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Abstract

In the Bayesian variable selection framework, a common prior distribution for the regres-
sion coefficients is the g-prior of Zellner [1986]. However, there are two standard cases in
which the associated covariance matrix does not exist, and the conventional prior of Zellner
can not be used: if the number of observations is lower than the number of variables (large
p and small n paradigm), or if some variables are linear combinations of others. In such
situations a prior distribution derived from the prior of Zellner can be used, by introducing
a ridge parameter. The prior obtained is a flexible and simple adaptation of the g-prior, and
can be linked to the work of Gupta and Ibrahim [2007]. In this paper a simple way to choose
the associated hyper-parameters is proposed, and a full variable selection method using this
prior is developed for probit mixed models. The method is then applied to both simulated
and real datasets in which some variables are linear combinations of others.

Keywords: Bayesian variable selection, Zellner prior, ridge parameter, probit mixed regression
model, grouping technique (or blocking technique), Metropolis-within-Gibbs algorithm.

1 Introduction

We consider the problem of variable selection in a probit mixed model with Y a n-vector of
responses, given a set of p potential fixed regressors. The following probit mixed model is
considered

P (Yi = 1 | U, β) = pi = Φ(XT
i β + ZT

i U),

where Φ stands for the standard Gaussian cumulative distribution function, and Xi and Zi for
the fixed and random effect regressors associated to the ith observation. The parameter β ∈ R

p

corresponds to the fixed-effect coefficients and the parameter U to the random-effect coefficients.
X and Z are known design matrices associated with the fixed and random effects.
We consider K random effects, U = (UT

1 , · · · , U
T
K)T where each Ul is a vector of size ql, and

∑K
l=1 ql = q. Following Albert and Chib [1993] and Lee et al. [2003], a vector of latent vari-

ables L = (L1, . . . , Ln)
T is introduced, and we assume that the conditional distribution of L is

Gaussian, written L | U, β ∼ Nn(Xβ + ZU, In), with In the identity matrix. We then have

Yi =

{

1 if Li > 0
0 if Li < 0.

(1)
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When the purpose is to select relevant variables among the p candidates, it is convenient to de-
note by γ the vector of latent variables indicating if a variable is selected or not; that is, γj = 1
if βj 6= 0 and γj = 0 if βj = 0. We then denote by βγ the vector of all nonzero elements of β
and byXγ the design matrix with columns corresponding to the elements of γ that are equal to 1.

To complete the hierarchical model, a conventional prior distribution for βγ |γ is a dγ-
dimensional Gaussian distribution, with dγ =

∑p
j=1 γj ,

βγ |γ ∼ Ndγ (0,Σγ). (2)

Concerning the prior covariance matrix Σγ , an attractive and standard choice is

Σγ = τ(X′
γXγ)

−1. (3)

Equations (2) and (3) together correspond to the g-prior distribution, first proposed by Zellner
[1986], and commonly used since. The parameter τ > 0 is referred to as the variable selection
coefficient in Bottolo and Richardson [2010]. This g-prior replicates the covariance structure of
the design and enables an automatic scaling based on the data. Moreover, it leads to simple
expressions of the marginal likelihood. In the homoscedastic linear model with variance σ2, it
can be expressed as τ = gσ2. Up to the scalar τ , the prior covariance matrix is related to the
Fisher Information Matrix (see for instance Chen and Ibrahim [2003]).

The choice of the variable selection coefficient τ can have a great influence on the variable
selection process (see George and Foster [2000]) and has been considered by many authors.
Some of them considered a fixed value for τ . For instance Smith and Kohn [1997] suggested
to choose τ between 10 and 100. Another approach is the approach of George and Foster
[2000], who developed empirical Bayes methods based on the estimation of τ from its marginal
likelihood. Other authors proposed to put a hyper-prior distribution on τ , like Zellner and Siow
[1980] that used an inverse-gamma distribution IG(1/2, n/2). But under the Zellner-Siow prior,
marginal likelihoods are not available in closed forms, and approximations are necessary (see
Bottolo and Richardson [2010]). Note also that the Zellner-Siow prior can be represented as a
mixture of g-priors. Following this remark, Liang et al. [2008] proposed a new family of priors
on τ , the hyper-g prior family which leads to new mixtures of g-priors while maintaining the
computational tractability of the marginal likelihoods. Independently but in the same spirit,
Cui and George [2008] suggested to put an inverse-gamma prior distribution on (1 + τ) (rather
than on τ like Zellner and Siow), obtaining a family of priors on τ which contains the hyper-g
prior family as a special case. Marin and Robert [2007] also proposed a way to use mixtures of
g-prior for model selection.

In spite of the variety of all these works to choose the variable selection coefficient τ , a crucial
problem remains with priors using the matrix (XT

γXγ)
−1. Indeed, XT

γXγ should be invertible.

However, there are two standard cases where XT
γXγ is singular:

• If the number of observations is lower than the number of variables in the model, n < dγ .

• If some variables are linear combinations of others. In practice, even if XT
γXγ is theoreti-

cally invertible, some variables can be highly correlated and XT
γXγ can be computation-

ally singular. It is often the case in genomic high-dimensional datasets for example. This
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problem can also be encountered when several datasets are merged: some variables can
be collinear or almost collinear if same variables were present into several datasets under
different labels for instance.

