
ar
X

iv
:1

10
2.

08
26

v1
  [

m
at

h.
ST

] 
 4

 F
eb

 2
01

1

1

Consistency of Bayesian Linear Model Selection With
a Growing Number of Parameters

Zuofeng Shang and Murray K. Clayton

University of Wisconsin-Madison

Abstract: Linear models with a growing number of parameters have been

widely used in modern statistics. One important problem about this kind

of model is the variable selection issue. Bayesian approaches, which provide

a stochastic search of informative variables, have gained popularity. In this

paper, we will study the asymptotic properties related to Bayesian model

selection when the model dimension p is growing with the sample size n.

We consider p ≤ n and provide sufficient conditions under which: (1) with

large probability, the posterior probability of the true model (from which

samples are drawn) uniformly dominates the posterior probability of any

incorrect models; and (2) with large probability, the posterior probability

of the true model converges to one. Both (1) and (2) guarantee that the

true model will be selected under a Bayesian framework. We also demon-

strate several situations when (1) holds but (2) fails, which illustrates the

difference between these two properties. Simulated examples are provided

to illustrate the main results.

Key words and phrases: Bayesian model selection; growing number

of parameters; Posterior model consistency; consistency of Bayes factor;

consistency of posterior odds ratio; Gibbs sampling.

1 Introduction

This work was motivated by efforts to analyze remotely sensed (satellite) data

which consists of multiple spatial images. In the setting of interest, one image

corresponds to a “response” while others correspond to covariates. To find the

relationship between the response and covariate spatial images, Zhang et al.

(2010) proposed a functional concurrent linear model with varying coefficients

and applied a wavelet approach to transform this model into a linear model (with

a particular design matrix) which contains an n-vector of responses and a sparse
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p-vector of wavelet coefficients. Since the images contain thousands of pixels, the

model dimension p, which is determined by the maximum decomposition level in

the wavelet expansion, has to be large so that sufficiently fine details in the target

images can be captured. On the other hand, p has an upper bound p ≤ (K+1)n,

where K is the total number of covariate images involved in the model. This is

because each spatial image corresponds to a vector of wavelet coefficients which

has dimension not exceeding n, and there are K + 1 images in total with one of

them representing the intercept and others the slopes. An important question is

how to select the nonzero coefficients in the model, which is essentially a variable

selection problem. Zhang et al. (2010) adopted a Lasso approach to address this.

The problem they handle relies on a specific design matrix induced by the

wavelet structure. It is of interest, to frame the variable selection problem more

broadly. More precisely, we suppose that data are drawn from the linear model

y = Xβ + ǫ, (1.1)

where ǫ ∼ N(0, σ20In) is an n-vector of errors, y = (y1, · · · , yn)T is an n-vector of

responses, β = (β1, · · · , βp)T is a p-vector of parameters and X = (X1, · · · ,Xp)

is a n × p design matrix with Xj the jth column of X. It is also assumed that

only a subset of X1, · · · ,Xp contribute to y and we are interested in selecting

the variables in this subset.

We consider a Bayesian variable selection (BVS) approach based on model

(1.1). The Bayesian model to be considered is a variation of George and Mc-

Culloch (1993) and has been studied by Clyde et al. (1998), Clyde and George

(2000), and Wolfe et al. (2004). Clearly, each subset of X1, · · · ,Xp defines a

candidate model, so there are 2p of them in total. According to George and Mc-

Culloch (1993), all the marginal posterior probabilities of these 2p models can be

calculated and the model with the largest posterior probability can be selected

as the “best” model. This motivates the formal definition of posterior model

consistency (PMC). We say that PMC holds if the true model, defined as the

model from which samples are drawn, has a posterior probability approaching

one. Since the sum of the posterior probabilities of all models equals one, when

PMC holds, the posterior probability of any incorrect model will go to zero when

n goes to infinity so that the true model can be correctly selected.



3

PMC has been theoretically verified when p is fixed (see Fernández et al.,

2001; Moreno and Girón, 2005; Liang et al., 2008; Casella et al., 2009). However,

fewer results have been derived when p is growing with n, an interesting and

important scenario. For increasing p, Berger et al. (2003), Moreno et al. (2010)

and Girón et al. (2010) proved consistency for Bayes factors. Although PMC

and consistency of Bayes factors are equivalent for fixed p (see Liang et al, 2008;

Casella et al., 2009), they are different for growing p. Actually, we will see below

that consistency of the Bayes factor is equivalent to consistency of the posterior

odds ratio under a general setting, but that the latter form of consistency is

weaker than PMC. Therefore, it seems valuable to separately study PMC.

In this paper we will consider two classes of design matrix X, both with

p ≤ n, although our results can be generalized to p ≫ n when combined with

certain dimension reduction approaches. In the first case, X is quite general. A

representative situation is that the eigenvalues of XTX/n are uniformly bounded

both above and below. Consistency is examined when p grows slower than n, say,

p log n = o(n). We find that the posterior odds in favor of any incorrect model

uniformly converges to zero, and the posterior probability of the true model

converges to one. A second case we consider occurs when XTX/n is the identity

matrix, i.e., XTX = nIp, and p grows as fast as n, say p = n. In that case,

consistency of the posterior odds ratio and PMC are examined, i.e., the posterior

odds ratio in favor of any incorrect model uniformly converges to zero, and the

posterior probability of the true model converges to one. We also demonstrate

how consistency of the posterior odds ratio can hold even though PMC fails.

The remainder of this paper is organized as follows. In Section 2, preliminar-

ies and main results will be provided. In Section 3, a numerical example related

to the results of Section 2 is displayed. Section 4 contains the conclusion. And

technical arguments are included in Section 5.

2 Preliminaries and main results

Suppose the n dimensional response vector y = (y1, · · · , yn)T and the n by p

covariate matrix X = (X1, · · · ,Xp) are linked by the model

y = Xβ + ǫ, (2.1)
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where the Xj ’s are n-vectors, β = (β1, · · · , βp)T is an unknown p-vector and ǫ

is a vector of random errors. Here, X is allowed to be either (1) random but

independent of ǫ or (2) deterministic. For 1 ≤ j ≤ p, define the state variable of

βj by γj = I(βj 6= 0) and γ = (γ1, · · · , γp)T , where I(·) is the indicator function.

We call γ the state vector of β and denote the number of 1’s in γ by |γ|. The

state vector γ completely determines the inclusion or exclusion of βj ’s in model

(2.1), and therefore, can define a model y = Xγβγ + ǫ, where Xγ is an n × |γ|
submatrix of X whose columns are indexed by the nonzero components of γ,

and βγ is the subvector (with size |γ|) of β indexed by the nonzero components

of γ. It is natural, therefore, to call each γ a model. Note that there are 2p

such γ’s representing 2p different models. For any state vectors γ and γ′, let

(γ\γ′)j = I(γj = 1, γ′j = 0) denote the difference (which is also a state vector)

between γ and γ′, i.e., the 0-1 vector indicating the variables that are present in

γ but absent in γ′. We say that γ is nested in γ′ (denoted by γ ⊂ γ′) if γ\γ′ = 0.

