
ar
X

iv
:1

01
2.

59
12

v1
  [

m
at

h.
D

G
] 

 2
9 

D
ec

 2
01

0

Gauge theory in dimension 7

Frederik Witt

Abstract

We first review the notion of a G2–manifold, defined in terms of a principal G2 (“gauge”)
bundle over a 7–dimensional manifold, before discussing their relation to supergravity. In a
second thread, we focus on associative submanifolds and present their deformation theory.
In particular, we elaborate on a deformation problem with coassociative boundary condition.
Its space of infinitesimal deformations can be identified with the solution space of an elliptic
equation whose index is given by a topological formula.
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1 Introduction

The rich geometric structures encountered in low dimensions stem from special algebraic
features such as triality, which cease to be present in higher dimensions. Another thread is
the existence of vector cross products × : Rn × R

n → R
n which can only exist in dimension

n = 3 and n = 7, and whose existence is tied to the algebraic structure of (imaginary)
quaternions and (imaginary) octonions respectively. On a manifold M , the tangent bundle
can be equipped with such a vector cross product if the structure (or “gauge”) group G
reduces to the automorphism group of ×. If we also impose existence of a Riemannian
metric g, we are left with G = SO(3) or G2 [23]. This happens under fairly mild topological
conditions: While for n = 3 we only need orientability (i.e. the first Stiefel class of M
vanishes), in addition n = 7 requires M to be spin (i.e. the second Stiefel Whitney class
vanishes). In this survey article, we focus on dimension 7 and consider solely G2–manifolds,
though it is worthwhile to take dimension 3 as a guidance [14].

Since G2 also appears on Berger’s list, G2–geometry has been investigated for a long time
from the viewpoint of Riemannian holonomy, culminating with Joyce’s celebrated construc-
tion of compact holonomy G2–manifolds [31], [32]. Emphasis shifted when G2–manifolds
became important in supergravity compactifications. Here, the physical theory requires the
holonomy to be contained in G2 with respect to some connection ∇̃ which is not necessarily
the Levi–Civita connection ∇g. In case ∇̃ is metric, the resulting condition can be regarded
as a generalisation of Gray’s concept of weak holonomy [24]. In particular, if ∇̃ is metric and
torsion–free, ∇̃ coincides with ∇g, so that the underlying G2–manifold is torsion–free and
its holonomy is contained in G2. We shall review these aspects as we go along in Section 2.

A second line of thought is inspired by Kähler geometry. In real terms, Kähler manifolds
are defined by a complex structure J and a hermitian metric g, which give rise to the Kähler
form ω(x, y) = g(Jx, y). On G2–manifolds, the cross product × and the metric g define
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the 3–form ϕ(x, y, z) = g(x × y, z). Both forms are generic or stable following the language
of Hitchin, and his variational principle puts torsion–free G2– and symplectic manifolds on
equal footing [30]. Furthermore, ω and ϕ distinguish special classes of submanifolds, namely
complex and Lagrangian submanifolds in Kähler geometry and associative and coassociative
submanifolds in G2–geometry [29] (Section 3). In the symplectic world, these submanifolds
give rise to highly non–trivial invariants. Roughly speaking, the Gromov–Witten invariant
counts the number of pseudo–holomorphic curves inside a symplectic manifold, while count-
ing the number of pseudo–holomorphic Whitney discs bounding Lagrangians gives rise to
Lagrangian intersection Floer homology. A first step towards the definition of similar in-
variants in the G2–context is to study the deformation behaviour of associatives. For closed
associatives, McLean showed that the deformation theory is governed by an elliptic equation
whose index however is always 0 on topological grounds [38]. Deformations of associatives
with boundary inside a fixed coassociative were studied in [21]. Again, the deformation
problem gives rise to an elliptic equation. Its index is given by a topological formula for
which examples with non–trivial index exist. These issues, as well as some technical aspects
from PDE theory, will be discussed in Section 4.

2 G2–geometry

2.1 The imaginary octonions

In essence, G2–geometry is the geometry of imaginary octonions. To fully appreciate this
point of view, we shall discuss the complex counterpart of Kähler and Calabi–Yau geometry
first.

Hermitian spaces. In real terms, the structure of the standard hermitian space (Cm, h)
is given by a complex structure J on the underlying real vector space V = R

2m, that is an
endomorphism J : V → V squaring to minus the identity. We recover the complex space
C
m as the +i–eigenspace V 1,0 of J extended to the complexification V ⊗ C = V 1,0 ⊕ V 1,0.

Furthermore, J is an isometry for the Euclidean inner product g = Reh. We also say that
(J, g) defines a Kähler structure on R

2m. Furthermore, we can define the Kähler form

ω(x, y) = g(Jx, y). (1)

Note that GL(2m) acts both on the space of endomorphisms and positive definite Euclidean
inner products in a natural way. The common stabiliser of (J, g) is U(m), and one therefore
also refers to a Kähler structure as a U(m)–structure.

A special case of Kähler structures are Calabi–Yau structures which in terms of stabiliser
groups are associated with SU(m) ⊂ U(m). Apart from (J, g) we are also given a complex
volume form Ω ∈ ΛmV 1,0∗ such that the two real m–forms ψ+ = ReΩ and ψ− = ImΩ
satisfy ψ+ ∧ ψ− = ωm/m!.

