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A GAUGE THEORETIC APPROACH TO ELASTICITY WITH

MICROROTATIONS

C. G. BÖHMER AND Y. OBUKHOV

Abstract. We formulate elasticity theory with microrotations using the frame-
work of gauge theories, which has been developed and successfully applied
in various areas of gravitation and cosmology. Following this approach, we
demonstrate the existence of particle-like solutions. Mathematically this is
due to the fact the our equations of motion are of Sine-Gordon type and thus
have soliton type solutions. Similar to Skyrmions and Kinks in classical field
theory, we can show explicitly that these solutions have a topological origin.

1. Introduction

1.1. Elasticity and gauge theories. In classical elasticity one assumes the in-
dependence of displacements and (micro)rotations. This independence has been
dropped when the Cosserat brothers developed an extended framework of elastic-
ity [6], often called Cosserat elasticity. This idea has led to a rich variety of models
which are known by various different names like oriented or multipolar medium,
asymmetric elasticity, micropolar elasticity, see e.g. [10, 11, 12, 26, 38, 39, 15, 13, 33,
34]. This field is also related to other areas of continuum mechanics, like the theory
of granular media, ferromagnetic materials, cracked media and liquid crystals.

In Cosserat elasticity one considers a medium which can experience displace-
ments and microrotations. This theory has two limiting cases, one with no mi-
crorotations which is classical elasticity, and another case where one assumes that
the medium only experiences rotations and no displacements. Models of this type,
though somewhat counter intuitive, have in fact a long history which can be traced
back to MacCullagh in 1839, see [41]. In recent work [2, 3] such models have been
investigated in the fully nonlinear setting and plane wave type solutions were ex-
plicitly constructed. The existence of such solutions is a highly non-trivial fact. In
a linearised setting, similar solutions were investigated in [27, 28, 29].

Recent years have seen a revival of elasticity, in particular in the theory of
dislocations which has been analysed from a gauge theoretic point of view. Of
particular interest is the fact that these dislocations behave very much like particles.
This gauge theoretic approach has been developed and applied for instance in [23,
24]. From a more formal point of view, one of the open questions in this field is
whether or not it is possible to find soliton type solutions which could justify the
particle interpretation from a mathematical point of view. The main result of this
paper is that we are able to find soliton type solutions in a particular model of
elasticity motivated by gauge theories of gravity.
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1.2. Geometry and elasticity. We consider an elastic medium which occupies
the whole of R3, and we can identify materials points with points in space. We
use the Latin alphabet to label the coordinate indices, a, b, c, · · · = 1, 2, 3, say,
we write xi for the spatial (holonomic) coordinates of M, a 3-dimensional simply
connected manifold which we identify with the material points of the continuum.
This manifold is embedded into the 3-dimensional Euclidean space R

3. Greek
indices refer to the (co)frame indices (also tangent space or anholonomic indices),
we use α, β, · · · = 1, 2, 3 to label the frame covectors (1 forms) ϑα = ϑα

b dx
b which

we can refer to as the distortion in elasticity. One can think of ϑα as a set of
three mutually orthogonal and normal covectors which form a basis at any point
p ∈ T ∗M. Each such basis vector has components (ϑα)a and thus we can also view
the object ϑα

a as an orthogonal matrix. We denote the frame by eα = ebα ∂/∂xb, such

that eα⌋ϑβ = ebαϑ
β
b = δβα. The eα form the basis vectors of the tangent manifold

TM, and ⌋ denotes the inner product. The metric is defined by gαβ = eα ⊗ eβ.
We can think of the metric of the deformed medium as the Cauchy-Green tensor
in elasticity.

When considering deformations of an elastic material, one places certain compat-
ibility conditions on the induced stress. These so called Saint-Venant compatibility
conditions are a form of integrability conditions so that the stress can be expressed
and the symmetric derivative of the displacement. In a more geometrical language,
by deforming the medium, we do not want to induce any curvature into the mate-
rial. This means that one assumes the Riemann curvature tensor of the deformed
medium to vanish identically. It is well known that these two views are equivalent,
see for instance [1, 37]. One of the main ideas of this work is to carry this require-
ment over to more general, non-Riemannian geometries. In these geometries the
notion of curvature is supplemented by a new geometrical quantity called torsion
which was first introduced by Cartan in 1922. Therefore, we will analyse elastic
materials using the language of non-Riemannian geometries with torsion and we
will stick to the well established requirement of having vanishing total curvature.
In the following subsection we will collect the most important basic facts of such
geometries.