Denote the true model coefficient vector by β0 and the corresponding state vector

by γ0, and let sn = |γ0| denote the size of the true model.

In this paper we consider the following hierarchical Bayesian model which is

a variation of the model used by George and McCulloch (1993)

y|β, σ2 ∼ N(Xβ, σ2In),

βj |γj , σ2 ∼ (1− γj)δ0 + γjN(0, cjσ
2),

1/σ2 ∼ χ2
ν ,

γ ∼ p(γ), (2.2)

where δ0 is point mass measure concentrated at zero. Hereafter, ν will be fixed

a priori. Let Σ = diag(c) with c = (cj)1≤j≤p a p-vector of positive components,

and let Σγ be the |γ| × |γ| sub-diagonal matrix of Σ corresponding to γ. Let

Z = (y,X) denote the full data set. It follows by integrating out β and σ that

the posterior distribution of γ is given by

p(γ|Z) ∝ (2π)−n/2 det(Wγ)
−1/2p(γ)

{

2

1 + yT (In −XγU
−1
γ XT

γ )y

}(n+ν)/2

,

(2.3)

where Uγ = Σ−1
γ + XT

γ Xγ and Wγ = Σ
1/2
γ UγΣ

1/2
γ . In particular, if γ = ∅ (the
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null model containing no covariate variables), (2.3) still holds if we adopt the

conventions that X∅ = 0 and Σ∅ = U∅ =W∅ = 1.

Define S1 = {γ|γ0 ⊂ γ, γ 6= γ0} and S2 = {γ|γ0 is not nested in γ}. It

is clear that S(n) defined by S(n) = S1 ∪ S2 ∪ {γ0} is the class of all state

vectors. In particular, when γ0 = ∅, S2 is empty, and hence S1 is the class of

all state vectors excluding γ0. As was found by Liang et al. (2008), we will

see later in this section that whether γ0 is null or nonnull will result in some

differences in the main results (especially in the assumptions that are needed to

establish our main results); thus, we will treat these cases separately. When γ0 is

nonnull, we denote ϕmin(n) = min
γ∈S2

λ−

(

1
nX

T
γ0\γ(In − Pγ)Xγ0\γ

)

and ϕmax(n) =

max
γ∈S2

λ+

(

1
nX

T
γ0\γXγ0\γ

)

, where Pγ = Xγ(X
T
γ Xγ)

−1XT
γ is a projection matrix,

λ−(A) and λ+(A) are the minimal and maximal eigenvalues of the square matrix

A. We also adopt the convention that P∅ = 0. For the case that γ0 = ∅, both
ϕmin and ϕmax are meaningless, and S1 will be focused on in this situation.

Before proceeding further, we introduce several types of consistency central

to this work. Generally speaking, to make a correct model selection

max
γ 6=γ0

p(γ|Z)/p(γ0|Z) → 0 (2.4)

should hold as n → ∞, which means that the posterior probability of the true

model asymptotically dominates that of any incorrect model. Following a frame-

work similar to that of Zellner (1978), the term p(γ|Z)/p(γ0|Z), which is called

the posterior odds ratio in favor of γ, satisfies the relationship

p(γ|Z)/p(γ0|Z) = BF (γ : γ0)
p(γ)

p(γ0)
, (2.5)

where BF (γ : γ0) := p(Z|γ)/p(Z|γ0) is the Bayes factor of γ versus γ0 and

p(γ)/p(γ0) is the prior odds ratio in favor of γ. The Bayes factor is consistent

if for any γ 6= γ0, BF (γ : γ0) → 0. The posterior odds ratio is consistent if for

any γ 6= γ0, p(γ|Z)/p(γ0|Z) → 0. It is easy to see that property (2.4) implies

consistency of the posterior odds ratio. We say that posterior model consistency

(PMC) holds if p(γ0|Z) → 1. These types of consistency all have been useful

in Bayesian model selection. Representative references include (1) assessment of

posterior odds ratio: Jeffreys (1967), Zellner (1971, 1978); (2) performance of
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Bayes factor: Berger and Pericchi (1996), Moreno et al. (1998, 2010), Casella et

al. (2009); (3) PMC: Fernández et al. (2001), Liang et al. (2008).

It is easy to see that when

c−1
1 ≤ min

γ
p(γ)/p(γ0) ≤ max

γ
p(γ)/p(γ0) ≤ c1 (2.6)

holds for some positive constant c1, consistency of the Bayes factor is equivalent

to consistency of the posterior odds ratio, and that both are weaker than (2.4).

A special case is that p(γ) = 2−p for all γ’s, which results in an indifference prior

distribution for γ, see, e.g., Smith and Kohn (1996).

To illustrate the relationship between PMC and (2.4), note that

p(γ0|Z) = 1

1 +
∑

γ 6=γ0
p(γ|Z)/p(γ0|Z) , (2.7)

and thus p(γ0|Z) → 1 will imply (2.4). When p is fixed, it has been noted by

Liang et al. (2008) that (2.4) implies PMC. However, when p grows with n, it

will be shown later that this may not be true. This somewhat illustrates the

difference between PMC and (2.4).

In what follows, we introduce some regularity conditions that are useful to

establish our main results. We will also demonstrate some particular situations

when these conditions are satisfied.

Assumption 2.1. There exists a constant C0 > 0 such that for any n, max
γ∈S(n)

p(γ)/p(γ0) ≤
C0.

Assumption 2.2. There exist positive constants C1, C2 such that with probability

equal to one, lim inf
n

ϕmin(n) ≥ C1 and lim sup
n

ϕmax(n) ≤ C2.

Assumption 2.3. There exists a positive sequence ψn such that min
j∈γ0

|β0j | ≥ ψn

and, as n→ ∞, ψn
√
n→ ∞.

Assumption 2.4. pn → ∞, sn ≤ pn ≤ n and pn log n = o(n log(1+min{ψ2
n, 1})).

Assumption 2.5. pn → ∞, sn ≤ pn ≤ n and pn log pn = o(n).

Hereafter, unless otherwise explicitly stated, we will drop the subscript from

pn.
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Assumption 2.6. φ̄n = O(nδ0) for some δ0 > 0, where φ̄n = max
1≤j≤p

cj .

Assumption 2.7. kn = O(φ
n
), where kn = ‖β0γ0‖22 and φ

n
= min

1≤j≤p
cj.