Imaginary octonions. Next, consider the direct sum of two quaternionic spaces, namely
the octonions O = H ⊕ eH which is a real 8–dimensional, non–associative division algebra
generated by 〈1, i, j, k, e, e · i, e · j, e · k〉. Taking these generators as an orthonormal basis
induces an inner product g on O compatible with the algebra structure. Further, we obtain
a cross product × taking values in the imaginary octonions ImO = 〈1〉⊥ ∼= R

7 by defining

u× v = Im(v · u).
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Here, v is the natural conjugation which sends v ∈ ImO to −v. The term cross product is
justified by the properties u× v = −v × u and |u× v| = |u ∧ v|. In analogy to (1), we can
define the 3–form

ϕ0(u, v, w) = g(u× v,w),

which expressed in the orthonormal basis e1 = i, e2 = k, . . . , e7 = e · k can be written
explicitly as

ϕ0 = e123 + e1 ∧ (e45 + e67) + e2 ∧ (e46 − e57) + e3 ∧ (−e47 − e56). (2)

The stabiliser of ϕ0 inside GL(7) is G2, which is why we refer to ϕ0 as G2–form. These
exist in abundance: They are acted on transitively by GL(7) so that the orbit of G2–forms
GL(7)/G2 has dimension 49 − 14 = 35 = dimΛ3 ImO

∗ (G2 being of dimension 14). In
particular, the orbit of G2–forms is open. Further, ϕ0 induces a volume form (which is
somehow difficult to write down explicitly, cf. the appendix in [30]). This renders G2–
structures akin to Calabi–Yau structures, and in fact, starting from a Calabi–Yau structure
on R

6, the 3–form
ϕ0 = ψ+ + ω ∧ e7

induces a G2–form on R
7 = R

6 ⊕ Re7. On the level of stabiliser groups this is reflected by
the inclusion SU(3) →֒ G2, where G2/SU(3) = S6 is the 6–sphere in ImO.

2.2 Topological and torsion–free G2–manifolds

A 7–dimensional manifold M is called a topological G2–manifold or simply a G2–manifold
if there exists ϕ ∈ Ω3(M) such that ϕx defines a G2–structure on TxM as discussed in the
previous section. By an abus de langage, we refer to the 3–form ϕ itself as the G2–structure.
This is tantamount to saying that the principal frame bundle associated with GL(7) reduces
to a G2–principal frame bundle, which consists of isomorphisms between (TxM,ϕx) and
(ImO, ϕ0) for x ∈ M . In particular, these isomorphisms induce a natural Riemannian
metric g in M . .

A G2–structure is said to be torsion–free if ∇gϕ = 0, where ∇g is the Levi–Civita connection
associated with g. Equivalently there exist coordinates around each point such that ϕ(x) =
ϕ0+O(|x|2) so that the G2–structure is flat to first order. The most important criterion for
torsion–freeness is the theorem of Fernández–Gray [16]:

Theorem 2.1 A G2–manifold (M,ϕ) is torsion–free if and only if dϕ = 0 and d ⋆ ϕ = 0.

The holonomy of a torsion–free G2–metric is actually contained in G2. In the sequel, we say
that a torsion–free G2–manifold is a holonomy G2–manifold, if the holonomy equals G2

1.

A trivial example of a torsion–free G2–structure is R
7 with ϕ as in (2) (with the standard

coordinates dxijk in place of eijk). Since it is translation invariant, theG2–structure descends
to the torus T 7 = R

7/Z7 where it defines a compact torsion–free G2–manifold. Examples
of holonomy G2–manifolds were constructed by Bryant [9], Bryant–Salamon, Joyce and
Kovalev [35]. In [11], Bryant and Salamon define holonomy G2–metrics on (an open set of)
the total space of the spinor bundle S →M3, where M3 is a three–dimensional space form.
In particular, when M is taken to be the 3–sphere S3, there exists a complete holonomy G2–
metric on the total space S ∼= S3 × H such that the fibres are orthogonal to the horizontal

1Note that some authors do not make this distinction.
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distribution of the canonical spin connection induced by ∇g. A method for the construction
of compact holonomy G2–manifolds is due to Joyce ([31] and [32]). In essence, his idea
consists in considering quotients T 7/Γ, where Γ is a discrete group of isometries acting on
T 7 which preserve the standard G2–form ϕ. Therefore, ϕ descends to a torsion–free G2–form
outside the singularity locus produced by dividing out the action of Γ. In favourable cases
these can be resolved in such a way that the resolution M → T 7/Γ carries a G2–structure ϕ̃
with “small” torsion, which can then be deformed into a torsion–free G2–structure by Joyce’s
deformation theorem. For instance, a suitable group Γ is generated by

α(x1, . . . , x7) = (x1, x2, x3,−x4,−x5,−x6,−x7)
β(x1, . . . , x7) = (x1,−x2,−x3, x4, x5,

1
2 − x6,−x7)

γ(x1, . . . , x7) = (−x1, x2,−x3, x4,
1
2 − x5, x6,

1
2 − x7).

