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Abstract

In this paper we provide a definition of pattern of outliers in con-
tingency tables within a model-based framework. In particular, we
make use of log-linear models and exact goodness-of-fit tests to specify
the notions of outlier and pattern of outliers. The language and some
techniques from Algebraic Statistics are essential tools to make the
definition clear and easily applicable. Some numerical examples show
how to use our definitions.
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1 Introduction

The detection of outliers is one of the most important problems in Statis-
tics and it is a current research topic in the field of contingency tables and
categorical data. Some recent developments in this direction can be found
in Kuhnt (2004), where the author describes a procedure to identify outliers
based on the tails of the Poisson distribution and discusses the use of differ-
ent estimators to compute the expected counts under the null hypothesis.
A model-based approach to the detection of unexpected cell counts is the
Configural Frequency Analysis (CFA), where the outlying counts are called
“types” or “antitypes” if they are significantly higher or smaller with re-
spect to the expected counts under a suitable model. The use of log-linear
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models for CFA was presented in Kieser and Victor (1999) and reanalyzed
in von Eye and Mair (2008).

The difficulties behind the definition of outlying cell in contingency ta-
bles is proved by the number of different approaches (see the references
below). About these difficulties, and more generally on the old question:
“What a contingency table does say”, an interesting discussion is presented
in Kateri and Balakrishnan (2008).

The notion of outlier for univariate and multivariate continuous distribu-
tions is a well known fact. For example, in the univariate case the outliers
are usually detected through the boxplot or the comparison of the stan-
dardized values with respect to the quantiles of the normal distribution. It
should be noted that there is no unique mathematical definition of outlier,
see for instance Barnett and Lewis (1994). Notice also that the notion of
outlier should be considered as outlier with respect to a specified probability
model. For instance, in the continuous univariate case, it is usual to consider
outliers with respect to the Gaussian distribution, leading to the well known
three-sigma criterion.

The notion of outlier for contingency tables has a less clear meaning. In
fact, the random variables we consider are categorical and the cells of the
table are counts. When we consider contingency tables, we do not define the
outliers among the subjects, but among the counts. As the counts can be
modelled in a simple Poisson sampling scheme, one would use the quantiles of
the Poisson distribution in order to detect the outliers in a contingency table.
Using a different approach, the detection of outliers can also be deduced from
the analysis of the adjusted residuals. This approach has been presented in
Fuchs and Kenett (1980), while the algorithm in Simonoff (1988) is based
on the analysis of the adjusted residuals and their contribution to the chi-
squared Pearson’s test statistics.

In the past decade, Algebraic Statistics has been a very growing re-
search area, with major applications to the analysis of contingency ta-
bles. Algebraic Statistics now provides an easy description of complex
log-linear models for multi-way tables and it represents the natural envi-
ronment to define statistical models for contingency tables with structural
zeros, through the notion of toric models. Moreover, non-asymptotic in-
ference is now more actual via the use of Markov bases and the Diaconis-
Sturmfels algorithm. As general references on the use of Algebraic Statis-
tics for contingency tables, see Pistone et al. (2001), Pachter and Sturmfels
(2005) and Drton et al. (2009). Some specific statistical models to study
complex structures in contingency tables can be found in Rapallo (2005)
and Carlini and Rapallo (2010) and Carlini and Rapallo (2011), with rel-
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evant applications in the detection of special behavior of some subsets of
cells (quasi-independence models, quasi-symmetry models, weakened inde-
pendence models).

In this paper, we use the dictionary, the reasoning and some techniques
from Algebraic Statistics in order to study the notion of outliers in contin-
gency tables. The outliers are defined in terms of goodness-of-fit tests for
tables with fixed cell counts. Then, we investigate the main properties of
the outliers and we show how Algebraic Statistics is a useful tool both to
make exact inference for goodness-of-fit tests, and to easily describe complex
structures of outliers.

