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POSITIVE DEFINITE METRIC SPACES

MARK W. MECKES

Abstract. Magnitude is a numerical invariant of finite metric spaces, recently introduced
by T. Leinster, which is analogous in precise senses to the cardinality of finite sets or the
Euler characteristic of topological spaces. It has been extended to infinite metric spaces in
several a priori distinct ways. This paper develops the theory of a class of metric spaces,
positive definite metric spaces, for which magnitude is more tractable than in general.
Positive definiteness is a generalization of the classical property of negative type for a
metric space, which is known to hold for many interesting classes of spaces. It is proved
that all the proposed definitions of magnitude coincide for compact positive definite metric
spaces and further results are proved about the behavior of magnitude as a function of
such spaces. Finally, some facts about the magnitude of compact subsets of ℓnp for p ≤ 2
are proved, generalizing results of Leinster for p = 1, 2, using properties of these spaces
which are somewhat stronger than positive definiteness.

1. Introduction

Magnitude is a canonical numerical invariant of finite metric spaces recently introduced
by Tom Leinster [22, 24], motivated by considerations from category theory. The same
notion appeared earlier, although it was not really developed, in connection with measuring
biodiversity [34]. Magnitude is analogous in a precise sense to the Euler characteristic of
topological spaces or partially ordered sets, and to the cardinality of finite sets, and it may
be interpreted as the effective number of points of a space. The definition of magnitude
was extended to infinite metric spaces in various ways in the papers [25, 41, 42, 24]. In this
setting, magnitude turns out to have close connections (some proved, and some only conjec-
tural at present) to classical invariants of geometric measure theory and integral geometry,
including Hausdorff dimension and intrinsic volumes of convex bodies and Riemannian man-
ifolds. This paper is devoted to developing the theory of a particular class of metric spaces,
positive definite metric spaces, for which the theory of magnitude is more tractable than
in general. Examples of positive definite metric spaces include many spaces of interest,
including all subsets of Lp when 1 ≤ p ≤ 2, round spheres, and hyperbolic spaces.

Given a finite metric space (A, d), its similarity matrix is the matrix ζA ∈ RA×A given

by ζA(x, y) = e−d(x,y). A weighting for A is a vector w ∈ RA such that ζAw = 1, the

vector indexed by A whose entries are all 1; i.e.,
∑

y∈A e
−d(x,y)w(y) = 1 for every x ∈ A. If

a weighting w for A exists, then the magnitude of A is defined to be |A| = ∑
x∈Aw(x).

(It is easy to check that if multiple weightings for A exist, they give the same value for |A|.)
The reader is referred to [24] for the category-theoretic motivation of this definition, and to
[24, 25, 41, 42] for discussions of various intuitive interpretations of magnitude.

As a function of an arbitrary finite metric space, magnitude may exhibit a number of
pathological behaviors, the most obvious of which is that it may be undefined. One simple
condition that prevents this unpleasant situation (as well as other pathologies; see [24,
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Section 2.4] for a number of relevant results) is if the similarity matrix ζA is positive definite.
In that case ζA is in particular invertible, and w = ζ−1

A 1 is a weighting for A. A finite
metric space A is called positive definite (respectively, positive semidefinite) if ζA is a
positive definite (positive semidefinite) matrix. Besides the fact that magnitude is always
defined, other nice properties of the class of positive definite finite metric spaces include
that magnitude is positive and monotone. That is, if A is a positive definite space and
∅ 6= B ⊆ A (so that B is positive definite as well), then 0 < |B| ≤ |A|.

Three different approaches to extending the definition of magnitude to infinite spaces were
taken in [25, 42, 24]. One of the purposes of this paper is to show that these approaches
are essentially equivalent in the presence of an appropriate positive definiteness assumption.
To that end, an arbitrary metric space A is defined to be positive definite (respectively
positive semidefinite) if each of its finite subsets is positive definite (positive semidefinite)
with their induced metrics. Other aims of this paper are to investigate the regularity of
magnitude as a function of a positive definite metric space, and to clarify somewhat which
metric spaces are and are not positive definite.

As will be seen in Section 3, a natural strengthening of positive definiteness is equivalent
to the classical property of negative type for metric spaces. Although the terminology is
more recent, negative type was introduced and studied by Menger [29] and Schoenberg
[31, 33], and is well-studied in the literature on metric embeddings; see e.g. [39, 3]. Thus
the theory of magnitude naturally leads back to this classical notion.

For clarity, a metric space A = (A, d) here consists of a nonempty set A equipped with
a metric d : A×A→ [0,∞) such that

• d(x, y) = 0 if and only if x = y,
• d(x, y) = d(y, x) for every x, y ∈ A, and
• d(x, y) ≤ d(x, z) + d(z, x) for every x, y, z ∈ A.

The category-theoretic motivation for the definition of magnitude is based in part on the
observation by Lawvere [21] (which will not be explained here) that a metric space is a
particular instance of an enriched category. As pointed out to the author by T. Leinster, of
the properties of d above only the triangle inequality and the fact that d(x, x) = 0 for every
x are necessary to Lawvere’s observation (which moreover even allows infinite distances);
whereas some classical results used in this paper, for example [33, Theorem 1], require
the symmetry property of d but not the triangle inequality. Attention will therefore be
restricted to the classical definition of a metric space as given above.

The rest of this paper is organized as follows. The remainder of this section establishes
some additional notation and terminology. Section 2 shows the equivalence, for compact
positive definite metric spaces, of several proposed definitions of magnitude, and investigates
continuity properties of magnitude as a function of the metric space. Section 3 discusses
sufficient conditions for positive definiteness, in particular showing the connection with
negative type, and presents some counterexamples. Finally, Section 4 generalizes some
results of Leinster [24] about the magnitude of subsets of Euclidean space ℓn2 and taxicab
space ℓn1 to ℓnp spaces for p < 2, using properties of those spaces which are stronger than
positive definiteness.
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Notation, terminology, and conventions

It will be useful to consider two general simple transformations of a metric on a fixed
set. If A = (A, d) is a metric space, t ∈ (0,∞), and α ∈ (0, 1], then tA is shorthand for the
metric space (A, td) and Aα is shorthand for the metric space (A, dα).

