is the Hirzebruch L-polynomial in degree 12.

(ii). The topological action in M-theory is 1
2I

E8 + 1
32L12, where IE8 is the index of the Dirac operator coupled

to an E8 bundle.

(iii). The phase is not anomalous if
〈
Â12 +

1
27·31L12, [Z

12]
〉
∈ Z/124.

In the following section we show that this naturally leads to the Kreck-Stolz s-invariant.

3.2 The Kreck-Stolz s-invariant and scalar curvature in eleven dimensions

Let Z12 be a twelve-dimensional compact Spin manifold with boundary ∂Z12 = Y 11. Let gZ be a Riemannian
metric on Z12 which coincides with a product metric on Y 11 × I in a collar neighborhood of the boundary
and let gY be its restriction to the boundary. Let D+(Z12, gZ) be the (chiral) Dirac operator with respect
to the metric gZ from the positive to negative spinors on Z12. This becomes a Fredholm operator if we
impose the APS boundary condition [3], i.e. if we restrict to spinors on Z12 whose restriction to ∂Z12 is
in the kernel of P , the spectral projection corresponding to nonnegative eigenvalues of the (total) Dirac

3We will label the Â-genus and the L-genus by their form-degree rather than by that divided by four.
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operator D(Y 11, gY ) on Y 11. Denote by index(D+(Z12, gZ)) the index of this Fredholm operator. If gZ(t)
is a continuous family of metrics on Z12, then this index is independent of t, which can be seen as follows
(cf. [3] [19]). The corresponding family of spectral projections P (t) is not continuous for those parameter
values t where an eigenvalue of D(Y 11, gY ) crosses the origin. If gY (t) has positive scalar curvature metric
then the Weitzenböck formula gives [20] that Ker(D(Y 11, gY (t))) = 0. Hence D+(Z12, gZ(t)) is a continuous
family of Fredholm operators and thus index(D+(Z12, gZ(t))) is independent of t. Note the following:

1. If gZ has a positive scalar curvature metric then, from [4], index(D+(Z12, gZ)) vanishes.

2. If gZ is a metric on Z12 whose restriction to the boundary gY has positive scalar curvature then
index(D+(Z12, gZ)) depends only on the connected component of gY in R+(Y 11), the space of positive
scalar curvature metrics on Y 11 [19].

The APS index theorem for the Dirac operator is [3]

index(D+(Z12, gZ)) =

∫

Z12

Â(pi(gZ))−
1

2

(
h(Y 11) + η(D(Y 11, gY )

)
. (3.10)

Here
– pi(gZ) are the Pontrjagin forms of Z12 with respect to the Levi-Civita connection ∇L

Z determined by gZ ,
– D(Y 11, gY ) is the Dirac operator on Y 11 = ∂Z12,
– h(Y 11) is the dimension of the kernel of D(Y 11, gY ) which consists of harmonic spinors on the boundary,
– and η(D(Y 11, gY )) is the η-invariant, which measure the asymmetry of the spectrum of the self-adjoint
operator D(Y 11, gY ).

Additivity and the space of harmonic spinors on Y 11. Consider two twelve-manifolds (Z12, gZ) and
(Z ′12, g′Z). If we glue these two manifolds along isometric boundary component Y 11, then the extension of
the Chern-Simons term ICS = 1

6

∫
Y 11 G4 ∧G4 ∧ C3 from Y 11 to Z12 leading to ICS = 1

6

∫
Z12 G4 ∧ G4 ∧G4,

is independent of the choice of the bounding twelve-manifold [36]. However, the index formula shows that
the index of the Dirac operator behaves additively, provided that there are no harmonic spinors on Y 11,
i.e. h(Y 11) = 0. This happens, for example, if the scalar curvature of that piece of the eleven-dimenisonal
boundary is positive. Such situations are considered extensively in [29].

The Kreck-Stolz invariant s(Y 11, gY ). We will arrive at an invariant s(Y 11, gY ) ∈ Q, defined in [19], as
an absolute version of the Gromov-Lawson invariant [13], which in our case would be for a pair of positive
scalar curvature metrics g1 and g2 on Y 11. We will first describe this invariant, following [19], and then show
how M-theory leads to it naturally. This invariant is obtained by rewriting (3.10) as a sum of two terms,
one depending only on the geometry of Y 11 and another depending only on the topology of Z12. This can
be done provided that the real Pontrjagin classes of Y 11 vanish. The construction relies on treating the
decomposable vs. nondecomposable summands in

∫
Z12 Â(pi(gZ)) separately [19].

