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Abstract

This paper is concerned with blow-up phenomena and global existence for a periodic
two-component Hunter-Saxton system. We first derive precise blow-up scenarios for strong
solutions to the system. Then, we present several new blow-up results of strong solutions
and a new global existence result to the system. Our obtained results for the system are
sharp and improve considerably earlier results.
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1 Introduction

In this paper, we study the Cauchy problem of the following periodic two-component Hunter-
Saxton system:











































utxx + 2uxuxx + uuxxx − kρρx = 0, t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(1.1)

with k ∈ {−1, 1}, which appears originally in [18] and is the short-wave limit of the two-
component Camassa-Holm system [4, 8]. The system (1.1) is a special case of Green-Naghdi
system, which models the non-dissipative dark matter [19].
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For ρ ≡ 0, the system (1.1) reduces to the Hunter-Saxton equation [11], which describes
the propagation of weakly nonlinear orientation waves in a massive nematic liquid crystal
director field. The single-component model also arises in a different physical context as the
high-frequency limit [7, 12] of the Camassa-Holm equation for shallow water waves [2, 13],
a re-expression of the geodesic flow on the diffeomorphism group of the circle [5] with a bi-
Hamiltonian structure [9] which is completely integrable [6]. The Hunter-Saxton equation also
has a bi-Hamiltonian structure [13, 18] and is completely integrable [1, 12]. Moreover, the
Hunter-Saxton equation has a geometric interpretation which was intensively studied in [16].

The initial value problem for the Hunter-Saxton equation on the line (nonperiodic case)
was studied by Hunter and Saxton in [11]. Using the method of characteristics, they showed
that smooth solutions exist locally and break down in finite time, see [11]. The occurrence of
blow-up can be interpreted physically as the phenomenon by which waves that propagate away
from the perturbation knock the director field out of its unperturbed state [11]. The initial
value problem for the Hunter-Saxton equation on the unit circle S = R/Z was discussed in
[22]. The author proved the local existence of strong solutions to the periodic Hunter-Saxton
equation, showed that all strong solutions except space-independent solutions blow up in finite
time by using Kato semigroup method [14]. Moreover, the behavior of the solutions exhibits
different features.

For ρ 6≡ 0, peakon solutions and the Cauchy problem of the system (1.1) with k ∈ {1,−1}
have been discussed in [4] and [20] respectively. Recently, [21] deals with a generalization of
the two-component Hunter-Saxton system set both on the unit torus and on the real line.
Moreover, we find another paper [10] just before submitting the present paper. Some results
in [10] and the present paper are similar. The aim of this paper is to study further blow-up
phenomena and global existence of the system (1.1). Blow-up scenarios, several new blow-up
results and a new global existence result of strong solutions to the system (1.1) are presented.
The obtained results are sharp and improve considerably the recent results in [20].

The paper is organized as follows. In Section 2, we recall the local existence of the initial
value problem associated with the system (1.1) and give a more precise explanation. In Section
3, we derive two precise blow-up scenarios. In Section 4, we present several explosion criteria
of strong solutions to the system (1.1) with rather general initial data. In Section 5, we give a
new global existence result of strong solutions to the system (1.1).

Notation Given a Banach space Z, we denote its norm by ‖ · ‖Z . Since all space of
functions are over S, for simplicity, we drop S in our notations of function spaces if there is no
ambiguity. We let [A,B] denote the commutator of linear operator A and B. For convenience,
we let (·|·)s×r and (·|·)s denote the inner products of Hs × Hr, s, r ∈ R+ and Hs, s ∈ R+,
respectively.

2 Local existence

We provide now the framework in which we shall reformulate the system (1.1). Integrating
both sides of the first equation of the system (1.1) with respect to x, we obtain

utx + uuxx +
1

2
u2x −

k

2
ρ2 = a(t),

where

a(t) = −1

2

∫

S

(kρ2 + u2x)dx
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and
d

dt
a(t) = 0,

cf. [20]. For convenience, write a := a(0). Therefore,

utx + uuxx =
k

2
ρ2 − 1

2
u2x + a. (2.1)

Integrating (2.1) once more in x, we obtain

ut + uux = ∂−1
x (

k

2
ρ2 +

1

2
u2x + a) + h(t), (2.2)

where ∂−1
x f(x) :=

∫ x

0 f(y)dy and h(t) : [0,∞) → R is an arbitrary continuous function.
Thus we get an equivalent form of the system (1.1)











































ut + uux = ∂−1
x (k2ρ

2 + 1
2u

2
x + a) + h(t), t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

(2.3)

where k ∈ {−1, 1}, ∂−1
x f(x) :=

∫ x

0 f(y)dy and h(t) : [0,∞) → R is an arbitrary continuous
function.

Next, we will establish the local well-posedness for the Cauchy problem of the system (2.3)
in Hs ×Hs−1, s ≥ 2, with S = R/Z (the circle of unit length) by applying Kato’s theory.

