SOME HADAMARD-TYPE INEQUALITIES FOR COORDINATED P-CONVEX FUNCTIONS AND GODUNOVA-LEVIN FUNCTIONS

◆,★A. OCAK AKDEMIR AND ♣M.EMIN OZDEMIR

ABSTRACT. In this paper we established new Hadamard-type inequalities for functions that co-ordinated Godunova-Levin functions and co-ordinated P-convex functions, therefore we proved a new inequality involving product of convex functions and P-functions on the co-ordinates.

1. INTRODUCTION

Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function and let $a, b \in I$, with a < b. The following inequality;

$$f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a) + f(b)}{2}$$

is known in the literature as Hadamard's inequality. Both inequalities hold in the reversed direction if f is concave.

In [1], E.K. Godunova and V.I. Levin introduced the following class of functions.

Definition 1. A function $f : I \subseteq \mathbb{R} \to \mathbb{R}$ is said to belong to the class of Q(I) if it is nonnegative and, for all $x, y \in I$ and $\lambda \in (0, 1)$ satisfies the inequality;

$$f(\lambda x + (1 - \lambda)y) \le \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda}$$

In [2], S.S. Dragomir et.al., defined following new class of functions.

Definition 2. A function $f : I \subseteq \mathbb{R} \to \mathbb{R}$ is P function or that f belongs to the class of P(I), if it is nonnegative and for all $x, y \in I$ and $\lambda \in [0, 1]$, satisfies the following inequality;

$$f(\lambda x + (1 - \lambda)y) \le f(x) + f(y)$$

In [2], S.S. Dragomir et.al., proved two inequalities of Hadamard's type for class of Godunova-Levin functions and P- functions.

Theorem 1. Let $f \in Q(I)$, $a, b \in I$, with a < b and $f \in L_1[a, b]$. Then the following inequality holds.

Date: September, 22, 2010.

¹⁹⁹¹ Mathematics Subject Classification. 26D07,26D15,26A51.

 $Key\ words\ and\ phrases.$ Hadamard's inequality, co-ordinated convex, Godunova-Levin functions, P- functions

 $[\]bullet$ corresponding author.

(1.1)
$$f(\frac{a+b}{2}) \le \frac{4}{b-a} \int_a^b f(x) dx$$

Theorem 2. Let $f \in P(I)$, $a, b \in I$, with a < b and $f \in L_1[a, b]$. Then the following inequality holds.

(1.2)
$$f(\frac{a+b}{2}) \le \frac{2}{b-a} \int_{a}^{b} f(x) dx \le 2[f(a) + f(b)]$$

In [10], Tunç proved following theorem which containing product of convex functions and P-functions.

Theorem 3. Let $a, b \in [0, \infty)$, a < b, I = [a, b] with $f, g : [a, b] \to \mathbb{R}$ be functions f, g and fg are in $L_1([a, b])$. If f is convex and g belongs to the class of P(I) then,

(1.3)
$$\frac{1}{b-a} \int_{a}^{b} f(x) g(x) dx \leq \frac{M(a,b) + N(a,b)}{2}$$

where M(a,b) = f(a) g(a) + f(b) g(b) and N(a,b) = f(a) g(b) + f(b) g(a).

In [3], S.S. Dragomir defined convexity on the co-ordinates, as following;

Definition 3. Let us consider the bidimensional interval $\Delta = [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b, c < d. A function $f : \Delta \to \mathbb{R}$ will be called convex on the coordinates if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are convex where defined for all $y \in [c, d]$ and $x \in [a, b]$. Recall that the mapping $f : \Delta \to \mathbb{R}$ is convex on Δ if the following inequality holds,

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \lambda f(x, y) + (1 - \lambda)f(z, w)$$

for all $(x, y), (z, w) \in \Delta$ and $\lambda \in [0, 1]$.

Every convex function is co-ordinated convex but the converse is not generally true.

In [3], S.S. Dragomir established the following inequalities of Hadamard's type for co-ordinated convex functions on a rectangle from the plane \mathbb{R}^2 .

Theorem 4. Suppose that $f : \Delta = [a, b] \times [c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ . Then one has the inequalities;

$$(1.4) \qquad f(\frac{a+b}{2}, \frac{c+d}{2}) \\ \leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx + \frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy \right] \\ \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \\ \leq \frac{1}{4} \left[\frac{1}{(b-a)} \int_{a}^{b} f(x, c) dx + \frac{1}{(b-a)} \int_{a}^{b} f(x, d) dx + \frac{1}{(d-c)} \int_{c}^{d} f(b, y) dy \right] \\ \leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4}$$

For recent results which similar to above inequalities see [5], [6], [7], [8] and [9]. In [4], M.E. Ozdemir et.al., established the following Hadamard's type inequalities as above for co-ordinated m-convex and (α, m) -convex functions.