The resulting G2–structure has then holonomy G2 on topological grounds.

2.3 G2–manifolds in physics

To make contact with physics we have to give yet another characterisation of G2–manifolds
(cf. for instance [19] or [41]). The physical literature on G2–manifolds is extensive, and the
list of references given below is by no means exhaustive.

Spinorial characterisation of G2–manifolds. As pointed out before, a G2–manifold
(M,ϕ) carries a natural Riemannian metric and a volume form, or equivalently, an ori-
entation. On a group level, this is tantamount to saying that G2 ⊂ SO(7). Since G2

is simply–connected, we can lift this inclusion to Spin(7). Further, Spin(7)/G2
∼= S7,

where S7 denotes the 7–sphere in the real 8–dimensional, irreducible spin representation of
Spin(7). Put differently, we can see G2 not only as the stabiliser of a 3–form of special
algebraic type, but also as the stabiliser of a unit spinor. In global terms this means that
the principal G2–frame bundle induces a canonical spin structure with spinor bundle S.
Further, G2–manifolds carry a natural unit spinor field Ψ ∈ C∞(M,S). Conversely, assume
we are given a unit spinor field Ψ for some spin structure on a 7–dimensional Riemannian
manifold (M,g). Under the well–known identification S ⊗ S ∼= Λ∗T ∗M , we have

Ψ⊗Ψ = 1 + ϕ+ ⋆ϕ+ volg (3)

(cf. for instance [37] Section IV.10 or [41]). The difference between these two viewpoints is
this: While the G2–form is specified at each point by 35 = dimΛ3 ImO

∗ parameters, the
spinor definition requires an a priori choice of a Riemannian metric g which at each point is
determined by 28 = dim⊙2 ImO

∗ parameters. The remaining 35−28 = 7 = dimS7 degrees
of freedom are fixed by the choice of a unit spinor field. By general principal fibre bundle
theory, the G2–structure defined in terms of (g,Ψ) is torsion–free if and only if ∇gΨ = 0
holds, where by abus de notation, ∇g denotes the Levi–Civita connection on the tangent
bundle as well as the canonical lift to the spinor bundle.

Supersymmetry. In physics, spinor field equations arise for instance in connection with
supergravity and (super) string theory. Here is a rather informal explanation – for the
true and detailed story cf. [17], or [34] for a shorter introduction. According to quantum
mechanics there are two kinds of particles: bosons (which transmit forces such as photons)
and fermions (which make up matter such as electrons). In the mathematical model building,
bosons materialise as sections of tensor bundles (e.g. vector fields or differential forms) while
fermions arise as sections of spinor bundles (e.g. spinor fields or spinor–valued differential
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forms). Now a supersymmetry is a symmetry taking fermions to bosons and vice versa, or,
in more mathematical terms, a transformation from tensor bundles to spinor bundles. For
instance, if we are given a spinor field Ψ, then Clifford multiplication induces a map taking
vector fields X ∈ C∞(M,TM) to spinor fields X · Ψ ∈ C∞(M,S). On physical grounds,
one restricts attention to systems of fermions invariant under infinitesimal supersymmetry
transformations (this is the so–called localisation principle) which leads to certain spinor
field equations. We give two examples hereof next.

Heterotic supergravity and M–theory. First we consider heterotic supergravity, the low
energy limit of heterotic string theory, which takes place on a ten–dimensional Lorentzian
spin manifold N1,9. Supersymmetry materialises as before in terms of a unit spinor field Ψ.
Furthermore, we have a 3–form H ∈ Ω3(N), the so–called H–flux. The localisation principle
leads (among other constraints) to the gravitino equation

∇g
XΨ+

1

4
(XxH) ·Ψ = 0. (4)

In order to solve this equation, one often makes a compactification ansatz of the form R
1,p×

Mp where R
1,p is now flat Minkowski space and Mp a Riemannian manifold, usually taken

to be compact (whence the name). In this case, (4) reduces to a spinor field equation on
Mp with H ∈ Ω3(M). In particular, we obtain for p = 7 a G2–manifold (M,g,Ψ). If we
define the metric connection ∇̃ on TM by

g(∇̃XY,Z) = g(∇g
XY,Z) +

1

2
H(X,Y,Z)

for X, Y, Z ∈ C∞(M,TM), then (4) is precisely the condition ∇̃Ψ = 0, where we again
abuse notation and denote by ∇̃ the natural lift to the spinor bundle. Geometrically speak-
ing, this is just the assertion that the holonomy of ∇̃ is contained in G2. If H ≡ 0, then ∇̃
and ∇g coincide, and we recover the condition for a torsion–free G2–structure. In this sense,
equation (4) can be seen as an extension of Gray’s concept of weak holonomy [24]. A good
mathematical reference is [18], where Friedrich and Ivanov gave the first detailed account
on this type of connections.

