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DENOMINATOR IDENTITY FOR AFFINE LIE SUPERALGEBRAS

WITH ZERO DUAL COXETER NUMBER

MARIA GORELIK, SHIFRA REIF

Abstract. We prove a denominator identity for non-twisted affine Lie superalgebras
with zero dual Coxeter number.

0. Introduction

0.1. Let g be a complex finite-dimensional contragredient Lie superalgebra. These alge-
bras were classified by V. Kac in [K1] and the list (excluding Lie algebras) consists of four
series: A(m|n), B(m|n), C(m), D(m|n) and the exceptional algebrasD(2, 1, a), F (4), G(3).
The finite-dimensional contragredient Lie superalgebras with zero Killing form (or, equiv-
alently, with dual Coxeter number equal to zero) are A(n|n), D(n|n+ 1) and D(2, 1, a).

Denote by ∆+0 (resp., ∆+1) the set of positive even (resp., odd) roots of g. The Weyl

denominator R and the affine Weyl denominator R̂ are given by the following formulas

R =
R0

R1
, R̂ =

R̂0

R̂1

,

where

R0 :=
∏

α∈∆+0
(1− e−α), R̂0 := R0 ·

∏∞
k=1(1− qk)rank g

∏

α∈∆0
(1− qke−α),

R1 :=
∏

α∈∆+1
(1 + e−α), R̂1 := R1 ·

∏∞
k=1

∏

α∈∆1
(1 + qke−α).

Let ĝ be the non-twisted affinization of g, ĥ be the Cartan subalgebra of ĝ and ∆̂+ be
the set of positive roots of ĝ. The affine Weyl denominator is the Weyl denominator of ĝ.
Let ρ̂ ∈ ĥ be such that 2(ρ̂, α) = (α, α) for each simple root α ∈ ∆̂+.

If g has a non-zero Killing form, the affine denominator identity, stated in [KW] and
proven in [KW],[G2], takes the form

(1) R̂eρ̂ =
∑

w∈T ′

w(Reρ̂),

where T ′ is the affine translation group corresponding to the “largest” root subsystem of
∆0 (see Section 1.2.1 below). The affine denominator identity for strange Lie superalgebras
Q(n), which are not contragredient, was stated in [KW] and proven in [Z].
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Suppose g has zero dual Coxeter number, that is g is A(n|n), D(n|n+ 1) or D(2, 1, a).
In this case, ρ̂ = ρ = 1

2
(
∑

α∈∆+0
α−

∑

α∈∆+1
α). In this paper we will prove the following

formulas

(2)
R̂eρ̂ · f(q, estr) =

∑

w∈T ′ w(Reρ̂) for A(n|n),

R̂eρ̂ · f(q) =
∑

w∈T ′ w(Reρ̂) for D(n+ 1|n), D(2, 1, a),

where T ′ is the affine translation group corresponding to the “smallest” root subsystem
of ∆0 (see 0.2 below) and f(q, estr), f(q) are given by the formulas (3) below. The affine
denominator identity for gl(2|2) was stated by V. Kac and M. Wakimoto in [KW] and
proven in [G3] (the proof in [G3] is different from the proof presented below).

In order to write down f(q), we introduce the following infinite products after [DK]:
for a parameter q and a formal variable x we set

(1 + x)∞q :=

∞
∏

k=0

(1 + qkx), and (1− x)∞q :=

∞
∏

k=0

(1− qkx).

These infinite products converge for any x ∈ C if the parameter q is a real number 0 <
q < 1. In particular, they are well defined for 0 < x = q < 1 and (1±q)∞q :=

∏∞
n=1(1±qn).

For A(n|n) = gl(n|n) denote by str the restriction of the supertrace to the Cartan
subalgebra h ⊂ g (thus str ∈ h∗). One has

(3)
f(q, estr) =

(1−q(−1)nestr)∞q ·(1−q(−1)ne−str)∞q
((1−q)∞q )2

for gl(n|n),

f(q) =
(

(1− q)∞q
)−1

for D(n+ 1|n).

As it was pointed by P. Etingof, the terms f(q, estr), f(q) can be interpreted using
“degenerate” cases n = 1; for example, for gl(1|1) we obtain the formula

R̂eρ̂ =
((1− q)∞q )2

(1 + qestr)∞q · (1 + qe−str)∞q
Reρ̂,

which is trivial since gl(1|1) has the only positive root β = str, which is odd.

Since sl(n|n) = {a ∈ gl(n|n)| str(a) = 0} and rank sl(n|n) = 2n− 1 = rank gl(n|n)− 1,
one has

f(q) =

{

(1− q)∞q for sl(2n|2n),
((1+q)∞q )2

(1−q)∞q
for sl(2n+ 1|2n+ 1).

The root datum of D(2, 1, a) is the same as the root datum of D(2|1) so the affine
denominator identity for D(2, 1, a) is the same as the affine denominator identity for
D(2|1).
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As it is shown in [KW], the evaluation of the affine denominator identity for gl(2|2)
(i.e., (2) for A(1|1)) gives the following Jacobi identity [J]:

(4) �(q)8 = 1 + 16

∞
∑

j,k=1

(−1)(j+1)kk3qjk,

where �(q) =
∑

j∈Z q
j2 and thus the coefficient of qm in the power series expansion of

�(q)8 is the number of representation of a given integer as a sum of 8 squares (taking into
the account the order of summands).

0.2. In order to define T ′ for A(n|n), D(n+ 1|n) we present the set of even roots in the
form ∆0 = ∆′

∐

∆′′, where

∆′ ∼= ∆′′ = An−1 for A(n− 1|n− 1) = gl(n|n),
∆′ = Cn, ∆′′ = Dn+1 for D(n+ 1|n).