For a metric space A, M(A) denotes the space of finite signed Borel measures on A.
Unless otherwise specified, a measure will always refer to a finite signed Borel measure.
Denote further by M+(A) the cone of positive measures on A, by FM(A) the space of
finitely supported signed measures on A, and by FM+(A) the cone of finitely supported
positive measures on A. The space M(A) is equipped with the norm ‖µ‖ = |µ| (A), where
|µ| ∈M+(A) is the total variation of µ.

If (X, d) is a metric space and A,B ⊆ X, the Hausdorff distance between A and B is

dH(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
;

it is easy to verify that this defines a metric on the class of compact subsets of X. If A and
B are metric spaces then the Gromov-Hausdorff distance between A and B is

dGH(A,B) = inf dH
(
ϕ(A), ψ(B)

)
,

where the infimum is over all metric spaces X and isometric embeddings ϕ : A →֒ X and
ψ : B →֒ X. It is a nontrivial result that this defines a metric on the family of isometry
classes of compact metric spaces; see [9, Chapter 3].

The precise normalizations used for Fourier transforms will not be important here, but
for concreteness, the Fourier transform of a measure µ on Rn is defined as the function

µ̂(ω) =

∫

Rn

e−i2π〈x,ω〉 dµ(x),

where 〈·, ·〉 is the standard inner product on Rn, and the Fourier transform of f ∈ L1(R
n)

is the function

f̂(ω) =

∫

Rn

f(x)e−i2π〈x,ω〉 dx.

For 0 < p <∞, Lp will be used as shorthand for the vector space Lp[0, 1] of equivalence
classes (under almost everywhere equality) of measurable functions x : [0, 1] → R such that

‖x‖p =
(∫ 1

0
|x(t)|p dt

)1/p

<∞.

As is well-known, ‖·‖p defines a quasinorm on Lp which is is only a norm when p ≥ 1; it

is less well-known that when 0 < p < 1, d(x, y) = ‖x− y‖pp defines a metric on Lp. Below,

Lp will be equipped with the metric d(x, y) = ‖x− y‖min{1,p}
p unless otherwise specified.

An isometry involving these spaces is understood as a metric-preserving function and not
a quasinorm-preserving function when p < 1 (see the comments following Proposition 3.4).

Similarly, ℓnp denotes Rn equipped with the the metric d(x, y) = ‖x− y‖min{1,p}
p , where

‖x‖p =
(∑n

j=1 |xj |p
)1/p

for 0 < p <∞ and ‖x‖∞ = max1≤j≤n |xj|.

Acknowledgements
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results of [20], and the web sites the n-Category Café1 and MathOverflow2, which were
central in starting my involvement in this project.

2. Magnitude of positive definite spaces

Three different definitions for the magnitude of an infinite metric space A have been
proposed in [24, 25, 41, 42]. The first definition of |A| is as the supremum of the magnitudes
of finite subspaces of A (see [24, Definition 3.1.1]). This is unsatisfactory in general since
magnitude is not monotone with respect to inclusion among arbitrary finite metric spaces
(see [24, Example 2.1.7]), so that this definition is not consistent with the original one when
restricted to finite spaces. However, [24, Corollary 2.4.4] shows that this is not the case
among finite positive definite metric spaces, making this definition reasonable for compact
positive definite metric spaces (the scope assumed in [24, Definition 3.1.1]).

The second approach, taken in [25] and [41], is to consider a sequence of finite sub-
spaces {Ak} such that limk→∞Ak = A in the Hausdorff distance, and then define |A| =
limk→∞ |Ak|. This is unsatisfactory since it is not clear a priori whether this limit is inde-
pendent of the approximating subspaces {Ak}.

The third approach, taken in [42], is to generalize the original definition of magnitude
using measures for weightings. A weight measure for (A, d) is a finite signed measure

µ ∈ M(A) such that
∫
A e

−d(x,y) dµ(y) = 1 for every x ∈ A. If A possesses a weight
measure µ, then the magnitude of A may be defined as µ(A). If A possesses multiple weight
measures, it is easy to check that they give the same value for the magnitude; however it
is not clear how generally weight measures exist. (If A is a compact homogeneous space
then A has a weight measure; see [42, Theorem 1]. Other sufficient conditions follow from
Lemma 2.8 and Corollary 2.10 below.) In [42], Willerton showed that the magnitudes of
intervals, circles, and Cantor sets, as computed via weight measures, coincide with their
magnitudes as computed in [25] using the second approach.

The results of this section show that all these approaches to defining magnitude yield
the same value of magnitude for compact positive definite metric spaces, and also develop
some continuity properties of magnitude on such spaces. It will be convenient to take
yet a fourth approach to the definition of magnitude, in terms of a Rayleigh-like quotient
expression which already appears, in the finite case, in [24], and develop its relationships to
the three approaches described above.

Given a compact metric space (A, d), define a bilinear form ZA on M(A) by

ZA(µ, ν) =

∫

A

∫

A
e−d(x,y) dµ(x) dν(y).

By Fubini’s theorem, ZA is symmetric. Observe that if µ is a weight measure for A and
ν ∈M(A), then ZA(µ, ν) = ν(A).

If A is a compact positive definite metric space, the magnitude of is defined to be A to
be

(2.1) |A| = sup

{
µ(A)2

ZA(µ, µ)

∣∣∣∣µ ∈M(A), ZA(µ, µ) 6= 0

}
.

1http://golem.ph.utexas.edu/category/
2http://mathoverflow.net
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In [24, Proposition 2.4.3] it is proved that when A is finite and positive definite, this coincides
with the earlier definition (cf. Theorem 2.3 below). Observe that an immediate consequence
of this definition is that if B ⊆ A then |B| ≤ |A|.

It will also be useful to consider the quantity

(2.2) |A|+ = sup

{
µ(A)2

ZA(µ, µ)

∣∣∣∣µ ∈M(A)+, µ 6= 0

}
.