Another example is provided by M–theory. Here, we consider an eleven–dimensional Lorentzian
spin manifold N1,10 together with a unit spinor field and a 4–form flux F ∈ Ω4(N). Com-
pactifying to R

1,3 ×M7 as before yields a G2–structure (M,g,Ψ), where the spinor field Ψ
has to satisfy the equation

∇̃XΨ = ∇g
XΨ+

1

6
(XxF ) ·Ψ+

1

12
(X ∧ F ) ·Ψ = 0 (5)

(cf. for instance [5]). In contrast to the previous case, ∇̃ is not induced by a metric con-
nection of TM , and understanding the geometric meaning for the underlying G2–structure
is less straightforward. Rather, one has to interpret this equation in terms of the holonomy
of the spin bundle (leading to so–called generalised holonomy in physicists’ jargon, cf. for
instance [15]).

3 Structured submanifolds

In this section we introduce the notion of a calibrated submanifold as introduced by Harvey
and Lawson in their seminal paper [29]. As they point out, an ambient geometric structure
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(say a complex manifold) can be investigated in terms of a distinguished family of subman-
ifolds (say complex submanifolds). In the context of G2–geometry, this eventually leads to
the study of associative and coassociative submanifolds.

3.1 Calibrations

Complex subspaces. It is natural to ask whether there are any interesting substructures
associated with G2–geometry. Again, it is instructive to consider Kähler structures first. In
C
m we have the natural notion of a complex subspace V ⊂ C

m. In real terms, this means
that the underlying real vector space JUK of U is stable under the complex structure J , i.e.
J
(
JUK

)
⊂ JUK.

Associative subspaces. In G2–geometry, the rôle of the complex structure J is assumed
by the cross product ×. A natural definition for a subspace U ⊂ ImO is therefore to be
stable under ×. The trivial dimensions 0, 1 and 7 apart, a stable subspace is necessarily of
dimension 3. Harvey and Lawson call these subspaces associative, for stability is equivalent
to the vanishing of the totally skew–symmetric associator

[u, v, w] =
1

2

(
(u · v) · w − u · (v · w)

)
. (6)

For example, the imaginary quaternions ImH spanned by i, j, k in the natural decomposition
ImO = ImH⊕H define an associative subspace. In fact, G2 acts transitively on the set of
associative subspaces, which is isomorphic to G2/SO(4) [29], so that associative spaces exist
in abundance. Here, SO(4) acts on H via its standard vector representation on R

4, while
the action on ImH corresponds to one of the two non–trivial homomorphisms ρ : SO(4) →
SO(3) (recall that SO(4) ∼=

(
Spin(3) × Spin(3)

)
/Z2). Then A ∈ SO(4) acts on ImH via

ρ(A)⊕A as a subgroup of G2.

Calibrations. More generally, Harvey and Lawson introduced calibrations to give a uni-
fied approach not only to complex and associative subspaces, but also to various natural
substructures in further geometries. The general setting is given by a real (oriented) vector
space (V, g, τ) together with a Euclidean inner product g and a k–form τ ∈ ΛkV ∗. We say
that τ defines a calibration if for every oriented k–subspace ξ = e1∧ . . .∧ek in V determined
by some orthonormal oriented system e1, . . . , ek, the inequality τ(e1, . . . , ek) ≤ 1 holds and
is met for at least one k–plane. Such a plane is said to be calibrated by τ . For example, the
powers ωm/m! of the Kähler form ω define a calibration, and the calibrated subspaces are
precisely the complex subspaces with their natural orientation (of complex dimension m).
In analogy to the Kähler case, (suitably oriented) associative subspaces are calibrated by ϕ,
which is a direct consequence of the associator equality

ϕ(x, y, z)2 +
1

4
|[x, y, z]|2 = |x ∧ y ∧ z|2.

Coassociative subspaces are calibrated by the Hodge dual ⋆ϕ. Hence, they are perpendicular
to associative subspaces and of dimension 4.

3.2 Associative submanifolds

Associatives and coassociatives. Next let (M,ϕ) be a G2–manifold. The previous
definition of (co–)associative subspaces gives a natural class of structured submanifolds for
M :
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Definition 3.1 A submanifold Y of M is said to be associative if TpY (regarded as a sub-
space of ImO via a G2–frame) is associative for all points p ∈ Y . Associative submanifolds
are therefore necessarily of dimension 3. Similarly, we say that a submanifold X is coasso-
ciative if TpX is coassociative for all points p ∈ X.

Calibrated submanifolds. If an associative Y is suitably oriented, it follows from the
previous section that the G2–form ϕ restricts to the induced Riemannian volume form on
Y , that is, associatives are calibrated in the sense of Harvey and Lawson. As a consequence of
Stoke’s theorem compact associatives are absolute volume minimisers in their homology class
if the calibration form ϕ is closed [29]. This is a far stronger condition than being minimal
(vanishing mean curvature). Similarly, suitably oriented coassociatives are calibrated with
respect to ⋆ϕ, and homologically volume minimising if ⋆ϕ is closed.