Let W ′ be the Weyl group of ∆′ and Ŵ ′ be the corresponding affine Weyl group. Then
Ŵ ′ = W ′ ⋉ T ′, where T ′ is a translation group, see [K2], Chapter VI. Notice that for
D(n + 1|n) the rank of root system ∆′ is smaller than the rank of ∆′′; by contrast, for
Lie superalgebras with non-zero Killing form, the lattice T ′ in (1) corresponds to the
root system ∆′, whose rank is not smaller than the rank of ∆′′ (one has ∆0 = ∆′

∐

∆′′

as before). It is not possible to change T ′ to T ′′ in Identity (1) and in Identity (2) for
D(n+1|n), since the sum

∑

w∈T ′′ w(Reρ) is not well defined if ∆′ 6∼= ∆′′ (see Remark 2.1.4).

We prove Identity (2) and outline a similar proof for Identity (1). The key point
is Proposition 2.3.2, where it is shown that for any complex finite-dimensional contra-
gredient Lie superalgebra, the expansion of Y := R̂−1e−ρ̂

∑

w∈T ′ w(Reρ̂) contains only

Ŵ -invariant elements. This implies that Y = f(q) for g 6= gl(n|n) and Y = f(q, e−str) for
gl(n|n). We determine f(q) for D(n+ 1|n) and f(q, estr) for gl(n|n) using suitable evalu-
ations. For other finite-dimensional contragredient simple Lie superalgebras the equality
f(q) = 1 can be obtained in two steps: first, using the Casimir operator and the fact that
the dual Coxeter number is non-zero, we show that f(q) is scalar; then one deduces that
this scalar is equal to 1 from the denominator identity for g (this is done in [G2]).

Acknowledgement. A part of this manuscript was written during the first author’s stay
at Max Planck Institut für Mathematik in Bonn, whose hospitality is greatly appreciated.
The authors are grateful to P. Etingof and to V. Kac for fruitful discussions.

1. Preliminary

One readily sees (for instance, [G2], 1.5) that Reρ̂ and R̂eρ̂ do not depend on the choice
of set of positive roots ∆+ so it is enough to establish the identity for one choice of ∆+.
Similarly, it is enough to establish the identity for one choice of An−1 for gl(n|n). In
Section 1.1 we describe our choice of the set of of positive roots for gl(n|n), D(n + 1|n).
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In Section 1.2 we introduce notation for affine Lie superalgebra ĝ. In Section 1.3 we
introduce the algebra R of formal power series in which we expand R and R̂.

1.1. Root systems. Let g be gl(n|n) or D(n|n+ 1) and let h be its Cartan subalgebra.
We fix the following sets of simple roots:

Π = {ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , εn − δn} for gl(n|n),
Π = {ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , εn − δn, δn ± εn+1} for D(n+ 1|n).

We fix a non-degenerate symmetric invariant bilinear form on g and denote by (−,−)
the induced non-degenerate symmetric bilinear form on h∗; we normalize the form in such
a way that −(εi, εj) = (δi, δj) = δij ; notice that {εi, δi|1 ≤ i ≤ n} (resp., {εj, δi|1 ≤ i ≤
n, 1 ≤ j ≤ n + 1} is an orthogonal basis of h∗ for gl(n|n) (resp., for D(n+ 1|n)).

For this choice one has

∆0+ = {εi − εj}1≤i<j≤n

∐

{δi − δj}1≤i<j≤n for gl(n|n),
∆1+ = {εi − δj}1≤i≤j≤n ∪ {δi − εj}1≤i<j≤n for gl(n|n),
∆0+ = {εi ± εj}1≤i<j≤n+1

∐

{δs ± δt}1≤s<t≤n ∪ {2δs}1≤s≤n for D(n+ 1|n),
∆1+ = {εi − δs}1≤i≤s≤n ∪ {δs − εj}1≤s<j≤n+1 ∪ {δi + εj}1≤i≤n;1≤j≤n+1 for D(n+ 1|n).

For D(n + 1|n) one has ρ = 0 for D(n + 1|n). For gl(n|n) one has str =
∑n

i=1(εi − δi)
and ρ = −1

2
str.

Recall that sl(n|n) = {a ∈ gl(n|n)| str(a) = 0} and so h∗ for sl(n|n) is the quotient of
h∗ for gl(n|n) by Cstr.

By above, ∆0 is the union of two irreducible root systems, and we write ∆0 = ∆′′
∐

∆′,
where ∆′′ lies in the span of εis and ∆′ lies in the span of δis (this notation is compatible
with notations in Section 0.2).

1.2. Non-twisted affinization. Let g = n− ⊕ h⊕ n+ be any complex finite-dimensional
contragredient Lie superalgebra with a fixed triangular decomposition, and let ∆+ be its

set of positive roots. Let ĝ be the affinization of g and let ĥ be its Cartan subalgebra,
see [K2], Chapter VI. Recall that g = [g, g]⊕ CD for some D ∈ ĥ. Let ∆̂ = ∆̂0

∐

∆̂1 be
the set of roots of ĝ. We set

∆̂+ = ∆+ ∪ (∪∞
k=1{α + kδ| α ∈ ∆}) ∪ (∪∞

k=1{kδ}),

where δ is the minimal imaginary root. Let W (resp., Ŵ ) be the Weyl group of ∆0 (resp.,

∆̂0). One has (ĥ∗)Ŵ = Cδ for g 6= gl(n|n) and (ĥ∗)Ŵ = Cδ ⊕ Cstr for g = gl(n|n).

We extend the non-degenerate symmetric invariant bilinear form from g to ĝ and denote
by (−,−) the induced non-degenerate symmetric bilinear form on ĥ∗ (the above-mentioned

form on h∗ is induced by this form on ĥ∗). For A ⊂ ĥ∗ we set A⊥ = {µ ∈ ĥ∗| ∀ν ∈
A (µ, ν) = 0}.
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1.2.1. In Section 1.1 we introduced the root systems ∆′,∆′′ for g = gl(n|n), D(n+ 1|n).
For g 6= gl(n|n), D(n + 1|n), D(2, 1, a) the Killing form κ is non-zero; in this case, we
introduce ∆′,∆′′ by the formulas: ∆′ := {α|κ(α, α) > 0}, ∆′′ := {α|κ(α, α) < 0}. One
has ∆0 = ∆′

∐

∆′′ and ∆′′ = ∅ if ∆0 is irreducible. Let W
′ (resp., W ′′) be the Weyl group

of ∆′ (resp., ∆′′). One has W = W ′ ×W ′′.