Theorem 5. Suppose that $f : \Delta = [0, b] \times [0, d] \rightarrow \mathbb{R}$ is m-convex on the coordinates on Δ . If $0 \le a < b < \infty$ and $0 \le c < d < \infty$ with $m \in (0, 1]$, then one has the inequality;

(1.5)
$$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) dx dy$$
$$\leq \frac{1}{4(b-a)} \min\{v_{1}, v_{2}\} + \frac{1}{4(d-c)} \min\{v_{3}, v_{4}\}$$

where

$$v_1 = \int_a^b f(x,c)dx + m \int_a^b f(x,\frac{d}{m})dx$$

$$v_2 = \int_a^b f(x,d)dx + m \int_a^b f(x,\frac{c}{m})dx$$

$$v_3 = \int_c^d f(a,y)dy + m \int_c^d f(\frac{b}{m},y)dy$$

$$v_4 = \int_c^d f(b,y)dy + m \int_c^d f(\frac{a}{m},y)dy.$$

Theorem 6. Suppose that $f : \Delta = [0,b] \times [0,d] \rightarrow \mathbb{R}$ is *m*-convex on the coordinates on Δ . If $0 \leq a < b < \infty$ and $0 \leq c < d < \infty$, $m \in (0,1]$ with $f_x \in L_1[0,d]$ and $f_y \in L_1[0,b]$, then one has the inequalities;

(1.6)
$$\frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx + \frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy$$
$$\leq \frac{1}{(b-a)(d-c)} \left[\int_{a}^{b} \int_{c}^{d} \frac{f(x,y) + mf(x, \frac{y}{m})}{2} dy dx + \int_{c}^{d} \int_{a}^{b} \frac{f(x,y) + mf(\frac{x}{m}, y)}{2} dx dy \right]$$

Similar results can be found for (α, m) -convex functions in [4]. In this paper we established new Hadamard-type inequalities for Godunova-Levin functions and P-functions on the co-ordinates on a rectangle from the plane \mathbb{R}^2 and we proved a new inequality involving product of co-ordinated convex functions and co-ordinated P-functions.

2. MAIN RESULTS

We define Godunova-Levin functions and P-functions on the co-ordinates as the following:

Definition 4. Let us consider the bidimensional interval $\Delta = [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b, c < d. A function $f : \Delta \to \mathbb{R}$ is said to belong to the class of Q(I) if it is nonnegative and for all $(x, y), (z, w) \in \Delta$ and $\lambda \in (0, 1)$ satisfies the following inequality;

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \frac{f(x, y)}{\lambda} + \frac{f(z, w)}{1 - \lambda}$$

A function $f : \Delta \to \mathbb{R}$ is said to belong to the class of Q(I) on Δ is called coordinated Godunova-Levin function if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are belong to the class of Q(I) where defined for all $y \in [c, d]$ and $x \in [a, b]$.

We denote this class of functions by $QX(f, \Delta)$. If the inequality reversed then f is said to be concave on Δ and we denote this class of functions by $QV(f, \Delta)$.

Definition 5. Let $f : \Delta = [a, b] \times [c, d] \rightarrow \mathbb{R}$ be a *P*-function with a < b, c < d. If it is nonnegative and for all $(x, y), (z, w) \in \Delta$ and $\lambda \in (0, 1)$ the following inequality holds:

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le f(x, y) + f(z, w)$$

A function $f : \Delta \to \mathbb{R}$ is said to belong to the class of P(I) on Δ is called coordinated P-function if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are P-functions where defined for all $y \in [c, d]$ and $x \in [a, b]$.

We denote this class of functions by $PX(f, \Delta)$. We need following lemma for our main theorem.

Lemma 1. Every f function that belongs to the class Q(I) is said to belongs to class $QX(f, \Delta)$.

