A SIMPLER PROOF OF THE BOROS-FÜREDI-BÁRÁNY-PACH-GROMOV THEOREM

ROMAN KARASEV

Abstract

A short and almost elementary proof of the Boros-Füredi-Bárány-PachGromov theorem on the multiplicity of covering by simplices in \mathbb{R}^{d} is given.

Let us give a proof of the Boros-Füredi-Bárány-Pach-Gromov theorem [1, 4, 7, 6 that is actually the "decoded" and refined proof from [6] (see also [5, Section 2] for a similar proof in the two-dimensional case). Unlike the proof in [6], the only topological notion that is used here is the degree of a piece-wise smooth map.

Consider a set of $d+1$ probabilistic absolutely continuous measures $\mu_{0}, \mu_{1}, \ldots, \mu_{d}$ on \mathbb{R}^{d}. Define a random simplex of dimension k as a simplex spanned by $k+1$ points $x_{d-k}, \ldots, x_{d} \in \mathbb{R}^{d}$, where the point x_{i} is distributed according to the measure μ_{i}.
Theorem 1. Under the above assumptions there exists a point $c \in \mathbb{R}^{d}$ such that the probability for a random d-simplex to contain c is

$$
\geq p_{d}=\frac{1}{(d+1)!} .
$$

Note that in [6] a stronger result is proved: the maps $\Delta^{N} \rightarrow Y$ of a simplex with measure to a smooth manifold were considered. Here we give the statement of Theorem 1 that is closer to the original theorems in [1, 4, 7].

Proof of Theorem 1. Assume the contrary. Take some small $\varepsilon>0$. Consider a fine enough triangulation Y of \mathbb{R}^{d} so that for any $0<k \leq d$ and any k-face σ of Y the probability of a random $(d-k)$-simplex $x_{k} x_{k+1} \ldots x_{d}$ to intersect σ is $<\varepsilon$. Here and below we always assume that μ_{i} is the distribution of x_{i}. Such a triangulation exists because the measures μ_{i} are absolutely continuous. The absolute continuity is essentially needed here.

Consider a $(d+1)$-dimensional simplicial complex $Y * 0$ (the cone over Y with apex 0). We assume that \mathbb{R}^{d} is contained in its one-point compactification $S^{d}=\mathbb{R}^{d} \cup\{0\}$ (note that 0 is used in a non-standard way). We also assume that $Y \cup\{0\}$ is a finite triangulation of S^{d}. Now we are going to build a (piece-wise smooth) map $f:(Y * 0)^{(d)} \rightarrow S^{d}$ (from the d-skeleton) which is "economical" with respect to the measures μ_{i} (this phrase will be clarified below), and coincides with the identification $Y=\mathbb{R}^{d}$ on $Y \subset(Y * 0)^{(d)}$.

Proceed by induction:

- Map 0 to $0 \in S^{d}$;
- For any vertex $v \in Y$ map $[v 0]$ to an open ray starting from v (and ending at $\left.0 \in S^{d}\right)$ so that the probability for a random $(d-1)$-simplex $x_{1} \ldots x_{d}$ to meet $f([v 0])$ is $<p_{d}$. This is possible because a simplex $x_{0} x_{1} \ldots x_{d}$ contains v iff the ($d-1$)-simplex $x_{1} \ldots x_{d}$ intersects the ray from v opposite to $x_{0}-v$. Since the

[^0]probability for a random d-simplex to contain v is $<p_{d}$, for some of such rays the corresponding probability is also $<p_{d}$.

- Step to the k-skeleton of $Y * 0$ as follows. Let $\sigma=v_{1} \ldots v_{k} 0$ be a k-simplex of $Y * 0$. The map f is already defined for $\partial \sigma$. We know that the probability for a random $(d-k+1)$-simplex $x_{k+1} \ldots x_{d}$ to meet some $f\left(v_{1} \ldots \hat{v_{i}} \ldots v_{k} 0\right)(i=1, \ldots, k)$ is $<(k-1)!p_{d}$, and the probability to meet $f\left(v_{1} \ldots v_{k}\right)$ is $<\varepsilon$. If ε is chosen small enough we see that a random $(d-k+1)$-simplex $x_{k+1} \ldots x_{d}$ intersects $f(\partial \sigma)$ with probability $<k!p_{d}$. There exist a point x_{k} outside $f(\partial \sigma)$ such that the probability for $x_{k} x_{k+1} \ldots x_{d}$ (with random last $d-k$ points) to meet $f(\partial \sigma)$ is $<k!p_{d}$. Let us define the map f on the simplex σ treated as a join $\partial \sigma * c$ so that c is mapped to $0 \in S^{d}$, and every segment $[v c](v \in \partial \sigma)$ is mapped to the infinite ray from $f(v)$ in the direction opposite to $x_{k}-v$. More explicitly: map $[v c]$ to $\left[f(v), x_{k}\right]$ first; then apply the inversion with center x_{k} and radius $\left|x_{k}-f(v)\right|$ that maps $\left[f(v), x_{k}\right]$ to [$f(v), 0]$; if $f(v)=0$ then map $[v c]$ to the point $0 \in S^{d}$. Now the probability for a random $(d-k)$-simplex to intersect $f(\sigma)$ is $<k!p_{d}$.
Finally for any d-simplex σ of Y we have that the boundary of the cone $\sigma * 0$ is mapped so that

$$
\mu_{d}(f(\partial(\sigma * 0)))<(d+1)!p_{d}=1
$$

if we again use small enough ε. Therefore $f(\partial(\sigma * 0)) \neq S^{d}$ and the restriction $\left.f\right|_{\partial(\sigma * 0)}$ has zero degree. By summing up the degrees (the d-faces of $(\partial \sigma) * 0$ go pairwise and cancel, because Y is a triangulation) we see that the map $f \mid Y$ has even degree but it is the identity map, which is a contradiction.

