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Abstract

It has been shown that the old-fashioned idea of Sakharov’s induced grav-

ity and gauge interactions in the “one-loop dominance" version works

astonishingly well yielding reasonable parameters. It appears that in-

duced coupling constants of gauge interactions of the standard model

assume qualitatively realistic values. Moreover, it is possible to induce

the Barbero–Immirzi parameter of canonical gravity from the fields en-

tering the standard model.
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1 Introduction

The idea that fundamental interactions might be not so fundamental as they appear,

but induced by quantum fluctuations of the vacuum emerges from the fifties of the 20th

century when in 1967 Sakharov and Zel’dovich published their papers about induced

gravity [1] and induced electrodynamics [2]. After a while it was followed by many people

(see, e.g. [3]) and firstly applied to the context of the standard model by Terazawa [4], who

also derived logarithmic relation between the gauge coupling constants and the Newton

gravitational constant [5] (see also [6]). Some further, explorations have been presented

in [7],[8].

It seems that successful application of the idea of quantum vacuum induced interac-

tions to the two fundamental interactions subsequently renewed interest in this subject.

At present, the very idea lacks a clear theoretical interpretation. It is supposed to be an

interesting curiosity as well as an unexplained deeper phenomenon. Despite of an inter-

pretation, striking coincidences have forced us to claim that the idea of quantum induced

interactions does work and can be used practically.

The aim of our paper is to show that the idea of induced gauge interactions in its

primary, old-fashioned, “one-loop dominance” Sakharov’s version [9] yields phenomeno-

logically very realistic results. This standpoint assumes that in the classical action at

the beginning there are only (fundamental) matter fields coupled (minimally) to exter-

nal gauge fields. Classical terms for gauge fields and gravity do not exist autonomously,

but they appear by virtue of the low-order one-loop calculations. (The superior role of

the matter fields awaits an explanation in this framework.) Interestingly, classical terms

produced this way have not only appropriate functional term but also realistic numeric

coefficients. The former fact is akin to renormalizability.

In our paper, gauge interactions and gravity in the modern Ashtekar’s canonical for-

mulation are treated and analyzed in the framework of the very convenient method:

Schwinger’s proper time and the Seeley–DeWitt heat-kernel expansion. Our approach to

the gauge interactions uses flat Lorentzian manifold whereas for the Ashtekar’s gravity

our calculations are carried out on the Riemannian one with torsion (extension including

torsion has been given in [10]), so that the one-loop effective actions for each case are

different and need individual treatment.

2



2 Induced gauge interactions

2.1 Heat-kernel method

According to the idea of quantum vacuum induced interactions, its dynamics emerges from

dominant contributions to the one-loop effective action of non-self-interacting matter fields

coupled to these interactions. In the framework of the Schwinger proper-time method, the

expected terms for gauge interactions can be extracted from the 2nd coefficient of the

Seeley–DeWitt heat-kernel expansion. (“Cosmological constant” and gravity are obtain-

able from the 0th and 1st coefficient respectively, see our work [11].) In Minkowskian

signature [12],[13]

Seff = iκ log detD = iκTr logD = −iκ

∫

ds

s
Tr e−isD, (2.1)

where D is an appropriate second-order differential operator, and κ depends on the kind

of the “matter” field (its statistics, in principle). E.g. for a bosonic single mode, κ = 1
2
.

Seeley–DeWitt heat-kernel expansion (for detailed introduction, see Appendix) in four

dimensions, reads

Tr e−isD =
1

16π2 (is)2
[

A0 + A1 (is) + A2 (is)
2 + · · ·

]

, (2.2)

where An is the nth Seeley–DeWitt coefficient. Imposing appropriate cutoffs, i.e. an UV

cutoff ε for A0, A1 and A2, and an IR cutoff Λ for A2, we obtain

Seff =
κ

16π2

(

1

2
A0ε

−2 + A1ε
−1 + A2 log

Λ

ε
+ · · ·

)

. (2.3)

As we stated earlier, we are especially interested in the gauge part connected with the

A2. Collecting contributions from various modes, we get the following gauge Lagrangian

density:

L2 =
1

384π2
log

Λ

ε

(

N0 + 4N 1

2

)

trF 2 (2.4)

(see, Table 2 in Appendix for the origin of the numeric coefficient), where:

N0 = number of minimal scalar degrees of freedom (dof),

N 1

2

= number of two-component fermion fields = half the number of fermion dof,
(2.5)

and F is the strength of a gauge field (see, the definition (B.1).) Higher-order terms are

in principle present (even in classical case), but they are harmless in typical situations

because of small values of the coefficients following from the cutoffs.
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gauge group U(1) SU(2) SU(3)

coupling constant g′ g f

“coupling matrix” i
2
Y g′ i

2
~τg i

2

~λf

conventions Y —hypercharge tr(τaτ b) = 2δab, a, b = 1, 2 tr(λiλj) = 2δij , i, j = 1, 2, 3

FERMIONS (one family) a2 = −

1

3
trF 2

numeric formula −

1

3

(

−

1

4

)

Y 2g′
2

= 1

12
Y 2g′

2
−

1

3
· 2

(

−

1

4

)

g2 = 1

6
g2

−

1

3
· 2

(

−

1

4

)

f2 = 1

6
f2

LEPTONS

left, Y = −1 1

12
· 2g′

2
= 1

6
g′

2 1

6
g2 0

right, Y = −2 1

12
· (−2)2g′

2
= 1

3
g′

2
0 0

QUARKS

left, Y = 1

3

1

12
· 2 · 3

(

1

3

)2
g′

2
= 1

18
g′

2 1

6
· 3g2 = 1

2
g2 1

6
· 2f2 = 1

3
f2

right, Y = 4

3

1

12
· 3

(

4

3

)2
g′

2
= 4

9
g′

2
0 1

6
f2

right, Y = −

2

3

1

12
· 3

(

−

2

3

)2
g′

2
= 1

9
g′

2
0 1

6
f2

BOSONS a2 = −

1

12
trF 2

Higgs, Y = 1 −

1

12
· 2

(

−

1

4

)

g′
2

= 1

24
g′

2
−

1

12
· 2

(

−

1

4

)

g2 = 1

24
g2 0

Table 1: Various “matter field” species contributions to induced gauge coupling

constants in the framework of the standard model.

2.2 Standard model contributions

Now, we will concentrate on the possibility of quantum generation of gauge interactions

in the context of the standard model. We are interested in the contributions coming from

appropriate matter fields taken into account in (2.4). To this end we should adapt (2.4)

to the context of the standard model. Adopting the matter contents of the Lagrangian of

the standard model we display all contributions to the respective gauge parts in Table 1.

The assumed implicit convention for the operator of covariant derivative is

Dµ = ∂µ + ~X · ~Aµ, (2.6)

where ~X is the “coupling matrix” given in the third row of Table 1. Strictly speaking, ~X

is a tensor product with two matrix units corresponding to the other two gauge groups,

yielding additional coefficients, 2 or 3. In principle, the coefficients given in each column

and multiplied by

1

16π2
log

M

m
, (2.7)

where M and m is an UV and an IR cutoff, respectively, in mass units, should sum up to
1
4
, a standard normalization term in front of F 2, so that, we have the following theoretical
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constraint:

gi
2

16π2

∑

n

α(i)n log
Mn

mn
=

1

4
, (2.8)

where gi (i = 1, 2, 3) is one of the three coupling constants, α(i)n are corresponding numeric

coefficients from Table 1, and the sum concerns all matter fields. We can confidently set

Mn = MP (Planck mass) and mn are masses of lightest particles.

Now, we can utilize the data given in Table 1 in order to reproduce a number of

phenomenologically realistic results. Assuming for simplicity (or as an approximation)

fixed values of Mn and mn for all species of matter particles, we can uniquely rederive

following [14] the Weinberg angle θw,

sin2 θw =
g′2

g2 + g′2
≈ 0.38 . (2.9)

Estimation of the coupling constants requires definite values of infrared cutoffs mn. For

mn of the order of the mass of lighter particles of the standard model we obtain

α =
e2

4π
=

g2 sin2 θw
4π

= O(0.01), (2.10)

and

g = f = O(1), (2.11)

which is phenomenologically a very realistic estimate.

Alternatively, the constraint (2.8) can give some limitations on the ratio of the two

scales M and m, provided the scale of interactions g = f = O(1) is assumed.