1.3. Geometries with vanishing Riemann curvature tensor. Let us describe
each material point of our elastic material by a coframe ϑα and a connection Γα

β.
The coframe specifies the orientation of the orthonormal basis vectors at this point,
while the connection determines how an arbitrary vector is parallelly transported
near this point. The vanishing of the Riemann curvature tensor (a matrix valued
2-form) takes the form

Rα
β := dΓα

β + Γσ
β ∧ Γα

σ ≡ 0,(1.1)

where d denotes the exterior derivative and ∧ is the exterior (alternating) product.
In geometries where the Riemann curvature identically vanishes the connection is
often referred to as a Weitzenböck connection. We follow the Einstein summation
convention whereby we sum over twice repeated indices. The condition Rα

β ≡ 0
is known in the literature by various names like teleparallel, fernparallel of distant
parallel geometry. Geometrically this condition means that the notion of parallelism
is no longer a local statement, but can be defined globally, this means on the entire
manifold. A straight line connecting two material points defines an absolute notion
of parallelism. The only nonvanishing geometrical object in such geometries is
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Cartan’s torsion (a vector valued 2-form) defined by

Tα = dϑα + Γβ
α ∧ ϑβ .(1.2)

It is important to note that there is a gauge freedom in choosing the variables
{ϑα,Γα

β}. All coframes are related to each other by means of local rotations.
Therefore, the same elastic medium can be described equivalently by another pair
{ϑ′α,Γ′

α
β} which is related to the former by means of the gauge transformation

ϑ′α = Lα
σ ϑ

σ,(1.3)

Γ′

β
α = Lα

σ Γρ
σ (L−1)ρβ + Lα

σ d(L
−1)σβ ,(1.4)

where Lα
β is an arbitrary 3 × 3 rotation matrix, this means L ∈ SO(3). The

condition Rα
β ≡ 0 is invariant under this gauge transformations, whereas torsion

Tα transforms covariantly, T ′α = Lα
σ T

σ.
Let ε denote the volume 3-form, then the dual forms are defined by

εα := ∗ϑα = eα⌋ε,(1.5)

εαβ := ∗(ϑα ∧ ϑβ) = eβ⌋εα,(1.6)

εαβγ := ∗(ϑα ∧ ϑβ ∧ ϑγ) = eγ⌋εαβ .(1.7)

The operator ∗ is called the Hodge operator.The dual forms satisfy the following
useful identities

ϑβ ∧ εα = δβαε,(1.8)

ϑβ ∧ εµν = δβν εµ − δβµεν ,(1.9)

ϑβ ∧ εαµν = δβαεµν + δβµενα + δβν εαµ.(1.10)

The object εαβγ is the totally antisymmetric Levi-Civita symbol with ε123 = 1.

1.4. Elastic invariants. Since Tα is the only nontrivial geometric object, it is
therefore the only non-trivial object characterising the deformations of the medium.
It is natural to decompose it into its irreducible pieces which will serve as our
building blocks of elastic invariants. However, torsion is represented as a rank 3
tensor which is skew-symmetric in one pair of indices. Since we work in R

3, it seems
more natural to consider the Hodge dual of torsion which can be regarded as a 3×3
matrix with no a priori symmetries. Therefore, let us define T α := ∗Tα.

The three irreducible pieces of torsion are defined by

(2)Tα =
1

2
ϑα ∧ eβ⌋T β,(1.11)

(3)Tα =
1

3
∗(ϑβ ∧ T β) εα,(1.12)

(1)Tα = Tα − (2)Tα − (3)Tα.(1.13)

Making use of the local transformations (1.3)-(1.4), we can eliminate either of the
variables in the pair {ϑα,Γα

β}. In particular, in [2], the teleparallel connection is
gauged away Γα

β = 0, and the coframe ϑα is left as the only variable. Alternatively
in [3] the coframe is gauged to the standard constant values ϑα

i = δαi and the only
variable is the connection, in which case once can write

Γβ
α = Λα

σ d(Λ
−1)σβ .(1.14)
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Here Λ ∈ SO(3) parametrises a teleparallel connection. We will refer to this choice
of variables as the connection gauge since the only dynamical variable is the con-
nection.