In these cases the classical g-prior does not work. Concerning the first case, several authors
proposed alternative priors. In case of linear models, Maruyama and George [2010] proposed a
generalization of the g-prior. In case of probit models, Yang and Song [2010] proposed to replace
the matrix (XT

γXγ)
−1 in Σγ by its Moore Penrose’s inverse (see alsoWest [2003]). However, the

computation of the posterior distribution proposed by Yang and Song [2010] has a technical
issue that do not permit the use of MCMC algorithm (see Baragatti and Pommeret [2011]). An
other idea would be to avoid this first case by fixing the number of selected covariates at each
iteration, as in Baragatti [2011]. It is a practical way when the purpose is to retain only few
regressors, because it appeared computationally advantageous and it reduced the effect of the
variable selection coefficient τ used in the g-prior. But the number of selected variables at each
iteration must be arbitrarily fixed. Moreover, fixing the number of selected covariates is not a
solution for the second case, as well as the priors proposed by Maruyama and George [2010] and
Yang and Song [2010]. For linear model, Brown et al. [1998] proposed to work with transforma-
tions of X and Y , using a Singular Values Decomposition in the spirit of the ridge regression
(see Marquardt [1970]). This numerical approach was extended for multivariate general linear
models in Brown et al. [2002]. Always in the spirit of ridge regression, Gupta and Ibrahim [2007]
proposed an extension of the g-prior, by introducing a ridge parameter. Their prior can be used
in the two cases, but they did not really considered the second case in which some variables are
linear combinations of others. In this paper we also propose a prior with a ridge parameter,
which is slightly different from the prior of Gupta and Ibrahim [2007]. Besides, we suggest a
way to choose the associated hyper-parameters: following the original idea of Zellner which is
to keep the covariance structure of the design, we propose to keep the total variance of the data
through the trace of XTX. The model used is a probit mixed model, and the illustrations focus
on the second case. Particularly, Affymetrix microarray experiment results from patients with
breast cancer are studied.

The rest of the paper is organized as follows. In Section 2 we introduce the prior to be used
in the probit mixed model and we suggest a choice for the hyper-parameters. The prior and full
conditional distributions used in the algorithm are detailed. Section 3 outlines the algorithm. In
Section 4 some experimental results on simulated and real datasets are given, and a sensitivity
analysis is performed. Finally Section 5 discusses the method.

2 Introducing a ridge parameter

To complete the hierarchical model of Section 1, some prior assumptions have to be made on
U |D, βγ |γ, γ and D, with D a covariance matrix of dimension q.

2.1 Prior distribution of β with a ridge parameter

As previously explained, in case of singularity of the matrix XT
γXγ , the classical g-prior can not

be used. We propose to introduce a ridge parameter, denoted λ > 0, by replacing in (3) the
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matrix τ−1XT
γXγ by τ−1XT

γXγ + λI. We get

βγ |γ ∼ Ndγ

(

0, (τ−1XT
γXγ + λI)−1

)

with dγ =

p
∑

j=1

γj . (4)

We write
Σγ(λ) = (τ−1XT

γXγ + λI)−1. (5)

With λ > 0, the matrix Σγ(λ) is always of full rank. We obtain a modified form of the g-
prior, which is a compromise between independence and instability. Indeed, for large values of
λ and τ , Σγ(λ) is close to a diagonal matrix that coincides with the conditional independent
case. On the opposite, for small values of λ and τ , the term τ−1XT

γXγ prevails and the inverse

of τ−1XT
γXγ + λI will be instable if XT

γXγ is singular. In that case, the prior distribution
(4) is close to the g-prior case. In comparison, the prior of Gupta and Ibrahim [2007] uses
Σγ(λ) = τ(XT

γXγ + λI)−1 (with an additional parameter σ2 because they focused on the linear
case). Note that the classical g-prior corresponds to a special case of (5), with λ = 0.

2.2 Calibrating hyper-parameters

Following Zellner [1986], our purpose is to use the design to calibrate the covariance of βγ with
a ridge parameter. Write Σγ(0) = τ0(X

T
γ Xγ)

−1, with τ0 the fixed hyper-parameter used in this
classical prior. Using Σγ(λ) instead of Σγ(0) corresponds to introducing a perturbation in the
classical g-prior. As this classical prior gives good results when the matrix XT

γXγ is invertible,

we choose λ and τ such that Σγ(λ)
−1 and Σγ(0)

−1 are as close as possible. Since tr(XT
γXγ)

represents the total variance (up to a normalization) explained by the selected covariates, the
constraint used is

tr
(

Σγ(0)
−1
)

= tr
(

Σγ(λ)
−1
)

,

which yields

τ = τ0

[

1 +
λpτ0

tr(XT
γXγ)− λpτ0

]

.

Concerning the choice of λ, in order to take into account the number p of covariates and to
reduce the effect of the ridge factor, we suggest taking λ = 1/p, getting

τ = τ0

[

1 +
τ0

tr(XT
γXγ)− τ0

]

.