The material is organized as follows. In Section 2 we recall some def-
initions and basic results about toric models, while in Section 3 we show
how to study a single outlying cell in the framework of toric models and we
describe explicitly the Monte Carlo test using Markov bases. In Section 4
we present the notions of sets and patterns of outliers, and we analyze a
real-data example. Finally, Section 5 contains some concluding remarks and
pointers to future works.

2 Some recalls about log-linear and toric models

A probability distribution on a finite sample space X with K elements is a
normalized vector of K non-negative real numbers. Thus, the most general
probability model is the simplex

∆ =

{

(p1, . . . , pK) : pk ≥ 0 ,

K
∑

k=1

pk = 1

}

.

A statistical model M is therefore a subset of ∆.
A classical example of finite sample space is the case of d-way contingency

table where the cells are the joint counts of d random variables with a
finite number of levels each. In the case of two-way contingency tables,
where the sample space is usually written as a cartesian product of the form
X = {1, . . . , I} × {1, . . . , J}. We will consider this case extensively in the
next sections.

A wide class of statistical models for contingency tables are the log-linear
models, see e.g. Agresti (2002). A model is log-linear if the log-probabilities
lie in an affine subspace of the vector space R

K . Given s real parame-
ters α1, . . . , αs, a log-linear model is described, apart from normalization,

3



through the equations:

log(pk) =
s
∑

r=1

Ak,rαr (1)

for k = 1, . . . ,K, where A is the design matrix, see (Pistone et al., 2001,
Ch.6). Exponentiating Eq. (1), we obtain the expression of the correspond-
ing toric model

pk =
s
∏

r=1

ζ
Ak,r
r (2)

for k = 1, . . . ,K, where ζr = exp(αr), r = 1, . . . , s, are the new non-negative
parameters. It follows immediately that the design matrix A is also the
matrix representation of the minimal sufficient statistic of the model.

Notice that the model representations in Eq. (1) and (2) are equivalent
on the open simplex, but the toric representation allows us to consider also
the boundary, and therefore the tables with structural zeros. This issue will
be essential in our definition of outliers. The matrix representation of the
toric models as in equation (2) is widely discussed in e.g. Rapallo (2007)
and Drton et al. (2009).

To obtain the implicit equations of the model, it is enough to eliminate
the ζ parameters from the system in Eq. (2). In this paper, we will make
use of the following ingredients from Algebraic Statistics:

(i) the toric ideal IA of a statistical toric model with design matrix A;

(ii) the variety VA of the model;

(iii) the Markov basis MA of the model.

However, to keep the exposition simple, we have collected the formal defini-
tions of these objects and some basic results on them in the Appendix.

As an example in the two-way setting, the independence model for 3× 3
tables is represented by the matrix

Aind =





























1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1





























,
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while the quasi-independence model, which encodes independence of the two
random variables except for the diagonal cells is represented by

Aq−ind =





























1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1





























.

The last three columns of Aq−ind force the diagonal cells to be fitted exactly.
For further details on the quasi-independence models, see Bishop et al. (1975).
The equations of the independence model with design matrix Aind is the set
of all 2× 2 minors of the table of probabilities, i.e.,

IAind
= Ideal(p1,1p2,2 − p1,2p2,1, p1,1p2,3 − p1,3p2,1, p1,1p3,2 − p1,2p3,1,

p1,1p3,3 − p1,3p3,1, p1,2p2,3 − p1,3p2,2, p1,2p3,3 − p3,2p2,3,

p2,1p3,2 − p3,1p2,2, p2,1p3,3 − p3,1p2,3, p2,2p3,3 − p3,2p2,3) ,

(3)

while for the quasi-independence model from the matrix Aq−ind we have
only one binomial:

IAq−ind
= Ideal(p1,2p2,3p3,1 − p1,3p3,2p2,1) .

