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Abstract 
Skillful control of a network flow, which creates a real bridge between the supplier and user, is one of the most important conditions for 
cost-efficient operation of an enterprise, foundry shop included. This paper describes modern principles of the network optimising for 
better distribution of the moulding sand, using modern methods of operational research and commonly available Excel calculation sheet 
equipped with an optimising tool called Solver.  
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1. Introduction 
 
Contrary to the traditional system of materials handling, some 

examples of which have been discussed by the authors in former 
works [1,2], the problems related with network flows (which are a 
generalised form of various tasks that the handling system usually 
faces) admit the presence in a network, besides nodes A+ 
(supplier) and A- (user), of nodes designated as A0, which are 
considered transit or reloading nodes. In problems of the network 
flow one can quite successfully abandon the idea of some 
restrictions imposed by the presence (or absence) of the paths 
(arcs) joining individual nodes. One can also (or should rather in 
some cases) take additionally into account some constraints on  
flow capacity (flow rate) of the individual arcs (paths), this 
referring to the constraints on both minimum flow capacity (the, 
so called, "lower bounds") and maximum flow capacity (the, so 
called, "upper bounds ").   
 
 

2. Methodology 
 

The terminology used in network flows is most frequently that 
used in applied hydraulics. And so, the following terms generally 
apply: 

• nodes representing the suppliers - these are the  sources, 
• nodes representing the users - these are the sinks, 
• the size of the supply which the suppliers are capable of 

offering - these are the source potentials (which means 
that, according to the designations adopted previously,  
ai is the potential of an i-th source), 

• the size of  the demand as expressed by the users - these 
are the sink potentials (which means that, according to 
the designations adopted previously,  bj is the potential 
of a  j-th sink),  

• the specific transport operations are the flows; the transit 
(reloading) node is the node in which the inflowing 
stream of liquid (in the case under discussion this will 
be the stream of moulding sand) will equal the 
outflowing stream of liquid.  
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When the individual constraints are determined for the individual 
nodes, all three types of the nodes, i.e. the source, the sink, and 
the transit points, can be treated in the same way, applying the 
inequality stated below:  

 
outflowing stream  –inflowing stream ≤ node potential              (1) 
 
on condition that the source potential is positive, the sink potential 
is negative, and that of the transit point is equal to zero. 

As a first example, Figure 1 shows the source (of number k = 
1) and the structure of respective constraints, assuming that k 
denotes the node number. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Example of source with  streams, potential and description  
 

The general constraint resulting from inequality (1) assumes 
for the source the following form: 
 
outflowing stream - inflowing stream < source potential      (2) 
 
or otherwise: 
 

k k

kj ik k
j W i D

x x
∈ ∈

− ≤∑ ∑ a        (3) 

 
which for the described source node k = 1 is cosistent with the 
inequality: 
 
x13+ x14 + x15 – x21 < 3000       (4) 
 
 As a second example, Figure 2 shows the sink (of number k 
= 5), discussed along with the structure of  respective constraints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Example of sink with streams, potential and description  

The general constraint resulting from inequality (1) assumes for 
the sink the following form: 
 
outflowing stream – inflowing stream < sink potential               (5) 
 
or otherwise: 
 

k k

kj ik k
j W i D

x x b
∈ ∈
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which for the described sink node k=5 is consistent with the 

inequality: 
 
x54 + x56 - (x15 + x35) < –1600                                                      (6) 
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or after transformation: 1 -  source k=1 with potential 

a1=3000 
x21 -  stream inflowing to node 1 
x13 + x14 + x15 - stream outflowing 
from              node 1 
D1 = {2} - area of entry to node 1, 
                  since i = 2 
W1 = {3, 4, 5} - area of exit from  
   node 1,  
                          since j = 3, 4, 5 

 
x15 + x35 – x54 – x56 > 1600                                                           (7) 
 

As mentioned previously, in transit (reloading) node, the 
stream of inflowing liquid equals the stream of outflowing liquid. 
An example of the transit node is shown in Figure 3. 
 1 = 3000 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Example of transit  node with streams and description 

 
Balancing the inflowing and outflowing streams in transit 

node according to the inequality (1):  
 
      outflowing stream – inflowing stream = 0       (8) 
 
can be easily described by a mathematical  model 
 

0
k k

kj ik
j W i D

x x
∈ ∈

− =∑ ∑           (9) 

 
which for the transit node k = 3 is consistent with the following 

inequality: 
 
x35 + x36 + x37 – (x13 + x23) = 0          (10) 
 