Note that if A is positive definite, then ZA(µ, µ) > 0 whenever µ is a nonzero positive
measure. The quantity |A|+ is called the maximum diversity of A because of an in-
terpretation related to theoretical ecology (see [23] and the discussion at the end of [24,
Section 2.4]). For any compact positive definite metric space A, it is easy to check that
|A|+ ≤ exp(diam(A)).

Compactness is a useful and natural-seeming condition to assume in this context. How-
ever, it is not clear that it is necessarily the most natural condition to use. If A is an
infinite set in which each distinct pair of points is separated by a distance r > 0, then A is
a noncompact positive definite metric space, which can nevertheless sensibly be assigned a
finite magnitude er using the first definition proposed above (see [24, Section 3.1]). On the
other hand, it is unknown at present whether the magnitude of a compact positive definite
metric space can be infinite. As in [24, Section 3], attention will nevertheless be restricted
here to compact spaces.

The following lemma is central to the results of this section. Recall that if (A, d) is a
metric space and f : A → R is uniformly continuous, the modulus of continuity of f is
the function ωf : (0,∞) → [0,∞) defined by

ωf (ε) = sup
{
|f(x)− f(y)|

∣∣x, y ∈ A, d(x, y) < ε
}
.

Lemma 2.1. Let A and B be compact subspaces of a metric space X and let µ ∈ M(A).
For any ε > dH(A,B) there exists a ν ∈M(B) such that ν(B) = µ(A), ‖ν‖ ≤ ‖µ‖ , and for
any uniformly continuous f : X → R,

∣∣∣∣
∫

A
f dµ−

∫

B
f dν

∣∣∣∣ ≤ ‖µ‖ωf (2ε).

Moreover, if µ is positive then ν can be taken to be positive.

Proof. Let x1, . . . , xN ∈ A be the centers of open ε-balls which cover A. Each open ball
B(xj, ε) in X contains a point yj ∈ B, and then the balls B(yj, 2ε) cover A. Thus the
disjoint open sets U1 = B(y1, 2ε) and

Uj = B(yj, 2ε) \
j−1⋃

k=1

B(yk, 2ε) for j = 2, . . . , N

also cover A. Let ν =
∑N

j=1 µ(Uj ∩A)δyj . Then
∣∣∣∣
∫

A
f dµ−

∫

B
f dν

∣∣∣∣ =

∣∣∣∣∣∣

N∑

j=1

∫

Uj

(
f(x)− f(yj)) dµ(x)

∣∣∣∣∣∣
≤

N∑

j=1

∫

Uj

|f(x)− f(yj)| d |µ| (x)

≤
N∑

j=1

ωf (2ε) |µ| (Uj ∩A) = ωf (2ε) |µ| (A) = ‖µ‖ωf (2ε).
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Furthermore,

ν(B) =

N∑

j=1

µ(Uj ∩A) = µ(A)

and

‖ν‖ = |ν| (B) =

N∑

j=1

|µ(Uj ∩A)| ≤
N∑

j=1

|µ| (Uj ∩A) = |µ| (A) = ‖µ‖ . �

Lemma 2.2. A compact metric space A is positive semidefinite if and only if ZA is a
positive semidefinite bilinear form on M(A). If ZA is positive definite then A is positive
definite.

Proof. Recall that by definition (A, d) is positive (semi)definite if all of its finite subspaces
are positive (semi)definite. The “if” parts follow by applying the positive (semi)definite
bilinear form ZA to finitely supported signed measures.

Now suppose that A is positive semidefinite and let µ ∈M(A) and ε > 0. Apply Lemma
2.1 with B a finite (ε/2)-net in A to obtain ν ∈M(B) with ‖ν‖ ≤ ‖µ‖ such that

∣∣∣∣
∫

A
e−d(x,y) dµ(y)−

∫

A
e−d(x,y) dν(y)

∣∣∣∣ ≤ ε ‖µ‖

for each x ∈ A. From this it follows that

|ZA(µ, µ)− ZA(ν, ν)| ≤
∣∣∣∣
∫

A

∫

A
e−d(x,y) dµ(y) dµ(x)−

∫

A

∫

A
e−d(x,y) dν(y) dµ(x)

∣∣∣∣

+

∣∣∣∣
∫

A

∫

A
e−d(x,y) dµ(x) dν(y)−

∫

A

∫

A
e−d(x,y) dν(x) dν(y)

∣∣∣∣
≤ ε ‖µ‖2 + ε ‖µ‖ ‖ν‖ ≤ 2ε ‖µ‖2 .

Since B is a positive semidefinite finite metric space, ZA(ν, ν) ≥ 0, which implies ZA(µ, µ) ≥
−2ε ‖µ‖2. Since ε > 0 was arbitrary, ZA(µ, µ) ≥ 0. �

The next result, which generalizes [24, Proposition 2.4.3], shows the agreement of the
present definition (2.1) with the measure-theoretic definition of magnitude used in [42],
whenever both definitions can be applied.

Theorem 2.3. Suppose A is a compact positive definite metric space. The supremum in
(2.1) is achieved for a measure µ if and only if µ is a nonzero scalar multiple of a weight
measure for A. If µ is a weight measure for A then |A| = µ(A).

Proof. Suppose first that µ is a weight measure for A. (If µ achieves the supremum in
(2.1), then so does any nonzero scalar multiple of µ by homogeneity.) By Lemma 2.2, ZA is
a positive semidefinite bilinear form on M(A), and therefore satisfies the Cauchy-Schwarz
inequality. Thus if ν ∈M(A), then

ν(A) = ZA(µ, ν) ≤
√
ZA(µ, µ)ZA(ν, ν) =

√
µ(A)ZA(ν, ν),

with equality if ν = µ, and so

µ(A) =
µ(A)2

ZA(µ, µ)
= sup

{
ν(A)2

ZA(ν, ν)

∣∣∣∣ν ∈M(A), ZA(ν, ν) 6= 0

}
.
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Now suppose that µ achieves the supremum in (2.1) and let ν ∈M(A) satisfy ν(A) = 0.
Then for any t ∈ R,

ZA(µ, µ) ≤ ZA(µ+ tν, µ+ tν) = ZA(µ, µ) + 2ZA(µ, ν)t+ ZA(ν, ν)t
2.