Assumption 2.8. There exist C3 > 0 and δ ≥ 0 such that n1−δφ
n
→ ∞, and

for any n, with probability equal to one,

inf
γ∈S1

λ−

(

1

n
X ′
γ\γ0(In − Pγ0)Xγ\γ0

)

≥ C3n
−δ. (2.8)

Remark 2.1.

(a). Assumption 2.1 is satisfied by some commonly used priors p(γ), such as the

flat prior p(γ) = 2−p (Smith and Kohn, 1996). More generally, if p(γj =

1) = θj is such that both
∏

j∈γ\γ0

(

θj
1−θj

)

and
∏

j∈γ0\γ

(

1−θj
θj

)

are bounded, then

Assumption 2.1 is satisfied.

(b). We use Assumption 2.3 to prove consistency for a growing p. Fan and

Peng (2004) introduced a similar assumption in the framework of smoothly

clipped absolute deviation (SCAD) penalized optimization where
√
n in As-

sumption 2.3 was replaced by 1/λn with λn the penalty parameter. This

condition requires the true parameters to be away from zero. Otherwise, it

is impossible to distinguish between zero and nonzero parameters.

(c). Assumptions 2.4 and 2.5 define a rate on the dimension p. In particular,

when inf
n
ψn > 0, Assumption 2.4 is satisfied if sn ≤ p and p log n = o(n).

The results hold when sn is either bounded or growing with n.

(d). Assumption 2.6 excludes the possibility that φ̄n is extremely large, e.g., we

exclude the situation that φ̄n = exp(nω) for some ω > 0. Assumption 2.7

requires that φ
n
is not growing slower than kn = ‖β0γ0‖22. When the design

matrix X is nonorthogonal, we use this assumption to facilitate the proof

of consistency (see Theorem 2.2 below). But when X is orthogonal, this

assumption is redundant and can be removed (see Corollary 2.5 below).

Assumptions 2.1, 2.3–2.7 are easily satisfied. The following proposition

demonstrates that a broad class of design matrices X can satisfy Assumptions

2.2 and 2.8.
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Proposition 2.1. If the n× p matrix X satisfies λ−
(

1
nX

TX
)

≥ c, where c > 0

is constant, then for any γ ⊂ γ̄ and γ 6= γ̄,

λ−

(

1

n
XT
γ̄\γ(In − Pγ)Xγ̄\γ

)

≥ c. (2.9)

The proof of Proposition 2.1 can be found in Section 5 (Appendix).

Remark 2.2. Proposition 2.1 demonstrates that Assumptions 2.2 and 2.8

can hold under general classes of design matrices. One such class consists of

matrices X satisfying

1/c2 ≤ λ−

(

1

n
XTX

)

≤ λ+

(

1

n
XTX

)

≤ c2, (2.10)

where c2 is some positive constant. For any γ ∈ S1, we will have that γ0 ⊂ γ

and γ0 6= γ. Thus, by Proposition 2.1, λ−

(

1
nX

′
γ\γ0(In − Pγ0)Xγ\γ0

)

≥ 1/c2,

i.e., inequality (2.8) in Assumption 2.8 holds. Notice that when γ ∈ S2, the

relationship γ ⊂ γ0 ∨ γ and γ 6= γ0 ∨ γ holds, where γ0 ∨ γ denotes the p-vector

with jth component the larger of (γ0)j and γj , then Assumption 2.2 follows by

applying Proposition 2.1.

In the following text, we assume that data are generated from the true model

y = Xβ0 + ǫ with ǫ ∼ N(0, σ20In). Let γ0 be the p-dimensional state vector

corresponding to β0. Unless otherwise stated, the limits in our main results will

be taken when n→ ∞.

Theorem 2.2. Suppose that γ0 is nonnull and Assumptions 2.1–2.4, 2.6–2.8 are

satisfied. Let δ ≥ 0 satisfy Assumption 2.8. If pα0 = o(n1−δφ
n
) for some α0 > 2,

then max
γ 6=γ0

p(γ|Z)/p(γ0|Z) →p 0. If pα0+2 = o(n1−δφ
n
) for some α0 > 2, then

∑

γ 6=γ0
p(γ|Z) →p 0, and consequently, p(γ0|Z) →p 1.

The proof of Theorem 2.2 follows by first deriving asymptotic approximations

of the posterior odds ratios p(γ|Z)/p(γ0|Z) for any γ 6= γ0, and then using these

approximations to show that
∑

γ 6=γ0
p(γ|Z)/p(γ0|Z) →p 0. The limit p(γ0|Z) →p 1

thus immediately follows from (2.7). Details are in the Appendix.

Remark 2.3. Theorem 2.2 provides sufficient conditions under which (2.4)

and PMC are satisfied. It asserts that, with large probability, p(γ0|Z) uniformly
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dominates p(γ|Z) for any γ 6= γ0, and with large probability, p(γ0|Z) approaches
one. Thus, with large probability, the true model γ0 can be selected from a

Bayesian perspective.

Remark 2.4. A natural but interesting question is that, when the growth

rate for p changes, should there be any change in the hyperparameters cj ’s so

that property (2.4) or PMC still holds? Theorem 2.2 partly and heuristically

answers this question. To see this, let us consider a special case that p = na

with a ∈ (0, 1]. Here the factor a controls how fast p grows. For instance, a

larger a corresponds to a faster growth rate. By Theorem 2.2, to satisfy (2.4),

one sufficient condition is pα0 = o(n1−δφ
n
) for some fixed α0 > 2, which, in the

special case of interest, becomes

naα0+δ−1 = o(φ
n
). (2.11)

The interpretation of (2.11) is that φ
n
controls the growth of naα0+δ−1, and thus,

naα0+δ−1 serves as a lower bound for φ
n
. When a increases (which corresponds to

p growing faster), this lower bound should become larger. For instance, a = 0.5

corresponds to a lower bound n0.5α0+δ−1; however, when a = 0.75, this lower

bound has increased to n0.75α0+δ−1. This heuristically shows that, in order to

satisfy property (2.4) or PMC, the lower bound for φ
n
should generally increase

when p grows faster.

Remark 2.5. When combined with certain dimension reduction techniques

such as sure independence screening (SIS) proposed by Fan and Lv (2008), one

can generalize Theorem 2.2 to the ultra-high dimensional setting, i.e., p ≫ n.

This framework has been explored by many authors from non-Bayesian perspec-

tives (see, e.g., Meinshausen and Bühlmann, 2006; Meinshausen and Yu, 2009;

Zhang and Huang, 2010; Bühlmann and Kalisch, 2010). Here, we explore it by a

Bayesian way. The basic idea is to first reduce the high-dimensional linear model

so that the model dimension is below n, and then apply Bayesian model (2.2) to

this reduced linear model. Under suitable conditions and using the arguments

similar to the proof of Theorem 2.2, one can show that the posterior probability

of the true model based on the reduced linear model converges in probability to

1. We refer to Supplement A for the description of this result and details of the

proof.
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The following result is an application of Theorem 2.2 in a special setting,

which allows the growth rate of p to be p log n = o(n).