3 Ashtekar gravity: the Barbero–Immirzi parameter

Introduction

The Barbero–Immirzi (BI) parameter γ is an a priori free parameter in the framework

of the modern approach to canonical gravity (Ashtekar’s formalism) [15]. In the Holst

extended action for gravity [16] the BI parameter γ resides in the additional term of the

full (Holst) action. One can easily further extend the Holst contribution [17] yielding, in

particular, the Nieh–Yan (NY) term [18]. (The role that NY invariant plays in gravity has

been studied in [19], while an extension to a possible new scenario where BI parameter is

promoted to a field, has been studied in [20]). Topological nature of the NY term, means

that it influences quantum theory. Interestingly, it appears, and we will show it, that, the

NY term can be quantumly induced by dominant part of one-loop contributions coming

from chiral matter fields.
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3.1 Formalism

We will work in the framework of euclidean formalism applying the Sakharov idea of

induced gravity (one-loop dominance) to the standard model of particle physics. We are

especially interested in showing that chiral fields entering the standard model (left-handed

leptons, i.e. neutrinos, in our case) will yield an additional term [21], the NY term. Conse-

quently, the induced BI parameter depends only on the number and kind of particle species

entering the standard model. From purely technical point of view the calculus is partially

akin to the derivation of the Adler–Bell–Jackiw (ABJ) chiral anomaly in space-time with

torsion [22] (see [23] for an extended discussion on the anomaly issue).

According to our realization of the Sakharov idea, we are interested in a dominant part

of one-loop contributions coming from left-handed leptons. We will work in the (euclidean)

Schwinger proper-time formalism and in the framework of the Seeley–DeWitt heat-kernel

expansion on manifolds with torsion [24]. Our starting object is the Dirac differential

operator

D ≡ i 6∇ ≡ iγaeµa ∇µ, (3.1)

where eµa is a vierbein field, ∇µ is a covariant derivative in space with torsion, and γa are

euclidean Dirac matrices. Now

D2 = −�+
1

2
eµae

ν
bσ

abT λ
µν∇λ −

1

8
eµae

ν
bσ

abσcdRcdµν , (3.2)

where

� ≡ ∇µ∇µ, σab ≡ 1

2

[

γa, γb
]

, [∇µ ,∇ν]V
a = Ra

bµνV
b − T λ

µν∇λV
a. (3.3)

Introducing the two chiral projectors

Pl ≡
1− γ5

2
, Pr ≡ 1 + γ5

2
, (3.4)

with γ5 ≡ γ1γ2γ3γ4, we can write in the chiral representation

D2 = D2Pl ⊕D2Pr, (3.5)

and consequently

detD =
√
detD2 =

√

detlD2 detrD2, (3.6)

because D2 is diagonal-blocked in the subspaces L and R. From now on we will confine

ourselves to
√
detlD2 corresponding to the left-handed lepton.
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3.2 Effective action

The effective action for the chiral (left-handed) lepton is of the following form

S = −1

2
log detlD

2 =
1

2

∫

ds

s
Tr

(

e−sD2

Pl

)

. (3.7)

Then, corresponding chiral part of the M2-regularized effective Lagrangian density reads

(see, [22])

L =
1

2

∞
∫

M−2

ds

s

s

(4πs)2

(

−1

2

)

tr
(

a1γ
5
)

≈ −1

4

(

M

4π

)2

NY, (3.8)

where a1 is the 1st Seeley–DeWitt coefficient [24], and the NY term NY is defined by

NY ≡ dωe
a ∧ dωea − ea ∧ eb ∧ Rab ≡ T a ∧ Ta − ea ∧ eb ∧ Rab. (3.9)

The extended Lagrangian density of general relativity assumes the form

L = α ⋆
(

ea ∧ eb
)

∧ Rab − β
(

T a ∧ Tb − ea ∧ eb ∧ Rab

)

, (3.10)

where the first term is the standard Einstein–Hilbert (EH) one, and the second term is

the extended Holst or the NY one. The Barbero–Immirzi parameter γ is now given by

γ ≡ α

β
. (3.11)

Using the result of [11] we have

Leh = − 1

12

(

M

4π

)2
(

N0 +N 1

2

− 4N1

)

⋆
(

ea ∧ eb
)

∧ Rab, (3.12)

where N0, N 1

2

are defined by (2.5), and N1 is the number of gauge fields. Therefore, by

virtue of (3.8), (3.9) and (3.10)–(3.12)

γ =
− 1

12

(

N0 +N 1

2

− 4N1

)

−1
4
Nl

, (3.13)

where Nl is the number of chiral left-handed modes, and the UV cutoffs (M/4π)2 canceled

out in (3.13).