Local equation. While minimality of a submanifold is a second order condition, calibra-
tions (inducing a first order condition) become a handy tool in finding minimal submanifolds.
To construct examples, we first set out for finding associative submanifolds inside ImO.
Since torsion–free G2–manifolds are flat to first order (cf. Section 2.2), this will provide a
quite reasonable local model for associative submanifolds, at least in the torsion–free case.
Rather than testing the condition ϕ(ξ) ≡ 1 for ξ = x ∧ y ∧ z, we test for the vanishing of
the associator (6). We think of it as an ImO–valued 3–form χ = (χ1, . . . , χ7)⊤, so that the
condition on a 3–submanifold Y to be associative becomes χ|Y ≡ 0 (as a matter of notation
we denote here and in the sequel the pull–back of χ to Y by χ|Y ). The components χj gener-
ate algebraically a differential ideal I of Ω∗(ImO), whose 3–dimensional integral manifolds
inside ImO are associative. Further, Cartan–Kähler theory can be invoked to show that
every real analytic surface Σ of ImO (trivially integral as I is generated by forms of degree
3) can be extended to a uniquely determined associative germ Y containing Σ [29], [39]. In
fact, it follows from similar arguments that for every associative E ⊂ TpM of a torsion–free
G2–manifold (M,ϕ), there exists an associative submanifold Y ⊂M with TpY = E.

The associativity condition has a beautiful reformulation as a partial differential equation
involving the Dirac operator, which will serve as guidance for the deformation theory to be
developed later. Let f : U ⊂ ImH → H be a smooth function defined on some open domain
U . Following [29], the condition for Y = {x ⊕ f(x) |x ∈ ImH} ⊂ ImH ⊕ H = ImO to be
associative is this:

Theorem 3.1 Let f : U ⊂ ImH → H be a smooth function. Then Y = graphf is associa-
tive if and only if

D(f) = i
∂f

∂x1
+ j

∂f

∂x2
− k

∂f

∂x3
= σ(

∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3
),

where D is the Dirac operator2 on ImH and σ : H×H×H → H is the so–called triple cross
product on H.

Closed examples. In general, any closed, real analytic Riemannian 3–manifold can be
isometrically embedded as an associative into some (in general incomplete) torsion–free G2–
manifold [39]. Further, consider the complete Bryant–Salamon metric on the total space of

2The minus sign in front of the k is due to our conventions which are based on [33].
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the spinor bundle S → S3 over the 3–sphere S3 (cf. Section 2.2). Here, the zero section
S3×{0} defines an associative. Trivial compact examples are provided by extending compact
Calabi–Yau 3–folds (K,ω,Ω) to G2–manifolds via (M = K × S1, ϕ = ReΩ + ω ∧ dt) (cf.
also Section 2.1). A complex curve C ⊂ K induces then the associative C × S1.

A general method for finding associatives inside a torsion–free G2–manifold (M,ϕ) is due
to Joyce (cf. 10.8 in [32]). Let σ : M → M be an isometric, non–trivial involution on a
torsion–free G2–manifold (M,ϕ) such that σ∗ϕ = ϕ. Then the fixed point locus of σ defines
an associative. This becomes a practical tool for the construction of associatives inside Joyce
manifolds. For instance, consider the isometric involution σ0 : T

7 → T 7 given by

σ0(x1, . . . , x7) = (x1, x2, x3,
1

2
− x4,−x5,−x6,−x7).

It satisfies σ∗0ϕ0 = ϕ0 and descends to an isometric involution σ on T 7/Γ with Γ as given
in Section 2.2, for σ0 commutes with Γ. Then one can resolve T 7/Γ in a σ–equivariant way,
that is σ lifts to an isometric involution on the resolution (M,ϕ) such that σ∗ϕ = ϕ. The
fixed point locus of σ therefore defines an associative inside M .

Calibrations in physics. In string and M–theory, branes are extended objects which
minimise a certain energy functional. In the most simple cases, branes can be thought
of as minimal submanifolds. But there is more to it – namely constraints coming from
supersymmetry which tell us that branes are not merely minimal, but calibrated. For this
one needs to relate spinors with calibrations, which has been worked out by Dadok and
Harvey [12], [28]. For instance, consider a G2–manifold (M,g,Ψ). Then the homogeneous
components of the bi–spinor (3) define calibration forms. Further, a submanifold Y with
Riemannian volume form volY acts on spinor fields via Clifford multiplication, and Y is
calibrated precisely if volY ·Ψ = Ψ holds. On the other hand, if Ψ is a spinor field parallel
with respect to the modified spin connection ∇̃ (cf. Section 2.3), then this is the condition
on Y to represent a supersymmetric brane (cf. for instance [20] Section 4).

As discussed in Section 2.3, the metric spin connection ∇̃ one considers in supergravity
will usually have torsion, which prevents the calibration forms from being closed as can be
seen from Theorem 2.1. Therefore, the calibrated submanifolds are not necessarily volume
minimising. Rather, they minimise the (brane) energy E(X) = vol(X) −

∫
X
γ, where dτ =

dγ [26], [27]. The form γ can be interpreted as Ramond–Ramond potential, and
∫
X
γ as the

Wess–Zumino term of the brane energy. For a further development of these ideas in the
context of so–called generalised geometries, see [22].

4 Deformations

Let Y be a structured submanifold of some ambient geometry, for instance a complex sub-
manifold inside a Kähler manifold or an associative submanifold inside a G2–manifold. A
natural object of study is the moduli space MY of all structured submanifolds isotopic to Y .
A basic problem is to determine the Zariski tangent space of MY , that is, the space of first
order deformations of Y .