Notice that, from the point of view of the statistical models, a fixed
cell count has the same behavior as a structural zero. See Rapallo (2006)
for a discussion on this issue. Thus, we start guessing that outliers can
be modelled in the framework of statistical models with structural zeros,
as we will make precise in the following section. The use of structural
zeros to model contingency tables with complex structure is presented in
Consonni and Pistone (2007) under the point of view of Bayesian inference.

Remark 2.1. In the special case of independence model for two-way tables,
the use of 2× 2 minors as in Eq. (3) to detect outliers was implemented in
Kotze and Hawkins (1984). We also mention that the connections between
the implicit equations of the model and the adjusted residuals are known at
least in the simple case of the independence model for two-way table, see for
instance Tsumoto and Hirano (2007).
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3 Outliers

Let us consider the following synthetic contingency table:

f =









7 2 2 2
2 2 2 2
2 2 2 2
3 2 2 2









. (4)

Under the independence model, it seems that the cell (1, 1) could be an
outlier.

With the approach presented in Fuchs and Kenett (1980), the observed
contingency table f is the realization of a multinomial distribution and the
authors analyze the adjusted residuals under the independence model

Zi,j =
fi,j − fi,+f+,j/N

√

fi,+(N − fi,+)f+,j(N − f+,j)/N3

for i = 1, . . . , I and j = 1, . . . , J , where N is the sample size and fi,+ and
f+,j are the row and column sums, respectively. To check the presence of
outlying cells, the authors use the test statistics Z = maxi,j |Zi,j | and they
find suitable approximations for the two-sided α-level critical value. The use
of the adjusted residuals to detect outliers was first described in Haberman
(1973). However, we warn that the test in Fuchs and Kenett (1980) is a
global test and it is not useful to detect the position of the outliers in the
table.

On the other hand, the approach described in Kuhnt (2004) is based on
the computation of the MLE (or L1) estimate of the mean of the Poisson
distributions for the cell counts, and then a cell is declared as outlier if the
actual count falls in the tails of the appropriate Poisson distribution.

Let us analyze the observed table f above under the two approaches
described here. Using the adjusted residuals as in Fuchs and Kenett (1980),
the value of the test statistics is z = 1.5670 (the highest adjusted residuals),
while the critical value at the α = 5% level is 3.1594, showing that there
is no evidence of outlying cells. Under the Poisson approach as in Kuhnt
(2004), we find that the observed value in the cell (1, 1) does not belong to
the 5% tails of the Poisson distribution with mean parameter 4.7895 (i.e.,
the expected cell count under independence).

As mentioned in the previous section, we adopt here a different point
of view to set up the definition and the detection of the outliers in a con-
tingency table. We define them using a model-based approach with appro-
priate goodness-of-fit tests for the comparison of two nested models. The
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starting point is similar to the definition of types and antitypes in CFA, see
Kieser and Victor (1999), but after the first definitions we will use Algebraic
Statistics to understand and generalize the notion of outlier.

Given a contingency table with K cells, let us consider a statistical toric
model for the table. The model has the expression:

pk =

s
∏

r=1

ζ
Ak,r
r (5)

for all k = 1, . . . ,K. This model with matrix representation A will be named
as the base model. Moreover, let α ∈ (0, 1).

Definition 3.1. The cell h, h ∈ {1, . . . ,K} is a α-level outlier with respect
to the base model if the model

pk =











∏

r ζ
Ak,r
r for k 6= h

∏

r ζ
Ah,r
r ζ

(s)
h for k = h

(6)

is significantly better than the base model at level α, where ζ
(s)
h is a new

non-negative parameter.

This means that we compare two toric models:

• the base model in Equation (5) with matrix representation A;

• the model in Equation (6), whose design matrix is

Ã = [A | Ih]

where Ih is the indicator vector of the cell h: Ih is a vector of length
K with all components equal to 0 but the h-th component equal to 1.

Notice that we do not test the goodness-of-fit of the model in Equation
(6), but we only compare it with the base model.