Decomposable summands: Let α4 and β8 be differential forms of positive degree on Z12 whose restrictions
to the boundary Y 11 are coboundaries, i.e. there are forms c3 and c7 on Y 11 such that dc3 = α4|Y 11 and
dc7 = β8|Y 11 . Then the wedge products are related as

∫

Z12

α4 ∧ β8 =

∫

Y 11

α4 ∧ c7 +
〈
j−1[α4] ∪ j−1[β8] , [Z12, Y 11]

〉
, (3.11)

where j−1[α4] ∈ H4(Z12, Y 11;R) in any preimage of the de Rham cohomology class [α4] ∈ H4(Z12;R) under
the natural map j : H4(Z12, Y 11;R) → H4(Z12;R) and similarly for [β8], and 〈 , [Z12, Y 11]〉 is the Kronecker
product with the fundamental class. Note that the integral on the right hand side of (3.11) is independent
of the choice of c7 and the Kronecker product is independent of the preimages j−1[α4] and j−1[β8]. Taking
α4 and β8 to be rational multiples of the Pointrjagin forms p1(gZ) and p2(gZ), respectively, gives that the

decomposable summands in Â(pi(gZ)) can be written as a sum of two terms.
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Nondecomposable summands: This summand in Â(pi(gZ)) is a nontrivial multiple of the top Pontrjagin form
p3(gZ). Since the Hirzebruch L-polynomial also involves this form (with another multiple) then one can

arrange for a combination of Â and L which cancels p3, namely [14] the following combination Â3 +
1

27·31L3.
Let j−1pi(Z

12) be any preimage under the natural map j : H4i(Z12, Y 11;R) → H4i(Z12;R). This exists
because we are assuming pi(Y

11) = 0 ∈ H4i(Y 11;R). Then

index(D+(Z12, gZ)) =

∫

Y 11

d−1

(
Â+

1

27 · 31
L

)
(pi(Y

11, gY ))−
1

2

(
h(Y 11) + η(D(Y 11, gZ |Y )

)

−
1

27 · 31
η(S(Y 11, gZ |Y ))− t(Z12) ,

where the topological term is

t(Z12) = −

〈
(Â+

1

27 · 31
L)(j−1pi(Z

12)), [Z12, Y 11]

〉
+

1

27 · 31
sign(Z12) . (3.12)

In particular, if all the real Pontrjagin classes of Y 11 vanish then we can apply the formula to Z12 = Y 11× I,
in which case t(Z12) vanishes.

Given a closed eleven-dimensional Spin manifold Y 11 with vanishing real Pontrjagin classes and positive
scalar curvature metric gY on Y 11 we define, following [19],

s(Y 11, gY ) := −
1

2
η(D(Y 11, gY ))−

1

27 · 31
η(S(Y 11, gY ))+

∫

Y 11

d−1

(
Â12 +

1

27 · 31
L12

)
(pi(Y

11, gY )) . (3.13)

Properties of s(Y 11, gY ). Let Y 11 and Y ′11 be eleven-dimensional closed Spin manifolds with vanishing
real Pontrjagin classes and positive scalar curvature metrics gY and g′Y , respectively. Then, specializing [19],

1. If f : s(Y 11, gY ) → s(Y ′11, g′Y ) is a Spin preserving isometry, then s(Y 11, gY ) = s(Y ′11, g′Y ).

2. s(Y 11, gY ) depends only on the connected component of gY in R+
scal(Y

11), the moduli space of positive
scalar curvature metrics on Spin eleven-manifolds.

3. If Y 11 bounds a Spin manifiold Z12 and gZ is a metric on Z12 extending gY , which is a product metric
near the boundary, then

s(Y 11, gY ) = index(D+(Z12, gZ)) + t(Z12) . (3.14)

4. s(Y 11, gY ) depends on the choice of Spin structure on Y 11.