4.1 Closed associatives

Deformation of closed coassociatives. Though we are primarily interested in the defor-
mation theory of associatives, for motivating the later development it is instructive to start
with the coassociative case first. The central result is due to McLean [38]:
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Theorem 4.1 Let X be a closed coassociative (i.e. compact and without boundary) inside
a G2–manifold (M,ϕ) with dϕ = 0. Then MX is a smooth manifold of dimension b2+(X),
the dimension of real positive–definite 2–cohomology.

Let us briefly sketch the techniques of the proof which are quite archetypical (see also [33]).
First we try to describe the set of nearby coassociatives by a smooth equation. To that
end we fix a tubular neighbourhood U of X which we think of as an open subset of the
normal bundle ν → X around the zero section. Submanifolds X ′ which are C1–close to X
correspond then to sections of U under exponentiation. For X ′ to be coassociative we need
ϕ|X′ ≡ 0. Since X ′ is isotopic to X we can pull back ϕ|X′ to X, where it lies in the same
cohomology class as [ϕ|X ] = 0, that is, the pull–back is exact. We obtain thus a smooth
map F : C∞(X,U) → B3(X) for which F−1(0) consists precisely of the coassociatives close
to X.

Next we determine the space of first order deformations of X, that is, the kernel of the
linearisation d0F of F at the zero section. This is the so–called Zariski tangent space
TZar

MX ⊂ C∞(X, ν) of MX . It consists of normal vector fields s with (Lsϕ)|X = 0 ,
where Ls denotes the Lie derivative along s. In fact, one can show that s ∈ C∞(X, ν) 7→
(sxϕ)|X ∈ Ω2(X) induces a bundle isomorphism between ν and the bundle of self–dual 2–
forms Λ2

+X of X. Since (Lsϕ)|X = d(sxϕ)|X (here we use the assumption dϕ = 0), the
Zariski tangent space becomes the space of closed (and therefore coclosed, i.e. harmonic)
2–forms under this identification. By standard Hodge theory, the dimension of this space is
b2+(X) = dimH2

+(X). In particular, TZarMX can be regarded as the solution space of an
elliptic equation.

In general, arbitrary first order deformations will not be realised as the deformation vector
field of an actual deformation, which is why the dimension of the Zariski tangent space is
sometimes referred to as the virtual dimension of the moduli space. In the present case
however, MX is smooth. For this, we call on the following version of the Implicit Function
Theorem (see [3] Section 2.5 for this and related variations on that theme):

Let F : U ⊂ V →W be a smooth map from some open neighbourhood U around
the origin of a Banach space V into some other Banach space W . If ker d0F is
finite–dimensional and d0F : V → W is surjective, then the fibre F−1(0) is a
smooth manifold locally isomorphic to ker d0F .

Now the spaces C∞(X, ν) and B3(X) are not Banach, so we extend F to a smooth map
F k,γ from Ck+1,γ(X,U) inside a suitable Hölder space Ck+1,γ(X,Λ2

+X), k ≥ 1, γ ∈ (0, 1), to
the Banach subspace of exact Ck,γ 3–forms inside Ck,γ(X,Λ3T ∗X). One can then verify the
surjectivity of d0F

k,γ. Further, F k,γ = 0 is still an elliptic equation, so not only is the kernel
finite–dimensional, but consists of smooth sections, that is, ker d0F

k,γ = ker d0F . Hence,
MX is a smooth manifold locally isomorphic to the space of harmonic self–dual 2–forms.

As an example, take X to be a K3 surface K or a 4–torus T 4. Both are real analytic
Riemannian manifolds whose bundle of self–dual 2–forms Λ2

+X is trivial. By a theorem of
Bryant’s [10], they can be isometrically embedded into a torsion–free G2–manifold. Since
in both cases b2+(X) = 3, X moves in a 3–dimensional coassociative family. Actually, X
can be embedded as the 0–fibre of a fibration M7 → B3 with coassociative fibres, where
B3 is a neighbourhood of 0 ∈ R

3. This is reminiscent of the SYZ–formulation of Mirror
Symmetry [40] which involves Calabi–Yau 3–folds fibred by special Lagrangians, and indeed,
there are corresponding conjectures for coassociative fibrations of torsion–free G2–manifolds
in connection with M–theory [25].
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Deformations of associatives. Next we address deformations of a closed associative Y
inside a G2–manifold (M,ϕ). Let us start with some heuristic considerations. The set of
associative subspaces in ImO is diffeomorphic to G2/SO(4), a codimension 4 submanifold
in the Grassmannian G3(ImO) of 3–planes in ImO (cf. Section 3.1). The condition on
a 3–plane to be associative is therefore (locally) given by four independent equations. On
the other hand, we are free to vary along the normal bundle ν → Y which now is of rank
4, so the deformation problem involves four equations in four functions. It is therefore a
determined problem. To get a feeling for the Zariski tangent space, we consider deformations
of Y = ImH ⊕ 0 ⊂ ImO which we think of as the graph of f0 ≡ 0. Nearby deformations
are given by the graphs of a smooth family of functions ft : ImH → H, and the deformation
vector field is the partial derivative s(x) = ∂

∂t
ft(x)|t=0. As we have seen before, Yt = graph ft

is associative if and only if D(f) = (D−σ)(f) = 0. Now ǫ−1
D(ǫs) = D(s)− ǫ2σ(s), so that

the linearisation d0D(s) = limǫ→0D(ǫs)/ǫ = D(s) characterises the Zariski tangent space
as the solution space of the Dirac equation D(s) = 0.