This theorem can be sharpened (following [6]) if two of the measures coincide.
Theorem 2. If some two measures coincide then the bound in Theorem 1 can be improved to

$$
p_{d}^{\prime}=\frac{2 d}{(d+1)!(d+1)} .
$$

Proof. Assume $\mu_{d-1}=\mu_{d}$. We proceed in the same way building $f:(Y * 0)^{(d)} \rightarrow \mathbb{R}^{d}$, but we slightly change the construction on the last step.

On the last step we have a $(d-1)$-simplex σ of Y, and f is already defined for $\partial(\sigma * 0)$ so that the probability for a random segment $\left[x_{d-1} x_{d}\right]$ to intersect $D=f(\partial(\sigma * 0))$ is $<d!p_{d}^{\prime}=\frac{2 d}{(d+1)^{2}}$.

We are going to extend f to $\sigma * 0$ so that its image $f(\sigma * 0) \bmod 2$ has measure $<\frac{1}{d+1}$. Here the image mod 2 is the set of points in \mathbb{R}^{d} that are covered by $f(\sigma * 0)$ odd number of times. We have noted in the proof of Theorem 1 that we essentially use the covering parity at the final degree reasoning.

It can be easily seen that D "partitions" \mathbb{R}^{d} into two parts A and B characterized by the following property: any generic piece-wise linear path from A to B meets D odd number of times, and any generic piece-wise linear path with both ends in A (or both in B) meets D even number of times. The sets A and B are the only possibilities of image of $f(\sigma * 0)$ $\bmod 2$, because the covering parity of $\left.f\right|_{\sigma * 0}$ changes only at crossing with $f(\partial(\sigma * 0))=D$.

If $\mu_{d}(A)=x$ and $\mu_{d}(B)=1-x$ then the probability for a random segment $\left[x_{d-1} x_{d}\right]$ (recall that $\mu_{d-1}=\mu_{d}$) to meet D is at lest $2 x(1-x)$, that is

$$
\frac{2 d}{(d+1)^{2}}>2 x(1-x)
$$

It follows easily that in this case either x or $1-x$ is $<\frac{1}{d+1}$ and we can define f as required again.

Remark. Unlike the approach here, the previous papers [1, 4, 4, 6] mostly considered discrete measures concentrated on finite point sets in \mathbb{R}^{d}. In this case Theorems 1 and 2 hold, because we may approximate a discrete measure by an absolutely continuous measure, distributed on a set of δ-balls with centers at the original concentration points. After going to the limit $\delta \rightarrow 0$ we may also assume by the standard compactness reasoning that the centers c_{δ} also tend to some point c. Then a simple argument shows that c is the required point for the original discrete measure.
Remark. Imre Bárány has noted that Theorem 1 implies the colorful Tverberg theorem 0 [2, [8, 3] with a bad bound $T(r, d)$ of order

$$
T(r, d) \sim \frac{r}{1-\left(1-p_{d}\right)^{1 /(d+1)}} \sim r(d+1)!(d+1) .
$$

Of course, this bound is much worse that the known other bounds (the optimal bounds are in [3] and have order r), but unlike the previous known proofs this proof uses very little topology.

The author thanks Arseniy Akopyan, Imre Bárány, and János Pach for the discussion and useful remarks.

References

[1] I. Bárány, A generalization of Carathéodory's theorem. // Discrete Math. 40(2-3), 1982, 141-152.
[2] I. Bárány, D.G. Larman. A colored version of Tverberg's theorem. // J. Lond. Math. Soc., 45, 1992, 314-320.
[3] P. Blagojević, B. Matschke, G. Ziegler. Optimal bounds for the colored Tverberg problem. // arXiv:0910.4987, 2009.
[4] E. Boros, Z. Füredi. The number of triangles covering the center of an n-set. // Geom. Dedicata, 17(1), 1984, 69-77.
[5] J. Fox, M. Gromov, V. Lafforgue, A. Naor, J. Pach. Overlap properties of geometric expanders. // arXiv:1005.1392, 2010.
[6] M. Gromov. Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry. // Geometric and Functional Analysis, 20(2), 2010, 416-526.
[7] J. Pach. A Tverberg-type result on multicolored simplices. // Comput. Geom., 10(2), 1998, 71-76.
[8] S. Vrećica, R. Živaljević. The colored Tverbergs problem and complex of injective functions. // J. Combinatorial Theory, Ser. A, 61, 1992, 309-318.
E-mail address: r_n_karasev@mail.ru
Roman Karasev, Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Russia 141700

[^1]
[^0]: 2000 Mathematics Subject Classification. 52C35,52C45,60D05.
 Key words and phrases. multiplicity of map, overlapping simplices.
 This research is supported by the Dynasty Foundation, the President's of Russian Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139, the Federal Program "Scientific and scientific-pedagogical staff of innovative Russia" 2009-2013.

[^1]: ${ }^{0}$ Given a family of $(d+1) T(r, d)$ points in \mathbb{R}^{d} colored into $d+1$ colors each containing $T(r, d)$ points, there exist r disjoint "rainbow" $(d+1)$-tuples of points such that the corresponding r convex hulls of the $(d+1)$-tuples have a common point.