 Figure 4 shows the structure of the whole network used for 
supply of the moulding sand, including all constraints, where the 
number of constraints corresponds to the number of the network 
nodes. The source nodes – i.e. the suppliers, are the silica sand 
mines, denoted by nodes 1 and 2, while sinks, i.e. the users, are 
foundries denoted by nodes 4, 5, 6 and 7. 
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3 -  transit node  k=3 
x13 + x23 - stream inflowing  
                to node 3 
x35 + x36 + x37 - stream outflowing 
                from  node 3 
D3 = {1, 2} - area of entry  
                      to node 3, since i = 1, 2
W3 = {5, 6, 7} - area of exit   
                           from node 3, 
          since j = 5, 6, 7 
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5 -  sink k=5 with  potential  
           b5=1600 
x15 + x35 - stream inflowing to node 
                 5 
x54 + x56  - stream outflowing  
                 from node 5 
D5 = {1, 3} - area of entry   
                      to node 5, since i = 1, 3 
W5 = {4, 6} - area of exit from node 5, 
                      since j = 4, 6 

x56
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Fig. 4. The network of silica sand transportation system with 
constraints on respective nodes  
 

It can be additionally stated that, besides the constraints on 
network nodes given in Figure 4, there are still the constraints 
operating on the network arcs, since on each of these arcs the flow 
should have a value positive or equal to zero, which means that: 
 
xij ≥ 0                         (11) 
 
 Detailed analysis of the network flow shows that some flow 
quantities can be restricted on a given arc (i,j) by “lower bounds” 
(dij) or by “upper bounds” (gij), which ultimately gives: 
 
dij ≤ xij ≤ gij.                      (12) 
 

All values of xij, which are the solution for  given constraints 
on the nodes, will make the, so called, acceptable flow, satisfying 
the demand of users (sinks) within the currently existing supply 
capacity of the suppliers (sources) and the available transport 
means. It should be added that, compared with the conventional 
transport means, where a solution (i.e. an acceptable flow) always 
exists, in the network flow it may happen so that the acceptable 
flow will be non-existent (which means that no solution can be 
found). 

Within the determined (existing) acceptable network flows, 
two main problems are examined: 

• for which values of the acceptable flow one can obtain 
the lowest cost of flow Kp, with data available on the 
unit cost of flow hij for individual arcs of the network 
(i,j) belonging to the set of network arcs Q. Since total 
cost of  flow is a sum of the products of the unit costs hij 
and the corresponding flow capacities xij (decision 
variables) on individual network arcs (i,j), an optimum 
solution will be obtained through the task of linear 
optimising (under given conditions (2), (4), (8), (11) 
and (12)): 

 
p ij kj

i , j Q
K h x min,

∈

= →∑                       (13) 

 
• for which values of the acceptable flow, the highest 

value of flow Wp can be obtained, understood as a bulk 
mass of goods  transported from the supplier (source) to 
the user (sink). An optimum solution will be obtained 

through the task of linear optimising (under given 
conditions (2), (4), (8), (11) and (12)): 
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It is worth noting that the value of flow is a sum of all the left 

members of the constraints on source.  This means that for the 
network illustrated in Figure 4 one can obtain: 
 
Wp = x13+ x14 + x15 – x21 + x23+ x27 + x21 =  
      =x13+ x14 + x15+ x23+ x27                                                                                 (15) 
 
 

3. The results 
 

Below, an optimising task has been performed for a flow in a 
given network of the structure as shown in Figure 4 to obtain a 
flow of the lowest cost and maximum capacity, allowing for the 
size of supply expressed in tons (that is, the source potential), the 
size of demand expressed in tons (that is, the sink potential) and 
the unit cost of flow hij amounting to: 
� on arc 13 - 25 PLN/ton, � on arc 14 - 55 PLN/ton 
� on arc 15 - 34 PLN/ton, � on arc 21 - 42 PLN/ton 
� on arc 23 - 19 PLN/ton, � on arc 27 - 29 PLN/ton 
� on arc 35 - 38 PLN/ton, � on arc 36 - 26 PLN/ton 
� on arc 37 - 11 PLN/ton, � on arc 54 - 51 PLN/ton 
� on arc 56 - 48 PLN/ton, � on arc 76 - 41 PLN/ton 

After careful analysis of the examined network, the following 
constraints were taken into account: 

• on arc 13 the flow should not go below  500 tons and 
above 700 tons, 

• on arc 15 the flow should not go below 300 tons, 
• on arc 23 the flow should not go above 600 tons. 