Since ZA(ν, ν) ≥ 0 by Lemma 2.2, this implies that ZA(µ, ν) = 0. Applying this in the case
that ν = δx − δy for arbitrary x, y ∈ A yields

∫

A
e−d(x,z) dµ(z) =

∫

A
e−d(y,z) dµ(z),

and thus µ is a scalar multiple of a weight measure for A. �

Theorem 2.4 below shows that the present definition of magnitude (2.1) coincides, for
positive definite spaces, with the first proposed definition discussed above.

Theorem 2.4. For any positive definite compact metric space A,

(2.3) |A| = sup

{
µ(A)2

ZA(µ, µ)

∣∣∣∣µ ∈ FM(A), µ 6= 0

}
= sup

{
|B|
∣∣B ⊆ A is finite

}
.

and

(2.4) |A|+ = sup

{
µ(A)2

ZA(µ, µ)

∣∣∣∣µ ∈ FM+(A), µ 6= 0

}
= sup

{
|B|+

∣∣B ⊆ A is finite
}
.

Proof. Observe first that when (A, d) is positive definite and µ ∈ FM(A), it follows that
ZA(µ, µ) = 0 only for µ = 0. The second equality in (2.3) follows from [24, Proposition
2.4.3] (or Theorem 2.3 above), which shows that for finite positive definite spaces, the present
definition (2.1) of magnitude agrees with the original definition. The second equality in (2.4)
is immediate from (2.2).

In both (2.3) and (2.4) the first quantity is by definition greater than or equal to the
second quantity. Let µ be a given measure on A such that ZA(µ, µ) 6= 0, and let ε > 0.
Apply Lemma 2.1 with B an (ε/2)-net in A to obtain ν ∈ FM(A), which is positive if µ is
positive, such that ν(A) = µ(A), ‖ν‖ ≤ ‖µ‖ and

∣∣∣∣
∫

A
f dµ−

∫

A
f dν

∣∣∣∣ ≤ ‖µ‖ωf (2ε)

for every continuous f : A→ R.
Define fµ : A→ R by fµ(x) =

∫
A e

−d(x,y) dµ(y), and define fν : A→ R analogously. Then

|fν(x)− fν(y)| ≤ ‖ν‖ d(x, y),
and

|fµ(x)− fν(x)| =
∣∣∣∣
∫

A
e−d(x,y) dµ(y)−

∫

B
e−d(x,y) dν(y)

∣∣∣∣ ≤ 2 ‖µ‖ ε.

Consequently,

|ZA(µ, µ)− ZB(ν, ν)| =
∣∣∣∣
∫

A
fµ dµ −

∫

A
fν dν

∣∣∣∣

≤
∣∣∣∣
∫

A
fµ dµ −

∫

A
fν dµ

∣∣∣∣+
∣∣∣∣
∫

A
fν dµ−

∫

A
fν dν

∣∣∣∣
≤ 2 ‖µ‖2 ε+ 2 ‖µ‖ ‖ν‖ ε ≤ 4 ‖µ‖2 ε.
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Therefore
ν(A)2

ZA(ν, ν)
=

µ(A)2

ZA(ν, ν)
≥ µ(A)2

ZA(µ, µ) + 4 ‖µ‖2 ε
.

Since ε > 0 was arbitrary,

sup

{
ν(A)2

ZA(ν, ν)

∣∣∣∣ν ∈ FM(A), ν 6= 0

}
≥ µ(A)2

ZA(µ, µ)
,

and if µ is positive the same holds for the supremum over FM+(A). �

In some circumstances magnitude can be expressed in terms of functions instead of mea-
sures. A positive measure ρ on a metric space A is called a good reference measure
if ρ(U) > 0 for every nonempty open U ⊆ A. For example, if A ⊆ Rn is the closure of
its interior as a subset of Rn, then Lebesgue measure restricted to A is a good reference
measure. This may be generalized naturally in at least two ways. On the one hand, if A is
a subset of a locally compact homogeneous metric space and A is the closure of its interior,
then a Haar measure restricted to A is a good reference measure. On the other hand, if A
is a metric space whose every nonempty open subset has the same Hausdorff dimension δ,
then δ-dimensional Hausdorff measure is a good reference measure on A.

Given h ∈ L1(A, ρ), hρ denotes the signed measure on A defined by (hρ)(S) =
∫
S h dρ.

The proof of the following result is analogous to the proof of Theorem 2.4.

Proposition 2.5. For any positive definite compact metric space A with a good reference
measure ρ,

|A| = sup

{
(hρ)(A)2

ZA(hρ, hρ)

∣∣∣∣h ∈ L1(A, ρ), ZA(hρ, hρ) 6= 0

}

and

|A|+ = sup

{
(hρ)(A)2

ZA(hρ, hρ)

∣∣∣∣h ∈ L1(A, ρ), h ≥ 0, h is not ρ-a.e. 0

}

The agreement of (2.1) with the definition of magnitude as the limit of magnitudes of an
approximating sequence of subspaces, as in [25, 41], will follow from the next result, which
is of independent interest.

Theorem 2.6. The function A 7→ |A| (with values in [1,∞]) is lower semicontinuous with
respect to Gromov-Hausdorff distance on the class of compact positive definite metric spaces.

Proof. Let (A, d) be a positive definite metric space with |A| < ∞ and let ε > 0 be given.
(The case where |A| = ∞ is handled similarly.) Pick a signed measure µ on A with
ZA(µ, µ) 6= 0 such that

|A| ≤ µ(A)2

ZA(µ, µ)
(1 + ε).

Now let B be any other positive definite metric space with dGH(A,B) > 0. Without loss
of generality one may assume that A,B ⊆ X for some metric space X, and dH(A,B) ≤
2dGH(A,B). Let ν ∈M(B) be as guaranteed by Lemma 2.1.

Define fµ : X → R by fµ(x) =
∫
A e

−d(x,y) dµ(y), and define fν analogously. Then

|fν(x)− fν(y)| ≤ ‖ν‖ d(x, y),
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and by Lemma 2.1,

|fµ(x)− fν(x)| =
∣∣∣∣
∫

A
e−d(x,y) dµ(y)−

∫

B
e−d(x,y) dν(y)

∣∣∣∣ ≤ 2 ‖µ‖ dH(A,B).