To avoid trivialities in Definition 3.1, we suppose that the cell h is not a
component of the sufficient statistic of the base model, i.e., we suppose that
matrices rank(Ã) = rank(A) + 1). In fact, if rank(Ã) = rank(A), then the
count in the cell h is already a component of the sufficient statistic of the
base model and the goodness-of-fit test becomes useless.

From the point of view of toric models, the new parameter ζ
(s)
h imposes

the exact fit of the candidate outlier h. Using the basic facts about elimina-
tion ideals reported in the Appendix, it is easy to show that, given generators
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of the ideal IA for the basic model, the elimination algorithm also identifies
the ideal IÃ with a simple step:

IÃ = Elim(ph,IA) .

In terms of varieties, the variety VA is a subset of VÃ. This follows from the
proposition below. We will use it also in the next section, thus we state the
result in a general setting.

Proposition 3.2. Let A1 and A2 be two integer non-negative matrices with
K rows, and let Im(A1) and Im(A2) be their images, as vector spaces in R

K .
If Im(A1) ⊂ Im(A2), then VA1

⊂ VA2
.

Proof. By virtue of Proposition A.9 in Appendix, we have to show that
IA2

⊂ IA1
. Let g ∈ IA2

. Then,

g = r1g1 + . . .+ rℓgℓ

where {g1, . . . , gℓ} is a system of generators of IA2
and r1, . . . , rℓ are poly-

nomials. From A.7 in the Appendix, g1, . . . , gℓ are binomials and their
log-vectors (see Definition A.6) m1, . . . ,mℓ are in ker(A2). As ker(A2) ⊂
ker(A1), we have also that g ∈ IA1

. This proves the result.

Now, the inclusion VA ⊂ VÃ follows from Proposition 3.2 with A1 = A

and A2 = Ã.
To actually check if a cell is an outlier, it is enough to implement the

goodness-of-fit test in Definition 3.1. This test can be done using the log-
likelihood ratio statistic, see e.g. (Agresti, 2002, p.591). The test statistic
has the expression

G2 = 2
K
∑

k=1

fk log

(

f̂1k

f̂0k

)

,

where f̂0k and f̂1k are the maximum likelihood estimates of the cell counts
under the base model with design matrix A and the model with design ma-
trix Ã, respectively. The value of G2 must be compared with the appropriate
quantiles of the chi-square distribution with 1 df.

Alternatively one can make exact inference via Markov bases and the
Diaconis-Sturmfels algorithm, see (Drton et al., 2009, Ch.1).

Given an observed contingency table f ∈ N
K and a Markov basis MA for

the base model, one can apply the Diaconis-Sturmfels algorithm by sampling
B contingency tables from the fiber

Ft =
{

f ′ ∈ N
K : A(f ′) = A(f)

}

8



with the hypergeometric distribution H(f ′). This is actually implemented
through a Metropolis-Hastings Markov chain starting from the observed
table. At each step:

1. let f be the current table;

2. choose with uniform probability a move m ∈ MA and a sign ǫ = ±1
with probability 1/2 each;

3. define the candidate table as f+ = f + ǫm;

4. generate a random number u with uniform distribution over [0, 1]. If
f+ ≥ 0 and

min

{

1,
H(f+)

H(f)

}

> u

then move the chain in f+; otherwise stay at f .

The proportion of sampled table with test statistics greater than or equal
to the test statistic of the observed one is the Monte Carlo approximation
of p-value of the log-likelihood ratio test.

In our numerical example, with a Monte Carlo approximation based on
10, 000 tables we obtain an approximated p-value 0.1574, showing that there
is no evidence to conclude that the cell (1, 1) is an outlier. In this example,
the asymptotic p-value based on the chi-squared approximation is 0.0977,
with a noteworthy difference with respect to the Monte Carlo approach.
Notice that in similar problems the asymptotic approximation dramatically
fails. To see this, consider the observed table

f ′ =









0 2 2 2
2 2 2 2
2 2 2 2
3 2 2 2









.