 
With these data taken into account, the following constraints 

were obtained: 
(W1) x13+ x14 + x15 – x21 � 3000 (the constraint on potential - 

that is, the supply of node 1) 
(W2)  x23+ x27 + x21 � 4000 (the constraint on potential - that 

is, the supply of node 2) 
(W3)  x35+ x36+ x37 – x13– x23 = 0 (the constraint on potential 

of transit node 3) 
(W4)  x14+ x54 � 1300 (the constraint on potential - that is, the 

demand of node 4) 
(W5)  x15+ x35 – x54 – x56 � 1600 (the constraint on potential - 

that is, the demand of node 5) 
(W6)  x36+ x56 + x76 � 2000 (the constraint on potential - that 

is, the demand of node 6) 
(W7)  x27+ x37 – x76 � 1100 (the constraint on potential - that 

is, the demand of node 7) 
(W8)  x13 � 500 (the constraint on lower limit of the flow 

capacity on arc of index 13) 
(W9)  x13 � 700 (the constraint on upper limit of the flow 

capacity on arc of index 13) 
(W10)  x15 � 300 (the constraint on lower limit of the flow 

capacity on arc of index 15) 
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(W11)  x23 �600 (the constraint on upper limit of the flow 
capacity on arc of index 15). 

After formułation of the above constraints, one can proceed to 
the creation of a new sheet, where in the block of cells C5:C16 it 
is necessary to enter the values of the unit cost of flows on given 
arcs of the network, the indeces of which have been entered to the 
block of cells A5:A16 (Fig. 5). 
 

 
 
Fig.5. Fragment of the sheet with data on the cost of flow and 
constraints on flow capacity 
 
To cells D5 and E5 were entered the values of the lower and 
upper flow capacity limit for node of index 13, to cell D7 was 
entered the value of the lower flow capacity limit for arc of index 
15, while to cell E9 was entered the value of the uper flow 
capacity limit for arc of index 23. 

At the next stage were introduced the data on the size of 
potentials in individual nodes. To the block of cells G5:G11 were 
introduced the numbers of the nodes along with a description of 
their type (Fig. 6), the size of supply of source nodes (to block 
I5:I6), and the size of demand of sink nodes (to block J8:J11). 
 

 
 
Fig.6. Constraints and objective functions defined for the 
problems of a network flow  

To the block of cells H5:H11 enter the  formulae defining the 
left members of the first seven constraints (W1:W7). And thus:  

• to cell H5 enter formula defining the left member  of 
constraint (W1), that is: =B5+B6+B7-B8, 

• to cell H6 enter formula defining the left member  of 
constraint (W2), that is: =B9+B10+B8, 

• to cell H7 enter formula defining the left member  of 
constraint (W3), that is: =B11+B12+B13-B5-B9, 

• to cell H8 enter formula defining the left member of 
constraint (W4), that is: =B6+B14, 

• to cell H9 enter formula defining the left member of 
constraint (W5), that is: =B7+B11-B14-B15, 

• to cell H10 enter formula defining the left member of 
constraint (W6), that is: =B12+B15+B16, 

• to cell H11 enter formula defining the left member of 
constraint (W7), that is: =B10+B13-B16. 

 
In the solution of a network task, two main objective 

functions were applied. The first function minimalised the overall 
cost of flow Kp and according to formula (13) to cell H13 the 
formula  Sum of products =SUMA.ILOCZYNÓW(B5:B16; 
C5:C16) was entered, while the task of the second function was to 
maximise the flow capacity Wp , and according to relationships 
(14) and (15) to cell H15 the  formula =H5+H6 was entered.  

As a first step, the transportation capacity was optimised to 
minimise the overall cost of flow Kp. To achieve this goal, a 
Solver module was operated, a cell with the objective function 
was selected (cell H13), the type of optimising procedure was 
established (Min), and addresses of the decision variables were 
defined (block of cells B5:B16) along with the respective 
constraints (Fig. 7).  