Consider the expression (3.8) on a twelve-manifold with boundary. Using the APS index theorem, both for
the signature operator (3.1) and for the Dirac operator (3.10), we get that the phase of the M-theory partition
function in eleven dimensions is given by expression (3.13). Given the identification of the phase in the M-
theory partition function essentially with the Kreck-Stolz s-invariant, the anomaly cancellation condition
(3.9) in twelve dimensions can now be recast as saying that in eleven dimensions s(Y 11, gY ) ∈ Z/124. We
therefore have

Theorem 2 Consider M-theory on Spin (Y 11, gY ), where gY is a metric of positive scalar curvature, and
let the E8 bundle on Y 11 be trivial. Then
(i). The phase of the M-theory partition function is anomaly free provided s(Y 11, gY ) ∈ Z/124.
(ii). M-theory on a Spin manifold with positive scalar curvature metric (Y 11, gY ) detects diffeomorphism
types.
(iii). The topological part of the action is invariant under Spin isometries.
(iv). The topological part of the action depends only on the connected component of the metric in the moduli
space of positive scalar curvature metrics.
(v). The topological part of the action depends on the choice of Spin structure.

The last part of the theorem is discussed extensively in [29] from another point of view. See also section 4.1.

9



Conditions and examples of s-invariants satisfying anomaly cancellation. We would like to check
that the condition (3.9) or, more precisely the condition in part (i) of Theorem 2, is satisfied for some
relevant Spin eleven-manifolds. Since the eta-invariant is additive under direct sum, we could consider
decomposable manifolds and restrict to seven-manifolds, as internal spaces of compactifications to four
dimensions. An important class of such Spin Einstein manifolds which solve the supergravity equations
of motion is the Witten spaces Mk,l [34], which are principal S1 bundles over CP 2 × CP 1 classified by
lx+ky ∈ H2(CP 2×CP 1;Z), where x and y are the generators of H2(CP 2;Z) and H2(CP 1;Z), respectively
[18]. Let k and l be relatively prime integers with k even. Then the s-invariant of Mk,l with Einstein metric
gk,ℓ is [19]

s(Mk,l , gk,l) = −
3

27 · 7

k(l2 + 3)(l2 − 1)

l2
, (3.15)

from which we observe that for the values (k, l) = (14, 3) we get 124s(M14,3 , g14,3) = 744. With this integer
value for s, there are no anomalies in the phase. Another example we consider is the family of Aloff-Wallach
spaces of positive sectional curvature, for which the s-invariant is [19]

S(Nk,l , gk,l) =
1

25 · 7
kl(k + l) . (3.16)

We see that for the values (k, l) = (8, 7) we find that s(N8,7 , g8,7) = 15/4, so that the phase is 2πi times
the integer 3 · 5 · 31. Other values can also be found by solving the above Diophantine equations (but we do
not need that here).

The Eells-Kuiper invariant and stably parallelizable eleven-manifolds. We now consider a special
class of eleven-manifolds, for which the s-invariant reduces to a more classical invariant. Let Y 11 be a stably
parallelizable compact Spin eleven-manifold without boundary. That is, TY 11⊕O is trivial. Let Y 11 = ∂Z12

with Z12 a Spin twelve-manifold. The Eells-Kuiper invariant is defined as [10]

ek(Y 11) =

〈(
Â12(p1, p2, p3)−

1

27 · 31
L12(p1, p2, p3)

)
, [Z12, Y 11]

〉
+

1

27 · 31
sign(Z12) ∈ Q/Z , (3.17)

where pi are the relative Pontrjagin classes of (Z12, Y 11) corresponding to some framing of the stable tangent
bundle of Y 11. Let ω be a connection on the stable tangent bundle of Y 11. Extend ω over Z12 as a product
on a collar neighborhood. Following [9], the Chern-Simons invariants are given by

CS(L, Y 11, ω) = sign(Z12)−

∫

Z12

L12(pi(ω)) ∈ R ,

CS(Â, Y 11, ω) = −

∫

Z12

Â12(pi(ω)) ∈ R/Z .

If ω is the trivial connection corresponding to some framing then pi(ω) represent the relative Pontrjagin
classes of that framing and

ek(Y 11) = −CS(Â, Y 11, ω) +
1

27 · 31
CS(L, Y 11, ω) ∈ Q/Z; . (3.18)

Suppose Y 11 is endowed with a Riemannian metric gY . Define the signature operator on even forms on Y 11

as above, and extend gY to a metric on Z12 as a product near the boundary. Let ∇gY be the Levi-Civita
connection associated with gY . The APS index theorem [3] gives the eta invariant for this metric

η(S(Y 11)) = CS(L, Y 11,∇gY )

1

2

(
h− η(D(Y 11))