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X
and let Q : Y → X be a topological isomorphism. ‖ · ‖X and ‖ · ‖Y denote the norm of Banach
space X and Y , respectively. Let L(Y,X) denote the space of all bounded linear operators
from Y to X (L(X), if X = Y .).

Theorem 2.1 [20] Given h(t) ∈ C([0,∞);R) and z0 = (u0, ρ0) ∈ Hs × Hs−1, s ≥ 2, then
there exists a maximal T = T (a, h(t), ‖ z0 ‖Hs×Hs−1) > 0, and a unique solution z = (u, ρ) to
(2.3) such that

z = z(·, z0) ∈ C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2).

Moreover, the solution depends continuously on the initial data, i.e., the mapping

z0 → z(·, z0) : Hs ×Hs−1 → C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2)

is continuous.

As a consequence of Theorem 2.1 and the relation between the solution of the system (1.1)
and the solution of the system (2.3) we have the following:

Theorem 2.2 Given z0 = (u0, ρ0) ∈ Hs × Hs−1, s ≥ 2. Then there exists locally a family of
solutions to (1.1).

Note that the solution of the system (2.3) for any fixed h(t) is unique. However, the solution
of the system (1.1) given by Theorem 2.2 is not unique by the arbitrariness of h(t). In the
following sections, we discuss the corresponding unique solution to the system (2.3) with a
fixed h(t).
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3 The precise blow-up scenario

In this section, we present the precise blow-up scenarios for strong solutions to the system
(1.1).

We first recall the following lemmas.

Lemma 3.1 [15] If r > 0, then Hr ∩ L∞ is an algebra. Moreover

‖ fg ‖Hr≤ c(‖ f ‖L∞‖ g ‖Hr + ‖ f ‖Hr‖ g ‖L∞),

where c is a constant depending only on r.

Lemma 3.2 [15] If r > 0, then

‖ [Λr, f ]g ‖L2≤ c(‖ ∂xf ‖L∞‖ Λr−1g ‖L2 + ‖ Λrf ‖L2‖ g ‖L∞),

where c is a constant depending only on r.

Lemma 3.3 [3] Let t0 > 0 and v ∈ C1([0, t0);H
2(R)). Then for every t ∈ [0, t0) there exists

at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

{vx(t, x)} = vx(t, ξ(t)),

and the function m is almost everywhere differentiable on (0, t0) with

d

dt
m(t) = vtx(t, ξ(t)) a.e. on (0, t0).

Remark 3.1 If v ∈ C1([0, t0);H
s(R)), s > 3

2 , then Lemma 3.3 also holds true. Meanwhile,
Lemma 3.3 works analogously for

M(t) := sup
x∈R

{vx(t, x)}.

Lemma 3.4 Assume k = 1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s > 5
2 , be given and assume that

T is the maximal existence time of the corresponding solution z =

(

u

ρ

)

to (1.1) with the

initial data z0. Then

‖ρx(t, ·)‖L∞ ≤ K exp

{

−2

∫ t

0
ux(s, ξ(s))ds

}

,

where (s, ξ(s)) is a maximal point of u2xx + ρ2x in [0, T )× S and K = ‖u0,xx‖L∞ + ‖ρ0,x‖L∞ .

Proof Multiplying the first equation in (1.1) by uxx, we get

1

2
(u2xx)t + 2uxu

2
xx + u

1

2
(u2xx)x − ρρxuxx = 0. (3.1)
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Differentiating the second equation in (1.1) in x and multiplying the obtained equation by ρx,
we get

1

2
(ρ2x)t + 2uxρ

2
x + u

1

2
(ρ2x)x + ρρxuxx = 0. (3.2)

Adding the above two equations, we have

1

2
(u2xx + ρ2x)t + 2ux(u

2
xx + ρ2x) +

1

2
(u2xx + ρ2x)x = 0. (3.3)

By z ∈ C([0, T );Hs×Hs−1), s > 5
2 , we know uxx ∈ Hs−2, ρx ∈ Hs−2. Moreover, since Hs−2 is

a Banach algebra for s > 5
2 , u

2
xx+ ρ2x ∈ Hs−2, s > 5

2 . Let M(t) = sup
x∈S

(u2xx + ρ2x)(t, x). It follows

from Remark 3.1 that there is a point (t, ξ(t)) ∈ [0, T )×S such that M(t) = (u2xx+ ρ2x)(t, ξ(t)).
Evaluating (3.3) on (t, ξ(t)) we get

dM(t)

dt
= −4ux(t, ξ(t))M(t).

Then, we obtain

M(t) = M(0) exp

{
∫ t

0
−4ux(s, ξ(s))ds

}

.

Note that

M(0) = sup
x∈S

(u20,xx + ρ20,x) ≤ ‖u0,xx‖2L∞ + ‖ρ0,x‖2L∞ .