2. The potential energy

2.1. Basic equations of the static model. The most natural potential energy
is based on the sum of the three quadratic elastic invariants constructed from the
nonvanishing torsion

V =

3
∑

i=1

ci
(i)Tα ∧ ∗Tα,(2.1)

where ci, i = 1, 2, 3, are positive constants to which will refer as elastic moduli.
However when our medium occupies the whole of R3, these quadratic terms are not
fully independent because of the condition Rα

β ≡ 0. This condition, as demon-
strated in Appendix A allows to express the square of the first irreducible part in
terms of the trace square and the axial trace square

(1)Tα ∧ ∗Tα = 2 (2)Tα ∧ ∗Tα − 1

2
(3)Tα ∧ ∗Tα + d (2ϑα ∧ ∗Tα) .(2.2)

In tensor language, using (1.11), (1.12), and (1.8), (1.9), we have

(2)Tα ∧ ∗Tα =
1

2
T ν

ανTµ
αµ ε,(2.3)

(3)Tα ∧ ∗Tα =
1

12
(Tµρσε

µρσ)2 ε.(2.4)

It is straightforward to establish relation between the irreducible parts of the
torsion 2-form Tα and its dual 1-form T α. We have T α = T αβ ϑβ , denote the
matrix T αβ by T, and we find explicitly the decomposition of the second rank
tensor

T αβ = (1)T αβ + (2)T αβ + (3)T αβ ,(2.5)

T = (1)T+ (2)T+ (3)T,(2.6)

into the trace, antisymmetric and traceless symmetric parts:

(3)
∗

T
αβ =

1

6
Tµρσε

µρσ gαβ , (3)T =
1

3
(trT) I,(2.7)

(2)
∗

T
αβ =

1

2
εαβµ T ν

µν ,
(2)TT = − (2)T(2.8)

(1)
∗

T
αβ =

1

2
Tα

µνε
µνβ , (1)TT = (1)T, tr (1)T = 0.(2.9)

2.2. The choice of the gauge. In [2], the coframe gauge is used when the con-
nection is zero (completely gauged out). The components of the coframe are the
only dynamical variables. Geometrically, they represent an arbitrary orthogonal
3 × 3 matrix. Since the connection is trivial in this gauge, the torsion 2-form re-
duces to Tα = dϑα. Using the components of the coframe and frame, ϑα = hα

i dx
i,

eα = hi
α∂i, we have for the holonomic torsion

(2.10) T i = hi
αT

α = hi
αd(h

α
j ) ∧ dxj = hi

α∂kh
α
j dxk ∧ dxj .
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The dual 1-form then reads

(2.11)
∗

T
i =

∗

T
i
j dx

j = hi
α∂kh

α
l εkljdx

j .

A complementary approach is developed in [3], where the only dynamical variable
is the connection, whereas the coframe is fixed to its trivial constant value ϑα =
δαi dxi. The torsion (1.2) reduces in this gauge to Tα = Γβ

α ∧ ϑβ , and since in the
Weitzenböck space the connection is given by (1.14), we have

(2.12) T i = δiα Tα = δiαΛ
α
σ d(Λ

−1)σβ δ
β
j dxj .

Denoting ui
σ := δiαΛ

α
σ, we thus have

(2.13) T i = ui
αd(u

α
j ) ∧ dxj = ui

α∂ku
α
j dxk ∧ dxj .

This is completely equivalent (2.10), with the difference that the orthogonal matrix
hi
α, representing the coframe, is replaced with the orthogonal matrix u := ui

α,
representing the connection.

In [3], there are two technical deviations as compared to the model developed
in [2]. The first deviation is the different choice of the variables. Noticing that
(uT∂u)ikj = ui

α∂ku
α
j is skew-symmetric in i, j (being an element of the Lie algebra

of the orthogonal group), in [3] one chooses as a basic variable a new 3× 3 matrix

A = ⋆(uT∂u),(2.14)

which has no a priori symmetries. This ⋆ denotes the dualization operator which re-
lates skew symmetric matrices to vectors, similar to the Hodge ∗ operator. Writing
out the indices explicitly, this matrix can be written in the following way

(2.15) Alk =
1

2
εli

j ui
α∂ku

α
j .