But the vector γ can be different between two iterations of the algorithm. Therefore we propose
to use the complete design matrix X instead of Xγ , yielding

τ = τ0

[

1 +
τ0

tr(XTX)− τ0

]

. (6)

In practice, the user has to choose only the parameter τ0, λ and τ are then obtained by 1/p and
(6). Following Smith and Kohn [1997], τ0 can be chosen between 10 and 100. In section 4.3, the
sensitivity analysis will assess the influence of the values of these hyper-parameters λ and τ .
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2.3 Other prior distributions

The γj are assumed to be independent Bernoulli variables, with

P (γj = 1) = πj , 0 ≤ πj ≤ 1 j = 1, . . . , p (7)

If we do not want to use prior knowledge to favor any variables, we put πj = π,∀j ∈ {1, . . . , p}.
The vector of coefficients associated with the random effects is assumed to be Gaussian and
centered, with covariance matrix D:

U |D ∼ Nq(0,D). (8)

This definition allows three cases to be distinguished:

General case: No structure is assumed for the variance-covariance matrix D, its prior dis-
tribution is an Inverse-Wishart W−1(Ψ,m).

Case of a block-diagonal matrix D: The different random effects are assumed independent.
The vectors of coefficients associated with each random effect have Gaussian prior distributions:

Ul | Al ∼ Nql(0, Al), l = 1, . . . ,K,

where the Al are symmetric design matrices of dimension ql. D is a block-diagonal matrix de-
noted by diag(A1, . . . , AK). The prior distributions for each Al are Inverse-Wishart W−1(Ψ,m).

Case of a diagonal matrix D: D = diag(A1, . . . , AK) where Al = σ2
l Iql , l = 1, . . . ,K and

Iql the identity matrix. The prior distributions for the σ2
l are then Inverse Gamma IG(a, b) (b

denoting the scale parameter).

2.4 Conditional distributions

The posterior distribution of γ is of particular interest for the variable selection problem. An
idea is to use a Gibbs sampler to explore this posterior distribution and to search for high
probability γ values. Therefore, we must be able to simulate from all of the full conditional dis-
tributions (simplified by the hierarchical structure): f(L | Y, β, U), f(β | L,U, γ), f(U | L, β,D),
f(γ | L,U, β) and f(D | U). The advantage of the ridge approach is that these posterior distri-
butions are available in closed forms.

• Full conditional distribution of L.

Li|β,U, Yi = 1 ∼ N (XT
i β + ZT

i U, 1) left truncated at 0 (9)

Li|β,U, Yi = 0 ∼ N (XT
i β + ZT

i U, 1) right truncated at 0

• Full conditional distribution of βγ . Given γ, we know which elements of β are not null. So
we focus on the generation of the non null elements of βγ .

βγ |L,U, γ ∼ Ndγ (VγX
T
γ (L− ZU), Vγ), (10)
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where

Vγ =
[(1 + τ)

τ
XT

γXγ + λI
]−1

.

• Full conditional distribution of U . Defining W = (ZTZ +D−1)−1, we have

U |L, β,D ∼ Nq(WZT (L−Xβ),W ), (11)

• Full conditional distribution of D.
General case: The full conditional distribution of D is an Inverse-Wishart:

D | U ∼ W−1(UUT +Ψ,m+ 1). (12)

Case of a block-diagonal matrix D: D = diag(A1, . . . , AK). The full conditional distribu-
tion of Al (∀l = 1, . . . ,K) is an Inverse-Wishart:

Al | Ul ∼ W−1(UlU
T
l +Ψ,m+ 1). (13)

Case of a diagonal matrix D: D = diag(A1, . . . , AK), and ∀l = 1, . . . ,K, Al = σ2
l Iql . The

full conditional distribution of σ2
l is an Inverse-Gamma:

σ2
l | Ul ∼ IG

(ql
2
+ a,

(1

2
UT
l Ul + b

)

)

. (14)

• Full conditional distribution of γ.

f(γ|βγ , L, U) ∝ |Σγ(λ)|
−1/2

p
∏

j=1

π
γj
j (1− πj)

1−γj (15)

× (2π)−
dγ

2 exp
[

−
1

2

(

(ZU − L)TXγβγ + βT
γ X

T
γ (ZU − L) + βT

γ V
−1
γ βγ

)

]

,

with dγ =
∑p

j=1 γj.

We want to simulate γ from the distribution (15) using a Metropolis-Hastings (MH) algorithm
and not component by component, because it is computationally advantageous for a very large
number of variables, see Baragatti [2011]. However, the full conditional distribution of γ can-
not be directly simulated using a MH algorithm, since it depends on the actual value of βγ .
Following Lee et al. [2003] and Baragatti [2011], we use the grouping (or blocking) technique of
Liu [1994] to eliminate the nuisance parameter βγ . The idea is to group the parameters βγ and
γ, so we will be interested in the full conditional distribution of (βγ , γ) | L,U . This technique
improves the algorithm and facilitates the convergence of the Markov chain, see Liu [1994] and
van Dyk and Park [2008]. As we have

f(βγ , γ | L,U) ∝ f(γ | L,U)f(βγ | γ, L,U),

we note that simulating from the full conditional distribution (βγ , γ) | L,U is equivalent to
simulating γ from its full conditional distribution integrated on βγ , then simulating βγ from its
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full conditional distribution. The “integrated distribution” for γ will not depend anymore on
the nuisance parameter βγ .
Having integrated βγ out in equation 15, we obtain

f(γ|L,U) ∝
|Vγ |

1/2

|Σγ(λ)|1/2
exp

[

−
1

2
((L− ZU)T (I −XγVγX

T
γ )(L− ZU)

]

×

p
∏

j=1

π
γj
j (1− πj)

1−γj . (16)

Remark: The influence of τ appears here through the ratio R1/2 =
(

|Vγ |
|Σγ |

)1/2
. We can see

that
{

if τ → ∞, R → |XT
γXγ + λI|−1,

if τ → 0, R → 1.