The previous considerations generalise as follows. Let Y be an associative inside some G2–
manifold (M,ϕ). One can identify the normal bundle ν → Y with a twisted spinor bundle,
and choosing a connection ∇ on ν induces an associated Dirac operator D

∇ : C∞(Y, ν) →
C∞(Y, ν). The Zariski tangent space is then characterised by the following generalisation
of McLean’s theorem due to Gutowski, Ivanov and Papadopoulos [26] and Akbulut and
Salur [1], [2]:

Theorem 4.2 Let Y be a closed associative inside a G2–manifold (M,ϕ). Then there exists
a connection ∇ on ν such that

TZar
MY

∼= kerD∇,

where D
∇ denotes the Dirac operator associated with ∇.

If the G2–manifold is torsion–free, the theorem holds for the natural connection on ν induced
by the Levi–Civita connection of M , and we recover McLean’s original result as proven
in [38].

Again, the Zariski tangent space is the solution space to an elliptic equation for which
the index index (D∇) = dimkerD∇ − dim cokerD∇ is defined. Since Y is odd–dimensional,
index (D∇) = 0. In a generic situation, where one expects the cokernel to vanish, the virtual
dimension would be zero as a consequence. In this sense, associatives are virtually rigid, and
by counting these, one could hope to define an invariant of the underlying G2–structure in
analogy to Gromov–Witten invariants.

4.2 Associatives with boundary

We are now going to consider deformation problems with boundary (see also [36] for a
boundary problem in some sense inverse to ours). As a result, we will be able to derive a
topological formula for the virtual dimension of the moduli space we consider.

Coassociative boundary condition. Let (M,ϕ) be a G2–manifold, X ⊂M a coassocia-
tive and Y ⊂M a compact associative with boundary ∂Y ⊂ X. We wish to investigate the
moduli space

MX,Y = {Y ′ |Y ′ compact associative isotopic to Y with ∂Y ′ ⊂ X}.

As for the closed case, we need to analyse the normal bundle ν → Y first. Apart from
being a twisted spinor bundle, more can be said near the boundary. To that end fix a collar

10



neighbourhood C ∼= ∂Y × [0, ǫ) of ∂Y inside Y . Let u denote the inward pointing unit vector
field defined on C. It follows from the properties of the cross product × (cf. Section 2.1)
that u induces a hermitian structure near the boundary, namely

G : ν → ν, G(x) = u× x.

This acts indeed as an isometry with respect to g, as

g(Ga,Gb) = ϕ(u, a, u × b) = −g
(
u× (u× b), a

)
= g(a, b)

for any a, b ∈ ν|C . Let νX ⊂ TX|∂Y denote the orthogonal complement of T∂Y in TX|∂Y .
Then [21]

• the bundle νX is contained in ν and is stable under G,

• the orthogonal complement µX of νX in ν is also stable under G, and

• viewing T∂Y , νX and µX as G–complex bundles, we have

µX
∼= νX ⊗C T∂Y, (7)

that is µ0,1X
∼= ν1,0X ⊗ T 1,0∂Y ∼= ν1,0X ⊗ K∂Y , where K∂Y is the canonical line bundle

over ∂Y .

Consequently, as the deformation vector field s of a curve Yt ⊂ MX,Y has to be tangent to
X, we must have s|∂Y ∈ C∞(∂Y, νX). So, if we let

B : C∞(Y, ν) → C∞(∂Y, µX) (8)

be the real operator of order 0 which projects smooth sections of ν to µX over ∂Y , then
as a corollary to (the generalised version of) McLean’s theorem (Theorem 4.2), the Zariski
tangent space of MX,Y is given by

TZarMX,Y
∼= ker




D C∞(Y, ν)
⊕ : C∞(Y, ν) → ⊕
B C∞(∂Y, µX)


 .

Boundary problems for Dirac operators. Again, we would like to compute the virtual
dimension as the index of the differential operator D ⊕ B. This requires a suitable notion
of ellipticity for this problem. In particular, we demand the following two properties:

• Fredholm property for D ⊕ B: the kernel and cokernel are finite dimensional, so the
index index (D⊕B) = dim(kerD⊕B)− dim(cokerD⊕B) is defined.

• Regularity: if f ∈ Hs(Y, ν) ∩ ker(D ⊕ B), then f ∈ C∞(Y, ν) (where Hs(Y, ν), s ≥
0 denotes the standard chain of Sobolev spaces; in particular, we have H0(Y, ν) =
L2(Y, ν), the square integrable sections of ν).