Corollary 2.3. Suppose that γ0 is nonnull and Assumptions 2.1, 2.2 and in-

equality (2.8) are satisfied. Assume that min
j∈γ0

|β0j | ≥ ψn with inf
n
ψn > 0, and p

satisfies p log n = o(n). Suppose there exists a constant δ0 with δ0 > 3 + δ such

that kn = O(nδ0), where δ ≥ 0 is specified in inequality (2.8). Then with the

selection φ̄n = O(nδ0) and nδ0 = O(φ
n
), we have p(γ0|Z) →p 1.

The proof of Corollary 2.3 can be finished by choosing α0 ∈ (2, δ0 − δ − 1)

and verifying the assumptions in Theorem 2.2.

Theorem 2.2 deals with the case when the true model is nonnull. If the

true model is null, then the response vector y will have a zero mean. The

corresponding result is summarized below.

Theorem 2.4. Suppose γ0 is null, i.e., y = ǫ ∼ N(0, σ20In), and that Assump-

tions 2.1, 2.5, and 2.8 are satisfied. If pα0 = o(n1−δφ
n
) for some α0 > 2,

then max
γ 6=γ0

p(γ|Z)/p(γ0|Z) →p 0. If pα0+2 = o(n1−δφ
n
) for some α0 > 2, then

∑

γ 6=γ0
p(γ|Z) →p 0, and consequently, p(γ0|Z) →p 1.

The proof of Theorem 2.4 is similar to Theorem 2.2 and can be found in

Appendix.

Remark 2.6. Liang et al. (2008) applied mixture of g-priors in their

Bayesian model, which is different from the priors used in this work, and ob-

tained PMC in the case that p is fixed. However, since their model induces a

non-analytical expression for p(γ|Z), when p is growing with n, the theoretical

derivation would become complicated. To overcome this difficulty, we consider

conjugate priors in Bayesian model (2.2), which induces an analytical expression

for p(γ|Z). Under this framework, the derivation of both (2.4) and PMC becomes

easier.

Although it is valid for a general type of design matrix, Theorem 2.2 requires

that p grows slower than n. More precisely, if the Assumptions in Theorem 2.2

are satisfied, then p = o(n). To see this, we notice that Assumptions 2.6, 2.7 and

the fact that ψn ≤ k
1/2
n lead to ψn = O(nδ0) for some δ0 > 0. Therefore, p = o(n)

follows from Assumption 2.4. In order to obtain consistency when p may grow
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as fast as n, one idea, but not the weakest possible, is to assume orthogonality

of X, i.e., XTX = nIp, and to relax Assumption 2.7. To simplify the technical

proof, we assume in the following Corollaries 2.5 and 2.6 that all cj ’s in model

(2.2) are equal, and thus, φ̄n = φ
n
. We denote φn = φ̄n(or = φ

n
). Moreover,

we need the following assumption about the growth rates of sn and p to replace

Assumptions 2.4 and 2.5.

Assumption 2.9. Let an = n+ σ−2
0 kn/(n

−1 + φn) and ζ ∈ (1,∞) be a constant

such that nψ2
n > σ20ζan as n → ∞. The numbers p and sn with p → ∞ and

sn ≤ p ≤ n satisfy

(i). sn = o
(

min
{

(n+ν) log(nψ2
n/(σ

2
0
ζan))

log(1+nφn)
, nψ2

n, n
})

.

(ii). p log p = o (an).

Assumption 2.9 potentially allows the case p = n. To see this, suppose

sn = O(1) and we choose φn such that (n+ν)/ log(1+nφn) → ∞. When an grows

faster than n log n and nψ2
n/an → ∞, p = n will satisfy Assumption 2.9. However,

this requires ψ2
n to grow at least faster than log n. This extra requirement on

ψ2
n has not been imposed by Theorems 2.2 and 2.4, and can be treated as the

price which we pay to relax the growth rate for p. Under Assumption 2.9 and

assuming orthogonality on X, we have the following consistency result which

allows a faster growth rate for the dimension p.

Corollary 2.5. Assume that XTX = nIp and Σ = φnIp with nφn → ∞.

Suppose γ0 is nonnull and that Assumptions 2.1, 2.6 and 2.9 are satisfied. If

pα0(n+ν)/an = o(nφn) for some α0 > 2, then max
γ 6=γ0

p(γ|Z)/p(γ0|Z) →p 0. If p =

o
(

(n+ ν) log
(

nψ2
n

σ2
0
ζan

))

with ζ specified in Assumption 2.9, and p2+α0(n+ν)/an =

o(nφn) for some α0 > 2, then
∑

γ 6=γ0
p(γ|Z) →p 0, and consequently, p(γ0|Z) →p 1.

The proof of Corollary 2.5 is similar to those for Theorems 2.2 and 2.4 and

is given in Supplement B. The following result, which requires a special model

set-up, demonstrates that PMC and consistency of the posterior odds ratio may

hold in some situations but fail in others.
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Corollary 2.6. Assume p = n, XTX = nIn and Σ = φnIn. Suppose min
j∈γ0

|β0j | ≥
ψn with ψ2

n = c1n
1+δ1(log n)2 for some constants δ1 > 1 and c1 > 0, kn = O(ψ2

n)

and p(γ) = constant for all γ. Assume that sn = s with s > 0 a fixed integer,

i.e., the true parameter vector β0 contains exactly s nonzero components.

(a). Suppose φn = c2n
δ2 for some constants c2 > 0 and δ2.

i. If −1 < δ2 ≤ 1, then max
γ 6=γ0

p(γ|Z)/p(γ0|Z) →p 0, but PMC does

not hold. Specifically, when −1 < δ2 < 1, p(γ0|Z) → 0, a.s.; when

δ2 = 1, then there exists a constant c0 with 0 < c0 < 1 such that

lim sup
n

p(γ0|Z) ≤ c0, a.s.

ii. If 1 < δ2 ≤ δ1, then p(γ
0|Z) →p 1.

(b). If nn logn = O(φn), then p(∅|Z)/p(γ0|Z) →p ∞, where ∅ represents the null

model. Therefore, p(γ0|Z) →p 0.

(c). If nφn → η ∈ [0,∞), then almost surely, lim inf
n

max
γ 6=γ0

p(γ|Z)/p(γ0|Z) ≥

(1 + η)−1/2 and lim
n
p(γ0|Z) = 0.

The proof of Corollary 2.6 is given in Supplement B.

Remark 2.7. The main contribution of Corollary 2.6 is to demonstrate

the difference between PMC and (2.4), and provide example growth rates for

φn under which the two forms of consistency fail. Although this is obtained in a

special situation, similar results should be still true under a more general setting,

for instance, where p < n or XTX is not diagonal, but we do not consider those

circumstances here.