3 Metropolis-within-Gibbs algorithm

3.1 A Metropolis-Hastings step to simulate γ

At iteration (i+ 1) of the Metropolis-Hastings algorithm, a candidate γ∗ is proposed from γ(i).
Using a symmetric transition kernel, the acceptance rate is

ρ(γ(i), γ∗) = min

{

1,
f(γ∗|L,U)

f(γ(i)|L,U)

}

,

with

f(γ∗|L,U)

f(γ(i)|L,U)
=

(

|Vγ∗Σγ(i) |

|Σγ∗Vγ(i) |

)1/2

exp
{

−
1

2
(L− ZU)T (XγiVγ(i)X

T
γ(i) −Xγ∗Vγ∗XT

γ∗)(L− ZU)
}

×

p
∏

j=1

(

πj
1− πj

)γ∗

j −γ
(i)
j

, if ∀j ∈ {1, . . . , p} πj = π. (17)

The simplest way to have a symmetric transition kernel is to propose a γ∗ which corresponds
to γ(i) in which r components have been randomly changed (see Chipman et al. [2001] and
George and McCulloch [1997]).

Remark: The influence of τ appears via the ratio Q1/2 =

(

|Vγ∗Σγ(i)
|

|Σγ∗Vγ(i)
|

)1/2

that satisfies:

{

if τ → ∞, Q → |XT
γ∗Xγ∗ + λI| × |XT

γiXγi + λI|−1,

if τ → 0, Q → 1.
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3.2 Complete algorithm

The Metropolis-within-Gibbs sampler (Roberts and Rosenthal [2006]) modified by the grouping
technique of Liu generates a sequence:

γ(1), β(1)
γ ,D(1), L(1), U (1), . . . . . . , γ(b+m), β(b+m)

γ ,D(b+m), L(b+m), U (b+m).

The sequence of the γ(t), which is of interest for the variable selection problem, is embedded in
this ”Gibbs sequence”.

Algorithm:

Starting with initial values γ(0), β(0),D(0), L(0), U (0). At iteration t+ 1:

1. Simulate γ(t+1) from f(γ | L(t), U (t)) (see 16), using the Metropolis-Hasting
step. Given γ(t), L(t), U (t), k iterations of the Metropolis-Hastings algorithm
are performed (k arbitrarily fixed). The Metropolis-Hastings step begins with
γ(t) as an initial value. Then at each iteration i+ 1:

(a) Generate the γ∗ candidate, by changing r components of γ(i).

(b) Take

γ(i+1) =

{

γ∗ with probability ρ(γ(i), γ∗), see (17)

γ(i) with probability 1− ρ(γ(i), γ∗)

γ(t+1) will be the γ(k) obtained at the kth iteration of the Metropolis-Hastings
algorithm.

2. Simulate β
(t+1)
γ from f(βγ | L(t), U (t), γ(t+1)) (see (10)).

3. Simulate D(t+1) from f(D | U (t)) (see (12), (13) or (14)).

4. Simulate L(t+1) from f(L | Y, β(t+1), U (t)) (see (9)).

5. Simulate U (t+1) from f(U | L(t+1), β(t+1),D(t+1)) (see (11)).

The number of iterations is b + m, where b corresponds to the burn-in period and m to the
observations from the posterior distributions. For selection of variables, the sequence {γ(t) =

(γ
(t)
1 , . . . , γ

(t)
p ), t = b + 1, . . . , b + m} is used. The most relevant variables for the regression

model are those which are supported by the data and prior information. Thus they are those
corresponding to the γ components with higher posterior probabilities, and can be identified as
the γ components that are most often equal to 1. To decide which variables should be finally
selected after a run, we suggest to use a box-plot of the number of iterations during which
variables were selected. Usually, for each run a reasonable number of variables distinguishable
from others can be selected by fixing a threshold: if a variable has been selected during a number
of iterations which is higher than this threshold, then the variable is kept in the final selection.

