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Abstract

Smoothing filters are studied for continuous time processes. The consideration

is restricted by the linear causal filters represented as convolution integrals over the

historical data. This filters are used in dynamic smoothing when the future values

of the process are not available. The paper suggests a family of sub-ideal smoothing

filters with almost exponential dumping of the energy on the higher frequencies.
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1 Introduction

The paper studies dynamic smoothing filters of continuous time processes. The consid-

eration is restricted by the linear causal filters represented as convolution integrals over

the historical data. This filters are used in dynamic smoothing, when future values of the

process are not available.

In frequency domain, smoothing means reduction of the energy on higher frequencies.

In particular, an ideal low-pass filter is a smoothing filter. This filter is not causal, i.e., it

requires the future value of the process.

One of possible application of dynamic smoothing is forecasting. A typical approach is

to smooth the original process and forecast the resulting smooth process. This approach

explores the fact that sufficient rate of decay of energy on higher frequencies ensures

some opportunities for prediction and interpolation of the processes. The classical result

is Nyquist-Shannon-Kotelnikov interpolation theorem that implies that if a process y(t)

is band-limited then it is predictable (see, e.g., [1]-[3], [8]-[12], [16]-[18]). Therefore, an

ideal low-pass filter cannot be causal. Moreover, a filter with exponential dumping of the
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energy on the high frequencies cannot be causal, similarly to the low-pass filter. It is not

surprising since a general process cannot be transformed to a predictable process by a

causal filter, and a process with exponential decay of energy on high frequencies is weakly

predictable on a finite time horizon [6].

We suggest a family of causal smoothing filters with ”almost” exponential rate of

dumping the energy on the higher frequencies. This leads to a sub-ideal filter in the

sense that the effectiveness of the damping of higher frequencies cannot be increased;

any faster decay of the transfer function would lead to the loss of causality. In addition,

the effectiveness of smoothing of a given reference set of non-causal filters (2.1) can be

approximated by this family of causal filters.

2 Problem setting

Let x(t) be a continuous time process, t ∈ R. The output of a linear filter is the process

y(t) =

∫ ∞

−∞
k(t− s)x(s)ds,

where k(·) : R → R is a given kernel.

If k(t) = 0 for t < 0, then the output of the corresponding filter is

y(t) =

∫ t

−∞
k(t− s)x(s)ds.

In this case, the filter and the kernel are said to be causal. The output of a causal filter

at time t can be calculated using only past historical values x(s)|s≤t of the currently

observable continuous input process.

The goal is to approximate x(t) by a smooth filtered process y(t) via selection of an

appropriate smoothing causal kernel k(·).
We are looking for families of the causal smoothing kernels k(·) with the following

properties:

(A) The outputs y(t) approximate processes x(t); the arbitrarily close approximation

can be achieved by selection of an appropriate kernel from the family.

(B) For processes x(t) ∈ L2(R), the outputs y(t) are infinitely differentiable functions.

The values of the transfer function of the filter are as small as possible on the

higher frequencies, to achieve the most effective damping of the energy on the higher

frequencies of x.
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(C) The effectiveness of the damping of higher frequencies achieved for this family cannot

be exceeded; any faster decay of the value of the transfer function would lead to the

loss of causality.

(D) The family of these causal kernels ensures effectiveness of the smoothing that approx-

imate the effectiveness of some reasonable reference family of non-causal smoothing

filters.

Note that it is not a trivial task to satisfy Conditions (C)-(D). For instance, consider

a family of low-pass filters with increasing pass interval [−∆,∆], where ∆ > 1. Clearly,

the corresponding smoothed processes approximate the original process as ∆ → +∞, i.e.,

Condition (A) is satisfied. However, the distance of the set of these ideal low-pass filters

from the set of all causal filters is positive (see [1]).

For x ∈ L2(R), we denote by X = Fx the function defined on iR as the Fourier

transform of x;

X(iω) = (Fx)(iω) =

∫ ∞

−∞
e−iωtx(t)dt, ω ∈ R.