Thus, we get

‖ρx‖L∞ ≤ K exp

{

−2

∫ t

0
ux(s, ξ(s))ds

}

.

Next we prove the following useful result on global existence of solutions to (1.1).

Theorem 3.1 Assume k = 1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s > 5
2 , be given and assume

that T is the maximal existence time of the corresponding solution z =

(

u

ρ

)

to (2.3) with

the initial data z0. If there exists M > 0 such that

‖ux(t, ·)‖L∞ + ‖ρ(t, ·)‖
L∞ ≤ M, t ∈ [0, T ),

then the Hs ×Hs−1-norm of z(t, ·) does not blow up on [0,T).

Proof Let z =

(

u

ρ

)

be the solution to (2.3) with the initial data z0 ∈ Hs ×Hs−1, s > 5
2 ,

and let T be the maximal existence time of the corresponding solution z, which is guaranteed
by Theorem 2.1. Throughout this proof, c > 0 stands for a generic constant depending only
on s.

By ‖ux(t, ·)‖L∞ ≤ M and Lemma 3.4, we get

‖ρx‖L∞ ≤ K exp

{

2

∫ t

0
ux(s, ξ(s))ds

}

≤ Ke2Mt := c(t). (3.4)

5



Applying the operator Λs to the first equation in (2.3), multiplying by Λsu, and integrating
over S, we obtain

d

dt
‖u‖2Hs = −2(uux, u)s + 2(u, ∂−1

x (
1

2
ρ2 +

1

2
u2x + a) + h(t))s. (3.5)

Let us estimate the first term of the right-hand side of (3.5).

|(uux, u)s| = |(Λs(u∂xu),Λ
su)0|

= |([Λs, u]∂xu,Λ
su)0 + (uΛs∂xu,Λ

su)0|

≤ ‖[Λs, u]∂xu‖L2‖Λsu‖L2 +
1

2
|(uxΛsu,Λsu)0|

≤ (c‖ux‖L∞ +
1

2
‖ux‖L∞)‖u‖2Hs

≤ c‖ux‖L∞‖u‖2Hs ,

where we used Lemma 3.2 with r = s. Then, we estimate the second term of the right-hand
side of (3.5) in the following way:

|(∂−1
x (

1

2
ρ2 +

1

2
u2x + a) + h(t), u)s|

≤ ‖∂−1
x (

1

2
ρ2 +

1

2
u2x + a) + h(t)‖Hs‖u‖Hs

≤ (‖∂−1
x (

1

2
ρ2 +

1

2
u2x + a)‖L2 + ‖1

2
ρ2 +

1

2
u2x + a‖Hs−1 + ‖h(t)‖Hs)‖u‖Hs

≤ (‖1
2
ρ2 +

1

2
u2x + a‖L2 + ‖1

2
ρ2 +

1

2
u2x + a‖Hs−1 + ‖h(t)‖Hs )‖u‖Hs

≤ c(‖ρ2‖Hs−1 + ‖u2x‖Hs−1 + 2‖a‖Hs−1 + ‖h(t)‖Hs)‖u‖Hs

≤ c(‖ρ‖L∞‖ρ‖Hs−1 + ‖ux‖L∞‖ux‖Hs−1 + |a|+ |h(t)|)‖u‖Hs

≤ c(‖ρ‖L∞ + ‖ux‖L∞ + 1)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1),

where we used Lemma 3.1 with r = s − 1. Combining the above two inequalities with (3.5),
we get

d

dt
‖u‖2Hs ≤ c(‖ρ‖L∞ + ‖ux‖L∞ + 1)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1). (3.6)

In order to derive a similar estimate for the second component ρ, we apply the operator Λs−1

to the second equation in (2.3), multiply by Λs−1ρ, and integrate over S, to obtain

d

dt
‖ρ‖2Hs−1 = −2(uρx, ρ)s−1 − 2(uxρ, ρ)s−1. (3.7)

Let us estimate the first term of the right hand side of (3.7)

|(uρx, ρ)s−1|
= |(Λs−1(u∂xρ),Λ

s−1ρ)0|
= |([Λs−1, u]∂xρ,Λ

s−1ρ)0 + (uΛs−1∂xρ,Λ
s−1ρ)0|

≤ ‖[Λs−1, u]∂xρ‖L2‖Λs−1ρ‖L2 +
1

2
|(uxΛs−1ρ,Λs−1ρ)0|

≤ c(‖ux‖L∞‖ρ‖Hs−1 + ‖ρx‖L∞‖u‖Hs−1)‖ρ‖Hs−1 +
1

2
‖ux‖L∞‖ρ‖2Hs−1

≤ c(‖ux‖L∞ + ‖ρx‖L∞)(‖ρ‖2Hs−1 + ‖u‖2Hs),
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here we applied Lemma 3.2 with r = s − 1. Then we estimate the second term of the right
hand side of (3.7). Based on Lemma 3.1 with r = s− 1, we get

|(uxρ, ρ)s−1| ≤ ‖uxρ‖Hs−1‖ρ‖Hs−1

≤ c(‖ux‖L∞‖ρ‖Hs−1 + ‖ρ‖L∞‖ux‖Hs−1)‖ρ‖Hs−1

≤ c(‖ux‖L∞ + ‖ρx‖L∞)(‖ρ‖2Hs−1 + ‖u‖2Hs).