4 Experimental results

4.1 Simulated data

We simulated 200 binary observations and 300 variables, the observations being obtained using
a probit mixed model with 5 of these variables and one random effect of length 4. Among the
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300 variables, 280 were generated from a uniform on [−5, 5] and denoted by V 1, . . . , V 280. Then
10 variables denoted by V 281, . . . , V 290 were build to be collinear to the first 10 variables, with
a factor 2: for instance V 282 = 2 × V 2. One variable was build to be a linear combination of
V 1 and V 2 (V 291 = V 1+ V 2), and another was build to be a linear combination of V 3 and V 4
(V 292 = V 3 − V 4). Finally, 8 variables were build to be linear combinations of variables 5 to
12 and variables 13 to 20 (for instance V 293 = V 5 + V 13). The five variables used to generate
the binary observations were the first five: V 1, V 2, V 3, V 4 and V 5. The vector of coefficients
associated with these variables was β = (1,−1, 2,−2, 3). The first 100 observations were part
of the training set, and the last 100 were part of the validation set. In the training and the val-
idation sets, 25 observations were associated with each component of the random effect, whom
vector of coefficients was U = (−3,−2, 2, 3). We had only one random effect and the different
components were supposed independent, hence we put D = σ2I3 with an inverse-gamma prior
IG(a, b) for σ2.
The objective was to assess the behavior of the proposed method when some variables are linear
combinations of others, and to compare it to the case where no variable is linear combination
of others. Therefore we performed 10 runs of the algorithm using only the first 280 variables,
and 10 runs using the 300 variables. In these two cases and for each run the same parameters
were used: 5 variables were initially selected, one component of γ was proposed to be changed
at each iteration of the Metropolis-Hastings step, the prior of σ2 was a IG(1, 1), πj = 5/280 for
all j when 280 variables were kept, πj = 5/300 for all j when 300 variables were kept, 4000 iter-
ations were performed after a burn-in period of 1000 iterations, and each Metropolis-Hastings
step consisted of 500 iterations. We decided to choose τ0 = 50, which is a standard choice, see
Smith and Kohn [1997] for instance. The parameters λ and τ were then chosen as explained in
2.2 and using (6), yielding λ = 1/280 and c = 50.01075 when using 280 variables, and λ = 1/300
and c = 50.00885 when using 300 variables.

A final selection was performed for each of the 20 runs, by taking the variables which were
selected the most often during the run. Boxplots were used to determine the threshold above
which the variables are kept. Figure 1 presents two boxplots: one corresponding to a run with
only the first 280 variables, and one corresponding to a run with the 300 variables.
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Figure 1: Boxplots of the number of selections of a variable after the burn-in period. A point represents
a variable (or several variables if they have been selected the same number of times). The left boxplot
corresponds to the run 5 with 280 variables: there is a gap between the variables V 2, V 3, V 4 and V 5
selected in more than 500 iterations and the others, hence we selected these four variables. The right
boxplot corresponds to the run 6 with 300 variables: there is a gap between the variables selected in more
than 400 iterations and the others, hence we selected these eight variables

Table 1 gives the variables kept in the final selections of the 10 runs with the first 280
variables, and of the 10 runs with 300 variables.

Variables Number of selections Number of selections
among the 10 runs among the 10 runs
with 280 variables with 300 variables

V 1 0 10
V 2 9 8
V 3 10 2
V 4 5 0
V 5 10 10

V 281 = 2× V 1 10
V 282 = 2× V 2 9
V 283 = 2× V 3 3
V 284 = 2× V 4 0
V 285 = 2× V 5 10
V 291 = V 1 + V 2 7
V 292 = V 3− V 4

Not available

10

Table 1: Number of final selections among the 10 runs with the first 280 variables and among the 10
runs with 300 variables, for the variables V 1, V 2, V 3, V 4, V 5 and linear combinations of these variables.
No other variable was present on the final selections.
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Among the runs with the first 280 variables, 3 among the 5 variables used to generate the
data were in the final selection of almost all runs, and the variables V 4 was in the final selection
of half of the runs. Notice that V 1 was in none of the final selections. Among the runs with 300
variables, the variables V 1, V 2, V 3 and V 5 were present in most of the final selections, directly
or indirectly through linear combinations. Contrarily to the runs with 280 variables, the vari-
ables V 4 or V 284 were in none of the final selections, while the variables V 1 and V 281 were in
all the final selections. Concerning V 4, it was indirectly in all the final selections through V 292,
which is a linear combination of V 3 and V 4. Eventually, the final selections of the runs with
300 variables appeared as relevant as the final selections of the runs with 280 variables, despite
the fact that some variables were linear combinations of others. Note that we obtained similar
results with only 500 burn-in iterations and 500 post burn-in iterations, except that the variable
V 4 was in none of the final selections.

To assess the relevance of the final selections, predictions were performed. Sensitivity and
specificity are presented in Table 2.

Variables selected among 280 Variables selected among 300

Variables Sensitivity Specificity Variables Sensitivity Specificity

V 2, V 3, V 5 0.87 0.89 V 281, V 282
V 283, V 285 0.94 0.89

V 2, V 3, V 4, V 5 0.93 0.96 and V 292

True model: V 1, V 2, V 3, V 4, V 5 0.94 0.89

Table 2: Sensitivity and specificity on the validation dataset.

Concerning the runs with the first 280 variables, the variables V 2, V 3 and V 5 were in almost
all final selections. Fitting a probit mixed model on the training set with variables V 2, V 3 and
V 5, and making predictions on the validation set, we obtained 12 misclassifications among 100.
This result was good, despite the fact that V 1 and V 4 were not taken into account. V 4 was
in half of the final selections, hence we fitted a probit mixed model on the training set with
variables V 2, V 3, V 4 and V 5, and made predictions on the validation set: we obtained 6 mis-
classifications among 100. For comparison, using the five variables used to generate the data,
we obtained 8 misclassifications. Therefore the results of the algorithm were good enough. We
then did predictions using the variables in final selections of the runs with 300 variables. Notice
that we can not fit a model with all the variables in final selections, because some of them are
linear combinations of others. For instance, we can not use V 1 and V 281 together. We fit a
probit mixed model on the training set with variables V 281, V 282, V 283, V 285 and V 292, and
made predictions on the validation set: we obtained 8 misclassifications among 100. It was as
good as with the five variables used to generate the data.

