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Abstract 
 
In the paper the methods of inverse problems solution are applied for the identification of substitute heat transfer coefficient in the primary 
cooling zone of continuous casting plant. The heat exchange between the cast strand and the continuous casting mould proceeds in the 
very complex conditions (air gap, layer of mould dressing, fouling etc.). For the needs of casting solidification modelling the real boundary 
condition on the contact surface should be simplified and one can introduce the mean boundary heat flux (the Neumann condition) or the 
substitute heat transfer coefficient (the Robin condition). These values can be found using the inverse approach. In order to solve the 
problem of identification, the gradient methods are here applied (the least square criterion with regularization parameter).The algorithm 
presented bases on the sensitivity analysis methods, in other words the values of temperature derivatives with respect to the unknown 
nodal heat transfer coefficients must be known. The basic and additional boundary problems connected with the sensitivity coefficients 
computations are solved using the generalized variant of finite differences method. In the final part of the paper the example of 
computations is shown. 
 
Keywords: Application of information technology to the foundry industry, Solidification process, Continuous casting process, Inverse 
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1. Introduction 
 
The very important problem connected with design of 

continuous casting technology consists in the computations of 
temperature field, heat fluxes and temperature gradients in 
domain of cast strand and continuous casting mould (CCM). The 
thermal characteristic of continuous casting mould has the basic 
influence on the course of cast strand solidification in the region 
of primary cooling zone. In particular, the very essential thing is 
the proper choice of the cooling system in domain of the plant 
considered [1, 2]. The boundary conditions determining the thermal 
processes proceeding in the domain of CCM are rather simple and 
the coefficients appearing in these conditions can be found using the 
typical presented in literature procedures. The exception to the rule 

takes place on a contact surface between cast strand and CCM. Here 
the mutual thermal interactions are very complex and a lot of 
thermal phenomena should be considered. In a practice, the 
simplified approach to the formulation of boundary condition 
discussed is, as a rule, used. The real boundary condition is 
substituted by the Neumann or Robin ones and the parameters 
appearing in these conditions are determined using the experimental 
methods. 
 In this paper the following inverse problem is analyzed. On 
the basis of the knowledge of temperature values at the internal 
points of continuous casting mould the substitute heat transfer 
coefficient between crystallizer and slab is identified.  
 The heat transfer processes in continuous casting mould are 
described by the partial differential equation (energy equation) 
concerning either the pseudo-steady state or the transient one. In 



the undisturbed technological conditions in domain of CCM the 
pseudo-steady state is generated and a such case is considered. 
The energy equation is supplemented by the boundary conditions 
given on the outer surface of the system, on the contact surface 
between cast slab and mould and also on the cooling pipes 
surfaces but we assume that the boundary condition between 
CCM and cast slab is unknown (in particular, the substitute heat 
transfer coefficient in the Robin condition).  
 The problem above formulated has been solved using the least 
squares criterion with regularization parameter. This criterion 
contains the sensitivity coefficients, this means the values of 
temperature derivatives with respect to the unknown nodal heat 
transfer coefficients. In order to solve the task discussed, the 
additional boundary problems connected with the sensitivity 
coefficients determination must be solved. On the stage of 
numerical computations the generalize finite differences method 
has been used. In the final part of the paper the example of the 
heat transfer coefficient identification is presented. 
 
 

2. Governing equations  
 
 The following inverse problem is considered - Figure 1: 
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where:  is a thermal conductivity, λ nT ∂∂  is a normal derivative at 
boundary point x, ,  are the given boundary temperature and heat 

flux,  is the known heat transfer coefficient, 
bT bq

0α
∞T ,  are the 

ambient temperatures corresponding to 

∞
0T

1Γ  and ,  is the unknown 
substitute heat transfer coefficient. At the internal points  the values 

of temperature  are given. 
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Fig. 1. Domain considered 

 
 