)
= CS(Â, Y 11,∇gY )) ∈ R/Z .
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Let f be any section of the stable tangent bundle and TP (ω) are the canonical forms satisfying dTP (ω) =
P (ω), which is another way of writing d−1. Then, from [9],

ek(Y 11) =
1

2

(
η(D(Y 11))− h

)
+

1

27 · 31
η(S(Y 11))−

∫
f∗

(
T Â(∇gY +∇0)−

1

27 · 31
TL(∇gY −∇0)

)
∈ Q/Z ,

(3.19)
where ∇0 is a trivial connection on TY 11. This is analogous to similar discussions on framing in [28]. In
this case of stably parallelizable manifolds, the phase of the partition function is given by the Eells-Kuiper
invariant. Since ek(Y 11) classifies topological eleven-spheres, then

Observation 3 The topological action in M-theory classifies topological eleven-spheres.

This is related to the global gravitational anomalies of [35] although M-theory is not chiral.

A generalization of the Kreck-Stolz invariant? We define a new expression which, in addition to
dependence on the metric and Spin structure, depends also on a degree four cohomology class a. Recall
that in the M-theory expression (3.9), which led to the Kreck-Stolz s-invariant, we assumed that the E8

bundle in eleven and twelve dimensions is trivial, that is its degree four characteristic class a is zero. Note
that BE8 ∼ K(Z, 4) in our range of dimensions so that a can take on any value. However, the action in
M-theory involves an E8 bundle which is in general not trivial. Therefore, we would like to consider the
effect of including this class, together with the geometry. Assuming as in [19] that the real Pontrjagin classes
vanish, implies in particular that the first Pontrjagin class appearing in the flux quantization condition of
[36], G4 −

1
4p1 = a ∈ H4(Y 11;Z), is absent so that allowing a degree four class is essentially the same as

allowing a C-field through its field strength G4, at least rationally away from torsion. The inclusion of the
nontrivial class a leads to a contribution of the corresponding Pontrjagin character of the E8 bundle E,
Ph(E) = 248 + 60a+ 6a2 + 1

3a
3. Thus, we have

Definition 4 s(Y 11, gY , a) = s(Y 11, gY ) + d−1
(

1
3a

3 + 6a2Â4 + 60aÂ2

)
.

We propose this as the geometric invariant when a nontrivial C-field is present. While we have written this
invariant in eleven dimensions (as relevant for M-theory), the extension to other dimensions is obvious from
our use of the index theorem. It would be interesting to work this out explicitly.

4 Comparison to type IIA string theory in ten dimensions

In this section we relate the expressions we considered above in section 3, for M-theory in eleven and
(extension to) twelve dimensions, to corresponding ones in string theory in ten dimensions. This comparison
requires Y 11 to be a circle bundle.

4.1 The s-invariant for Y
11 a circle bundle

Consider Y 11 to be the principal circle bundle S1 → Y 11 π
−→ X10 with positive scalar curvature metric

gY , as considered in [29]. Corresponding to the circle bundle is a complex line bundle L with first Chern
class c = c1(L). The tangent bundle splits as TY 11 ∼= π∗(TX10) ⊕ TFY

11, where the tangent bundle along
the fibers TFY

11 trivial, with a trivialization provided by the vector field generating the S1-action on Y 11.
Since we are assuming pi(Y

11) = 0 ∈ H4i(Y 11;R), i = 1, 2, the splitting of the tangent bundle implies that
π∗(pi(X

10)) = pi(Y
11) = 0. Then the Gysin exact sequence

· · · // H4i−2(X10;R)
∪c

// H4i(X10;R)
π∗

// H4i(Y 11;R) // · · · (4.1)

relates the fields on Y 11 to the fields on X10 (see [21]) and in our case shows that pi(X
10) is divisible by c.

That is, there are elements (in the notation of [19]) pi ∈ H4i−2(X10;R) such that pi(X
10) = pic, i = 1, 2.

This gives that the Pontrjagin classes of X10 are zero when the Chern class of the line bundle is zero;
otherwise they are in general not zero.
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The bilinear form. As above, consider a line bundle L with Euler class e = c(L) ∈ H2(X10) over a base
manifold X10. There is a natural symmetric bilinear form on the degree four cohomology

Bc : H
4(X10;Z)×H4(X10;Z) → R (4.2)

defined by Bc(a, b) := 〈a ∪ b ∪ c(L), [X10]〉, where [X10] is the fundamental homology class of [X10]. This
bilinear form is part of the expression for the phase in the Spinc case (see [29]). The Thom isomorphism
theorem implies that

sign(D(L)) = signature of Bc , (4.3)

where πD : D(L) = Y 11 ×S1 D2 → X10 is the disk bundle associated to the S1-action on Y 11 with orbit
manifold X10 = Y 11/S1. In the general case when the Pontrjagin classes of Y 11 are not required to vanish,
the obstruction to expressing the signature of the disk bundle D(L) as an evaluation of a characteristic class
on X10 is the limiting eta-invariant [32].