The number of components of γ equal to 1 (corresponding to dγ) can vary from one iteration
to another. Indeed, during the Metropolis-Hastings step, at each iteration a new γ vector is
proposed. Figure 2 shows, for the 10 runs with 300 variables, the number of iterations of the
runs associated with a number of selected variables from 1 to 15.
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Figure 2: Number of iterations of the runs associated with a number of selected variables from 1 to 15.
For the 10 runs, there were a total of 40000 post burn-in iterations.

Similar results were obtained for the 10 runs with the first 280 variables. The number of
variables selected at each iteration never became larger than 13, hence the case p > n have not
be encountered. Table 3 gives the number of variables in the final selections of the 10 runs with
280 variables, and of the 10 runs with 300 variables.

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

With 280 variables 4 4 3 3 4 3 2 3 4 4
With 300 variables 5 6 8 8 8 8 10 9 8 9

Table 3: Number of variables in the final selections of the 10 runs with 280 variables, and of the 10 runs
with 300 variables.

The number of variables in the final selections of the 10 runs with 280 variables appeared to
be generally lower than this number in the final selections of the 10 runs with 300 variables.

4.2 Illustrations through real data

As an illustration, Affymetrix microarray experiment results from patients with breast cancer
were used. For that, we consider data used in Baragatti [2011], see there for more details.
Briefly, the patients come from three different hospitals, and the objective was to select some
variables (probesets) which are indicative of the activity of the estrogen receptor (ER) gene in
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breast cancer. The hospital was considered as a random effect in the model, thus accounting for
the different experimental conditions between the three hospitals. For each patient, the expres-
sions of 275 probesets were kept, among which some were known to be relevant to explain the
ER status (corresponding to variables 148, 260, 263 and 273). We used a training set made of
100 patients, and a validation set of 88 patients. In order to have a potentially singular XT

γXγ

matrix, we added three variables to the data matrix X. These variables were linear combina-
tions of the known relevant variables, hence X was no more of full rank: V 276 = 2 × V 148,
V 277 = −V 260 and V 278 = V 263+V 273. We had only one random effect, which corresponded
to the different hospitals. The hospitals are supposed independent, hence we put D = σ2I3 with
an inverse-gamma prior IG(a, b) for σ2.
We performed 10 runs of the algorithm using only the first 275 variables, and 10 runs using
all the 278 variables. In these two cases and for each run the same 100 patients and the same
parameters were used: 5 variables were initially selected, one component of γ was proposed to
be changed at each iteration of the Metropolis-Hastings step, the prior of σ2 was a IG(1, 1),
πj = 5/275 for all j when 275 variables were kept, πj = 5/278 for all j when 278 variables
were kept, 4000 iterations were performed after a burn-in period of 1000 iterations, and each
Metropolis-Hastings step consisted of 500 iterations. As in the previous illustration we chose
τ0 = 50. The parameters λ and τ were then chosen as explained in 2.2 and using (6), yielding
λ = 1/275 and c = 50.0009 when using 275 variables, and λ = 1/278 and c = 50.00088 when
using 278 variables.

A final selection was performed for each of the 20 runs, by taking the variables which were
selected the most often during the run. Boxplots were used to determine the threshold above
which the variables are kept. Figure 3 presents a boxplot of a run with 275 variables and a
boxplot of a run with 278 variables.
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Figure 3: Boxplots of the number of selections of a variable after the burn-in period. The left boxplot
corresponds to the run 3 with 275 variables: there is a gap between the variables selected in more than
500 iterations and the others, hence we selected these six variable. The right boxplot corresponds to the
run 8 with 278 variables: there is a gap between the variables V 278, V 260 and V 277 selected in more
than 500 iterations and the others, hence we selected these three variables.

Table 4 gives the variables kept in the final selections of the 10 runs with the first 275
variables, and of the 10 runs with 278 variables.

Variables Corresponding Number of selections Number of selections
probesets among the 10 runs among the 10 runs

with 275 variables with 278 variables

V 260 228241 at 10 3
V 273 205862 at 9 0
V 148 209604 s at 5 1
V 263 228554 at 10 0
V 83 203628 at 7 0
V 66 202088 at 1 0
V 212 215157 x at 1 0

V 277 = −V 260 collinearity 3
V 278 = V 263 + V 273 linear combination

Not available
10

Table 4: Number of final selections among the 10 runs with the first 275 variables and among the 10
runs with 278 variables, for the different variables and linear combinations. No other variable was present
on the final selections.
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Concerning the runs with the first 275 variables, three of the most relevant probesets were
in the final selections of most of them: V 260, V 273 and V 263. Moreover, V 148 was in half
of the final selections. Concerning the runs with 278 variables, the variable V 278 which is a
linear combination of V 263 and V 273 was in all of the final selections. We noticed that the
variables V 260 and V 277 were in the same final selections, and that V 83 was selected during
runs with a non singular X matrix and not during runs with a singular X matrix. As in the
previous example, the final selections of the runs with 278 variables appeared as relevant as the
final selections of the runs with 275 variables, despite the fact that some variables were linear
combinations of others. We obtained similar results with only 500 burn-in iterations and 500
post burn-in iterations, except that two of the most relevant variables were in most of the final
selections, and not three (V 260 and V 263).