3. Solution of inverse problem  
 
 In order to create the sensitivity model we differentiate the 
equations (1) with respect to the unknown boundary value kα  at the 

point  [3, 4, 5] 1Γ∈kx
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where: k = 1,2,...,N, 
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 At first, we solve the problem (1) arbitrary assuming the value of 
heat transfer coefficients  at the boundary points . The 

solution obtained we denote as 

*α=α 1Γ∈kx
*T . In this way we can solve the 

additional boundary problems (2), which are of the form 
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Determined in this way the sensitivity coefficients can be collected in 
the following matrix 
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In this matrix the first index corresponds to the boundary node where 
the heat transfer coefficient is unknown, the second one corresponds to 
internal node where the temperature is measured. 
Now, we expand the temperature  into the Taylor series in the 

vicinity of point 
eT

iT *  taking into account the first and second 
component 
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In above formulas the values  are unknown. We apply the least 
squares criterion in the form [6, 7] 
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where γ  is the regularization parameter.  
Differentiating the criterion (8) with respect to the unknown 
coefficients  and using the necessary condition of minimum one 
obtains 
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The last system of equations can be written in the matrix form 
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where I is the identity matrix, U is the matrix (5), while 
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Solving the system (11), we determine the values of . The solution 

obtained we denote as . The problem (1) and additional problems 
(2) we solve again for the new set of obtained heat transfer coefficients 
and next the system of equations (11) can be solved. In this way we start 
with the iterative process which allows to identify the values of heat 
transfer coefficients at the boundary nodes . 

kα
*
kα

1Γ∈kx

4. Generalized FDM 
 

Below, a short information concerning the numerical solution of 
problems (1) or (2) will be presented. The domain Ω and its boundary is 
covered by the practically optional set of points and next a certain way 
of internal and boundary stars definitions is introduced (c.f. Fig. 2). 

 

 
Fig. 2. Internal and boundary stars 

 
A single internal star oriented in a local co-ordinate system is shown in 
Figure 3. 
 

 
Fig. 3. n + 1 points star 

 
 
Function ),( yxTT =  is expanded into the Taylor series (taking into 
account the second derivatives). We denote jij hxx =− , 

jij kyy =− , while derivatives of function T at a central star point as 

( )ixT , ( )
iyT , … , ( )

iyxT  and then 
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Now, the least squares criterion is formulated 
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where: 
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and m is a natural number (e.g. ). 3=m
Using the necessary criterion of functional (14) minimum one obtains a 
system of equations in the form 
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from which the local optimal values of the second (equation) and the 
first (boundary conditions) derivatives approximation can be found. 
Finally  the system of linear algebraic equations must be solved and the 
temperature (sensitivity) field is found. The details concerning the 
GFDM are discussed in [8]. 
 
 

5. Example of computations 
 

 The lateral section of the copper continuous casting mould is shown 
in Figure 4. The symmetrical fragment of this domain (Fig. 5) is 

considered. We assume that the values of temperature in the set of 
internal points are known. 

 

 
Fig. 4. The section of CCM 

 
 

 
Fig. 5. The fragment of CCM 

 
 

Thermal conductivity of CCM [W/mK], heat transfer 
coefficient on the outer surface of the CCM  [W/m

330=λ
150 =α 2K], heat 

transfer coefficient between CCM and cooling pipes 3675=αw  
[W/m2K], ambient temperature [°C], cooling water 
temperature 

300 =T
50=wT [°C]. The substitute heat transfer coefficient α  

on the contact surface 1Γ  has been found assuming that the 
conventionally assumed 'ambient temperature' equals [°C]. 
The following temperatures at internal points have been introduced 
(node number - temperature) - c.f. Figure 6: 

50=∞T

 

21715,21414,20913,20012,18611
,23210,2319,2308,2287,2266
,2235,2194,2143,2072,1991

−−−−−
−−−−−
−−−−−

 (17) 
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These values result from the direct solution (  [W/m1330=α 2K] 
disturbed in a random way. The reconstructed after 5 iterations values of 
substitute heat transfer coefficients , kα 10,...,2,1=k  are equal to 

 The solutions of the others types of inverse problems 
connected with the thermal theory of foundry processes ca be 
found in [9, 10, 11] 
   

,1305,1315,1315,1330,1330
,1320,1310,1310,1280,1220

109876

54321

=α=α=α=α=α
=α=α=α=α=α
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In Figure 6 the temperature distribution in the lateral section of CCM is 
shown. 
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