Consequently,

|ZA(µ, µ)− ZB(ν, ν)| =
∣∣∣∣
∫

A
fµ dµ −

∫

B
fν dν

∣∣∣∣

≤
∣∣∣∣
∫

A
fµ dµ −

∫

A
fν dµ

∣∣∣∣+
∣∣∣∣
∫

A
fν dµ−

∫

B
fν dν

∣∣∣∣
≤ 2 ‖µ‖2 dH(A,B) + 2 ‖µ‖ ‖ν‖ dH(A,B)

≤ 8 ‖µ‖2 dGH(A,B).

Therefore

|B| ≥ ν(B)2

ZB(ν, ν)
≥ µ(A)2

ZA(µ, µ) + 8 ‖µ‖2 dGH(A,B)

≥
(
1 +

8 ‖µ‖2
ZA(µ, µ)

dGH(A,B)

)−1

· |A|
1 + ε

.

So if dGH(A,B) ≤ ZA(µ,µ)

8‖µ‖2
ε, then |B| ≥ (1 + ε)−2 |A|. �

In general, |A| is not a continuous function of A. Examples 2.2.8 and 2.4.9 of [24] give an
example, due to S. Willerton, of a metric space A such that tA is positive definite for each
t > 0 and limt→0+ |tA| = 6/5, whereas limt→0+ tA = {∗}, which has magnitude 1. It is an
open question whether A 7→ |A| is continuous when restricted to compact subsets of a fixed
positive definite space. The asymptotic conjectures of [25] (see also [24, Conjecture 3.5.10])
would imply in particular that magnitude is continuous when restricted to compact convex
subsets of ℓn2 .

Theorem 2.6 and the monotonicity of magnitude for positive definite spaces immediately
imply the following result, which shows that the present definition (2.1) agrees with the def-
inition of magnitude in terms of an approximating sequence of subspaces, and in particular
shows that the latter definition is independent of the subspaces chosen.

Corollary 2.7. If A is a compact positive definite metric space and {Ak} is a sequence of
compact subspaces of A such that limk→∞ dH(Ak, A) = 0, then |A| = limk→∞ |Ak|.

Theorems 2.3 and 2.4 and Corollary 2.7 completely explain the agreement of calculations
of magnitudes using different definitions in [25] and [42], since all of the spaces involved are
positive definite by [24, Proposition 2.4.13] and Theorem 3.6 below.

The remaining results of this section develop some additional properties of maximum
diversity, which yield information about magnitude for a particular class of spaces. A
compact positive definite metric space A is called positively weighted if |A| = |A|+.
A finite positive definite space is positively weighted if and only if its weighting has only
nonnegative components; several results in [24, Section 2.4] give sufficient conditions for
this property and properties of the magnitude of such finite spaces.
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The following lemma gives several sufficient conditions for a compact positive definite
metric space to be positively weighted. It will be seen in Corollary 2.10 that the first of
these conditions is also necessary.

Lemma 2.8. Let (A, d) be a compact positive definite metric space. Under any of the
following conditions, A is positively weighted.

(1) There is a positive weight measure on A.
(2) The isometry group of A acts transitively on the points of A (i.e., A is a homogeneous

space).
(3) Every finite subset of A has a weighting with only nonnegative components.
(4) There is an isometric embedding of A into R, with the standard metric on R.
(5) For every x, y, z ∈ A, d(x, y) ≤ max{d(x, z), d(z, y)} (i.e., A is an ultrametric

space).

Proof. (1) This follows from Theorem 2.3.
(2) A compact homogeneous space has a nonnegative weight measure (see [42, Theorem

1] and the comments following it).
(3) This follows from Theorem 2.4.
(4) By [25, Theorem 4] or [24, Proposition 2.4.13], every finite subset of R has a non-

negative weighting.
(5) By [24, Proposition 2.4.18] (originally proved in [30]), every finite ultrametric space

has a nonnegative weighting. �

It should be noted that every subset of R and every ultrametric space is positive definite
(see [24, Proposition 2.4.13] and [36], respectively; also [24, Proposition 2.4.18] and Theorem
3.6 below). There exist homogeneous spaces which are not positive definite (see [24, Example
2.1.7]). Example 2.4.16 in [24] shows that when n ≥ 2, not all compact subsets of ℓn1 are
positively weighted, and numerical calculations in [41] show that not all compact subsets
of ℓn2 are positively weighted, although ℓn1 and ℓn2 are positive definite (see [24, Theorems
2.4.14 and 2.5.3]; also Theorem 3.6 below).

Proposition 2.9. If A is a compact positive definite metric space, then the supremum in
the definition (2.2) of |A|+ is achieved by some µ ∈M+(A).

Proof. Denote by P (A) = {µ ∈ M+(A) | µ(A) = 1} the space of probability measures on
A. A well-known consequence of the Banach-Alaoglu theorem is that when A is compact,
P (A) is compact with respect to the weak-∗ topology inherited from the action of M(A)
as the dual of the Banach space (C(A), ‖·‖). This topology on P (A) is metrized by the
Wasserstein distance

dW (µ, ν) = sup

{∫

A
f dµ−

∫

A
f dν

∣∣∣∣f : A→ R is 1-Lipschitz

}

(see e.g. [37, Corollary 6.12]). By homogeneity,

(2.5) |A|+ = sup
µ∈P (A)

1

ZA(µ, µ)
.

In the notation of the proof of Theorem 2.6, for µ, ν ∈ P (A),

|ZA(µ, µ)− ZA(ν, ν)| ≤
∣∣∣∣
∫

A
fµ dµ−

∫

A
fµ dν

∣∣∣∣+
∣∣∣∣
∫

A
fν dµ −

∫

A
fν dν

∣∣∣∣
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since
∫
A fµ dν =

∫
A fν dµ by Fubini’s theorem. As seen in the proof of Theorem 2.6, fµ

and fν are both 1-Lipschitz (because ‖µ‖ = ‖ν‖ = 1), and therefore

|ZA(µ, µ)− ZA(ν, ν)| ≤ 2dW (µ, ν).