Predictions were also performed. Table 5 contains sensitivity and specificity. Concerning
the runs with 275 variables, we fit a probit mixed model on the training set with variables
V 260, V 273 and V 263, and made predictions on the validation set: we obtained 4 misclassifica-
tions among 88. For comparison, using the four relevant variables V 260, V 273, V 148 and V 263,
we obtained 3 misclassifications. Therefore the results of the algorithm were good enough. We
then did predictions using the variables in final selections of the runs with 278 variables. Fitting
a probit mixed model on the training set with only the variable V 278 and making predictions
on the validation set, we obtained 8 misclassifications among 88. Fitting a probit mixed model
on the training set with the variables V 278 and V 277 and making predictions on the validation
set, we obtained 3 misclassifications among 88, hence the results were quite good.

Variables selected among 275 Variables selected among 278

Variables Sensitivity Specificity Variables Sensitivity Specificity

V 260, V 273, V 263 0.92 1 V 278 0.87 0.97
V 260, V 273, V 148, V 263 0.94 1 V 278, V 277 0.94 1

Table 5: Sensitivity and specificity on the validation dataset.

Concerning the number of components of γ equal to 1 (corresponding to dγ) during the
iterations of the runs, figures quite similar to Figure 2 were obtained for the 10 runs with
275 variables, and for the 10 runs with 278 variables. The mode of the barplot was still for
4 variables selected in an iteration. Furthermore, as in the previous example the number of
variables selected at each iteration never became larger than 14, therefore we have not been in
the case p > n. Table 6 gives the number of variables in the final selections of the 10 runs with
275 variables, and of the 10 runs with 278 variables.
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run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

With 275 variables 4 4 6 5 3 5 3 3 5 5
With 278 variables 1 1 1 2 1 3 1 3 3 1

Table 6: Number of variables in the final selections of the 10 runs with 275 variables, and of the 10 runs
with 378 variables.

In opposition to the previous example, the number of variables in the final selections of the
10 runs in case of no linear combination appeared to be generally higher than this number in
the final selections of the 10 runs in case of linear combinations.

4.3 Sensitivity analysis

Concerning the variable selection coefficient τ , the method of variable selection without the
ridge parameter is not sensitive to its value (see Baragatti [2011]), but it is mainly due to the
fact that the number of variables selected at each iteration of this algorithm was fixed. It is no
more the case for the algorithm proposed in this paper, therefore it seems necessary to assess
its sensitivity to this parameter. Similarly, it seems necessary to assess its sensitivity to the
parameter λ. Indeed, we suggested a way to choose τ and λ, but it is interesting to study the
behavior of the algorithm if these parameters are chosen more arbitrarily. As a consequence, we
looked at the influence of τ0 when τ is chosen from τ0 and λ is chosen as proposed in Section
2.2, as well as the influences of τ and λ when they are chosen more arbitrarily.
We also studied the behavior of the algorithm when the value of the πj, the prior distribution
parameters of σ2 and the number of iterations vary.
For this sensitivity study we used the example with simulated data (Section 4.2) with 300
variables, and the different values for the parameters used are presented in Table 7. In this table,
the number of relevant variables in the final selections of the runs are given, the relevant variables
being V 1, V 2, V 3, V 4, V 5, V 281, V 282, V 283, V 284, V 285, V 291 and V 292. The sensitivity was
assessed by using the relative weighted consistency measure of Somol and Novovicova [2008],
denoted by CWrel. It is a measure evaluating how much subsets of selected variables for several
runs overlap, and it shows the relative amount of randomness inherent in the concrete variable
selection process. It takes values between 0 and 1, where 0 represents the outcome of completely
random occurrence of variables in the selected subsets and 1 indicates the most stable variable
selection outcome possible.
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Value Prior Iterations Nb of
Run c0 c λ of πj for post burn-in relevant S

∀j σ2 (burn-in) variables

1 10 10.00035 (6) 3
2 50 50.00885 (6) 8
3 100 100.0354 (6) 8
4 1000 1003.553 (6) 8
5 10000 10367.03 (6)

1/p = 1/300 5/300 IG(1, 1) 4000 (1000)

8

0.857

6 1/p = 1/300 8
7 100/p = 1/3 8
8

(6) non
1 8

9
used

10 8
10

100

100
5/300 IG(1, 1) 4000 (1000)

3

0.8

11 10 1/p = 1/300 5
12 10 10 3

0.348

13
(6) non

1000 1/p = 1/300 0 (0.639
14

used
1000 10 8 without

15 100 100/p = 1/3

5/300 IG(1, 1) 4000 (1000)

8 run 13)

16 5/300 8
17 50/300 12
18

100 100.0354 (6) 1/p=1/300
100/300

IG(1, 1) 4000 (1000)
12

0.848

19 IG(1, 1) 8
20 IG(2, 5) 8
21

100 100.0354 (6) 1/p=1/300 5/300
IG(5, 2)

4000 (1000)
8

1

22 500 (500) 8
23 4000 (1000) 8
24

100 100.0354 (6) 1/p=1/300 5/300 IG(1, 1)
40000 (10000) 8

1

Table 7: Parameters of the runs for the sensitivity study and associated relative weighted consistency
measure of Somol and Novovicova CWrel. For each run, 5 variables are initially selected, one component
of γ is proposed to be changed at each iteration of the Metropolis-Hastings step and each Metropolis-
Hastings step consists of 500 iterations.