1.2.2. Now that we have introduced the decomposition ∆0 = ∆′
∐

∆′′ for any complex

finite-dimensional contragredient Lie superalgebra, we denote by Ŵ ′ the Weyl group of
the affine root system ∆̂′. Recall that Ŵ ′ = W ′ ⋉ T ′, where T ′ is a translation group
(see [K2], Chapter VI).

1.2.3. For N ⊂ ĥ∗ we use the notation ZN for the set
∑

µ∈N Zµ. Set

Q+ :=
∑

µ∈∆+

Z≥0µ, Q := Z∆, Q̂± := ±
∑

µ∈∆̂+

Z≥0µ, Q̂ := Z∆̂+.

We introduce the standard partial order on ĥ∗: µ ≤ ν if (ν − µ) ∈ Q̂+.

1.3. Algebra R. We are going to use notation of [G2], 1.4, which we recall below. Retain
notation of Section 1.2.

1.3.1. Call a Q̂+-cone a set of the form (λ− Q̂+), where λ ∈ ĥ∗.

For a formal sum of the form Y :=
∑

ν∈ĥ∗ bνe
ν , bν ∈ Q define the support of Y by

supp(Y ) := {ν ∈ ĥ∗| bν 6= 0}. Let R be a vector space over Q, spanned by the sums of

the form
∑

ν∈Q̂+ bνe
λ−ν , where λ ∈ ĥ∗, bν ∈ Q. In other words, R consists of the formal

sums Y =
∑

ν∈ĥ∗ bνe
ν with the support lying in a finite union of Q̂+-cones.

Clearly, R has a structure of commutative algebra over Q. If Y ∈ R is such that
Y Y ′ = 1 for some Y ′ ∈ R, we write Y −1 := Y ′.

1.3.2. Action of the Weyl group. For w ∈ Ŵ set w(
∑

ν∈ĥ∗ bνe
ν) :=

∑

ν∈ĥ∗ bνe
wν . By above,

wY ∈ R iff w(suppY ) is a subset of a finite union of Q̂+-cones. For each subgroup W̃ of

Ŵ we set RW̃ := {Y ∈ R| wY ∈ R for each w ∈ W̃}; notice that RW̃ is a subalgebra of
R.

1.3.3. Infinite products. An infinite product of the form Y =
∏

ν∈X(1 + aνe
−ν)r(ν), where

aν ∈ Q, r(ν) ∈ Z≥0 and X ⊂ ∆̂ is such that the set X \ ∆̂+ is finite, can be naturally
viewed as an element of R; clearly, this element does not depend on the order of factors.
Let Y be the set of such infinite products. For any w ∈ Ŵ the infinite product

wY :=
∏

ν∈X

(1 + aνe
−wν)r(ν),
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is again an infinite product of the above form, since the set w∆̂+ \ ∆̂+ is finite (see for

example [G2], Lemma 1.2.8). Hence Y is a Ŵ -invariant multiplicative subset of RŴ .

The elements of Y are invertible in R: using the geometric series we can expand Y −1

(for example, (1− eα)−1 = −e−α(1− e−α)−1 = −
∑∞

i=1 e
−iα).

1.3.4. The subalgebra R′. Denote by R′ the localization of RŴ by Y . By above, R′

is a subalgebra of R. Observe that R′ 6⊂ RŴ : for example, (1 − e−α)−1 ∈ R′, but

(1 − e−α)−1 =
∑∞

j=0 e
−jα 6∈ RŴ . We extend the action of Ŵ from RŴ to R′ by setting

w(Y −1Y ′) := (wY )−1(wY ′) for Y ∈ Y , Y ′ ∈ RŴ .

Notice that an infinite product of the form Y =
∏

ν∈X(1+aνe
−ν)r(ν), where aν , X are as

above and r(ν) ∈ Z, lies in R′ and wY =
∏

ν∈X(1+aνe
−wν)r(ν). The support supp(Y ) has

a unique maximal element (with respect to the standard partial order) and this element
is given by the formula

max supp(Y ) = −
∑

ν∈X\∆̂+:aν 6=0

rνν.

1.3.5. Let W̃ be a subgroup of Ŵ . For Y ∈ R′ we say that Y is W̃ -invariant (resp.,

W̃ -anti-invariant) if wY = Y (resp., wY = sgn(w)Y ) for each w ∈ W̃ .

Let Y =
∑

aµe
µ ∈ RW̃ be W̃ -anti-invariant. Then awµ = (−1)sgn(w)aµ for each µ and

w ∈ W̃ . In particular, W̃ supp(Y ) = supp(Y ), and, moreover, for each µ ∈ supp(Y )
one has StabW̃ µ ⊂ {w ∈ W̃ | sgn(w) = 1}. The condition Y ∈ RW̃ is essential: for

example, for W̃ = {id, sα}, the expressions Y := eα − e−α, Y −1 = e−α(1 − e−2α)−1 are
W̃ -anti-invariant, supp(Y ) = {±α} is sα-invariant, but supp(Y −1) = {−α,−3α, . . .} is
not sα-invariant.

For Y ∈ RW̃ such that each W̃ -orbit in ĥ∗ has a finite intersection with supp(Y ),
introduce the sum

FW̃ (Y ) :=
∑

w∈W̃

sgn(w)wY.

This sum is well defined, but does not always belong to R. For Y =
∑

aµe
µ one has

FW̃ (Y ) =
∑

bµe
µ, where bµ =

∑

w∈W̃ sgn(w)awµ; in particular, bµ = sgn(w)bwµ for each

w ∈ W̃ . One has

Y ∈ RW̃ & FW̃ (Y ) ∈ R =⇒







supp(FW̃ (Y )) is W̃ -stable,
FW̃ (Y ) ∈ RW̃ ;

FW̃ (Y ) is W̃ -anti-invariant.