After filling in the dialogue window Solver-Parameters - 
Solver-Parametry make active the press key Options - Opcje and 
in dialogue window Solver-Options - Solver-Opcje declare the 
non-negative character of the decision variables (Accept Non-
negative Variables - Przyjmij nieujemne) and select the linear 
model (Accept Linear Model - Przyjmij model liniowy), return to 
dialogue window Solver-Parameters - Solver-Parametry and 
make active option Solve  - Rozwiąż, which will start up the task 
solving process.  

 

 
 
Fig. 7. Filled in dialogue window Solver-Parameters - Solver-
Parametry for optimum solution rendering minimum flow cost 
 
The outcome is an optimum solution (Fig. 8), which entered into 
the network is shown in Fig. 9. 
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Fig. 8. Optimum solution rendering minimum flow cost  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9. The network with flows rendering minimum overall cost  
 
At the next stage, the size of the moulding sand transportation 
system can be optimised to obtain maximum flow capacity Wp. 
To achieve this goal, operating on module Solver, assume that the 
cell with objective function is cell H15, and its value is a 
maximum value (Maks) (Fig.10). The definitions of the addresses 
of the decision variables and of the constraints are the same as in 
the case of optimising done previously on the flow cost.  
 

 
 
Fig. 10. Filled in dialogue window Solver-Parameters -  Solver-
Parametry for optimum solution rendering maximum flow 
capacity  
 

The obtained optimum solution rendering maximum flow 
capacity in the network is shown in Fig. 11. 
 

 
 
Fig. 11. Optimum solution  rendering maximum flow capacity  

Flow cost: 290 100 PLN 
Flow capacity: 6000 tons 

 
It is easy to note that the proposed optimum solution (Fig.12) 

differs quite considerably from the solution optimising flow cost 
(Fig. 9) as regards the obtained flow capacities admissible on 
given arcs of the network. 

1

2

3

4

5

6

7

b5 = 1600 

1600

a1 = 3000 

a2 = 4000 

b4 = 1300 

b6 = 2000 

b7 = 1100 

1100

1300

2000

600

500
400

900  
 
 Flow cost: 410 900 PLN 

Flow capacity: 7000 tons  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

1

2

3

4

5

6

7

b5 = 1600 
900

a1 = 3000 

a2 = 4000 

b4 = 1300 

b6 = 2000 

b7 = 1100 
3100

2300

2000

900

700
700

 
Fig.12. The network with flows rendering maximum capacity  
 

Often it happens so that the constraints on flow capacity 
(usually of an "upper" character) affect also other nodes in the 
network. For example, if in the problem solved now, the transit 
node no. 3 had the upper flow capacity limit reduced to a value of 
600 tons, the solutions obtained previously would not apply. So, 
to solve this  problem, it would be necessary to add to the existing 
constraints still another constraint, namely x13+x23 < 600 and re-
solve the task again. The left member of this constraint is placed 
in cell H12, and the whole constraint is added to  constraints 
present in the dialogue window Solver - Parameters - Solver-
Parametry. 

 Figure 13 shows an optimum solution obtained after adding 
the constraint on flow capacity in node no. 3 to the upper limit of 
600 tons rendering minimum flow cost, while Figure 14 shows an 
optimum solution rendering maximum flow capacity. Comparing 
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now the obtained optimum solutions with the solutions which do 
not allow for the constraint on flow capacity in node no. 3, it is 
easy to note that the structure of flow has been preserved but the 
capacity of flows on individual arcs has changed.  

 
 

 
 
Fig. 13. Optimum solution rendering minimum flow cost allowing 
for an additional constraint on  flow capacity  limit  
 
 

 
 
Fig. 14. Optimum solution rendering minimum flow cost allowing 
for an additional constraint on  flow capacity limit  
 

As we can see, after introducing the additional constraint on 
flow capacity limit, another optimum solution is obtained for an 
optimum (minimum) flow cost, which at present amounts to 302 
600 PLN (Fig. 13). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Summary 
 

Using a linear programming system with simplex optimising 
is a rational method aiding optimum decisions to solve the 
problems of a network flow, which include various processes of 
the moulding materials supply to foundries. The optimising tasks 
of a network flow can be successfully solved on an Excel 
calculation sheet with the built-in Solver tool, provided the task 
constraints and objective functions have been properly defined.  

Another approach to the problem of constraints on flow 
capacity limit for individual nodes is introducing additional arcs 
representing these nodes and adopting the flow capacity 
constraints on these arcs. 

By solving the problems of a network flow it is also possible 
to allow for the flow increase or decrease on the arcs of a 
network.  
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