Combining the above two inequalities with (3.7), we get

d

dt
‖ρ‖2Hs−1 ≤ c(‖ux‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1). (3.8)

By (3.6) and (3.8), we have

d

dt
(‖ρ‖2Hs−1 + ‖u‖2Hs + 1)

≤ c(‖ux‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞ + 1)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1).

An application of (3.4), Gronwall’s inequality and the assumption of the theorem yield

(‖ρ‖2Hs−1 + ‖u‖2Hs + 1) ≤ exp(c(M + c(t) + 1))(‖ρ0‖2Hs−1 + ‖u0‖2Hs + 1).

This completes the proof of the theorem.

Given z0 ∈ Hs ×Hs−1 with s ≥ 2. Theorem 2.1 ensures the existence of a maximal T > 0

and a solution z =

(

u

ρ

)

to (2.3) such that

z = z(·, z0) ∈ C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2).

Consider now the following initial value problem

{

qt = u(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈ R,
(3.9)

where u denotes the first component of the solution z to (2.3). Then we have the following two
useful lemmas.

Applying classical results in the theory of ordinary differential equations, one can obtain
the following result on q which is crucial in the proof of blow-up scenarios.

Lemma 3.5 [8, 17] Let u ∈ C([0, T );Hs)
⋂

C1([0, T );Hs−1), s ≥ 2. Then Eq.(3.9) has a
unique solution q ∈ C1([0, T )×R;R). Moreover, the map q(t, ·) is an increasing diffeomorphism
of R with

qx(t, x) = exp

(
∫ t

0
ux(s, q(s, x))ds

)

> 0, (t, x) ∈ [0, T ) × R.

Following the similar proof in [8], we obtain the next result:
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Lemma 3.6 Assume k ∈ {−1, 1}. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s ≥ 2 and let T > 0 be the

maximal existence time of the corresponding solution z =

(

u

ρ

)

to (1.1). Then we have

ρ(t, q(t, x))qx(t, x) = ρ0(x), ∀ (t, x) ∈ [0, T ) × S. (3.10)

Moreover, if there exists M1 > 0 such that ux ≥ −M1 for all (t, x) ∈ [0, T ) × S, then

‖ρ(t, ·)‖L∞ = ‖ρ(t, q(t, ·))‖L∞ ≤ eM1T ‖ρ0(·)‖L∞ , ∀ t ∈ [0, T ).

Furthermore, if ρ0 ∈ L1, then
∫

S

|ρ(t, x)|dx =

∫

S

|ρ0(x)|dx, ∀ t ∈ [0, T ).

Our next result describes the precise blow-up scenarios for sufficiently regular solutions to (1.1).

Theorem 3.2 Assume k = 1. Let z0 =

(

u0

ρ0

)

∈ Hs×Hs−1, s > 5
2 be given and let T be the

maximal existence time of the corresponding solution z =

(

u

ρ

)

to (2.3) with the initial data

z0. Then the corresponding solution blows up in finite time if and only if

lim inf
t→T

inf
x∈S

ux(t, x) = −∞.

Proof By Theorem 2.1 and Sobolev’s imbedding theorem it is clear that if

lim inf
t→T

inf
x∈S

ux(t, x) = −∞,

then T < ∞.
Let T < ∞. Assume that there exists M1 > 0 such that

ux(t, x) ≥ −M1, ∀ (t, x) ∈ [0, T )× S.

By Lemma 3.6, we have

‖ρ(t, ·)‖L∞ ≤ eM1T ‖ρ0‖L∞ , ∀ t ∈ [0, T ).

Take K0 = K2e4M1T . By the first equation in (2.3), a direct computation implies the
following inequality

d

dt

∫

S

u(t, x)2dx (3.11)

= 2

∫

S

u∂−1
x (

1

2
u2x +

k

2
ρ2 + a)dx+ 2h(t)

∫

S

udx

≤
∫

S

u2dx+
1

4

∫

S

(
∫ x

0
(u2y + kρ2 + 2a)dy

)2

dx+ |h(t)|
(

1 +

∫

S

u(t, x)2dx

)

≤ |h(t)|+ (1 + |h(t)|)
∫

S

u(t, x)2dx+
1

4

(
∫ 1

0
(u2x + ρ2 + 2|a|)dx

)2

= |h(t)|+ (1 + |h(t)|)
∫

S

u(t, x)2dx+
1

4

[

2|a|+
∫ 1

0
(u20,x + ρ20)dx

]2

8



for t ∈ (0, T ).