This table differs from the first example in Eq. (4) only in the first cell.
Here, the cell (1, 1) is an antitype with an observed count less than the
expected under independence, while in Eq. (4) the cell (1, 1) was a type.
For this table f ′, the Monte Carlo p-value is 0.1856, while the corresponding
asymptotic approximation is 0.0522. All the simulations presented in this
paper has been performed in R, see R Development Core Team (2010)

Finally, we remark that in many cases the computation of a Markov
basis MA for the base model does not need explicit symbolic computa-
tions. In fact, for several statistical models, such as independence, symme-
try, quasi-independence, a Markov basis has been computed theoretically,
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see Drton et al. (2009) and Rapallo (2003). For instance, our numerical
example in this section considers the independence model as base model
and a suitable Markov basis is formed by the 36 basic moves of the form
(

+1 −1
−1 +1

)

for all 2× 2 minors of the table.

From the point of view of Geometry, this example is quite simple. The
variety of the base model is described by the vanishing of all 2× 2 minors of
the table of probabilities, while the variety of the model with one outlier is
described by the vanishing of 2× 2 minors. They are exactly the 27 minors
not involving the (1, 1) cell.

4 Sets and patterns of outliers

Definition 3.1 can be easily extended to a set of outliers.

Definition 4.1. The cells h1, . . . , hm form a α-level set of outliers with
respect to the base model if the model

pk =











∏

r ζ
Ak,r
r for k 6= h1, . . . , hm

∏

r ζ
Ak,r
r ζ

(s)
k for k = h1, . . . , hm

(7)

is significantly better than the base model at level α, where ζ
(s)
h1

, . . . , ζ
(s)
hm

are
m new non-negative parameters.

In analogy with our previous analysis, notice that the model in Equation
(7) has matrix representation

Ã = [A | Ih1
| · · · | Ihm

] ,

where Ih1
, . . . , Ihm

are the indicator vectors of the cell h1, . . . , hm respec-
tively.

Also in this definition, to avoid trivialities, we suppose that the cells
h1, . . . , hm are not components of the sufficient statistic of the base model,
i.e., we suppose that rank(Ã) > rank(A). It is clear that the difference
rank(Ã)− rank(A) is just the number of degrees of freedom of the goodness-
of-fit test. The test procedure can be performed with the same technique as
for a single outlier. The algorithm is essentially the same as in Section 3 for
a single outlier.
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Example 4.2. Let us consider the independence model for 5 × 5 tables as
the base model and the 10 cells on the diagonal and the anti-diagonal as
the set of outliers. The ideal of the base model is generated by the 100
2 × 2 minors of the table of probabilities, while the elimination of the 10
variables p1,1, . . . , p5,5, p1,5, . . . , p5,1 gives an ideal generated by the following
binomials: 10 binomials of degree 2