Dependence of the s(Y 11, gY ) on the Spin structure on Y 11. There are two cases to consider:

1. X10 is Spin: In this case w2(X
10) = 0 ∈ H2(X10;Z2). By the decomposition of the tangent bundle of

Y 11 we see that a Spin structure on X10 induces a Spin structure on Y 11, which we denote by ξ.

2. X10 is Spinc: In this case w2(X
10) = c mod 2. Then TX10⊕L admits a Spin structure. The choice of

such a Spin structure gives a Spin structure on the disk bundle D(L) whose restriction to the sphere
bundle SL = Y 11 is a Spin structure ξ′.

In the Spin case, i.e. when w2(X
10) = 0 and c = 0 mod 2, we have that ξ and ξ′ are different Spin structures

on Y 11, since the restriction of ξ to a fiber S1 is the nontrivial Spin structure, which does not extend over
the 2-disk D2, whereas the restriction of ξ′ extends by construction. This is again discussed more fully in
[29].

The s-invariant for the case when X10 is Spinc. The disk bundle D(L) is a twelve-manifold with
boundary Y 11 and induced Spin structure ξ′ on that boundary. Then the index index(D+(D(L), gD(L))) = 0
for any metric gD(L) on D(L) which restricts to gY on the boundary and is a product metric in a collar
neighborhood of the boundary. Now for a line bundle L of Chern class c, the genera are given by [14]

Â(L) =
c

2sinh(c/2)
, L(L) =

c

tanh(c)
, (4.4)

so that the s-invariant, using [19], is

s(Y 11, ξ′, gY ) =

〈
Â(TX10)

1

2sinh(c/2)
+

1

27 · 31
L(TX10)

1

tanh(c)
, [X10]

〉
+

1

27 · 31
sign(Bc) (4.5)

The s-invariant for the case when X10 is Spin. The general discussion is more difficult since there
is no obvious Spin twelve-manifold Z12 bounding Y 11 with the Spin structure ξ. It is also very difficult to
compute the index index(D+(Z12, gZ)). However, as argued more generally in [19], when gZ has a metric of
positive scalar curvature then the index is zero, in which case the s-invariant is given by

s(Y 11, ξ, gY ) =

〈
Â(TX10)

1

2tanh(c/2)
+

1

27 · 31
L(TX10)

1

tanh(c)
, [X10]

〉
+

1

27 · 31
sign(Bc) . (4.6)

The s-invariant can be related to the eta-invariants in the adiabatic limit as follows [6]. Let π : E → X10

be an oriented 2-dimensional real vector bundle over X10 and gE a fiber metric on E with a compatible
connection ∇E . Let Y 11 be the unit sphere bundle of E with the induced metric gY , so that Y 11 is a circle
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bundle over X10 with an induced Spin structure ξ. For ǫ > 0 consider the metric gǫ = gYǫ = gE ⊕ π∗(1
ǫ
gX) .

Taking the adiabatic limit, ǫ → 0, gives

lim
ǫ→0

1

2
η(D(Y 11, gYǫ )) = −

〈
Â(TX10)

(
1

e
−

1

2tanh(e/2)

)
, [X10]

〉
,

lim
ǫ→0

η(S(Y 11, gYǫ )) = −

〈
L(TX10)

(
1

tanh(e)
−

1

e

)
, [X10]

〉
− sign(Be) .

Combining the two gives the expression (4.6) of the s-invariant. Trading the L-genus with the Rarita-
Schwinger index gives back the expressions derived in [21] [26] [29], where the dimensional reduction to type
IIA string theory is first interpreted via the adiabatic limit.