Multiplying (2.1) by ux and integrating by parts, we get

d

dt

∫

S

u2xdx = 2

∫

S

ux(−uuxx +
k

2
ρ2 − 1

2
u2x + a)dx (3.12)

=

∫

S

−2uuxuxxdx+ k

∫

S

uxρ
2dx−

∫

S

u3xdx+ 2a

∫

S

uxdx

= k

∫

S

uxρ
2dx

≤ ‖ρ‖2L∞ + ‖ρ‖2L∞

∫

S

u2xdx.

Multiplying the first equation in (1.1) by m = uxx and integrating by parts, we find

d

dt

∫

S

m2dx = − 4

∫

S

uxm
2dx− 2

∫

S

ummxdx+ 2k

∫

S

mρρxdx (3.13)

= − 3

∫

S

uxm
2dx+ 2k

∫

S

mρρxdx

≤ 3M1

∫

S

m2dx+ ‖ρ‖L∞

∫

S

m2 + ρ2xdx

≤ (3M1 + ‖ρ‖L∞)

∫

S

m2dx+ ‖ρ‖L∞

∫

S

ρ2xdx.

Differentiating the first equation in (1.1) with respect to x, multiplying the obtained equa-
tion by mx = uxxx, integrating by parts and using Lemma 3.4, we obtain

d

dt

∫

S

m2
xdx (3.14)

= − 4

∫

S

m2mxdx− 6

∫

S

uxm
2
x − 2

∫

S

umxxmx + 2k

∫

S

ρ2xmx + 2k

∫

S

ρρxxmxdx

= − 5

∫

S

uxm
2
xdx+ 2k

∫

S

ρ2xmxdx+ 2k

∫

S

ρρxxmxdx

≤ 5M1

∫

S

m2
xdx+ 2‖ρx‖2L∞

∫

S

|mx|dx+ ‖ρ‖L∞

∫

S

(ρ2xx +m2
x)dx

≤ 5M1

∫

S

m2
xdx+ ‖ρ‖L∞

∫

S

(ρ2xx +m2
x)dx+ 2‖ρx‖2L∞ + 2‖ρx‖2L∞

∫

S

m2
xdx

≤ (5M1 + ‖ρ‖L∞ + 2K0)

∫

S

m2
xdx+ ‖ρ‖L∞

∫

S

ρ2xxdx+ 2K0.

Multiplying the second equation in (1.1) by ρ and integrating by parts, we have

d

dt

∫

S

ρ2dx = −
∫

S

uxρ
2dx ≤ M1

∫

S

ρ2dx. (3.15)

Differentiating the second equation in (1.1) with respect to x, multiplying the obtained
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equation by ρx and integrating by parts, we obtain

d

dt

∫

S

ρ2xdx = − 3

∫

S

uxρ
2
xdx− 2

∫

S

mρρxdx (3.16)

≤ 3M1

∫

S

ρ2xdx+ ‖ρ‖L∞

∫

S

(m2 + ρ2x)dx

≤ (3M1 + ‖ρ‖L∞)

∫

S

ρ2xdx+ ‖ρ‖L∞

∫

S

m2dx.

Differentiating the second equation in (1.1) with respect to x twice, multiplying the obtained
equation by ρxx, integrating by parts and using Lemma 3.4, we obtain

d

dt

∫

S

ρ2xxdx (3.17)

= − 5

∫

S

uxρ
2
xxdx+

∫

S

uxxx(3ρ
2
x − 2ρρxx)dx

≤ 5M1

∫

S

ρ2xxdx+

∫

S

mx(3ρ
2
x − 2ρρxx)dx

≤ 5M1

∫

S

ρ2xxdx+ 3‖ρx‖2L∞

∫

S

|mx|dx+ ‖ρ‖L∞

∫

S

2mxρxxdx

≤ (5M1 + ‖ρ‖L∞)

∫

S

ρ2xxdx+ (3‖ρx‖2L∞ + ‖ρ‖L∞)

∫

S

m2
x + 3‖ρx‖2L∞

≤ (5M1 + ‖ρ‖L∞)

∫

S

ρ2xxdx+ (3K0 + ‖ρ‖L∞)

∫

S

m2
xdx+ 3K0.

Summing (3.10)-(3.16), we have

d

dt

∫

S

(u2 + u2x +m2 +m2
x + ρ2 + ρ2x + ρ2xx)dx

≤ K1

∫

S

(u2 + u2x +m2 +m2
x + ρ2 + ρ2x + ρ2xx)dx+K2,

where
K1 = 1 + max

t∈[0,T ]
|h(t)| + 8eM1T ‖ρ0‖L∞ + (eM1T ‖ρ0‖L∞)2 + 17M1 + 5K0,

K2 = max
t∈[0,T ]

|h(t)|+ 1

4

[

2|a|+
∫ 1

0
(u20,x + ρ20)dx

]2

+ (eM1T ‖ρ0‖L∞)2 + 5K0.