The algorithm was generally not sensitive to the values of the hyper-parameters, since most
of the relevant variables were usually finally selected. When three variables only were finally
selected, they were variables enabling us to fit models with good predictions. The boxplots
obtained were often similar to the right boxplot of Figure 1. In particular, the algorithm was
not sensitive to the values of τ and λ. However, the run 13 is noticeable, as no variable could
be really distinguished from others, and none of the top-ranked variables was a relevant one,
see Figure 4. This run corresponds to a large τ and a small λ. Note that the run 14 with
large τ and large λ gave good results, even if the prior covariance of βγ was then close to the
identity. The runs 17 and 18 are also noticeable, as all relevant variables were finally selected,
see Figure 4. They correspond to high values of πj , and the cost for these relevant runs was
longer computational times. Finally, we observed that the values of τ and πj play role in the
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number of variables selected at each iteration of the algorithm. The value of τ modified the
distribution of this number, see Figure 5. Besides, this number increased with the value of πj,
see Figure 6. However, even if the number of variables selected at each iteration of the algorithm
was high, it did not influence the final selections of the runs, and it did not influence the number
of variables which were distinguishable from others.

Figure 4: Boxplot of the number of selections of a variable after the burn-in period, for two runs with
300 variables. The left boxplot corresponds to the run 13: no variable distinguishes itself from others,
and none of the top-ranked variables is a relevant one. The right boxplot corresponds to the run 17: the
12 relevant varaibles have been selected in more than 500 iterations.
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Figure 5: Number of iterations of the runs 1,4 and 5 associated with a number of selected variables from
1 to 14. For each run, there were 4000 post burn-in iterations.

Figure 6: Number of iterations of the runs 16,17 and 18 associated with a number of selected variables
from 1 to 100. For each run, there were 4000 post burn-in iterations.

5 Discussion

Classical bayesian variable selection methods often propose the use of the g-prior of Zellner. This
prior can not be used if p > n, or if some variables are linear combinations of others. In particular,
this last case can occur when several datasets with common covariates are merged. The prior
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for βγ proposed in this manuscript is a possible alternative, as well as the prior proposed by
Gupta and Ibrahim [2007]. In our prior the parameters τ and λ can be chosen independently,
and in this case the parameter τ does not influence the coefficient of the identity matrix. On
the opposite, in the prior of Gupta and Ibrahim, the parameter τ necessarily has an influence on
this coefficient. Using our prior, a way to jointly choose τ and λ was suggested and the results
obtained on simulated data and on a real dataset were good and stable, whether some variables
were linear combinations of others or not. Moreover, when τ and λ were chosen independently,
the proposed method proved to be robust to the choices of these hyper-parameters: only 1 run
among 24 in the sensitivity analysis gave bad results.
In classical cases using the g-prior, many authors suggested to put prior distributions on τ , see
Section 1. Following them, an idea would be to put prior distributions on the hyper-parameters
τ and λ. However, these authors often used Bayes Factors and not a latent γ vector like us.
They were then more in the spirit of model selection than in the spirit of variable selection.
The choice of τ can have influence on the posterior probabilities of models, and therefore on
Bayes Factors (see Celeux et al. [2006] for instance). On the opposite, from our experience,
methods of variable selection using a latent γ vector are not overly sensitive to the value of τ .
Considering the facts that the variable selection algorithm proposed in this paper uses a latent
γ vector and that this algorithm appeared robust to the values of τ and λ, we did not put
prior distributions on these hyper-parameters. All the more that putting prior distributions on
these hyper-parameters would lead to a non-standard posterior distribution for τ . In practice,
even if XT

γXγ is theoretically invertible, some variables can be highly correlated and XT
γXγ

can be computationally singular. Moreover, we do not necessarily know if some variables are
linear combinations of others. To avoid a computational problem using the classical g-prior, we
suggest to use the prior and the algorithm proposed in this paper, even if eventually XT

γXγ is
never singular. Once a final selection of variables γ+ is obtained by our algorithm, the rank of
the matrix with all the variables finally selected, denoted by Xγ+, should be computed. If this
matrix is not of full rank, some variables are linear combinations of others, and we can take
a submatrix of Xγ+ of full rank as a new data matrix. Note that it is easier to take linearly
independent columns of Xγ+, than linearly independent columns of X, especially if p is quite
large.
The result of a run of the proposed algorithm is a vector giving the number of iterations during
which variables have been selected. We suggested to represent this vector by a boxplot to decide
which variables should be in the final selection, by taking the variables which distinguished from
others using a threshold. However, it would be interesting to have a non-supervised criteria to
decide which variables should be in the final selection of a run. Finally, a direction for future
research is to use the proposed prior for βγ in the framework of variable selection for generalized
linear mixed models. Gupta and Ibrahim [2009] proposed an Information Matrix Ridge prior
for generalized linear models, but not in an objective of variable selection.
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