By continuity and compactness, the supremum in (2.5) is achieved by some µ ∈ P (A),
which then also achieves the supremum in (2.2). �

Corollary 2.10. If A is a positively weighted compact positive definite metric space, then
there is a positive weight measure on A.

Proof. By Proposition 2.9, there is a µ ∈M+(A) which achieves the supremum in (2.1). By
Theorem 2.3, µ is, up to a scalar multiple, a weight measure for A. �

Proposition 2.11. The function A 7→ |A|+ is continuous with respect to the Gromov-
Hausdorff distance on the class of compact positive definite metric spaces.

Proof. Lower semicontinuity follows exactly as in the proof of Theorem 2.6. The argument
for upper semicontinuity proceeds along similar lines.

Given A and B with dGH(A,B) > 0, we may assume that A,B ⊆ X for some metric
space X and 0 < dH(A,B) ≤ 2dGH(A,B). Suppose that µ ∈M+(B) satisfies

|B|+ =
µ(B)

ZB(µ, µ)

(as guaranteed by Proposition 2.9) and construct ν ∈M+(A) as in Lemma 2.1. Proceeding
analogously to the proof of Theorem 2.6, one obtains that

µ(B)2

ZB(µ, µ)
≤ ν(A)2

ZA(ν, ν)− 8 ‖µ‖2 dGH(A,B)
.

Since µ is positive, ‖µ‖ = µ(B) = ν(A), and so

|B|+ ≤ ν(A)2

ZA(ν, ν)− 8ν(A)2dGH(A,B)
≤
(
1− 8ν(A)2

ZA(ν, ν)
dGH(A,B)

)−1

|A|+

≤
(
1− 8 |A|+ dGH(A,B)

)−1 |A|+ .

So if dGH(A,B) ≤ ε
8|A|+

for 0 < ε < 1, then |B|+ ≤ (1− ε)−1 |A|+. �

Corollary 2.12. Magnitude is continuous with respect to the Gromov-Hausdorff distance
on the class of positively weighted compact positive definite metric spaces.

A particular case of Corollary 2.12 is that magnitude is continuous with respect to
Gromov-Hausdorff distance for compact subsets of R. In this setting, the slightly weaker
result of continuity with respect to Hausdorff distance also follows from an exact integral
formula for the magnitude of a compact subset of R given in [24, Proposition 3.2.3].
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3. Examples and counterexamples of positive definite spaces

This section is divided into two subsections. The first investigates sufficient conditions
for positive definiteness of a metric space, in particular relating it to the classical property
of negative type, and gives a number of examples of positive definite metric spaces. The
second subsection gives some examples of metric spaces which are not positive definite, in
particular demonstrating that some natural operations on metric spaces do not preserve
positive definiteness.

3.1. Sufficient conditions for positive definiteness.
A function f : E → C on a vector space E is called positive definite if, for every finite

nonempty A ⊆ E, the matrix [f(x − y)]x,y∈A ∈ CA×A is positive semidefinite; f is called
strictly positive definite if [f(x − y)]x,y∈A is positive definite. (This inconsistency in
terminology is unfortunately well-established.) Thus a translation-invariant metric d on E

is a positive definite (respectively, positive semidefinite) metric if and only if x 7→ e−d(x,0)

is a strictly positive definite (positive definite) function.
The following classical result connects positive definiteness to harmonic analysis (see e.g.

[14]).

Proposition 3.1 (Bochner’s theorem). A continuous function f : Rn → C is positive defi-
nite if and only if f = µ̂ for some positive measure µ on Rn.

Bochner’s theorem does not consider strictly positive definite functions, and thus can-
not directly identify positive definite metrics on Rn. A theory of strictly positive definite
functions is presented in [40, Chapter 6], which contains several counterparts to Bochner’s
theorem, including the following.

Proposition 3.2 ([40, Theorem 6.11]). Suppose f ∈ L1(R
n) is continuous. Then f is

strictly positive definite if and only if f is bounded and f̂ is nonnegative and not uniformly
0.

Rather than being applied directly here, Proposition 3.2 will be combined with classical
results to prove Theorem 3.3 below, which allows positive definiteness of a metric space A
to be deduced from positive semidefiniteness of rescalings of A.

A metric space A is stably positive (semi)definite if tA is positive (semi)definite for
every t > 0. Since the definition of magnitude implicitly involves an arbitrary choice of scale
(as discussed at the beginning of [24, Section 2.2]), stable positive definiteness is arguably
a more natural condition on a metric space than positive definiteness. The space A is of
negative type if A1/2 is isometric to a subset of a Hilbert space. Spaces of negative type
have been studied extensively in the theory of embeddings of metric spaces; see e.g. [39, 3],
or [5, Section 2] for a concise recent survey. (The terminology negative type stems from an
alternative characterization of such spaces which will not be needed here.)

The following result shows that the theory of magnitude leads naturally to the classical
notion of negative type, and that the literature on negative type gives many examples of
positive definite metric spaces. As mentioned above, it is also a useful tool for upgrading
positive semidefiniteness to positive definiteness, allowing one to avoid using Proposition
3.2 or related results explicitly.

Theorem 3.3. The following are equivalent for a metric space A.

(1) A is stably positive definite, and thus every compact subset of A has a defined (pos-
sibly infinite) magnitude.
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(2) A is stably positive semidefinite.
(3) There is a sequence {tk > 0 | k ∈ N} with limk→∞ tk = 0 such that tkA is positive

semidefinite for every k.
(4) A is of negative type.

Proof. The implications (1) ⇒ (2) ⇒ (3) are trivial. The equivalence of (2) and (4) was
proved in [33, Theorem 1] (although that paper was written long before the terminology
used here was introduced). The proof will be completed by showing that (3) ⇒ (2) and (4)
⇒ (1).

Assume the condition in (3). It suffices to assume that A is finite. A finite metric space
A is positive semidefinite if and only if λmin(ζA) ≥ 0, where λmin denotes the smallest
eigenvalue of a symmetric matrix. Since the smallest eigenvalue of a symmetric matrix is a
continuous function of the matrix entries (see e.g. [12, p. 370]), the set of t such that tA is
positive semidefinite is a closed subset of (0,∞).