By means of Gronwall’s inequality and the above inequality, we deduce that

‖u(t, ·)‖2H3 + ‖ρ(t, ·)‖2H2

≤ eK1t(‖u0‖2H3 + ‖ρ0‖2H2 +
K2

K1
), ∀ t ∈ [0, T ).

The above inequality, Sobolev’s imbedding theorem and Theorem 3.1 ensure that the solution
z does not blow-up in finite time. This completes the proof of the theorem.

Note that when k = −1, we cannot get Lemma 3.4. However, following the similar proof
of Theorems 3.1-3.2 we obtain the following two results:
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Theorem 3.3 Assume k = −1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s ≥ 2, be given and assume

that T is the maximal existence time of the corresponding solution z =

(

u

ρ

)

to (2.3) with

the initial data z0. If there exists M > 0 such that

‖ux(t, ·)‖L∞ + ‖ρ(t, ·)‖
L∞ + ‖ρx(t, ·)‖L∞ ≤ M, t ∈ [0, T ),

then the Hs ×Hs−1-norm of z(t, ·) does not blow up on [0,T).

Theorem 3.4 Assume k = −1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s > 5
2 , be given and let T be

the maximal existence time of the corresponding solution z =

(

u

ρ

)

to (2.3) with the initial

data z0. Then the corresponding solution blows up in finite time if and only if

lim inf
t→T

inf
x∈S

ux(t, x) = −∞ or lim sup
t→T

{‖ρx‖L∞} = +∞.

For initial data z0 =

(

u0

ρ0

)

∈ H2 ×H1, we have the following precise blow-up scenario.

Theorem 3.5 Assume k ∈ {−1, 1}. Let z0 =

(

u0

ρ0

)

∈ H2 ×H1, and let T be the maximal

existence time of the corresponding solution z =

(

u

ρ

)

to (2.3) with the initial data z0. Then

the corresponding solution blows up in finite time if and only if

lim inf
t→T

inf
x∈S

ux(t, x) = −∞.

Proof Let z =

(

u

ρ

)

be the solution to (2.3) with the initial data z0 ∈ H2 ×H1, and let

T be the maximal existence time of the solution z, which is guaranteed by Theorem 2.1.
Let T < ∞. Assume that there exists M1 > 0 such that

ux(t, x) ≥ −M1, ∀ (t, x) ∈ [0, T )× S.

By Lemma 3.6, we have

‖ρ(t, ·)‖L∞ ≤ eM1T ‖ρ0‖L∞ , ∀ t ∈ [0, T ).

Combining (3.11)-(3.13) and (3.15)-(3.16), we obtain

d

dt

∫

S

u2 + u2x +m2 + ρ2 + ρ2xdx ≤ K3

∫

S

u2 + u2x +m2 + ρ2 + ρ2xdx+K4,

where
K3 = 1 + max

t∈[0,T ]
|h(t)|+ (eM1T ‖ρ0‖L∞)2 + 7M1 + 4eM1T ‖ρ0‖L∞ ,

11



K4 = max
t∈[0,T ]

|h(t)| + 1

4

[

2|a| +
∫ 1

0
(u20,x + ρ20)dx

]2

+ (eM1T ‖ρ0‖L∞)2.

By means of Gronwall’s inequality and the above inequality, we get

‖u(t, ·)‖2H2 + ‖ρ(t, ·)‖2H1 ≤ eK3t(‖u0‖2H2 + ‖ρ0‖2H1 +
K4

K3
).

The above inequality ensures that the solution z does not blow-up in finite time.
On the other hand, by Sobolev’s imbedding theorem, we see that if

lim inf
t→T

inf
x∈S

ux(t, x) = −∞,

then the solution will blow up in finite time. This completes the proof of the theorem.

Remark 3.2 Note that Theorem 3.2 and Theorem 3.5 show that

T (a, h(t), ‖z0‖Hs×Hs−1) = T (a, h(t), ‖z0‖Hs′×Hs′−1) = T (a, h(t), ‖z0‖H2×H1)

with k = 1 for each s, s′ > 5
2 . Furthermore, the maximal existence time T of the family of

solutions to (1.1) given in Theorem 2.2 can be chosen independent of s. Moreover, Theorem
3.5 implies that

T (a, h(t), ‖z0‖Hs×Hs−1) ≤ T (a, h(t), ‖z0‖H2×H1)

with k ∈ {−1, 1} for each s ≥ 2.

Remark 3.3 Note that Theorem 3.4 shows that

T (a, h(t), ‖z0‖Hs×Hs−1) = T (a, h(t), ‖z0‖Hs′×Hs′−1)

with k = −1 for each s, s′ > 5
2 . Moreover, the maximal existence time T of the family of

solutions to (1.1) given in Theorem 2.2 can be chosen independent of s.