Corollary 2.6 (a) demonstrates that (2.4) does not necessarily imply PMC.

This means that, although the posterior probability of the true model might not

be approaching one, the ratio of the posterior probabilities of any “incorrect”

model and the true model can still converge to zero. This phenomenon will not

occur when p is fixed. In practice, (2.4) is sufficient to make a correct model

selection even if PMC might fail.

Corollary 2.6 (b) and (c) demonstrate that in order to make a correct model

selection, φn cannot be either too small or too large. Specifically, when φn =
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o(n−1), it follows by Corollary 2.6 (c) that almost surely lim inf
n

max
γ 6=γ0

p(γ|Z)/p(γ0|Z) ≥
1. Thus, with probability one, for any ε > 0, there exists an integer N such that

for any n ≥ N

max
γ 6=γ0

p(γ|Z)/p(γ0|Z) ≥ 1− ε.

This implies that there exists a model, say γ∗, such that p(γ∗|Z) ≥ (1−ε)p(γ0|Z).
Thus, when ε is small, either p(γ∗|Z) > p(γ0|Z), or p(γ∗|Z) is very close to

p(γ0|Z), which will both affect the selection result. On the other hand, when

φn is growing faster than nn logn, it follows from (b) that the null model will be

preferred in favor of γ0.

Corollary 2.6 (b) and (c) can be also understood intuitively. When φn is

too small, the two distribution components in the mixture prior of β tend to

be indistinguishable so that it is difficult to separate the true model from some

incorrect model; when φn approaches infinity, by (2.3), the posterior probability

of any nonnull model approaches zero, and thus, all βj ’s are forced to be zero.

This conclusion has been empirically obtained by Smith and Kohn (1996) under

spline regression models.

Remark 2.8. Using arguments similar to the proofs of Theorems 2.2 and

2.4, and by the Borel-Cantelli lemma of Shao (2003), one can show the almost

sure convergence of p(γ0|Z). We refer to Supplement C for details.

To conclude this section, let us look at an example which demonstrates that,

when φ̄n = φ̄ and φ
n
= φ with φ̄ and φ unrelated to n, consistency might still

hold under certain circumstances. This is motivated by a full Bayesian framework

which requires all hyperparameters to be fixed.

Example 2.1. If a full Bayesian approach is desired, then we have to

preselect the hyperparameters cj ’s, and so φ̄n = φ̄ and φ
n
= φ must be fixed.

Assume that kn = O(1), which is a slightly weaker assumption than that in

Jiang (2007). Note that Assumptions 2.6 and 2.7 follow immediately. Suppose

min
j∈γ0

|β0j | ≥ ψn with ψn = n−1/4
√
log n, the prior distribution of model γ satisfies

Assumption 2.1. Assume that sn = s with s > 0 a fixed integer (thus, the true

model is nonnull), and design matrixX satisfies (2.10). Therefore, by Proposition

2.1 and Remark 2.2, Assumptions 2.2 and 2.8 both hold. We also notice that

Assumption 2.3 is well satisfied. It follows from Theorem 2.2 that if p = nr for
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some 0 < r < 1/2, then with probability approaching one, (2.4) holds, i.e., the

true model can be correctly selected; if p = nr for some 0 < r < 1/4, then PMC

holds in probability.

3 Numerical results

In Section 2 we saw (e.g., Corollary 2.6) that the limiting behavior of p(γ0|Z)
may rely on the hyperparameters cj ’s. In this section, simulated examples are

given to numerically illustrate the relationship between p(γ0|Z) and the cj’s.

To construct the random design matrix X, we generated iid p-dimensional

row vectors U1, · · · , Un ∼ N(0, Ip) and let U be an n × p matrix with ith row

Ui for i = 1, · · · , n. Then we let X =
√
nU
(

UTU
)−1/2

. Thus, XTX = nIp.

(We choose X to be orthonormal for purposes of illustration, although, as we

saw in the preceding section, results can be derived for general X.) To explore

the dimension effect, we have considered two growth rates for p with respect

to n: (1) p = n1/2 and (2) p = n3/4. Data were simulated from model (2.1)

with σ = 1, sn = 5 and the true model coefficients (β01 , · · · , β05) = (2, · · · , 2)
and (β06 , · · · , β0p) = (0, · · · , 0). We considered sample sizes n = 70 and 200

respectively.

The hierarchical Bayesian model (2.2) was fitted and the prior distribu-

tions on σ2 and γ were assumed to be 1/σ2 ∼ χ2
4 and p(γj = 1) = p(γj =

0) = 1/2, for any j = 1, · · · , p. For simplicity, we considered the case that

c1 = · · · = cp = φn. The values of φn were chosen to be φn = 10q with

q = 1, 2, 3, 4, 5, 6, 8, 10, 20, 30, 60. In particular, q = 1, 2 represent small φn’s and

q = 20, 30, 60 represent extremely large φn’s. After 20,000 samples of (β, γ, σ)

were drawn from the posterior distribution p(β, γ, σ|Z) using a sub-blockwise

Gibbs sampler developed by Godsill and Rayner (1998), we recorded the last

10, 000 samples and treated the previous 10,000 samples as burnins. Convergence

has been assessed by applying Gelman-Rubin’s statistic to 5 parallel Markov

chains for each φn. We denote γ(1), · · · , γ(10000) to be the last 10, 000 samples of

γ. Then p(γ0|Z) is approximated by p(γ0|Z) ≈
10000
∑

t=1
I(γ(t) = γ0)/10000.

To study the frequentist property of p(γ0|Z), we have generated 100 data
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sets Z1, · · · , Z100 independently from model (2.1), and for each φn calculated the

corresponding 100 posterior probabilities p(γ0|Zm), m = 1, · · · , 100. This idea

was inspired from Fernández et al. (2001) who studied the Bayesian selection

problem when p is fixed. For any α ∈ (0, 1), we define RF (α) to be the relative

frequency of p(γ0|Zm)’s greater than α, i.e., RF (α) =
100
∑

m=1
I
(

p(γ0|Zm) ≥ α
)

/100.

Note that RF (α) is an estimate of pr(p(γ0|Z) ≥ α), where pr(·) denotes the

probability measure associated with the underlying probability space. The values

of φn which satisfy PMC will therefore make RF (α) close to one, and those φn

for which PMC fails will make RF (α) deviate from one. Next, we explore how

RF (α) changes with φn for various values of α.

Figure 1 displays the relationship between RF (α) and κ = log log φn for

α = 0.99, 0.90 and growth rates (1) and (2). We have observed that there is

a large range for φn, which we might call a “feasible” region, such that RF (α)

is close to one; while RF (α) approaches zero for either small or large φn. We

also observed that, for the faster growth rate setting (2), the left boundary of

the feasible region for φn lies more to the right, which has been expected based

on Remark 2.3. Furthermore, the simulation results demonstrate that, when n

increases, the right boundary of the feasible region for φn moves to the right.