−p1,4p3,2 + p1,2p3,4,−p1,3p5,2 + p1,2p5,3,

−p1,4p5,2 + p1,2p5,4,−p1,4p5,3 + p1,3p5,4,

−p2,5p3,1 + p2,1p3,5,−p2,3p4,1 + p2,1p4,3,

−p2,5p4,1 + p2,1p4,5,−p2,5p4,3 + p2,3p4,5,

−p3,5p4,1 + p3,1p4,5,−p3,4p5,2 + p3,2p5,4,

and 18 binomials of degree 3

p3,5p4,3p5,2 − p3,2p4,5p5,3,

−p2,5p3,4p5,3 + p2,3p3,5p5,4,

−p1,2p3,4p5,3 + p1,3p3,2p5,4,

p3,1p4,3p5,2 − p3,2p4,1p5,3,

−p2,1p3,4p5,3 + p2,3p3,1p5,4,

p3,4p4,1p5,3 − p3,1p4,3p5,4,

−p1,4p3,5p4,3 + p1,3p3,4p4,5,

−p1,2p3,5p4,3 + p1,3p3,2p4,5,

−p2,1p3,5p4,3 + p2,3p3,1p4,5,

p1,3p2,5p3,4 − p1,4p2,3p3,5,

p2,3p3,1p5,2 − p2,1p3,2p5,3,

−p1,3p2,5p3,2 + p1,2p2,3p3,5,

p1,3p3,2p4,1 − p1,2p3,1p4,3,

−p1,4p2,3p3,1 + p1,3p2,1p3,4,

−p1,2p2,3p3,1 + p1,3p2,1p3,2,

−p1,3p3,4p4,1 + p1,4p3,1p4,3,

−p2,3p3,5p5,2 + p2,5p3,2p5,3,

−p3,4p4,5p5,3 + p3,5p4,3p5,4 .

As mentioned in the Introduction, one among the key points of Algebraic
Statistics lies in the possibility to make the description and the meaning of
log-linear models easier. Thus, we can enrich the base model in many ways.
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Definition 4.3. The cells h1, . . . , hm form a pattern of outliers with respect
to the base model if the model

pk =











∏

r ζ
Ak,r
r for k 6= h1, . . . , hm

∏

r ζ
Ak,r
r ζ(p) for k = h1, . . . , hm

is significantly better than the base model, where ζ(p) is a new non-negative
parameter.

To avoid trivialities in Definition 4.3, we suppose that the indicator
vector of the cells h1, . . . , hm is not a component of the sufficient statis-
tic of the base model, i.e., we suppose that the matrices Ã and A satisfy:
rank(Ã) = rank(A) + 1).

Remark 4.4. Notice that in Definition 4.3 the outlying cells are charac-
terized by a single parameter ζ(p). This means that we assume a common
behavior of that cells.

Proposition 4.5. Let h1, . . . , hm be m cells. The model with h1, . . . , hm as
a set of outliers contains the model with h1, . . . , hm as a pattern of outliers.

Proof. It is enough to apply Proposition 3.2.

As a consequence, the definition of set of outliers in 4.1 is stronger than
the definition of pattern of outliers. On the other hand, the notion of pattern
of outliers may help in finding parsimonious models.

The definitions of set of outliers and pattern of outliers are very flexible
and can be combined in many ways. In order to show this feature, we
reconsider the following data analyzed in von Eye and Mair (2008) about the
size of social network. The sample is formed by 516 individuals, classified
by marital status (M = 1 married, M = 2 not married), gender (G = 1
male; G = 2 female), and size of social network (S = 1 small, S = 2 large).
The 8 cell counts are listed in Table 4.

As a base model, we use the complete independence model, which can
be written in log-linear form (with the usual log-linear notation) as:

log pi,j,k = λ+ λ
(M)
i + λ

(G)
j + λ

(S)
k .

12



M G S f

1 1 1 48
1 1 2 87
1 2 1 5
1 2 2 14
2 1 1 78
2 1 2 45
2 2 1 130
2 2 2 109

Table 1: Data on social network size.

The ideal of this base model is:

Ideal(p1,2,1p2,1,1 − p1,1,1p2,2,1, p1,2,1p2,1,2 − p1,1,2p2,2,1,

−p1,2,2p2,2,1 + p1,2,1p2,2,2,−p2,1,2p2,2,1 + p2,1,1p2,2,2,

−p1,1,2p2,1,1 + p1,1,1p2,1,2, p1,2,2p2,1,1 − p1,1,2p2,2,1,

p1,2,2p2,1,2 − p1,1,2p2,2,2,−p1,1,2p2,2,1 + p1,1,1p2,2,2,

−p1,1,2p1,2,1 + p1,1,1p1,2,2) .