For example, exactly in the framework of the standard model, we insert the following

numbers of fundamental modes: N0 = 4 (Higgs), N 1

2

= 45, N1 = 12, Nl = 3 (neutrinos),

yielding γ = 1
9
≈ 0.11, which is quite close to the (a bit obsolete) Ashtekar–Baez–Corichi–

Krasnov value, γabck = ln 2
π
√
3
≈ 0.13 [25],[26] (see [27], for a better estimation). Nevertheless
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we should remember that γ induced that way depends on the number and kinds of fun-

damental modes, and moreover the whole calculus is valid in the framework of euclidean

formalism.

One should stress that the result γabck ≈ 0.13 is obtained in the framework of an ap-

proach using the black-hole entropy. We have shown, and this is the main objective of

our considerations, that our method of the Sakharov’s induced NY term also fix the BI

parameter γ, and moreover it does it in an independent way.

4 Final remarks

In this paper, we have presented a number of arguments supporting the idea of the old-

fashioned “one-loop dominance” version of gauge interactions in the spirit of Sakharov.

All coupling constants of fundamental gauge interactions have been shown to assume

phenomenologically realistic values, provided the Planckian value of the UV cutoff is

given. As an independent check of the idea, we have proposed Sakharov’s approach to

the modern canonical Ashtekar’s gravity. The a priori free Barbero–Immirzi parameter,

by virtue of the chiral fields contributions coming from the standard model, also assume

an acceptable value in the euclidean framework.
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Appendix

A Heat-kernel expansion

The functional trace in Eq. (2.2), by definition reads:

Tr e−isD ≡
∫

M

dx tr 〈x| e−isD |x〉 , (A.1)

where “tr” is an ordinary algebraic trace. In order to calculate this integrand, let us

consider the, so called, heat-kernel, defined by:

G(x, y; s) ≡ 〈x| e−sD |y〉 . (A.2)

It is easy to check, that non-interacting version of the heat-kernel equation assumes the

form:

∂G0(x, y; s)

∂s
= ∂2G0(x, y; s), (A.3)

where

G0(x, y; s) = 〈x| e−sD0 |y〉 (A.4)

is defined by a free operator D0. Consequently, solving out Eq. (A.3), in d dimensions, we

have:

G0(x, y; s) =
1

(4πs)d/2
e−|x−y|2/4s. (A.5)

Making use of a perturbation techniques with respect to s, we can write the final solution

for a general operator D:

G(x, y; s) =
1

(4πs)d/2
e−|x−y|2/4sF (x, y; s), (A.6)

where F (x, y; s) is a matrix valued function represented by the perturbative expansion:

F (x, y; s) ≡
∞
∑

j=0

Aj(x, y)s
j. (A.7)

The Aj(x, y) coefficients are Seeley–DeWitt (Hamidew) coefficients widely explored in nu-

merous papers, e.g. [28],[29]. Recapitulating, going back to Eq. (A.2) with x = y condition,

for d = 4 in the relativistic version (Wick’s rotation), we finally obtain Eq. (2.2).
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B Seeley–DeWitt coefficients

The Seeley–DeWitt (“Hamidew”) coefficients assume the values presented below (in Table

2). Our sign convention corresponds to the Landau–Lifshitz timelike one, i.e. the metric

signature is (+−−−). Our conventions concerning gauge fields are as follows:

Dµ = ∂µ + Aµ,

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] .
(B.1)

particle Seeley–DeWitt coefficient k2

minimal scalar 1
12

[13]

Weyl spinor −1
3

[13]

massless vector −11
24

[29]

Table 2: Seeley–DeWitt coefficients. In brackets, we have given the references

where the coefficients can be found explicitly or almost explicitly (i.e. after

few-minute calculations).

We have assumed the following notation:

a2(x) = k2 trF
2 + k′

2“curvature terms” . (B.2)

Interested reader can find k′
2 in [9], [12] or [29].
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