[Figure 1 is included here]

4 Conclusion

Previous work about posterior model consistency (PMC) includes Fernández et

al. (2001) and Liang et al. (2008) when the number of parameters p is fixed. In

this paper, we have studied PMC when the model dimension p grows with sample

size n. Specifically, we have shown that, under a variation of the Bayesian model

proposed by George and McCulloch (1993), the posterior probability of the true

model converges to one, i.e., PMC holds. We have obtained this result in two

situations: (i) design matrix X is general while p grows slower than n, e.g.,

p log n = o(n); (ii) XTX/n is the identity matrix and p may grow as fast as n,

e.g., p = n. Furthermore, we have demonstrated under a special framework that

the consistency results may fail if φn is too small or too large, where φn is the
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hyperparameter controlling the prior variance of the nonzero model coefficients.

Precisely, when φn = o(n−1) (an example of small order) or when nn logn = O(φn)

(an example of large order), both PMC and consistency of the posterior odds

ratio fail. Besides that, our results do not require that the candidate models are

pairwise nested.

Berger et al. (2003), Moreno et al. (2010) and Girón et al. (2010) have

proved the consistency of Bayes factor when p is growing with n. This form of

consistency, under our framework, is equivalent to the consistency of the posterior

odds ratio if the prior odds ratio are uniformly bounded from above and below,

so it is of interest to illustrate the relationship between PMC and consistency of

posterior odds ratio. We have considered a special framework and shown that

PMC implies consistency of the posterior odds ratio but the reverse may not be

true. This is different from the finding by Liang et al. (2008) who demonstrate

the equivalence of PMC and consistency of the Bayes factor when p is fixed.

When combined with dimension reduction procedures such as SIS (Fan and Lv,

2008), our results can be also extended to ultrahigh-dimensional situations.

Two extensions of the current work are noteworthy. First, Assumption 2.7

is a technical assumption used to facilitate the proof and may not be the weakest

possible. We leave it to future work to determine whether this condition can be

further weakened or even removed. Second, model (2.2) results in a closed form

for p(γ|Z), which substantially reduces the complexity of the theory in this paper.

However, there exist other useful Bayesian models which result in non-analytical

forms for p(γ|Z), such as a model with mixture g-priors (Liang et al., 2008).

The proof of consistency becomes complicated for such models, especially when

p grows with n. We conjecture that the asymptotics developed in this paper can

be extended to models of this form and intend to explore these separately.

5 Appendix: proofs

In this section, we prove the main results in Section 2. We also prove some

lemmas which are useful to establish the main results. Let pr(·) denote the

probability measure associated with the underlying probability space.
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Proof of Proposition 2.1. It follows by assumption that 1
nX

T
γ̄ Xγ̄ ≥ cI|γ̄|.

Letting Xγ̄ =
(

Xγ ,Xγ̄\γ

)

, we can write 1
nX

T
γ̄ Xγ̄ =

(

A B

BT C

)

, where A =

XT
γ Xγ/n, B = XT

γ Xγ̄\γ/n and C = XT
γ̄\γXγ̄\γ/n. By formula for the inverse

of blocked matrix (Seber and Lee, 2003, page 466), the lower right corner of
(

1
nX

T
γ̄ Xγ̄

)−1
is B−1

22 with B22 = C − BTA−1B = 1
nX

T
γ̄\γ(In − Pγ)Xγ̄\γ . Then

B−1
22 ≤ c−1I, which implies λ−(B22) ≥ c.

Lemma 5.1. Suppose ǫ ∼ N(0, σ20In). Then:

(a). Let vγ = (In − Pγ)Xγ0\γβ
0
γ0\γ. If S2 is nonnull, then max

γ∈S2

|vTγ ǫ|/‖vγ‖2 =

Op
(√
p
)

, where we adopt the convention that |vTγ ǫ|/‖vγ‖2 = 0 when vγ = 0.

(b). If S1 is nonnull, then for any α > 2, with probability approaching one,

max
γ∈S1

ǫT (Pγ − Pγ0)ǫ/(|γ| − sn) ≤ ασ20 log p.

(c). If S2 is nonnull, and we adopt the convention that ǫTPγǫ/|γ| = 0 when γ is

null, then for any α > 2, with probability approaching one, max
γ∈S2

ǫTPγǫ/|γ| ≤
ασ20 log p.

Proof of Lemma 5.1. We prove the result for the case where X is deter-

ministic, and briefly talk about the proofs for the case where X is random and

independent of ǫ.

(a) We first assume that X is deterministic. By inequality (9.3) in Durrett

(2005), if ξ ∼ N(0, 1), then there exists a C0 such that for any t > 1, pr(|ξ| ≥
t) ≤ C0 exp

(

−t2/2
)

. Note that |vTγ ǫ|/(σ0‖vγ‖2) ∼ N(0, 1), and therefore, by

Bonferroni’s inequality,

pr

(

max
γ∈S2

|vTγ ǫ|
‖vγ‖2

≥ t

)

≤
∑

γ∈S2

pr

(

|vTγ ǫ|
‖vγ‖2

≥ t

)

≤ C02
p exp

(

− t2

2σ20

)

.

Then the result holds by setting t = Cσ0
√
2p with large C. When X is random

but independent of ǫ, note that the conditional distribution of |vTγ ǫ|/(σ0‖vγ‖2)
given X is N(0, 1). Thus, the proof can be finished by the above arguments.
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(b) Suppose X is deterministic. First, if ξ = χ2
µ, then by Chebyshev’s

inequality, for any 2 < α′ < α,

pr(ξ ≥ αµ log p)

= pr
(

exp(ξ/α′) ≥ exp((α/α′)µ log p)
)

≤ exp(−(α/α′)µ log p)E
{

exp(ξ/α′)
}

= (1− 2/α′)−µ/2 exp(−(α/α′)µ log p).

Using this inequality, Bonferroni’s inequality, and the fact that when γ ∈ S1,

ǫT (Pγ − Pγ0)ǫ ∼ σ20χ
2
|γ|−sn

, we have

pr

(

max
γ∈S1

ǫT (Pγ − Pγ0)ǫ

|γ| − sn
≥ ασ20 log p

)

≤
∑

γ∈S1

pr
(

ǫT (Pγ − Pγ0)ǫ ≥ ασ20(|γ| − sn) log p
)

≤
∑

γ∈S1

(1− 2/α′)−(|γ|−sn)/2 exp(−(α/α′)(|γ| − sn) log p)

=

p−sn
∑

r=1

(

p− sn
r

)

(1− 2/α′)−r/2 exp(−(α/α′)r log p)

=
(

1 + (1− 2/α′)−1/2p−α/α
′

)p−sn − 1 → 0.