We call a vector λ ∈ ĥ∗ W̃ -regular if StabW̃ λ = {id}, and we say that the orbit W̃λ

is W̃ -regular if λ is W̃ -regular (so the orbit consists of W̃ -regular points). If W̃ is an
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affine Weyl group, then for any λ ∈ ĥ∗ the stabilizer StabW̃ λ is either trivial or contains

a reflection. Thus for W̃ = Ŵ ′, Ŵ ′′ one has

Y ∈ RW̃ & FW̃ (Y ) ∈ R =⇒ supp(FW̃ (Y )) is a union of W̃ -regular orbits.

For Y ∈ R′ the sum
∑

w∈W̃ sgn(w)wY is not always W̃ -anti-invariant: for example,

for W̃ = {id, sα} one has
∑

w∈W̃ sgn(w)w((1 − e−α)−1) = (1 − e−α)−1 − (1 − eα)−1 =

1 + 2e−α + 2e−2α + . . ., which is not W̃ -anti-invariant.

2. Proof

As it is pointed out in Section 1, it is enough to establish the denominator identity for a
particular choice of ∆+ and we do this for the choice described in Section 1.1. Recall that
the group T ′ was introduced in Section 1.2.2. The steps of the proof are the following.

1) In Section 2.1 we check that for g = gl(n|n), D(n + 1|n), the sum FT ′(Reρ̂) is well-
defined and belongs to R.

2) In Section 2.2 we prove the inclusions

(5) supp(FT ′(Reρ̂)), supp(R̂eρ̂) ⊂ U,

where

(6) U := {µ ∈ ρ̂− Q̂+| (µ, µ) = (ρ̂, ρ̂)}

for g = gl(n|n) and D(n+ 1|n).

For simple contragredient Lie superalgebras with non-zero Killing form steps (1), (2)
are performed in [G2], 2.4.

3) In Section 2.3 we show that for any finite-dimensional simple contragredient Lie

superalgebra g the inclusions (5) imply that supp
(

R̂−1e−ρ̂FT ′(Reρ̂)
)

⊂ Q̂Ŵ . As a result,

R̂−1e−ρ̂FT ′(Reρ̂) takes the form f(q) (resp., f(q, estr)) for g 6= gl(n|n) (resp., for gl(n|n)).

4) In Section 2.4 we compute f(q) (resp., f(q, estr)) for D(n+ 1|n) (resp., for gl(n|n)).
This completes the proof of Identity (2).

In Section 2.5 we briefly repeat the arguments of [G2] showing that f(q) = 1 for
g 6= gl(n|n), D(n+ 1|n), D(2, 1, a). This completes the proof of Identity (1).

2.1. Step 1. In this subsection we show that for g = gl(n|n), D(n+1|n), the sum FT ′(Reρ̂)

is a well-defined element of R. Since ρ̂ = ρ is Ŵ -invariant, it is enough to verify that
FT ′(R) is a well-defined element of R.

Recall that T ′ = Z{tδi−δi+1
}n−1
i=1 for gl(n|n) and T ′ = Z{tδi}

n
i=1 for D(n+ 1|n), where

(7) tµ(α) = α− (α, µ)δ for any α ∈ Q̂.
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2.1.1. By Section 1.3.4 one has

max supp
(

w(R)
)

=
∑

α∈∆0+:wβ<0

wα−
∑

β∈∆1+:wβ<0

wβ.

For w ∈ T ′ write w = tµ, where µ ∈ Z{δi − δi+1}1≤i<n for gl(n|n) and µ ∈ Z{δi}
n
i=1 for

D(n+ 1|n). From (7) we get

{β ∈ ∆i+|wβ < 0} = {β ∈ ∆i+|(β, µ) > 0} for i = 0, 1.

We obtain max supp
(

tµ(R)
)

= −v(µ) + (v(µ), µ)δ, where

v(µ) :=
∑

β∈∆0+:(β,µ)>0

β −
∑

β∈∆1+:(β,µ)>0

β.

In order to prove that FT ′(R) is a well-defined element of R we verify that

(8) (i) ∀µ (v(µ), µ) ≤ 0; (ii) ∀N > 0 {µ| (v(µ), µ) ≥ −N} is finite.

The condition (ii) ensures that the sum FT ′(R) =
∑

µ tµ(R) is well-defined and the con-

dition (i) means that for each µ one has

max supp(tµ(R)) = −v(µ) ≤
∑

β∈∆1+

β

so supp
(

FT ′(R)
)

⊂
∑

β∈∆1+
β − Q̂+ and thus FT ′(R) ∈ R.

2.1.2. Case gl(n|n). Recall that w ∈ T ′ has the form w = tµ, µ =
∑n

i=1 kiδi, where the
kis are integers and

∑n
i=1 ki = 0. One has

{α ∈ ∆+0| (α, µ) > 0} := {δi − δj | i < j, ki > kj},
{α ∈ ∆+1| (α, µ) > 0} := {εi − δj| kj < 0, i ≤ j} ∪ {δi − εj| ki > 0, i < j},

where 1 ≤ i, j ≤ n.

Write v(µ) = v′ + v′′, where v′ =
∑n

i=1 aiδi and v′′ lies in the span of εis. By above, for
ki > 0 one has ai ≤ (n− i)− (n− i) = 0 and for kj < 0 one has aj ≥ −(j − 1) + j = 1.
Therefore (v(µ), µ) =

∑n
i=1 aiki ≤

∑

ki<0 ki ≤ 0 and the set {µ| (v(µ), µ) ≥ −N} is a
subset of the set {µ|

∑

ki<0 ki ≥ −N}, which is finite for any N , because kis are integers

and
∑n

i=1 ki = 0. This establishes conditions (8).

2.1.3. Case D(n + 1|n). Recall that w ∈ T ′ has the form w = tµ, µ =
∑

kiδi, where the
kis are integers. One has

{α ∈ ∆+0| (α, µ) > 0} := {δi − δj| i < j, ki > kj} ∪ {δi + δj| i 6= j, ki + kj > 0} ∪ {2δi| ki > 0},
{α ∈ ∆+1| (α, µ) > 0} := {εs − δj| kj < 0, s ≤ j} ∪ {δi − εs| ki > 0, i < s} ∪ {δi + εs| ki > 0},

where 1 ≤ i, j ≤ n and 1 ≤ s ≤ n+ 1.