Here i =
√
−1. For x ∈ L2(R), then X is defined as an element of L2(R) (more precisely,

X(i·) ∈ L2(R)).

Consider a reference family of smoothing filters with transfer functions (i.e., Fourier

transforms of the kernels)

Mµ(iω) = e−µ|ω|, µ ∈ (0, 1]. (2.1)

These kernel are non-causal; at time t, the output processes of these filters are weakly

predictable with finite horizon [t, t+ µ) [6].

Let us show that requirements (A),(B),(C), and (D), will be satisfied for the family

of filters with causal kernels {kν(·)} ⊂ L2(R) such that kν(t) = 0 for t < 0, where

ν = 1, 2, ..., ν → +∞, and with the corresponding Fourier transforms Kν(iω), with the

following properties:

(a) Approximation property:

(a1) For any Ω > 0, Kν(iω) → 1 as ν → +∞ uniformly in ω ∈ [−Ω,Ω].

(a2) For any x(·) ∈ L2(R),

‖yν(·)− x(·)‖L2(R) → 0 as ν → ∞,

where yν is the smoothed process

yν(t) =

∫ t

−∞
kν(t− s)x(s)ds.
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(b) Smoothing property: For every ν > 0, there exists ρ > 0 such that for any n ≥ 1,

∫ ∞

−∞
e|ω|

ρ |Kν(iω)|ndω < +∞.

(c) Sub-ideal smoothing: For any δ > 1, there exists ν > 0 such that

∫ ∞

−∞

| log |Kν(iω)||δ
1 + ω2

dω = +∞. (2.2)

(d) Approximation of effectiveness of non-causal filters (2.1): For any ε > 0 and δ > 0,

there exists ν = ν(δ) > 0 such that

‖|Kν(iω)| − |Mδ(iω)|‖Lr(R) ≤ ε.

Let us show that that Conditions (a)-(d) ensures that Condition (A)-(D) are satisfied,

in a certain sense.

Clearly, Condition (a) ensures that Condition (A) is satisfied in a certain sense.

Let us show that Condition (b) ensures that Condition (B) is satisfied. It can be seen

from the following: for any k > 0 and ν > 0,
∫ ∞

−∞
(1 + |ω|k)4|Kν(iω)|4dω < +∞.

Let x(·) ∈ L2(R), X = FX, and Yν(iω) = Kν(iω)X(iω). By Hölder inequality, it follows

that

∫ ∞

−∞
(1 + |ω|k)2|Yν(iω)|2dω ≤

(∫ ∞

−∞
(1 + |ω|k)4|Kν(iω)|4dω

)1/2

‖X‖1/2L2(R) < +∞.

Hence yν(t) has derivatives in L2(R) of any order, and, therefore, is infinitely differentiable

in the classical sense.

Let us show that Condition (c) ensures that Condition (C) is satisfied. Let δ > 1 be

fixed, and let m = m(δ) be such that (2.2) holds. Let us show that the kernel k̃ = F−1K̃

cannot be causal for some ”better” transfer function K̃(iω) such that

|K̃(iω)| = o(|Kν(iω)|) as ω → +∞. (2.3)

More precisely, we will show that k̂ν cannot be causal with a stronger condition that there

exist δ > 1 and Ω1 > 0 such that

| log |K̃(iω)|| ≥ | log |K̃(iω)||δ , ω ∈ [−Ω1,Ω2]. (2.4)

In particular, this condition implies that log |Kν(iω)|/ log |K̃(iω)| → 0 as ω → +∞.
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The desired fact that k̃ cannot be causal can be seen from the following: by Paley and

Wiener Theorem [14], the Fourier transform K(iω) of a causal kernel k(·) ∈ L2(R) have

to be such that
∫ ∞

−∞

| log |K(iω)||
1 + ω2

dω < +∞.