WhenX is random and independent of ǫ, then conditioning onX, ǫT (Pγ−Pγ0)ǫ ∼
σ20χ

2
|γ|−sn

. Thus, the conclusion follows from the above arguments.

(c) We let X be deterministic. The case where X is random can be handled

similarly. Assume that S2 contains nonnull models, and note that when γ is

nonnull, ǫTPγǫ ∼ σ20χ
2
|γ|. Fix arbitrarily α′ such that 2 < α′ < α. Then by the
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proof of part (b) we have

pr

(

max
γ∈S2

ǫTPγǫ

|γ| ≥ ασ20 log p

)

= pr

(

max
γ∈S2\{∅}

ǫTPγǫ

|γ| ≥ ασ20 log p

)

≤
∑

γ∈S2\{∅}

pr
(

ǫTPγǫ ≥ ασ20 |γ| log p
)

≤
∑

γ∈S2\{∅}

(1− α′/2)−|γ|/2 exp(−(α/α′)|γ| log p)

≤
p
∑

r=1

(

p

r

)

(1− 2/α′)−r/2p−(α/α′)r

=
(

1 + (1− 2/α′)−1/2p−α/α
′

)p
− 1 → 0.

Proof of Theorem 2.2. We have

− log
(

p(γ|Z)/p(γ0|Z)
)

= − log

(

p(γ)

p(γ0)

)

+
1

2
log

(

det(Wγ)

det(Wγ0)

)

+
n+ ν

2
log

(

1 + yT (In −XγU
−1
γ XT

γ )y

1 + yT (In −Xγ0U
−1
γ0
XT
γ0
)y

)

= − log

(

p(γ)

p(γ0)

)

+
1

2
log

(

det(Wγ)

det(Wγ0)

)

+
n+ ν

2
log

(

1 + yT (In −XγU
−1
γ XT

γ )y

1 + yT (In − Pγ)y

)

−n+ ν

2
log

(

1 + yT (In −Xγ0U
−1
γ0
XT
γ0)y

1 + yT (In − Pγ0)y

)

+
n+ ν

2
log

(

1 + yT (In − Pγ)y

1 + yT (In − Pγ0)y

)

. (5.1)

Denote the above summands by T1, T2, T3, T4, T5. By Assumption 2.6, T1 is

bounded below. Since Uγ ≥ XT
γ Xγ , we have T3 ≥ 0 for any n.

To approximate T4, let

∆ = yTXγ0

(

XT
γ0Xγ0

)−1
(

Σγ0 +
(

XT
γ0Xγ0

)−1
)−1

(

XT
γ0Xγ0

)−1
XT
γ0y.
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By the Sherman-Morrison-Woodbury matrix identity (Seber and Lee, 2003,page

467),

U−1
γ0

−
(

XT
γ0Xγ0

)−1
= −

(

XT
γ0Xγ0

)−1
(

Σγ0 +
(

XT
γ0Xγ0

)−1
)−1

(

XT
γ0Xγ0

)−1
.

(5.2)

By (5.2) and the fact that

(

Σγ0 +
(

XT
γ0Xγ0

)−1
)−1

≤ Σ−1
γ0

, we have

1 + yT (In −Xγ0U
−1
γ0
XT
γ0)y

1 + yT (In − Pγ0)y

= 1 +
∆

1 + yT (In − Pγ0)y

≤ 1 + 2

(

(β0γ0)
TΣ−1

γ0
β0γ0 + ǫTXγ0(X

T
γ0Xγ0)

−1Σ−1
γ0

(XT
γ0Xγ0)

−1XT
γ0ǫ

1 + yT (In − Pγ0)y

)

≤ 1 + 2φ−1
n

(

‖β0γ0‖22 + ǫTXγ0(X
T
γ0Xγ0)

−2XT
γ0ǫ

1 + yT (In − Pγ0)y

)

.

Since yT (In−Pγ0)y/n = ǫT (In−Pγ0)ǫ/n→p σ
2
0 , and E{ǫTXγ0(X

T
γ0Xγ0)

−2XT
γ0ǫ} ≤

σ20sn(nϕmin(n))
−1, we have ǫTXγ0(X

T
γ0Xγ0)

−2XT
γ0ǫ = Op

(

sn(nϕmin(n))
−1
)

. There-

fore, by Assumptions 2.2 and 2.3, and the fact that kn ≥ snψ
2
n, we can show that

1 + yT (In −Xγ0U
−1
γ0
XT
γ0)y

1 + yT (In − Pγ0)y
≤ 1 +

2kn
nφ

n
σ20

(1 + op(1)). (5.3)

Consequently, 0 ≤ −T4 = Op(1) follows from the condition that kn = O(φ
n
)

(Assumption 2.7).

Next we approximate T2 and T5 in the following Lemmas 5.2 and 5.3.

Lemma 5.2. Under Assumption 2.8, if γ ∈ S1, then T2 ≥ 2−1(|γ| − sn) log(1 +

C3n
1−δφ

n
). Under Assumption 2.2, if γ ∈ S2, T2 ≥ −2−1sn log(1 + C2nφ̄n),

where C2 and C3 are constants given in Assumptions 2.2 and 2.8 respectively.

Proof of Lemma 5.2. If γ ∈ S1, it follows from the determinant formula

for block matrices (Seber and Lee, 2003, page 468), and Assumption 2.8 that

det(Uγ) = det(Uγ0) det
(

Σ−1
γ\γ0

+XT
γ\γ0(In −Xγ0U

−1
γ0
XT
γ0)Xγ\γ0

)

≥ det(Uγ0) det
(

Σ−1
γ\γ0

+XT
γ\γ0(In − Pγ0)Xγ\γ0

)

≥ det(Uγ0) det
(

Σ−1
γ\γ0

+C3n
1−δI|γ\γ0|

)

.
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Therefore,

det(Wγ)

det(Wγ0)
=

det(Σγ)

det(Σγ0)

det(Uγ)

det(Uγ0)

≥ det(Σγ\γ0) det
(

Σ−1
γ\γ0

+ C3n
1−δI|γ\γ0|

)

= det
(

I|γ\γ0| + C3n
1−δΣγ\γ0

)

≥ det
(

(1 + C3n
1−δφ

n
)I|γ\γ0|

)

= (1 + C3n
1−δφ

n
)|γ|−sn , (5.4)

which shows that T2 ≥ 2−1(|γ| − sn) log(1 + C3n
1−δφ

n
). If γ ∈ S2, note that

det(Wγ) ≥ 1, and by Assumption 2.2

T2 ≥ −1

2
log(det(Wγ0)) ≥ −1

2
log(det(Isn + C2nΣγ0)) ≥ −2−1sn log(1 +C2nφ̄n),

which completes the proof of Lemma 5.2.