Thus, a Markov basis for this model is formed by 9 moves. A quick inspection
of the residuals suggests that the cells (1, 1, 2) and (2, 2, 1) are potential
types, while the cells (1, 2, 1), (1, 2, 2) and (2, 1, 2) are potential antitypes.

If one would run a test for each of the previous cells as in Definition 3.1,
the approximated Monte Carlo p-values are 0 in all cases. Notice also that
in this example the definition of set of outliers as in 4.1 is not helpful, as
the corresponding model become saturated. However, if we run the Monte
Carlo test as in Definition 4.3 with these 5 cells as a unique pattern of
outliers, we obtain a p-value 0.1411, showing that the 5 cells do not have
a common behavior, but the test with two patterns of outliers, namely the
potential types and antitypes separately, exhibits a p-value 0.0001, with
strong evidence that the cells in the two patterns {(1, 1, 2), (2, 2, 1)} and
{(1, 2, 1), (1, 2, 2), (2, 1, 2)} have a homogeneous pattern in deviating from
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the base model. The design matrix for this model is

Ã =

























1 1 1 1 0 0
1 1 1 0 1 0
1 1 0 1 0 1
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 0 0 0

























,

and we are able to describe the outlying cells with only two additional pa-
rameters. We note that the model with two patterns of outliers has a less
clear geometric description with respect to the base model. In fact, the
corresponding ideal is:

Ideal(−p21,2,2p
2
2,1,1 + p1,1,1p1,2,1p2,1,2p2,2,2,

−p1,1,2p1,2,1p
2
2,1,1 + p21,1,1p2,1,2p2,2,1, p1,1,1p

2
1,2,2p2,2,1 − p1,1,2p

2
1,2,1p2,2,2,

p41,2,2p
2
2,1,1p2,2,1 − p1,1,2p

3
1,2,1p2,1,2p

2
2,2,2) .

5 Final remarks

In this paper, we have shown how Algebraic Statistics is useful in address-
ing the problem of outliers in contingency tables. In particular, we have
shown the efficacy of this approach in two directions: (a) the use of non-
asymptotic inference for statistical models to recognize outliers; (b) a simple
and practical description of such statistical models from the point of view
of Geometry.

In particular, we have shown that Algebraic Statistics allows us to a sim-
ple definition of set of outliers, patterns of outliers, and their combinations.

Of course, the theory presented here does not exhaust all the research
themes on this topic. Many questions remain still open, and among these
problems we mention: the need for procedures and algorithms for the recog-
nition of outliers; the problems of the choice of the α-level for multiple tests,
using Bonferroni-type techniques. These problems are widely discussed in
many articles cited above, see e.g. Kieser and Victor (1999).

From the perspective of Algebraic Statistics, some interesting issues are
yet to be explored:

• The connections between the models studied here and the mixture
models. Mixture models for the special case of outliers on the main
diagonal are already considered in Bocci et al. (2010);
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• The complete study of the of Markov bases for models with outliers
and patterns of outliers. In the case of a single pattern of outliers,
some results are presented in Hara et al. (2009).
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A Basic definitions and tools from Algebraic Statis-

tics

In this appendix we collect some basic facts about toric ideals and statistical
toric models. A more detailed presentation of these results can be found in
Drton et al. (2009). For some basic algebraic definitions we also refer to
Pistone et al. (2001).

Let R[p, ζ] = R[p1, . . . , pK , ζ0, ζ1, . . . , ζs] be the polynomial ring in the
variables p1, . . . , pK , ζ1, . . . , ζs with real coefficients.

Definition A.1 (Polynomial ideal). An ideal I in R[p, ζ] is a set of poly-
nomials such that for all g, h ∈ I, g + h ∈ I and for all g ∈ I, h ∈ R[p, ζ],
gh ∈ I.

The Hilbert’s basis theorem states that every polynomial ideal I as in
A.1 has a finite set of generators {g1, . . . , gℓ}, i.e., for all g ∈ I, there exist
r1, . . . , rℓ ∈ R[p, ζ] with g = r1g1 + . . . + rℓgℓ. In such a case, we write

I = Ideal(g1, . . . , gℓ) .