Proof. Suppose that $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class Q(I) on Δ . Consider the function $f_x : [c, d] \to [0, \infty), f_x(v) = f(x, v)$. Then $\lambda \in (0, 1)$ and $v_1, v_2 \in [c, d]$, one has:

$$f_x(\lambda v_1 + (1 - \lambda)v_2) = f(x, \lambda v_1 + (1 - \lambda)v_2)$$

= $f(\lambda x + (1 - \lambda)x, \lambda v_1 + (1 - \lambda)v_2)$
$$\leq \frac{f(x, v_1)}{\lambda} + \frac{f(x, v_2)}{1 - \lambda}$$

= $\frac{f_x(v_1)}{\lambda} + \frac{f_x(v_2)}{1 - \lambda}$

which shows convexity of f_x . The fact that $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ is also convex on [a, b] for all $y \in [c, d]$ goes likewise and we shall omit the details. \Box

The following inequalities is considered the Hadamard-type inequalities for Godunova-Levin functions on the co-ordinates.

Theorem 7. Suppose that $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $QX(f, \Delta)$ on the co-ordinates on Δ with $f_x \in L_1[c, d]$ and $f_y \in L_1[a, b]$, then one has the inequalities:

(2.1)
$$\frac{1}{16} \left[f(\frac{a+b}{2}, \frac{c+d}{2}) \right] \\ \leq \frac{1}{8} \left[\frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx + \frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy \right] \\ \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

4

Proof. Since $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $QX(f, \Delta)$ on the co-ordinates it follows that the mapping $g_x : [c, d] \to \mathbb{R}$, $g_x(y) = f(x, y)$ is Godunova-Levin function on [c, d] for all $x \in [a, b]$. Then by Hadamard's inequality (1.1) one has:

$$g_x(\frac{c+d}{2}) \le \frac{4}{d-c} \int_c^d g_x(y) dy, \forall x \in [a,b].$$

That is,

$$f(x, \frac{c+d}{2}) \le \frac{4}{d-c} \int_c^d f(x, y) dy, \forall x \in [a, b]$$

Integrating this inequality on [a, b], we have:

(2.2)
$$\frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx \le \frac{4}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

A similar argument applied for the mapping $g_y : [a, b] \to \mathbb{R}, g_y(x) = f(x, y)$, we get:

(2.3)
$$\frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy \le \frac{4}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

Summing the inequalities (2.2), and (2.3), we get the last inequality in (2.1).

Therefore, by Hadamard's inequality (1.1) we also have:

$$f(\frac{a+b}{2}, \frac{c+d}{2}) \le \frac{4}{d-c} \int_c^d f(\frac{a+b}{2}, y) dy$$

and

$$f(\frac{a+b}{2}, \frac{c+d}{2}) \le \frac{4}{b-a} \int_a^b f(x, \frac{c+d}{2}) dx$$

which give, by addition the first inequality in (2.1).

This completes the proof.

Corollary 1. Suppose that $f : \Delta = [a, b] \times [a, b] \rightarrow \mathbb{R}$ is said to belong to the class $QX(f, \Delta)$ on the co-ordinates, then one has the inequalities:

$$(2.4)\frac{1}{16}\left[f(\frac{a+b}{2},\frac{a+b}{2})\right] \leq \frac{1}{8}\left[\frac{1}{b-a}\int_{a}^{b}\left\{f(x,\frac{a+b}{2})+f(\frac{a+b}{2},x)\right\}dx\right]$$
$$\leq \frac{1}{(b-a)^{2}}\int_{a}^{b}\int_{a}^{b}f(x,y)dydx$$

Corollary 2. In (2.1), under the assumptions Theorem 4 with f(x,y) = f(y,x) for all $x \in [a,b] \times [a,b]$, we have:

$$\begin{array}{ll} f(\frac{a+b}{2},\frac{a+b}{2}) & \leq & \displaystyle \frac{1}{4} \left[\displaystyle \frac{1}{b-a} \int_{a}^{b} f(x,\frac{a+b}{2}) dx \right] \\ & \leq & \displaystyle \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(x,y) dy dx \end{array}$$

Lemma 2. Every *P*-functions are coordinated on Δ or belong to the class of $PX(f, \Delta)$.

Proof. Let f be a P-function and defined by $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ where $y \in [c, d]$, $x \in [a, b]$ and $\lambda \in [0, 1], v_1, v_2 \in [a, b]$, then

$$f_x(\lambda v_1 + (1 - \lambda)v_2) = f(x, \lambda v_1 + (1 - \lambda)v_2) = f(\lambda x + (1 - \lambda)x, \lambda v_1 + (1 - \lambda)v_2) \leq f(x, v_1) + f(x, v_2) = f_x(v_1) + f_x(v_2)$$

which shows convexity of f_x . The fact that $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ is also convex on [a, b] for all $y \in [c, d]$ goes likewise and we shall omit the details. \Box

The following inequalities is considered the Hadamard-type inequalities for P-functions on the co-ordinates.