DENOMINATOR IDENTITY 9

Write v(µ) = v′ + v′′, where v′ =
∑n

i=1 aiδi and v′′ lies in the span of εis. By above,
for ki > 0 one has ai ≤ (2n + 1 − i) − (2n + 2 − i) = −1 and for kj < 0 one has
aj ≥ −(j − 1) + j = 1. Therefore

(v(µ), µ) =
n

∑

i=1

aiki ≤ −
∑

ki>0

ki +
∑

kj<0

kj = −
n

∑

1=1

|ki| ≤ 0

so the set {µ| (v(µ), µ) ≥ −N} is a subset of the set {µ|
∑n

i=1 |ki| ≤ N}, which is finite
for any N . This establishes conditions (8).

2.1.4. Remark. For gl(n|n) one can interchange ∆′ and ∆′′ so the sum FT ′′(R) is well-
defined. One readily sees that FT ′′(R) is not well-defined for D(n + 1|n). For instance,
for n > 1, for each k > 0 one has v(−2kε1) = 0 so max supp

(

t−2kε1(R)
)

= 0 and the sum
∑∞

k=1 t−2kε1(R) is not well-defined; hence FT ′′(R) is not well-defined as well.

2.2. Step 2. By Section 1.3.3, R̂ is an invertible element of R′. From representation
theory we know that since ĝ admits a Casimir element [K2], Chapter II, the character of
the trivial ĝ-module is a linear combination of the characters of Verma ĝ-modules M(λ),

where λ ∈ −Q̂ are such that (λ+ ρ̂, λ+ ρ̂) = (ρ̂, ρ̂). Since the character of M(λ) is equal

to R̂−1eλ, we obtain

1 =
∑

λ∈Q̂−,
(λ+ρ̂,λ+ρ̂)=(ρ̂,ρ̂)

aλR̂
−1eλ,

where aλ ∈ Z. This can be rewritten as

R̂eρ̂ =
∑

λ∈ρ̂−Q̂+,
(λ,λ)=(ρ̂,ρ̂)

aλe
λ,

that is supp(R̂) ⊂ U , see (6) for notation.

It remains to verify the inclusion supp
(

FT ′(Reρ̂)
)

⊂ U . The denominator identity for
g (see [KW],[G1]) takes the form

Reρ = FW ′′

( eρ
∏

β∈S(1 + e−β)

)

,

where S := {εi− δi}
n
i=1 (the identity for gl(n|n) immediately follows from the identity for

sl(n|n)). Since ρ = ρ̂ is Ŵ -invariant, this implies

tµ(Reρ̂) = eρ̂
∑

w∈W ′′

sgn(w)
∏

β∈S

(1 + e−tµwβ)−1.

For each tµ ∈ T ′ and w ∈ W ′′ one has

supp
(

∏

β∈S

(1 + e−tµwβ)−1
)

⊂ V, where V := Z{tµwβ| β ∈ S} ∩ Q̂−.



10 MARIA GORELIK, SHIFRA REIF

Since (tµwβ, tµwβ
′) = (β, β ′) = (tµwβ, ρ̂) = (ρ̂, β) = 0 for any β, β ′ ∈ S , one has

(V, V ) = (V, ρ̂) = 0. Therefore V + ρ̂ ⊂ U so supp
(

tµ(Reρ̂)
)

⊂ U for each µ. This

establishes the required inclusion supp
(

FT ′(Reρ̂)
)

⊂ U and completes the proof of (5).

2.3. Step 3. Let us deduce the inclusion supp(R̂−1eρ̂ · FT ′(Reρ̂)) ⊂ (Q̂−)Ŵ from (5).

2.3.1. Lemma. For any simple finite-dimensional contragredient Lie superalgebra g

the term FT ′(Reρ̂) is a Ŵ ′-anti-invariant element of RŴ ′.

Proof. In the light of Section 1.3.5, it is enough to present FT ′(Reρ̂) in the form FŴ ′(Y )
for some Y ∈ RŴ . Let R′

0, R
′′
0 be the Weyl denominators for ∆′,∆′′ respectively (i.e.,

R′
0 =

∏

α∈∆′

+
(1− e−α)). Below we will prove the formula

(9) FT ′(Reρ̂) = FŴ ′

(R′′
0e

ρ̂

R1

)

.

By Section 1.3.3, R−1
1 R′′

0e
ρ̂ ∈ RŴ , so the formula establishes the required assertion.

Let us show that the right-hand side of (9) is well-defined. Since R′′
0 is Ŵ

′-invariant, it is
enough to verify that FŴ ′

(

eρ̂R−1
1

)

is a well-defined element of R. For g 6= gl(n|n), D(n+
1|n) this is proven in [G2], 2.4.1 (i). Consider the case g = gl(n|n), D(n + 1|n). Since ρ̂

is Ŵ -invariant, it is enough to check that FŴ ′(R
−1
1 ) is a well-defined element of R. By

Section 1.3.4, for each w ∈ Ŵ ′ one has

max supp
(

w(R−1
1 )

)

=
∑

β∈∆1+:wβ<0

wβ.

In particular, supp
(

w(R−1
1 )

)

⊂ Q̂−, so, if the sum FŴ ′(R
−1
1 ) =

∑

w∈Ŵ ′ sgnw · w(R−1
1 ) is

well-defined, it lies in R. In order to see that this sum is well-defined let us check that
for each ν ∈ Q̂− the set

X(ν) := {w ∈ Ŵ ′|
∑

β∈∆1+:wβ<0

wβ ≥ ν}

is finite. One has

X(ν) ⊂ {w ∈ Ŵ ′| ∀β ∈ ∆1+ wβ ≥ ν}.