The inverse reads

(2.16) ui
α∂ku

α
j = Alk ε

li
j .

This quantity is known in the polar elasticity theory under various different names:
the wryness tensor, the second Cosserat deformation tensor, the third order right
micropolar curvature tensor, or torsion-curvature tensor (note that this is somewhat
a misnomer since it neither directly relates to torsion nor curvature in the sense of
differential geometry). Substituting this into (2.13), we can find a relation between
the the second rank tensor (which we can view as a matrix in R

3) to the matrix A,
so that

(2.17)
∗

T= A− tr(A) I.

The second deviation of [3] from [2] is a different structure of the Lagrangian.
Namely, the Lagrangian of a rotationally elastic medium is assumed in [3] to be a
function of orthogonal matrix only.

2.3. Kinetic energy and total Lagrangian. The Lagrangian 4-form V = Ldt∧ε
is constructed by taking L = L(u, ∂0u, ∂iu) as a quadratic function of the irreducible
parts of Alk. In addition, the kinetic term is chosen to be

(2.18) Lkin =
1

2
tr(u̇Tu̇) =

1

2
(∂tu

i
α)(∂tu

α
i ).

This form of the kinetic energy is well motivated, since when linearised it yields
angular kinetic energy or rotation energy.
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Introducing, analogously to (2.15), the velocity of the deformations of the mate-
rial continuum

(2.19) Alt =
1

2
εli

j ui
α∂tu

α
j ,

one can recast (2.18) as

(2.20) Lkin =
1

2
(∂tu

i
α)(∂tu

α
i ) = (Alt)

2.

Taking into account the identity (2.2), the potential energy contains just two
quadratic invariants. As a result, the general Lagrangian reads

(2.21) L = Lkin(Alt)− Lpot(Alk), Lpot(Alk) = λ1 (A
k
k)

2 + λ2 (A[lk])
2.

One can use different parametrizarions of the orthogonal matrices. For example,
in [2], the spinor parametrization was used. Here we find it more convenient to
describe an arbitrary orthogonal matrix with the help of the three real functions
βα. From these independent constituents, an orthogonal matrix is constructed as
follows

(2.22) ui
α = δiα + 2βαβ

i − 2δiαβ
2 + 2αβγεiαγ .

Here α2 + β2 = 1 (with β2 = βαβ
α), and Greek indices are freely converted into

Latin ones (and vice versa) using the Kronecker deltas. The inverse matrix reads

(2.23) uα
i = δαi + 2βαβi − 2δαi β

2 − 2αβγεαiγ .

Substituting (2.22) and (2.23) into (2.15) and (2.19), we find

Alk = 2
(

εlijβ
i∂kβ

j + βl∂kα− α∂kβl

)

,(2.24)

Alt = 2
(

εlijβ
i∂tβ

j + βl∂tα− α∂tβl

)

.(2.25)

For small β, the above formulas can be linearised, so that Alk ≈ −2∂kβl, Alt ≈
−2∂tβl, and the linearised model is described by the Lagrangian

(2.26) L ≈ 4β̇2 − 4λ1(divβ)
2 − 2λ2(curlβ)

2.

2.4. The nonlinear equations of motion. The complete nonlinear equations
are more nontrivial. Denote the derivatives

(2.27) H lk =
∂Lpot

∂Alk
, H lt =

∂Lkin

∂Alt
.

Then the field equations read

(2.28) (∂tH
it − ∂kH

ik)Pij + 2(HitQtij −HikQkij) = 0,

where we introduced

Pij = εijlβ
l +

1

α
(δij − δijβ

2 + βiβj),(2.29)

Qtij =

[

εijl −
1

α
(δijβl − δilβj)

]

∂tβ
l,(2.30)

Qkij =

[

εijl −
1

α
(δijβl − δilβj)

]

∂kβ
l.(2.31)
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The equations (2.28) are valid for any Lagrangian L = Lkin(Alt) − Lpot(Alk)
with an arbitrary dependence on the variables Alt, Alk. However, for the specific
choice of the quadratic Lagrangian (2.20) and (2.21), we have explicitly

(2.32) Hit = 2Ait, Hik = 2λ1 A
l
lδ

ik + 2λ2 A
[ik].

The tensor (2.29) is invertible and the inverse reads

(2.33) (P−1)jk = α δjk − εjknβn.