(see, e.g., [13], p. 35). Since ν = ν(δ) is such that (2.2) holds, it follows from (2.4) that k̂

cannot be causal. Therefore, Condition (c) ensures that Condition (C) is satisfied.

Finally, Condition (d) ensures that Condition (D) is satisfied, since the effectiveness

of smoothing is defined by the rate of decay of the energy on the higher frequencies.

3 A family of smoothing kernels

Let us consider a set of kernels

Kα,β,q(p)
∆

= e−α(p+β)q , p ∈ C+. (3.1)

Here α > 0, β > 0, and q ∈ (12 , 1), are rational numbers. We mean the branch of (p+ β)q

such that its argument is qArg (p+ β), where Arg z ∈ (−π, π] denotes the principal value

of the argument of z ∈ C. This set was introduced in [4] as am auxiliary tool for solution

of a parabolic equation in frequency domain.

Theorem 1 Conditions (a)-(d) are satisfied for the countable family of kernels (3.1) with

rational numbers α, β = 1/m, q = 1− 1/n, where m → +∞ and n → +∞, and where m

and n are integers. We assume that this family of kernels is such that it can be counted

as a sequence {Kν}∞ν=1 such that α → 0 and n → +∞ as ν → +∞.

Note that we have to include kernels with all positive rational numbers α to ensure

that Condition (d) is satisfied.

Proof of Theorem 1. Let C+ ∆

= {z ∈ C : Re z > 0}. Let Hr be the Hardy space

of holomorphic on C+ functions h(p) with finite norm ‖h‖Hr = sups>0 ‖h(s + iω)‖Lr(R),

r ∈ [1,+∞] (see, e.g., [7]).

The functions Kν(p) are holomorphic in C+, and

ln |Kν(p)| = −Re (α(p + β)q) = −α|p + β|q cos[qArg (p+ β)]. (3.2)

In addition, there exists M = M(β, q) > 0 such that cos[qArg (p+β)] > M for all p ∈ C+.

It follows that

|Kν(p)| ≤ e−αM |p+β|q < 1, p ∈ C+. (3.3)
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Hence Kν ∈ Hr for all r ∈ [1,+∞]. By Paley-Wiener Theorem, kν = F−1Kν(iω) are

causal kernels, i.e., kν(t) = 0 for t < 0 (see, e.g., [19], p.163).

Let x ∈ L2(R), X = Fx, and Yν = KνX.

Let us show that Condition (a) holds. Since α → 0 as ν → +∞, it follows that

Kν(iω) → 1 as ν → +∞ for any ω. It follows that Condition (a1) holds. By Condition

(a1), Yν(iω) → X(iω) as ν → +∞ for all ω ∈ R. In addition, |Kν(iω)| ≤ 1. Hence

|Yν(iω)−X(iω)| ≤ 2|X(iω)|. We have that ‖X(iω)‖L2(R) = ‖x‖L2(R) < +∞. By Lebesgue

Dominance Theorem, it follows that

‖Yν(iω)−X(iω)‖L2(R) → 0 as ν → +∞.

Therefore, Condition (a) holds.

Let us show that Condition (b) holds. By (3.3), it follows that

|K(iω)| ≤ e−αM |ω|q , ω ∈ R. (3.4)

Therefore, Condition (b) holds with δ < q.

To see that Condition (c) holds, it suffices to observe that (2.2) holds if δq > 1, i.e.,

q > 1/δ.

Let us show that Condition (d) holds. We assume that the family of kernels of Kα,β,q(·)
is counted as a sequence {Kλ}∞λ=1 such that α → µ, β → 0, q → 1 as λ → +∞. By (3.2),

|Kλ(iω)| → |Mµ(iω)| as q → 1 − 0 for all ω ∈ R. In addition, |Kλ(iω)| + |Mα(iω)| ≤
2e−min(µ,α). By Lebesgue Dominance Theorem, it follows that

‖Kλ(iω)−Mµ(iω)‖L2(R) → 0 as ν → +∞.

This completes the proof of Theorem 1. �
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