If A is a finite positive semidefinite metric space, then by the Schur product theorem [12,
Theorem 7.5.3], ζnA is a positive semidefinite matrix for every positive integer n. Therefore
the condition in (3) implies that the set of t such that tA is positive semidefinite is a dense
subset of (0,∞), and so A is stably positive semidefinite.

Suppose finally that (A, d) is of negative type. It suffices again to assume that A is finite.

Then there is a function ϕ : A→ ℓn2 for some n such that d(x, y) = ‖ϕ(x) − ϕ(y)‖22 for every
x, y ∈ A, so in particular ϕ is injective. For t > 0 define f : Rn → R by f(x) = exp

(
−t ‖x‖22

)
.

Proposition 3.2 implies that f is a strictly positive definite function, which means that

ζtA =
[
exp(−td(x, y))

]
x,y∈A

=
[
f
(
ϕ(x) − ϕ(y)

)]
x,y∈A

is a positive definite matrix. Thus A is stably positive definite. �

The equivalence of negative type with stable positive semidefiniteness, due to Schoenberg
[33], is well-known to experts on embeddings of metric spaces, and has been generalized in
various directions. The theory of magnitude, however, requires positive definiteness, and
the equivalence of stable positive definiteness with negative type appears to be new. A
further equivalence, between negative type and Enflo’s notion of generalized roundness [6],
was proved in [27].

After Theorem 3.3 was first proved (with a slightly weaker version of condition (3)),
T. Leinster found a direct proof of the implication (3) ⇒ (1). This gives an alternative,
more elementary proof of the equivalence of conditions (1)–(3) which is independent of the
notion of negative type. Leinster’s argument furthermore obviates the need for Proposition
3.2, or indeed any mention of strictly positive definite functions, in the development of this
theory. (However, the results of Section 4 below require properties of certain functions
which are stronger than strict positive definiteness.) Leinster’s proof is included here with
his permission.

Second proof of Theorem 3.3, (3) ⇒ (1). Assume without loss of generality that A is finite.
By [24, Proposition 2.2.6 (i)], ζtA is invertible for all but finitely many values of t > 0, and
thus there is an ε > 0 such that ζtA is invertible for all t ∈ (0, ε). By the continuity property
used above, either (a) λmin(ζtA) < 0 for all t ∈ (0, ε) or (b) λmin(ζtA) > 0 for all t ∈ (0, ε).
By condition (3), (a) is impossible, so (b) holds. Thus tA is positive definite for all t ∈ (0, ε).
By the positive definite version of the Schur product theorem, ntA is positive definite for
every t ∈ (0, ε) and positive integer n, and thus A is stably positive definite. �
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The remainder of this subsection is devoted to collecting examples of metric spaces which
are of negative type and hence positive definite. The following result essentially goes back
to Lévy, generalized by Bretagnolle, Dacunha-Castelle, and Krivine [2]. For the precise
version stated here, see [1, Theorem 8.9].

Proposition 3.4. Let (E, ‖·‖E) be a real separable quasinormed space and let 0 < p ≤ 2.
The following are equivalent.

(1) The function f(x) = exp(−‖x‖pE) is positive definite on E.
(2) There is a linear map T : E → Lp such that ‖x‖E = ‖T (x)‖p for every x ∈ E.

Some remarks are in order at this point. First, a map as in part (2) of Proposition 3.4 is
usually called an isometry between quasinormed spaces, even when the quasinorms are not
norms. The slightly pedantic formulation of Proposition 3.4 above is to avoid ambiguous
uses of the word isometry. Observe that if a quasinormed space (E, ‖·‖E) satisfies the
conditions of Proposition 3.4 for some p ∈ (0, 1], then d(x, y) = ‖x− y‖pE defines a metric
on E and the map T is an isometry from E equipped with this metric into Lp with the
metric d(x, y) = ‖x− y‖pp.

Second, the restriction to separable spaces here is merely for convenience of exposition
(in order to avoid introducing nonseparable Lp spaces). The main interest here is whether
compact subsets of E are positive definite, so this is no real restriction.

Finally, if a vector space E has a metric d which is homogeneous of any degree (in the
sense that for some β > 0, d(tx, ty) = tβd(x, y) for every x, y ∈ E and t > 0), then
tE = (E, td) is isometric to E for every t > 0. It follows from Proposition 3.3 that (E, d) is
stably positive definite if and only if (E, d) is positive semidefinite.

With these remarks in mind, the following is an immediate consequence of Proposition
3.4 and Theorem 3.3.

Corollary 3.5. The following are equivalent for a real separable normed space (E, ‖·‖E).
(1) E is a positive semidefinite metric space.
(2) E is a positive definite metric space.
(3) E is a metric space of negative type.
(4) E is isometric to a linear subspace of L1.

The next result collects several large classes of metric spaces which are known to have
negative type, and whose compact subspaces therefore all have well-defined magnitudes by
Theorem 3.3. The list is not intended to be exhaustive.

Theorem 3.6. Any metric space from each of the following classes is of negative type, and
hence positive definite.

(1) Aα, where A is a metric space of negative type and 0 < α ≤ 1.

(2) Lp for 0 < p ≤ 2 (with the metric d(x, y) = ‖x− y‖min{1,p}
p ).

(3) Two-dimensional real normed spaces.
(4) Metric spaces with at most four points.
(5) Ultrametric spaces.
(6) Round spheres (with the geodesic distance).
(7) Real or complex hyperbolic space.
(8) Weighted trees.

Proof. (1) This was proved by Schoenberg [33, p. 527].
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(2) It was proved in [2] that if 1 ≤ p ≤ 2, then Lp is isometric to a subspace of L1. Thus
it suffices to prove the claim in the case 0 < p ≤ 1.

Suppose now that 0 < p ≤ 1. The function f(x) = exp(−‖x‖pp) = e−d(x,0) is
positive definite on Lp by Proposition 3.4, which as observed above implies that Lp

is positive semidefinite and hence (by homogeneity and Theorem 3.3) of negative
type.

(3) By [19, Corollary 6.8], every two-dimensional real normed space is isometric to a
subspace of L1.