One can easily check that Pij(P
−1)jk = δki . Multiplying (2.28) with this inverse,

we obtain another convenient form of the fields equations:

(2.34) ∂tH
it − ∂kH

ik + 2(HjtGtj
i −HjkGkj

i) = 0,

where we have introduced

Gtj
i = Qtjl(P

−1)li = εj
il∂t(αβl) + βi∂tβj − βj∂tβ

i,(2.35)

Gkj
i = Qkjl(P

−1)li = εj
il∂k(αβl) + βi∂kβj − βj∂kβ

i.(2.36)

Note that both objects are antisymmetric in i, j.
The resulting system of nonlinear differential equations (obtained after substi-

tuting (2.32), (2.29)-(2.31) and (2.24), (2.25) into (2.28)) is quite nontrivial. It is
possible, however, to find simple solutions under the additional assumptions.

3. Spherically-symmetric solutions – the soliton

Let us now look for the configurations with a 3-dimensional spherical symmetry.
The corresponding ansatz reads

(3.1) βα =
xα

r
cosw, α = sinw,

where the scalar function w = w(t, r) depends on time and on the radial variable
r =

√
xixi.

Then (2.24) and (2.25) yield

Alk = 2

[

εlik
xi

r2
cos2 w +

xlxk

r2
w′ − sinw cosw

(

δlk
r

− xlxk

r3

)]

,(3.2)

Alt = 2
xl

r
ẇ.(3.3)

Hereafter the dot and the prime denote the derivatives with respect to time and
radius, respectively.

Accordingly, the trace and the skew-symmetric parts of (3.2) are

Ak
k = 2w′ − 4

sinw cosw

r
,(3.4)

A[lk] = − 2εlkn
xn

r2
cos2 w.(3.5)

As a result, we find

Hit =
4xi

r
ẇ,(3.6)

Hik = 2λ1 δ
ik

(

2w′ − 4
sinw cosw

r

)

− 4λ2 ε
ikn xn

r2
cos2 w.(3.7)
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It is straightforward to see that

∂tH
it =

4xi

r
ẅ, HjtGtj

i = 0,(3.8)

Gkj
i = εkj

i sinw cosw

r
+ εj

il xlxk

r2

(

sinw cosw

r

)

′

+(xiδkj − xjδ
i
k)
cos2 w

r2
.(3.9)

Using these results, we find that the field equations (2.34) reduce to

(3.10)
4xi

r

[

ẅ − λ1

(

w′′ +
2

r
w′

)

− 1

r2
U(w)

]

= 0,

where

(3.11) U(w) = sin(2w)[(λ2 − λ1) + (λ2 − 2λ1) cos(2w)].

Since the two terms in the round brackets are the Laplacian in spherical coordinates,
this equation of motion can also be written in the neat form ẅ−λ1∆w = U(w)/r2.
Let us introduce a new function ϕ := wr, and next let us rescale r 7→

√
λ1t,

ϕ 7→
√
λ1ϕ, then (3.10) becomes

(3.12) ϕ̈− ϕ′′ +
U(ϕ/r)

λ
3/2
1 r

= 0.

The resulting equation is closely related to the spherical ‘sine-Gordon’ equation, see
for instance [7, 31] and references therein. The main difference between previously
studied spherical sine-Gordon equations and our equation (3.12) is that the non-
linearity carries an extra factor of 1/r. This is similar to angular momentum when
studying the spherical Schrödinger equation or Newton’s equation. This additional
factor has some interesting implications. At large distances from the centre this
term becomes negligible and asymptotically we recover the wave equations. Thus,
we have established the existence of soliton solutions in this model with a localised
solution near the centre.

0 10 20 30 40 50
r

0.2

0.4

0.6

0.8

1.0
wHrL

Figure 1. Soliton solution of the rotational elasticity.



A GAUGE THEORETIC APPROACH TO ELASTICITY WITH MICROROTATIONS 9

In the static case, the equations of motion reduce to the single ODE

(3.13) λ1(r
2w′)′ + U(w) = 0.

For λ2 = 2λ1 this further reduces to (r2w′)′ + sin(2w) = 0, whereas when λ2 = λ1

one is left with (r2w′)′ − 1
2 sin(4w) = 0. The qualitative analysis of the equation

(3.13) reveals the existence of static solutions that vanish at r = 0 and approach
asymptotically π/4 at infinity for r → ∞.