Write ν = −kδ + ν ′, where k ≥ 0, ν ′ ∈ Q, and write w ∈ X(ν) in the the form w = tµy,
where tµ ∈ T ′, y ∈ W ′. Since wβ = yβ − (yβ, µ)δ for β ∈ ∆1+, one has (yβ, µ) ≥ −k for
each β ∈ ∆1+. Since {εi − δi, δi − εi+1} ⊂ ∆1+, this gives |(µ, yδi)| ≤ k for i = 1, . . . , n.
Combining the facts that W ′ is a subgroup of signed permutation of {δj}

n
j=1 and that

(µ, δi) is integral for each i, we conclude that X(ν) is finite. Thus FŴ ′

(R′′

0

R1

)

is a well-
defined element of R.
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Now let us prove the formula (9). Recall that ρ = ρ′0 + ρ′′0 − ρ1, where

ρ′0 :=
∑

α∈∆′

0+

α/2, ρ′′0 :=
∑

α∈∆′′

0+

α/2, ρ1 :=
∑

β∈∆1+

β/2.

The Weyl denominator identity for ∆′′
0 takes the form

R′
0e

ρ′
0 = FW ′(eρ

′

0).

Since R1e
ρ1 =

∏

β∈∆1+
(eβ/2 + e−β/2) is W -invariant and R′′

0e
ρ′′0 is W ′-invariant, we get

Reρ =
R′′

0e
ρ′′
0

R1eρ1
· FW ′(eρ

′

0) = FW ′

(eρ
′

0R′′
0e

ρ′′
0

R1eρ1

)

= FW ′

(R′′
0e

ρ

R1

)

.

Using the W -invaraince of ρ̂− ρ, we obtain

FT ′

(

Reρ̂) = FT ′

(

FW ′

(R′′
0e

ρ̂

R1

))

= FŴ ′

(R′′
0e

ρ̂

R1

)

as required. This completes the proof. �

2.3.2. Proposition. Let g be a simple finite-dimensional contragredient Lie superal-
gebra. One has

supp(R̂−1eρ̂ · FT ′(Reρ̂)) ⊂ (Q̂−)Ŵ = Q̂− ∩ Q̂⊥.

Proof. By Section 2.1.1, FT ′(Reρ̂) ∈ R; by Section 1.3.3, R̂−1 ∈ R so

Y := R̂−1e−ρ̂ · FT ′(Reρ̂) ∈ R.

The affine root system ∆̂′ is a subsystem of ∆̂0. Set ∆̂′
+ = ∆̂′ ∩ ∆̂+ and let Π̂′ be the

corresponding set of simple roots. Fix ρ̂′ ∈ ĥ∗ such that 2(ρ̂′, α) = (α, α) for each α ∈ Π̂′.

It is easy to see that R̂0e
ρ̂′ , R̂eρ̂ are Ŵ ′-anti-invariant elements of R′ (see, for in-

stance, [G2], 1.5.1). Thus R̂1e
ρ̂′−ρ̂ = R̂0e

ρ̂′ · (R̂eρ̂)−1 is a Ŵ ′-invariant element of R′. By

Section 1.3.3, R̂1 ∈ RŴ so R̂1e
ρ̂′−ρ̂ is a Ŵ ′-invariant element of RŴ . Using Lemma 2.3.1,

we get

(10) R̂0e
ρ̂′Y = R̂1e

ρ̂′−ρ̂FT ′(R) is a Ŵ ′-anti-invariant element of RŴ ′.

Write Y = Y1 + Y2, where supp(Y1) = supp(Y ) ∩ Q̂⊥ and supp(Y2) = supp(Y ) \ Q̂⊥.
Note that Y1, Y2 ∈ R. Assume that Y2 6= 0. Let µ be a maximal element in supp(Y2). One

has supp(R̂−1) ⊂ Q̂− and supp
(

FT ′(R)eρ̂
)

⊂ ρ̂−Q̂+, by Section 1.3.4 and (5) respectively.

Thus supp(Y ) ⊂ Q̂− and so µ ∈ Q̂−.

Since supp(Y1) ⊂ Q̂⊥, Y1 is a Ŵ -invariant element of RŴ so R̂0e
ρ̂′Y1 is a Ŵ ′-anti-

invariant element of RŴ ′ . In the light of (10), the product R̂0e
ρ̂′Y2 is also a Ŵ ′-anti-

invariant element of RŴ ′. Clearly, ρ̂′ + µ is a maximal element in the support of R̂0e
ρ̂′Y2.
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By Section 1.3.5, this support is the union of Ŵ ′-regular orbits (recall that regularity

means that each element has the trivial stabilizer in Ŵ ′), so ρ̂′ + µ is a maximal element

in a regular Ŵ ′-orbit and thus 2(ρ̂′+µ,α)
(α,α)

6∈ Z≤0 for each α ∈ Π̂′. Since µ ∈ Q̂− one has
2(µ,α)
(α,α)

∈ Z for each α ∈ Π̂′. Taking into account that 2(ρ̂′,α)
(α,α)

= 1 for each α ∈ Π̂′, we obtain

(11) ∀α ∈ Π̂′ 2(µ, α)

(α, α)
∈ Z≥0.

Recall that δ =
∑

α∈Π̂′ kαα for some kα ∈ Z>0 (see [K2], Chapter VI). Since µ ∈ Q̂− one

has (µ, δ) = 0. Combining with (11), we get (µ, α) = 0 for each α ∈ Π̂′ so µ ∈ (∆̂′)⊥.