4.2 Disk bundles and the secondary correction term

We consider the general case when the twelve-manifold no longer has a product metric near the boundary,
which is a departure from the set-up of APS [3]. Assume then that (Y 11, gY ) bounds a (general) twelve-
dimensional Riemannian manifold (Z12, gZ). Let N

12 = Y 11 × [0, 1] with product metric g0, and extend gZ
smoothly to a metric g1 on Z12 ∪N12 in such a way that g1 is a product metric near Y 11 ×{1}. Then, from
[12], the signature of Z12 is given by

sign(Z12) =

∫

Z12

L12(pi(gZ)) +

∫

Y 11

TL12(g0, g1)− η(Y 11) , (4.7)

where the boundary correction term TLk is the secondary characteristic Lk-class corresponding to the Levi-
Civita connections of g0 and g1. Let h be a fiber metric on the line bundle L and ∇L connection on L
compatible with h, so that gL = h + π∗(g) is an induced natural Riemannian metric on the total space
L. Let Sr(L) be the circle bundle of radius r corresponding to the bundle L. Consider two concentric disk
bundles Dρ(L) and Dr(L) where ρ < r. Let g0(ρ, r) be the product metric on the annulus N12 = Sr(L)×[ρ, r].
Extend the metric gL on Dρ(L) to a metric g1(ρ, r) on Dr(L) in such a way that g1(ρ, r) = g0(ρ, r) near
the boundary Sr(L). Let ∇r be the Levi-Civita connection for the product metric g0 on Dr(L) − {0} and
let α(r) be the corresponding connection form. Let ∇ρ be the Levi-Civita connection of gL|Dρ(L) and β(ρ)
the corresponding connection form. Let θ = β(r) − α(ρ) and consider Ωt = Ωt(ρ, r), the curvature of the
connection (1− t)∇r + t∇ρ. The secondary characteristic L12-class is defined in [32] by

TL12(g0, g1) := 6

∫ 1

0

L12(θ,Ωt, · · · ,Ωt)dt . (4.8)

Then the signature of the disk bundle is

sign(Dr(L)) =

∫

Dr(L)

L12(g1) +

∫

Sr(L)

TL12(g0, g1)− η(Sr(L)) , (4.9)

The first term on the right hand side goes to zero as ρ → 0, so that as in [32] [17]

sign(Dr(L)) =

∫

S(L)

lim
ρ→0

TL12(g0, g1)− η(Sr(L)) . (4.10)

Let V be a real vector bundle of rank 2 over a compact oriented Riemannian ten-manifold. Then, using [32],
the signature of the disk bundle D(V ) is

sign(D(V )) =

∫

X10

L12(V,X
10)− lim

r→0
η(Sr(V )) , (4.11)
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where η(Sr(V )) is the eta-invariant of the circle bundle of radius r and L12(V,X
10) is the characteristic

polynomial of degree ten which is expressed explicitly in terms of the coefficients of the Hirzebruch L12

polynomial, the Euler class e(V ) and the Pontrjagin classes pi(X
10)

L12(V,X
10) =

1

33 · 5 · 7

[
8e(V )5 − 14e(V )3p1(X

10) + 49e(V )p2(X
10)− 7e(V )p1(X

10)2
]
. (4.12)

Expression (4.11) shows that η(Sr(V )) is in general not topological, and the limiting eta-invariant needs to be
included in the expression of the phase when considering disk bundles. The geometric correction (4.12) occur
because we are considering nontrivial circle bundles. Otherwise, when e(V ) = 0 we have L12(V,X

10) = 0.
Also, the expression (4.12) would simplify depending on the values of p1(X

10) and p2(X
10), which unlike

the ones for Y 11, we are not assuming to vanish. In the case of disk bundles, expression (4.12) is the result
in ten dimensions of the corresponding expression for the L-genus in twelve dimensions, used in our main
discussions in section 3.

Example: Hopf bundle over CP 5. Consider type IIA string theory on the complex projective space
CP 5. For the canonical line bundle γ over CP5, the characteristic polynomial is, from [32],

L12(γ,CP
5) =

1

33 · 5 · 7

[
8c1(γ)

5 + 14c1(γ)
3c2(CP

5) + 49c1(γ)c4(CP
5)− 7c1(γ)c2(CP

5)2
]
. (4.13)

Integrating gives
∫
CP 5 L12(γ,CP

5) = − 24·53
33·5·7 . Now with sign(D(γ)) = sign(CP 5) = 0, expression (4.11) gives

the value for the limiting eta-invariant limr→0 η(Sr(γ)) = − 24·53
33·5·7 .

We hope to make further use of the appearance of the signature and geometric invariants in M-theory in
the near future.
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