Theorem 8. Suppose that $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $PX(f, \Delta)$ on the co-ordinates on Δ with $f_x \in L_1[c, d]$ and $f_y \in L_1[a, b]$, then one has the inequalities:

$$(2.5) \quad f(\frac{a+b}{2}, \frac{c+d}{2}) \leq \frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx + \frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy$$
$$\leq \frac{4}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
$$\leq \frac{2}{(b-a)} \left[\int_{a}^{b} f(x, c) dx + \int_{a}^{b} f(x, d) dx \right]$$
$$+ \frac{2}{(d-c)} \left[\int_{c}^{d} f(a, y) dy + \int_{c}^{d} f(b, y) dy \right]$$

Proof. Since $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to belong to the class $PX(f, \Delta)$ on the co-ordinates it follows that the mapping $g_x : [c, d] \to \mathbb{R}$, $g_x(y) = f(x, y)$ is P-function on [c, d] for all $x \in [a, b]$. Then by Hadamard's inequality (1.2) one has:

$$f(x, \frac{c+d}{2}) \le \frac{2}{d-c} \int_{c}^{d} f(x, y) dy \le 2 \left[f(x, c) + f(x, d) \right]$$

Integrating this inequality on [a, b], we have:

$$(2.6) \quad \frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx \leq \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
$$\leq \frac{2}{b-a} \left[\int_{a}^{b} f(x, c) dx + \int_{a}^{b} f(x, d) dx \right]$$

A similar argument applied for the mapping $g_y : [a,b] \to \mathbb{R}, g_y(x) = f(x,y)$, we get:

$$(2.7) \quad \frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy \leq \frac{2}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$
$$\leq \frac{2}{d-c} \left[\int_{c}^{d} f(a, y) dy + \int_{c}^{d} f(b, y) dy \right]$$

Addition (2.6) and (2.7), we get:

$$\begin{aligned} \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) dy dx &\leq \frac{1}{2(b-a)} \left[\int_a^b f(x,c) dx + \int_a^b f(x,d) dx \right] \\ &+ \frac{1}{2(d-c)} \left[\int_c^d f(a,y) dy + \int_c^d f(b,y) dy \right] \end{aligned}$$

Which gives the last inequality in (2.5). We also have:

$$\frac{1}{b-a} \int_a^b f(x, \frac{c+d}{2}) dx + \frac{1}{d-c} \int_c^d f(\frac{a+b}{2}, y) dy$$
$$\leq \frac{4}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y) dx dy$$

Which gives the mid inequality in (2.5). By Hadamard's inequality we also have:

$$f(\frac{a+b}{2},\frac{c+d}{2}) \le \frac{2}{b-a} \int_a^b f(x,\frac{c+d}{2}) dx$$

and

$$f(\frac{a+b}{2}, \frac{c+d}{2}) \le \frac{2}{d-c} \int_c^d f(\frac{a+b}{2}, y) dy$$

Adding these inequalities we get,

$$f(\frac{a+b}{2}, \frac{c+d}{2}) \le \frac{1}{b-a} \int_{a}^{b} f(x, \frac{c+d}{2}) dx + \frac{1}{d-c} \int_{c}^{d} f(\frac{a+b}{2}, y) dy$$

Which gives the first inequality in (2.5). This completes the proof.

Theorem 9. Let $a, b, c, d \in [0, \infty)$, a < b and c < d, $\Delta = [a, b] \times [c, d]$ with $f, g : \Delta \to \mathbb{R}$ be functions f, g and fg are in $L_1([a, b] \times [c, d])$. If f is co-ordinated convex and g belongs to the class of $PX(f, \Delta)$, then one has the inequality;

(2.9)
$$\frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x,y) g(x,y) \, dy \, dx$$
$$\leq \frac{L(a,b,c,d) + M(a,b,c,d) + N(a,b,c,d)}{4}$$

where

$$\begin{split} L(a,b,c,d) &= f(a,c)g(a,c) + f(b,c)g(b,c) + f(a,d)g(a,d) + f(b,d)g(b,d) \\ M(a,b,c,d) &= f(a,c)g(a,d) + f(a,d)g(a,c) + f(b,c)g(b,d) + f(b,d)g(b,c) \\ &+ f(b,c)g(a,c) + f(b,d)g(a,d) + f(a,c)g(b,c) + f(a,d)g(b,d) \\ N(a,b,c,d) &= f(b,c)g(a,d) + f(b,d)g(a,c) + f(a,c)g(b,d) + f(a,d)g(b,c) \end{split}$$