Let A be a non-negative integer matrix with K rows and s columns.

Definition A.2 (Toric model). The toric model associated to A is the set
of probability distributions on {1, . . . ,K} satisfying

pk = ζ0

s
∏

h=1

ζ
Ak,h

h

for all k = 1, . . . ,K.

15



In the definition above, the parameter ζ0 acts as a normalizing constant.
As noticed in Section 2, a toric model is the extension of a log-linear model
and the matrix A is the matrix representation of the minimal sufficient
statistics.

Now, define the ideal JA as the ideal generated by the set of binomials

{

pk −

s
∏

h=1

ζ
Ak,h

h : k = 1, . . . ,K

}

.

Eliminating the ζ parameters, i.e., intersecting the ideal JA with the poly-
nomial ring R[p] ⊂ R[p, ζ], we define the toric ideal associated to A.

Definition A.3. The toric ideal IA associated to A is

IA = Elim(ζ, JA) = JA ∩R[p] . (8)

It is known that the toric ideal in Eq. (8) is generated by a finite set of
pure homogeneous binomials BA = {b1, . . . , bℓ}. To actually compute the set
of generators IA one can use Computer Algebra softwares such as CoCoA
together with the command Elim, see CoCoATeam (2009). For toric ideals,
specific algorithms are implemented in 4ti2, see 4ti2 team (2008).

The toric ideal IA has two major meanings in Algebraic Statistics. From
the combinatorial side, the binomials b1, . . . , bℓ specify a Markov basis for
the statistical model, while from a geometric point of view they describe the
statistical model.

Definition A.4. Let f ∈ N
K be a contingency table with K cells, and let

A be a K × s matrix A. The reference set (or fiber) of f under A is:

Ft =
{

f ′ ∈ N
k : A(f ′) = A(f)

}

.

Definition A.5 (Markov basis). A set of tables MA = {m1, . . . ,mℓ}, mj ∈
Z
K , is a Markov basis for the reference set Ft if Amj = 0 for all j and

for any f ′, f ′′ ∈ Ft there exist a sequence of moves (mj1 , . . . ,mjA) and a
sequence of signs (ǫi)

A
i=1 with ǫi = ±1 such that

f ′′ = f ′ +

A
∑

i=1

ǫimji and f ′ +

a
∑

i=1

ǫimji ≥ 0

for all 1 ≤ a ≤ A. The elements of a Markov basis are called moves.
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Definition A.6 (log-vector). Given a binomial in R[p]

b =
K
∏

k=1

p
m+(k)
k −

K
∏

k=1

p
m−(k)
k ,

its log-vector is:
m = m+ −m− ∈ Z

K .

Theorem A.7 (Diaconis-Sturmfels). A set of vectors m1, . . . ,mℓ is a Markov
basis for the toric model associated to A if and only if the corresponding bi-
nomials b1, . . . , bℓ generate the toric ideal IA.

Now, we show how the toric ideal IA identifies the statistical toric model.

Definition A.8. The set of points

VA = {p = (p1, . . . , pK) : g(p) = 0 for all g ∈ IA}

is the variety associated to A.

To actually determine the variety VA, it is enough to solve the polynomial
system b1(p) = 0, . . . , bℓ(p) = 0, where b1, . . . , bℓ is a system of generators of
IA.

The relations between the ideal IA and the variety VA imply that the
computational algorithms for the Markov bases and for the varieties are just
the same. Moreover, the following fundamental result holds.

Proposition A.9. Let IA1
and IA2

be two toric ideals. Then:

IA1
⊂ IA2

⇐⇒ VA2
⊂ VA1

Finally, the statistical toric model is formed by the probability distribu-
tions in VA, i.e., the statistical toric model is simply VA ∩∆.
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