One has

(∆̂′)⊥ ∩ Q̂ = (Q̂⊥ ∩ Q̂)⊕ V,

where the restriction of (−,−) to QV is negatively definite; more precisely, one has

g gl(n|n) gl(m|n), m 6= n C(n) other cases

Q̂⊥ ∩ Q̂ Z{δ, str} Zδ Zδ Zδ
V Z∆′′ Z∆′′ ⊕ Cξ Z∆′′ ⊕ Cξ Z∆′′

For g = gl(m|n), m 6= n and g = C(n) the element ξ is given in [G2], 3.2; one has

(∆′′, ξ) = 0, (ξ, ξ) < 0. Since V ⊂ Q̂, one has (V, Q̂⊥) = 0. Now combining the formulas

µ ∈ (Q̂⊥ ∩ Q̂) ⊕ V, (µ, µ) = 0 with the fact that (ν, ν) < 0 for each non-zero ν ∈ V , we

obtain µ ∈ Q̂⊥ ∩ Q̂ = Q̂Ŵ , which contradicts to the construction of Y2. Hence Y2 = 0 as
required. �

2.3.3. Using the table in the proof of Proposition 2.3.2, we obtain the following corollary.

Corollary. For g 6= gl(n|n) one has f(q)·R̂eρ̂ = FT ′(Reρ̂) for some f(q) =
∑∞

k=0 akq
k

(ak ∈ Z). For g = gl(n|n) one has f(q, estr) · R̂eρ̂ = FT ′(Reρ̂) for some f(q, estr) =
∑∞

k=0

∑∞
m=−∞ ak,mq

kem·str (ak,m ∈ Z).

2.4. Step 4 for g = gl(n|n), D(n + 1|n). In this subsection we complete the proof of
the denominator identities (2) by proving the formulas (3). We prove them by taking a

suitable evaluation of R̂−1
∑

t∈T ′ t(R). By Corollary 2.3.3, R̂−1
∑

t∈T ′ t(R) is equal to f(q)
for D(n+1|n) and to f(q, estr) for gl(n|n). Now we consider q as a real parameter between

0 and 1. We choose the evaluation in such a way that the evaluation of R̂−1
∑

t∈T ′ t(R)

is equal to the evaluation of R̂−1R. As a result, f(q) (resp., f(q, estr)) is equal to the

evaluation of R̂−1R, which can be easily computed.

2.4.1. Case D(n + 1|n). Take a complex parameter x and consider the following eval-
uation: e−εi := xai , e−δj := −xbj , where ai, (i = 1, . . . , n + 1), bj , (j = 1, . . . , n) are
integers such that ai ± bj 6= 0, ai ± aj 6= 0, bi ± bj 6= 0, bi 6= 0 for all indexes i, j. We



DENOMINATOR IDENTITY 13

denote the evaluation of R (resp., R̂) by R(x) (resp., R̂(x)). The functions R(x), R̂(x)
are meromorphic. One has

R(x) =

∏

1≤i<j≤n+1(1− xai±aj ) ·
∏

1≤i<j≤n(1− xbi±bj ) ·
∏

1≤i≤n(1− x2bi)
∏

1≤i≤j≤n(1− xai±bj )
∏

1≤j<i≤n+1(1− xai±bj)
.

One readily sees that R(x) has a pole at x = 1 of order |∆1+| − |∆0+| = n.

One has

R̂(x)

R(x)

∣

∣

∣

∣

∣

x=1

=
((1− q)∞q )dim g0

((1− q)∞q )dim g1
= ((1− q)∞q )dim g0−dim g1 = (1− q)∞q .

In particular, R̂(x) also has a pole of order n at x = 1.

The evaluation of (t∑ kiδi(R))(x) is
∏

1≤i<j≤n+1(1− xai±aj ) ·
∏

1≤i≤n(1− q−2kix2bi) ·
∏

1≤i<j≤n(1− q−ki∓kjxbi±bj)
∏

1≤i≤j≤n(1− q∓kjxai±bj )
∏

1≤j<i≤n+1(1− q∓kjx−ai±bj )

which is a meromorphic function. Let s be the number of zeros among k1, . . . , kn. Then
at x = 1 the order of zero of the numerator is at least is n(n + 1) + s2, and the order of
zero of the denominator is 2(n+ 1)s. Therefore at x = 1 the function (t∑ kiδi(R))(x) has
the pole of order at most 2(n+ 1)s− n(n+ 1)− s2 = n+ 1− (n+ 1− s)2; in particular,
(t∑ kiδi(R))(x) has the pole of order at most n and it is equal to n iff n = s that is
∑

kiδi = 0 and (t∑ kiδi(R))(x) = R(x).

We conclude that (R̂(x))−1 ·
∑

t∈T ′:t6=id(t(R))(x) is holomorphic at x = 1 and its value

is equal to zero, and that (R̂(x))−1 ·
∑

t∈T ′(t(R))(x) is holomorphic at x = 1 and its value

is equal to R(x)

R̂(x)
|x=1. In the light of Corollary 2.3.3 we obtain

f(q) =
R(x)

R̂(x)

∣

∣

∣

∣

∣

x=1

= ((1− q)∞q )−1.

2.4.2. Case gl(n|n). Fix y > 1. Take a complex parameter x and consider the following
evaluation

e−ε1 := y, e−εi := xi, for i = 2, . . . , n e−δi := −x−i for i = 1, . . . , n.

The functions R(x), R̂(x) are meromorphic. One has

R(x) =

∏

1<i≤n(1− yx−i) ·
∏

1<i<j≤n(1− xi−j) ·
∏

1≤i<j≤n(1− xj−i)
∏

1≤i≤n(1− yxi) ·
∏

1<i≤j≤n(1− xi+j) ·
∏

1≤j<i≤n(1− x−i−j)
.

Therefore the function R(x) has a pole of order n− 1 at x = 1.
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One has

R̂(x)

R(x)

∣

∣

∣

∣

∣

x=1

=
((1− q)∞q )dim g0−2(n−1) · ((1− qy)∞q )n−1 · ((1− qy−1)∞q )n−1

((1− q)∞q )dim g1−2n · ((1− qy)∞q )n · ((1− qy−1)∞q )n
.

Thus R̂(x) also has a pole of order n − 1 at x = 1. Since dim g0 = dim g1 and estr =
(−1)ny−1 for x = 1 we obtain

R̂(x)

R(x)

∣

∣

∣

∣

∣

x=1

=
((1− q)∞q )2

(1− q(−1)nestr)∞q · (1− q(−1)ne−str)∞q
.