Proof. Since f is co-ordinated convex and g belongs to the class of $PX(f, \Delta)$, by using partial mappings and from inequality (1.3), we can write

$$\frac{1}{d-c} \int_{c}^{d} f_{x}(y) g_{x}(y) dy \leq \frac{f_{x}(c) g_{x}(c) + f_{x}(d) g_{x}(d) + f_{x}(c) g_{x}(d) + f_{x}(d) g_{x}(c)}{2}$$

That is

$$\frac{1}{d-c}\int_{c}^{d}f\left(x,y\right)g\left(x,y\right)dy \leq \frac{f\left(x,c\right)g\left(x,c\right) + f\left(x,d\right)g(x,d) + f\left(x,c\right)g\left(x,d\right) + f\left(x,d\right)g\left(x,c\right)}{2}$$

Dividing both sides of this inequality (b - a) and integrating over [a, b] respect to x, we have

$$(2.10) \qquad \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x,y) g(x,y) \, dy \, dx$$

$$\leq \frac{1}{2(b-a)} \int_{a}^{b} f(x,c) g(x,c) + \frac{1}{2(b-a)} \int_{a}^{b} f(x,d) g(x,d)$$

$$+ \frac{1}{2(b-a)} \int_{a}^{b} f(x,c) g(x,d) + \frac{1}{2(b-a)} \int_{a}^{b} f(x,d) g(x,c)$$

By applying (1.3) to each integral on right hand side of (2.10) and using these inequalities in (2.10), we get the required result as following

$$= \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x,y) g(x,y) dy dx \\ \leq \frac{f(a,c) g(a,c) + f(b,c) g(b,c) + f(a,c) g(b,c) + f(b,c) g(a,c)}{4} \\ + \frac{f(a,d) g(a,d) + f(b,d) g(b,d) + f(a,d) g(b,d) + f(b,d) g(a,d)}{4} \\ \frac{f(a,c) g(a,d) + f(b,c) g(b,d) + f(a,c) g(b,d) + f(b,c) g(a,d)}{4} \\ + \frac{f(a,d) g(a,c) + f(b,d) g(b,c) + f(a,d) g(b,c) + f(b,d) g(a,c)}{4}$$

By a similar argument, if we apply (1.3) for $f_y(x)g_y(x)$ on [a, b], we get the same result.

References

- E.K. Godunova and V.I. Levin, Neravenstra dlja funccii sirokogo klassa soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkaii, Vycislitel Mat. i Mt. Fiz., Mezvuzov Sb. Nauc. Trudov. MPGI, Moscow, 1985, 138-142.
- [2] S.S. Dragomir, J. Pecaric and L.E. Persson, Some inequalities of Hadamard Type, Soochow
- Journal of Mathematics, Vol.21, No:3, pp. 335-341, July 1995. [3] S.S. Dragomir ,On Hadamard's inequality for convex functions on the coordinates in a rec-
- tangle from the plane, Taiwanese Journal of Mathematics, 5(2001), 775-788.
- [4] M.E. Ozdemir, E. Set, M. Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Submitted.
- [5] M. A. Latif, M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, International Journal of Math. Analysis, 3 (2009), no. 33, 1645-1656.
- [6] M. A. Latif, M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, International Mathematical Forum, 4 (2009), no. 47, 2327-2338.
- [7] M. Alomari, M. Darus, Hadamard-type inequalities for s-convex functions, International Mathematical Forum, 3 (2008), no. 40, 1965-1975.
- [8] M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. Journal Contemp. Math. Sciences, 3 (2008), no. 32, 1557-1567.
- [9] M. Alomari, M. Darus, The Hadamard's inequality for s-convex function of 2-variables on the co-ordinates, International Journal of Math. Analysis, 2 (2008), no. 13, 629-638.
- [10] M. Tunç, On Some Hadamard Type Inequalities for Product of Different Kinds of Convex Functions, RGMIA, Res. Rep. Coll., 13 (2010), Article 5, ONLINE: http://ajmaa.org/RGMIA/v13n1.php

*****Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey

E-mail address: ahmetakdemir@agri.edu.tr

E-mail address: emos@atauni.edu.tr