Before we can define a suitable elliptic boundary condition, we need to introduce the
Calderón projector QD associated with the Dirac operator3 D (cf. [8], Thm. 12.4). This is
a pseudo–differential operator

QD : C∞(∂Y, ν) → C(D) = {s|∂Y ∈ C∞(∂Y, ν) | s ∈ C∞(Y, ν), Ds = 0}

3As emphasised in the introduction of [8], the subsequent statements hold for any operator D of Dirac

type, that is, the principal symbol of D2 satisfies σ(D2)(x, ξ) = ||ξ||2.
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of order 0 mapping the smooth sections of ν over ∂Y to the space of Cauchy data of4 D. Let
q = σ(QD) denote the principal symbol of QD, which becomes important in the following

Definition 4.1 (cf. [8] Def. 18.1) Let Y be an arbitrary smooth manifold with boundary
and ν → Y a (twisted) spinor bundle. A pseudo–differential operator B : C∞(∂Y, ν) →
C∞(∂Y, ν) of order 0 is said to define an elliptic boundary condition (abbreviated e.b.c.) if
and only if

• the extension B
(s) : Hs(∂Y, ν) → Hs(∂Y, ν) has closed range.

• the restriction of the principal symbol b = σ(B)|range(q) : range(q) → range(b) is an
isomorphism.

If B defines an e.b.c., then regularity holds ([8] Thm. 19.1). An example of an e.b.c. is the
Atiyah–Patodi–Singer boundary condition [4]. In our situation, a more stringent condition
holds:

Definition 4.2 (cf. [8] Rem. 18.2) An e.b.c. is said to be local, if in addition range(p, ξ) =
νp holds for all p ∈ ∂Y .

For a local e.b.c. D ⊕ B is a Fredholm operator whose index is given by the index of a
Fredholm operator on the boundary, namely

index (D⊕B) = index
(
BQD : C(D) → C∞(∂Y, ν)

)

([8] Thm. 20.12). Furthermore, this integer depends only on the homotopy type of the
principal symbols involved ( [8] Thm. 20.13 and Rem. 22.25). We note that for even–
dimensional manifolds the existence local e.b.c. is topologically obstructed ([7] Section
II.7.B). For odd–dimensional manifolds (as in the case of an associative Y ), the orthogonal
projector5 P

+ onto ν+, the bundle of positive half–spinors over ∂Y , defines a local e.b.c.
with vanishing index. Furthermore, the difference between the index of two local e.b.c.
B1,2 : C

∞(Y, ν) → C∞(∂Y, ν1,2) (where ν1,2 can be bundles different from ν) is the index of
a Fredholm operator over the boundary, namely

index (D⊕B2)− index (D⊕B1) = index
(
B2QDB

∗
1 : C

∞(∂Y, ν1) → C∞(∂Y, ν2)
)

(9)

([8] Thm. 21.2). With these tools at hand, one is in a position to prove [21]

Theorem 4.3 The operator B : C∞(∂Y, ν) → C∞(∂Y, µX) as defined in (8) induces a local
e.b.c.. Furthermore,

index (D⊕B) = index (∂νX ),

where ∂νX denotes the Cauchy–Riemann operator of νX (regarded as a complex line bundle).

Corollary 4.4 If the boundary is connected, the Riemann–Roch theorem yields

index (D⊕B) =

∫

∂Y

c1(νX) + 1− g,

where g is the genus of ∂Y and c1(νX) is the first Chern class of νX with respect to the
natural complex structure induced by u.

4We are glossing over some technical details such as the passing to the “closed double” M = Y ∪∂Y Y ,
cf. Chapters 9, 11 and 12 in [8].

5By an orthogonal projector we understand an operator P of order 0 satisfying P = P
2 = P

∗.
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For the proof of Theorem 4.3 we first note that in a collar neighbourhood of the boundary,
we can write D = u · (∂u +C), where C is the so–called tangential part of D. The principal
symbol of QD can then be computed from the principal symbol of C ([8] Thm. 12.4), and
one can check that the condition for a local e.b.c. holds. Furthermore, (9) implies (with
B2 = P

+ whose index is zero as remarked before) the index of D⊕B to be the index of an
operator over the boundary. Making use of (7), one finally shows that its principal symbol
coincides with the principal symbol of the Cauchy–Riemann operator ∂νX .

An example. We conclude with an example of non–zero index. Let (M,ϕ) be a torsion–
free G2–manifold, and Y an associative submanifold Y with real analytic boundary ∂Y .
For instance, take M = R

7 and ∂Y a compact oriented Riemann surface of genus g. Let
a ∈ C∞(∂Y, ν) be a nowhere vanishing real analytic section. Since the metric of a torsion–
free G2–manifold is necessarily Ricci flat [6], the metric is real analytic in harmonic coordi-
nates [13]. Consequently, so is the geodesic flow γa : ∂Y × (−ǫ, ǫ) →M induced by a, which
therefore generates an analytical submanifold N of dimension 3. Further, ϕ(v,w, a) = 0 for
v,w ∈ T∂Y , and since ∇ϕ = 0, we conclude that the pull–back of ϕ to N vanishes identi-
cally. A Cartan–Kähler type argument invoked by Harvey and Lawson [29] (see also [10])
shows that N determines a unique coassociative germ X containing N . Furthermore, νX is
generated by a and u× a, where u denotes again the inward pointing normal vector field of
∂Y . Hence c1(νX) = 0 and therefore the index equals 1− g.
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