Numeric integration is straightforward. The form of the solution depends on
the coupling constants and on the initial value of w′(0). However, the qualitative
behaviour remains the same. As a specific example, Fig. 1 presents the soliton for
λ2 = λ1 when w′(0) = 1.

In the static case we can introduce the new function f , defined by

(3.14) w =
1

2
arctan{sinh(f(log(r)))}

which transforms (3.10) into an autonomous second order differential equation

(3.15) fββ+fβ(1−tanh(f)fβ)−2 sinh(f)−4 tanh(f)+2
λ2

λ1
(sinh(f)+tanh(f)) = 0,

where β = log(r). This equation can now be analysed using standard techniques
from ordinary differential equations or dynamical systems, and we find that this
static system has three equilibrium points

(3.16) f = 0, sinh f = ±
√
λ1

√
3λ1 − 2λ2

λ1 − λ2
,

with eigenvalues (0,−1) in all three cases which in turn yields interesting (in)stability
properties.

4. Discussion

The rotational elasticity model has many features similar to the model suggested
by Skyrme [36]. Although the Lagrangians are different, the dynamics looks quali-
tatively the same. In particular, the remarkable feature of the rotational elasticity
is the existence of solitons which are close relatives to the Skyrmions. The stability
of solutions obtained is guaranteed by the topological nature of such configurations.

Recently it was noticed [32] that in the framework of the gauge gravity approach
(that underlies the model under consideration, see Sec. 1.3) one can define an iden-
tically conserved current 3-form that gives rise to the topological charge that natu-
rally classifies the field configurations. Specialising to the case of the Weitzenböck
geometry with the flat curvature (1.1), this topological current reduces to

(4.1) J top = Γα
β ∧ dΓβ

α +
2

3
Γα

β ∧ Γβ
γ ∧ Γγ

α.

This 3-form is identically conserved, dJ top ≡ 0 in view of (1.1). As a result, we can
construct the topological charge

(4.2) Q =
1

96π2

∫

Γα
β ∧ Γβ

γ ∧ Γγ
α.

The integral is taken over the whole 3-space and the result is a constant for config-
urations that we studied in the previous section when w vanishes at the origin and
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approaches constant value at infinity. By direct computation we can verify that
Q = 1 for the soliton described above.

A multi-soliton generalisation is straightforward. As a first step, we replace the
ansatz (3.1) by shifting the origin from xa = 0 to an arbitrary point xa

(I) = 0:

(4.3) βα =
xα − xα

(I)

|x− x(I)|
cosw, α = sinw,

where the function w = w(|x − x(I)|) depends on the Euclidean distance |x −
x(I)|. Then the N -soliton generalisation is obtained by taking instead of (2.22) the
orthogonal matrix that is a product of N factors of the form (4.3)

(4.4) ui
α =

(

u(1) · u(2) · · · · · u(N)

)i

α
.

The dot denotes the usual matrix product. Such a generalisation would, for in-
stance, allow us to study the interaction of solitons.

Acknowledgements. We thank Dmitri Vassiliev for discussions and advice.
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Appendix A. Some identities
∗

Tα := ∗Tα, where ∗ is the Hodge operator.
Note that there is an identity (see Eq. (5.9.18) of [21]) that is valid in all dimen-

sions:

R̃αβ ∧ εαβ = Rαβ ∧ εαβ +

(

− (1)Tα + 2 (2)Tα − 1

2
(3)Tα

)

∧ ∗Tα + d (2ϑα ∧ ∗Tα) .

(A.1)

The tilde denotes the Riemannian geometric objects, i.e. those constructed from
the Christoffel symbols of the corresponding Riemannian metric of the manifold.

Taking into account that the Riemann-Cartan curvature vanishes due to the
teleparallel constraint (1.1) and that by assumption the elastic medium is embedded
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in a flat Euclidean space with R̃αβ = 0, the identity (A.1) allows to express the
square of the first (tensor) irreducible part in terms of the trace and axial trace
squares:

(A.2) (1)Tα ∧ ∗Tα = 2 (2)Tα ∧ ∗Tα − 1

2
(3)Tα ∧ ∗Tα + d (2ϑα ∧ ∗Tα) .
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