Lemma 5.3. Let α0 > 2. If either Assumption 2.4 or 2.5 is satisfied, when n is

large, with large probability and uniformly for γ ∈ S1, T5 ≥ −2−1(|γ|−sn)α0 log p.

If both Assumptions 2.2 and 2.4 are satisfied, there exists a constant C ′ such

that when n is large, with large probability and uniformly for γ ∈ S2, T5 ≥
2−1(n + ν) log

(

1 +C ′ψ2
n

)

.

Proof of Lemma 5.3. We consider γ ∈ S1 and S2 separately. Notice that

Assumption 2.4 implies that p log p = o(n log(1+ψ2
n)), and therefore implies that

p log p = o(nψ2
n). Let vγ = (In − Pγ)Xγ0\γβ

0
γ0\γ . From Lemma 5.1 (a) and (c),

there exists C > 0 such that when n is sufficiently large, with large probability,

for any γ ∈ S2,

yT (In − Pγ)y = ‖vγ‖22 + 2vTγ ǫ+ ǫT (In − Pγ)ǫ

≥ ‖vγ‖22 − 2C
√
p‖vγ‖2 + ǫT ǫ− C|γ| log p

≥ ‖vγ‖22
(

1− 2C

√
p

‖vγ‖2
− C

p log p

‖vγ‖22

)

+ ǫT ǫ

≥ ‖vγ‖22
(

1− 2C

√

p

nϕmin(n)ψ2
n

− C
p log p

nϕmin(n)ψ2
n

)

+ ǫT ǫ

= ‖vγ‖22(1 + o(1)) + ǫT ǫ

≥ nϕmin(n)‖β0γ0\γ‖22(1 + o(1)) + ǫT ǫ

≥ nϕmin(n)ψ
2
n(1 + o(1)) + ǫT ǫ. (5.5)
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It is easy to see that Assumption 2.4 implies that sn = o(n), and therefore,

ǫT (In − Pγ0)ǫ = nσ20(1 + op(1)). Thus, by (5.5), there exists a C ′ such that for

sufficiently large n, with large probability, uniformly for γ ∈ S2,

T5 ≥
n+ ν

2
log

(

1 + nϕmin(n)ψ
2
n(1 + o(1)) + ǫT ǫ

1 + ǫT (In − Pγ0)ǫ

)

≥ n+ ν

2
log
(

1 + C ′ψ2
n

)

.

(5.6)

On the other hand, by properties of projection matrices and Lemma 5.1 (b),

when n is sufficiently large, with large probability, we have uniformly for γ ∈ S1,

1 + yT (In − Pγ)y

1 + yT (In − Pγ0)y

= 1− yT (Pγ − Pγ0)y

1 + yT (In − Pγ0)y

= 1−
(β0γ0)

TXT
γ0(Pγ − Pγ0)Xγ0βγ0 + 2(β0γ0)

TXT
γ0(Pγ − Pγ0)ǫ+ ǫT (Pγ − Pγ0)ǫ

1 + yT (In − Pγ0)y

= 1− ǫT (Pγ − Pγ0)ǫ

1 + ǫT (In − Pγ0)ǫ
≥ 1− α(|γ| − sn) log p

n
,

where we have temporarily fixed an α such that 2 < α <
√
2α0. It follows by the

inequality that log(1− x) ≥ −(α/2)x when x ∈ (0, 1− 2/α), and by Assumption

2.4 or 2.5 (which both imply that (|γ| − sn) log p/n approaches zero uniformly

for γ ∈ S1) that for sufficiently large n, with large probability and uniformly for

γ ∈ S1,

T5 ≥
n+ ν

2
log

(

1− α(|γ| − sn) log p

n

)

≥ −2−1(|γ| − sn)α0 log p, (5.7)

which completes the proof of Lemma 5.3.

Now we are ready to finish the proof of Theorem 2.2. By (5.3), Lemma 5.2,

Lemma 5.3, Assumption 2.4, and the fact that pα0 = o(ρn) with ρn ≡ n1−δφ
n
,

with large probability, uniformly for γ ∈ S1,

p(γ|Z)/p(γ0|Z) ≤ C̃ exp
(

−2−1(|γ| − sn) log((1 + C3ρn)/p
α0)
)

= C̃

(

1 + C3ρn
pα0

)−2−1(|γ|−sn)

→ 0. (5.8)
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By Assumptions 2.4 and 2.6, it can be verified that sn log(1+C2nφ̄n) ≪ n+ν
2 log(1+

C ′ψ2
n). So, with large probability, uniformly for γ ∈ S2,

p(γ|Z)/p(γ0|Z) ≤ C̃ exp

(

2−1sn log(1 + C2nφ̄n)−
n+ ν

2
log(1 + C ′ψ2

n)

)

≤ C̃ (1 + C ′ψ2
n)

−n+ν
4 . (5.9)

where C̃ in (5.8) and (5.9) depends on the lower bounds of T1 and T4. For the

proof of PMC, we consider two cases. It is easy to see from (5.8) that

∑

γ∈S1

p(γ|Z)/p(γ0|Z) ≤ C̃
∑

γ∈S1

(

1 + C3ρn
pα0

)−2−1(|γ|−sn)

= C̃

p−sn
∑

r=1

(

p− sn
r

)(

1 + C3ρn
pα0

)− r
2

= C̃





(

1 +

(

1 + C3ρn
pα0

)− 1

2

)p−sn

− 1



→ 0,(5.10)

where the last limit result follows from the assumption that pα0+2 = o(ρn).

Similarly, by (5.9), and p log n = o(n log(1 + ψ2
n)) (which follows from As-

sumption 2.4), we can show that

∑

γ∈S2

p(γ|Z)/p(γ0|Z) ≤ C̃2p(1 + C ′ψ2
n)

−(n+ν)/4 → 0. (5.11)

This completes the proof of Theorem 2.2.

Proof of Theorem 2.4. The assumption that γ0 is null implies that

the model class S2 is empty. Similar to the proof of Theorem 2.2, we need to

approximate T1 to T5 in (5.1). This is easier when the true model is null since

T4 = 0, and by Lemma 5.2, when γ is nonnull, T2 ≥ 2−1|γ| log(1 + C3n
1−δφ

n
).

Since T1 and T3 are still bounded below, the proof is reduced to approximate

T5. By Lemma 5.3, Assumption 2.5, and that sn = 0, when n is large, with

large probability and uniformly for γ ∈ S1, T5 ≥ −2−1|γ|α0 log p. Therefore, the

remaining proofs can be finished by arguments similar to (5.8) and (5.10).

Supplement Materials
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Supplements A–C are given in the authors’ website http://www.stat.wisc.edu/∼
shang/
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