4 Blow-up

In this section, we discuss the blow-up phenomena of the system (1.1) and prove that there
exist strong solutions to (1.1) which do not exist globally in time.

Theorem 4.1 Assume k = 1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s ≥ 2, and T be the maximal

time of the solution z =

(

u

ρ

)

to (1.1) with the initial data z0. If ρ0 6≡ 0 or u0 6≡ c for any

c ∈ R, and there exists a point x0 ∈ S, such that ρ0(x0) = 0, then the corresponding solutions
to (1.1) blow up in finite time.

Proof We use the integrated representation (2.1). Letm(t) = ux(t, q(t, x0)), γ(t) = ρ(t, q(t, x0)),
where q(t, x) is the solution of Eq.(3.9). By Eq.(3.9) we can obtain

dm

dt
= (utx + uuxx)(t, q(t, x0)).
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Evaluating (2.1) at (t, q(t, x0)) we get

d

dt
m(t) =

1

2
γ(t)2 − 1

2
m(t)2 + a.

Since γ(0) = 0, we infer from Lemmas 3.5-3.6 that γ(t) = 0 for all t ∈ [0, T ). Note that
a = −1

2

∫

S
(ρ20 + u20,x)dx < 0 since ρ0 6≡ 0 or u0 6≡ c. Then we have d

dt
m(t) ≤ a < 0. Thus, it

follows that m(t0) < 0 for some t0 ∈ (0, T ). Solving the following inequality yields

d

dt
m(t) ≤ −1

2
m(t)2.

Therefore

0 >
1

m(t)
≥ 1

m(t0)
+

1

2
(t− t0).

The above inequality implies that T < t0 − 2
m(t0)

and lim
t→T

m(t) = −∞. In view of Theorem 3.5

and Remark 3.2, this completes the proof of the theorem.

Corollary 4.1 Assume k = 1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s ≥ 2, and T be the maximal

time of the solution z =

(

u

ρ

)

to (1.1) with the initial data z0. If ρ0 is odd, either ρ0 6≡ 0 or

u0 6≡ 0 is odd, then the corresponding solutions to (1.1) blow up in finite time.

Proof Since ρ0 is odd, ρ0(0) = 0. u0 6≡ 0 is odd implies u0 6≡ c for any c ∈ R. From Theorem
4.1 we can get the desired result.

Theorem 4.2 Assume k = −1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s > 5
2 , and T be the maximal

time of the solution z =

(

u

ρ

)

to (1.1) with the initial data z0. The corresponding solutions

to (1.1) blow up in finite time if one of the following conditions holds: (1) a < 0, (2) a > 0
and there exists some x0 ∈ S such that u′0(x0) < −

√
2a, (3) a = 0 and there exists some x0 ∈ S

such that u′0(x0) ≤ 0, ρ0(x0) 6= 0.

Proof Applying Remark 3.3 and a simply density argument, it is clear that we may consider
the case s = 3. Define now

m(t) := min
x∈S

{ux(t, x)}, t ∈ [0, T )

and let ξ(t) ∈ S be a point where this minimum is attained by Lemma 3.3. It follows that

m(t) = ux(t, ξ(t)).

Clearly uxx(t, ξ(t)) = 0 since u(t, ·) ∈ H3(S) ⊂ C2(S). Using the integrated representation (2.1)
and evaluating it at (t, ξ(t)), we obtain

d

dt
m(t) ≤ −1

2
m(t)2 + a.
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Let (1) hold. Note that dm(t)
dt

≤ a. It then follows that there is a point x0 ∈ S such that
m(t0) < 0. Solving the following inequality

d

dt
m(t) ≤ −1

2
m(t)2,

we obtain

0 >
1

m(t)
≥ 1

m(t0)
+

1

2
(t− t0).

This implies that T < t0 − 2
m(t0)

and lim
t→T

m(t) = −∞.

Let (2) hold. Note that if m(0) = u′0(ξ(0)) ≤ u′0(x0) < −
√
2a, then m(t) < −

√
2a for all

t ∈ [0, T ). From the above inequality we obtain

m(0) +
√
2a

m(0)−
√
2K

e
√
2a t − 1 ≤ 2

√
2a

m(t)−
√
2a

≤ 0.

Since 0 < m(0)+
√
2a

m(0)−
√
2a

< 1, there exists

0 < T ≤ 1√
2a

ln
m(0)−

√
2a

m(0) +
√
2a

,

such that limt→T m(t) = −∞. Theorem 3.5 and Remark 3.2 imply that the corresponding
solution to (2.3) blows up in finite time if condition (1) or condition (2) holds.

