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Abstract: In this paper we present some interesting results involving 
summation of series in particular  trigonometric ones. We failed to locate these 
results in existing literature or in the web like MathWorld 
(http://mathworld.wolfram.com/)  nor could we derive them using software for 
analytical computation like Maple. The identities are beautiful and involve 
finite series.
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1. Introduction

Mathematical identities are quite interesting in their own right. Quite often they are 
not only beautiful, they often go beyond imagination in their forms and simplicity 
with which they appear. Most of the trigonometric functions are evaluated by 
summing an appropriate series. For example, the value of    is computed using 
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  in Leibnitz equation 1
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trigonometric functions are also computed using appropriate series. By far the most 
frequently accessed trigonometric series appears in Fourier series. Knuth’s series sum 
is expressible in terms of Riemann zeta function in the following way 
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Ramanujan discovered many beautiful expressions as sums of many series.
Weisstein[2] has created a he repository of important series. In this paper we present 
some series and deduce their sums. These deductions are simple and straight forward 
although could not be found in existing literature and in the web.

2. Main Results

In this section we present some new  identities including trigonometric functions that 
do not appear to be available in the existing literature. At the same time these 
identities appear to be  too beautiful to remain unwarranted for publication. We 
present the identities in the form of  theorems as below.
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Proof:
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Squaring (2.3) and (2.4) and gives us
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Corollary 2.1 2 cos( ) ( 1) (2.6)
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We get (2.6) and (2.7) by putting x y  respectively in (2.3) and (2.4)

Now from (2.6) and (127) we get
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From (2.8) we have 
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(2.9) implies that tan( )
4

n
is a rational number for integer n. It can be checked that 

for n=3 numerator is 2 whereas denominator is -2 giving us the correct values of -1.

Theorem 2.2 Let ,k kx y  be integers for 1, 2,...,k n . Then both 
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Proof: Let k k kz x iy   then 
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From (2.10) we can say that both real and imaginary parts of the product are integers. 
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are both integers.

Theorem 1.3 2 2
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In order to prove the theorem we have the following lemma.

Lemma 2.1 
1

cos cos( 1)
1 2 cos

1 cos

m

k

mx m x
kx

x

 
 





4

Proof: We prove the lemma by induction. For m=1
2cos cos 2 cos (2cos 1)
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Let us assume it to be true for m . Now for m we have 
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Now we come back to the proof of Theorem 2.3

Proof: Again we prove this theorem by induction.
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Let us assume that the theorem holds true for n . Now to prove for n we have 
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So this proves the theorem.

Theorem 2.4 
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Proof: Again we use induction to prove this identity.
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Let it be true for n . Now for n
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This proves the theorem.  

We have the following interesting identity.

Theorem 2.5.  
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Now adding up over k we have
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The result can be easily verified for the case 2n  , whence
2

2 2

2

2

2
2

sin sin 2 2 tan 2
tan tan 2 2

cos cos 2 1 tan 1 tan
2 tan 2

2
tan 2 (1 tan )

2 tan
2 tan 2 tan 21 tan2 2 (1 1)

2 tan tan tan(1 tan )
1 tan

x x x
x x

x x x x
x

x x

x
x xx

x x xx
x

    
 

  


         




In the same way the following identity can also be established.

Theorem 2.5
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3. Conclusion

The identities presented in section 2 involve sum of  finite trigonometric series that 
deserve attention simply since these are beautiful.
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