One has

(t∑ kiδi(R))(x, y) =

∏

1<i≤n(1− yx−i) ·
∏

1<i<j≤n(1− xi−j) ·
∏

1≤i<j≤n(1− qkj−kixj−i)
∏

1≤i≤n(1− qkiyxi) ·
∏

1<i≤j≤n(1− qkjxi+j) ·
∏

1≤j<i≤n(1− q−kjx−i−j)
,

which is a meromorphic function.

Let s be the number of zeros among k1, . . . , kn. Then at x = 1 the order of zero of

the numerator is at least (n−1)(n−2)+s(s−1)
2

, and the order of zero of the denominator is
(n− 1)s. Therefore at x = 1 the function (t∑ kiδi(R))(x, y) has the pole of order at most

(n − 1)s − (n−1)(n−2)+s(s−1)
2

= 3n−s−2−(n−s)2

2
, so the order is at most n − 1 and it is equal

to n − 1 iff s = n − 1, n. Notice that s 6= n − 1, since
∑

ki = 0. Therefore the pole has
order n− 1 iff

∑

kiδi = 0.

We conclude that the function (R̂(x))−1(FT ′(R))(x) is holomorphic at x = 1 and its

value is equal to R(x)

R̂(x)
|x=1. Using Corollary 2.3.3 we obtain

f(q, estr) =
R(x)

R̂(x)

∣

∣

∣

∣

∣

x=1

=
(1− q(−1)nestr)∞q · (1− q(−1)ne−str)∞q

((1− q)∞q )2
.

2.5. Step 4 for g 6= gl(n|n), D(n+1|n), D(2, 1, a). In this case the dual Coxeter number

is non-zero. Recall that q = e−δ. Write f(q) =
∑∞

k=0 ake
−kδ. Since f(q) · R̂eρ̂ = FT ′(Reρ̂),

we have
∞
∑

k=1

ake
−δ · R̂eρ̂ = FT ′(Reρ̂)− a0R̂eρ̂.

By (5), for any ν in the support of the right-hand side, one has (ν, ν) = (ρ̂, ρ̂), and for
any ν in the support of the left-hand side one has (ν, ν) = (ρ̂, ρ̂)−2k(δ, ρ̂) for some k > 0.
Since (ρ̂, δ) is equal to the dual Coxeter number, which is non-zero, we conclude that the

intersection of supports is empty. Hence f(q) = a0. Since the coefficient of eρ̂ in R̂eρ̂ is
equal to one, a0 is equal to the coefficient of eρ̂ in FT ′(Reρ̂). As it is shown in [G2], this
coefficient is equal to one so f(q) = 1 as required.
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3. Other forms of denominator identity

Recall that denominator identity for a basic Lie superalgebra can be written in the
form

(12) Reρ = FW ♯

( eρ
∏

β∈S(1 + e−β)

)

,

whereW ♯ := W ′ for g 6= D(n+1|n), D(2, 1, a) andW ♯ := W ′′ for g = D(n+1|n), D(2, 1, a),
and S ⊂ Π is the maximal isotropic system (see [KW],[G1]). If the dual Coxeter number
of g is non-zero the affine denominator identity for g can be written in the form

R̂eρ̂ = F
Ŵ ♯

( eρ̂
∏

β∈S(1 + e−β)

)

see [KW],[G2]. In this section we will show that for gl(n|n) the denominator identity can
be written in a similar form:

(13) R̂eρ = f(q, estr) · FŴ ′

( eρ
∏

β∈S(1 + e−β)

)

,

and that the denominator identities for D(n+ 1|n) can not be written in a similar form,
since the expressions FŴ ′′

(

eρ∏
β∈S(1+e−β)

)

, FŴ ′

(

eρ∏
β∈S(1+e−β)

)

are not well defined.

3.1. Case D(n+1|n). Let us show that the expressions FŴ ′′

(

eρ∏
β∈S(1+e−β)

)

, FŴ ′

(

eρ∏
β∈S(1+e−β)

)

are not well-defined for D(n+ 1|n). Fix Π as in Section 1.1 and recall that ρ = 0.

We repeat the reasonings of Section 2.1.1. One has
∑

β∈V (w)

wβ ∈ supp
( 1
∏

β∈S(1 + e−wβ)

)

⊂
∑

β∈VS(w)

wβ − Q̂+ ⊂ Q̂−,

where

VS(w) = {β ∈ S|wβ < 0}.

Therefore 1 ∈ supp
(

1∏
β∈S(1+e−wβ)

)

iff wS ⊂ ∆+.

Take S = {εi − δi}; then tµS ⊂ ∆+ if (εi − δi, µ) < 0 for all i which holds for all
µ ∈

∑

Z<0εi and all µ ∈
∑

Z>0δi. Hence the sums FŴ ′′

(

eρ∏
β∈S(1+e−β)

)

, FŴ ′

(

eρ∏
β∈S(1+e−β)

)

contain infinitely many summands equal to 1 and thus they are not well-defined.

3.2. Case gl(n|n). Fix Π as in Section 1.1; then S = {εi − δi}.

In order to deduce the formula (13) from (12) and (2) it is enough to verify that the
expression

FŴ ′

( eρ
∏

β∈S(1 + e−β)

)

= eρFŴ ′

( 1
∏

β∈S(1 + e−β)

)
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is well-defined (since ρ = str/2 is Ŵ -invariant). As in Section 2.1.1, it amounts to show
that

XS(ν) := {w ∈ Ŵ ′|
∑

β∈VS(w)

wβ ≥ −ν}

is finite for any ν ∈ Q̂+ (where VS(w) is defined as in Section 3.1). As in Section 2.1.1,
writing ν = kδ + ν+, where ν+ ∈ Z∆, we get

XS(ν) ⊂ {tµy|µ ∈ T ′, y ∈ W ′ s.t. (yS, µ) ≥ −k}.

Since y permutes δis, tµy ∈ XS(ν) forces (δi, µ) ≥ −k for all i. Taking into account that
µ lies in the Z-span of δi and (µ,

∑n
i=1 δi) = 0, we conclude that XS(ν) is finite. This

establishes (13).
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