Let (3) hold. We use the integrated representation (2.1). Let h(t) = ux(t, q(t, x0)), γ(t) =
ρ(t, q(t, x0)), where q(t, x) is the solution of Eq.(3.9). By Eq.(3.9) we can obtain

dh

dt
= (utx + uuxx)(t, q(t, x0)).

Evaluating (2.1) at (t, q(t, x0)) we get

d

dt
h(t) = −1

2
γ(t)2 − 1

2
h(t)2.

By γ(0) 6= 0, we infer from Lemmas 3.5-3.6 that γ(t) 6= 0 for all t ∈ [0, T ). Since h(0) ≤ 0 and
d
dt
h(t) < 0, it follows that h(t0) < 0 for some t0 ∈ [0, T ). Solving the following inequality

d

dt
h(t) ≤ −1

2
h(t)2,

we obtain

0 >
1

h(t)
≥ 1

h(t0)
+

1

2
(t− t0).

This implies that T < t0 − 2
h(t0)

and lim
t→T

h(t) = −∞. In view of Theorem 3.5 and Remark 3.2,

this completes the proof of the theorem.

Corollary 4.2 Assume k = −1. Let z0 =

(

u0

ρ0

)

∈ Hs × Hs−1, s > 5
2 , and T be the

maximal time of the solution z =

(

u

ρ

)

to (2.3) with the initial data z0. The corresponding

solution to (2.3) blows up in finite time if one of the following conditions holds: (1) a > 0 and
u′0(0) < −

√
2a, (2) a = 0 and u′0(0) ≤ 0, ρ0(0) 6= 0.
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5 Global Existence

In this section, we will present a global existence result.

Theorem 5.1 Assume k = 1. Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, where s = 2 or s ≥ 3 and T be

the maximal time of the solution z =

(

u

ρ

)

to (1.1) with the initial data z0. If ρ0(x) 6= 0 for

all x ∈ S, then the corresponding solutions z exist globally in time.

Proof By Lemma 3.5, we know that q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

(
∫ t

0
ux(s, q(s, x))ds

)

> 0, ∀ (t, x) ∈ [0, T ) × R.

Moreover,

inf
y∈S

ux(t, y) = inf
x∈R

ux(t, q(t, x)), ∀ t ∈ [0, T ). (5.1)

Set M(t, x) = ux(t, q(t, x)) and α(t, x) = ρ(t, q(t, x)) for t ∈ [0, T ) and x ∈ R. By (1.1) and
Eq.(3.9), we have

∂M

∂t
= (utx + uuxx)(t, q(t, x)) and

∂α

∂t
= −αM. (5.2)

Evaluating (2.1) at (t, q(t, x)) we get

∂tM(t, x) = −1

2
M(t, x)2 +

1

2
α(t, x)2 + a. (5.3)

By Lemmas 3.5-3.6, we know that α(t, x) has the same sign with α(0, x) = ρ0(x) for every
x ∈ R. Moreover, there is a constant β > 0 such that inf

x∈R
|α(0, x)| = inf

x∈S
|ρ0(x)| ≥ β > 0 since

ρ0(x) 6= 0 for all x ∈ S and S is a compact set. Thus,

α(t, x)α(0, x) > 0, ∀x ∈ R.

Next, we consider the following Lyapunov function first introduced in [4].

w(t, x) = α(t, x)α(0, x) +
α(0, x)

α(t, x)
(1 +M2), (t, x) ∈ [0, T )× R. (5.4)

By Sobolev’s imbedding theorem, we have

0 < w(0, x) = α(0, x)2 + 1 +M(0, x)2 (5.5)

= ρ0(x)
2 + 1 + u0,x(x)

2

≤ 1 +max
x∈S

(ρ0(x)
2 + u0,x(x)

2) := C1.

Differentiating (5.4) with respect to t and using (5.2)-(5.3), we obtain
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∂w

∂t
(t, x) =

α(0, x)

α(t, x)
M(t, x) (2a+ 1)

≤ |1 + 2a|α(0, x)
α(t, x)

(1 +M2)

≤ |1 + 2a|w(t, x).

By Gronwall’s inequality, the above inequality and (5.5), we have

w(t, x) ≤ w(0, x)e|1+2a|t ≤ C1e
|1+2a|t

for all (t, x) ∈ [0, T ) × R. On the other hand,

w(t, x) ≥ 2
√

α2(0, x)(1 +M2) ≥ 2β|M(t, x)|, ∀ (t, x) ∈ [0, T )× R.

Thus,

M(t, x) ≥ − 1

2β
w(t, x) ≥ − 1

2β
C1e

|1+2a|t

for all (t, x) ∈ [0, T ) × R. Then by (5.1) and the above inequality, we have

lim
t→T

inf
y∈S

ux(t, y) = lim
t→T

inf
x∈R

ux(t, q(t, x)) ≥ − 1

2β
C1e

|1+2a|t.

This completes the proof by using Theorem 3.2 and Remark 3.2.
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