(4) By [43, Theorem 1], every N -point metric space with N ≥ 4 embeds isometrically
into ℓN−2

∞ . In particular, every four-point space is isometric to a subset of ℓ2∞, which
is two-dimensional so part (3) applies, or more simply is isometric to ℓ21.

(5) Every finite ultrametric space embeds isometrically in ℓn2 for some n; see e.g. [26].
(6) This follows from results in [15, 16]; see [11, p. 263].
(7) This is proved in [7, Corollaires 7.4 and 7.7].
(8) This is proved in [11, Corollary 7.2]. �

The class of functions of metrics which preserve negative type, as t 7→ tα does in part (1)
above, was determined in [32].

Leinster proved directly that ℓn1 and ℓn2 are positive definite for every n in Propositions
2.4.14 and 2.5.3 of [24], respectively. Leinster’s proof for ℓn2 is based on the same idea behind
the proof of Proposition 3.2 which partly underlies the (first) proof of Theorem 3.3.

The space L0 of measurable functions f : [0, 1] → R is also of negative type when equipped
with an appropriate metric that metrizes the topology of convergence in measure; see [1, p.
187].

A direct proof that three-point metric spaces are positive definite is given in [24, Propo-
sition 2.4.15]. No proof that every four-point space has a defined magnitude is known which
does not rely on an embedding into a positive definite normed space.

Ultrametric spaces were directly proved to be positive definite in [36], see also [24, Propo-
sition 2.4.18].

Some necessary conditions for manifolds to have negative type are also known. For
example, a compact Riemannian manifold of dimension at least two of negative type must
be simply connected [10, Theorem 5.4], and a compact Riemannian symmetric space of
negative type must be a round sphere [17, Corollary 2.6]. Since compact symmetric spaces
are homogeneous, their magnitude can nevertheless be defined via weight measures as in
[42].

3.2. Counterexamples.
This subsection collects several examples which demonstrate the limits of some of the

results in the previous two subsections, or show that some appealing conjectures about pos-
itive definiteness are false. Many of these and related examples are known in the literature
on metric spaces of negative type.

The first example shows that the converse of Theorem 3.6 (1) is false. Koldobsky [18]
constructed a normed space E which embeds as a quasinormed space (i.e. in the sense of
Proposition 3.4 (2)) into L1/2 but does not embed in L1. By Proposition 3.4 and homogene-

ity, this means that the metric space E1/2 is stably positive definite, but E is not positive
semidefinite.
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The second example shows that the threshold p = 2 in Theorem 3.6 (2) and the dimension
two in Theorem 3.6 (3) are both optimal. It was proved by Dor [4] that if 2 < p ≤ ∞ then
ℓ3p does not embed isometrically in L1, and is therefore not positive definite. In particular,
Lp is not positive definite for any p > 2.

The third example shows that the cardinality four in Theorem 3.6 (4) is optimal. As
shown in [24, Example 2.2.7], the vertices of the complete bipartite graph K3,2, with the
shortest path metric, form a metric space which is not positive definite if all edges have
equal lengths r < log

√
2.

The fourth set of examples are compact Riemannian manifolds which are not positive
definite with the geodesic metric. By [10, Theorem 5.4], if M is any non-simply connected
compact Riemannian manifold M of dimension at least two, then M fails to have negative
type. Thus by Theorem 3.3 there is some t > 0 such that tM is not positive definite.

It is also possible to give an example which is both more elementary is topologically a
sphere. The idea is simply to construct a surface S which almost isometrically contains a
copy of K3,2 with short edge lengths.

Start with a 2-sphere with radius smaller than (log 2)/π in R3, and consider the following
five points: two opposite poles, and three equidistant points on the equator. Drawing the
lines of longitude through the latter three points, we obtain a copy of K3,2 in the sphere

with equal edge lengths r < log
√
2. Now put large bulges on the sphere in the three regions

delineated by the three lines of longitude. These bulges may be made large enough to make
the geodesic distance on S between the three equatorial points arbitrarily close to the graph
distance 2r.

Since K3,2 with edge lengths r is not positive semidefinite, and the smallest eigenvalue
of a symmetric matrix is a continuous function of the matrix entries, it follows that the
bilinear form ZS on M(S) is not positive semidefinite.

The class of positive definite metric spaces is closed under taking ℓ1 products [24, Lemma
2.4.2 (ii)]. The next set of examples shows that ℓp products for any p > 1 fail to preserve
positive definiteness, even in the more restricted context of positive definite normed spaces
(in which one usually speaks of ℓp sums). For p > 2, this follows from the fact discussed
above that ℓ3p, which is the ℓp product of three copies of the positive definite space R, is
not positive definite. For 1 < p ≤ 2, [20, Corollary 3.4] shows that the ℓp sum of n copies
of ℓn1 does not embed isometrically in L1 when n is sufficiently large (specifically, when

n > (5
√
2)p/(p−1); this bound is not sharp), and hence is not positive semidefinite.

For a small concrete example, let A = {0,±e1,±e2} ⊆ ℓ21, and consider A×A ⊆ ℓ21⊕2 ℓ
2
1..

Then numerical calculation of the eigenvalues of ζt(A×A) for small t shows that A×A is not
stably positive definite.

The last examples show that the property of positive definiteness has no simple relation-
ship with 1-Lipschitz maps. First, positive definiteness is not preserved by 1-Lipschitz maps.
In fact, since every separable Banach space is isometric to a quotient space of the positive
definite space ℓ1 (cf. [28, p. 108]), it happens quite generically that 1-Lipschitz maps fail
to preserve positive definiteness. For a concrete low-dimensional example, one can define a
linear such map ℓ41 → ℓ3∞ (recall that the former space is positive definite and the latter is
not) by mapping the standard basis vectors of ℓ41 to the four vertices on one facet of the ℓ3∞
unit ball.
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On the other hand, if B is a positive definite metric space and there is a 1-Lipschitz
surjection f : A → B, A need not be positive definite. In the language of [24, Definition
2.2.4], this means that positive definiteness is not preserved by expansions. One can even
insist that f be a bijection. Let E be a normed space which is not positive definite and let
A ⊆ E be any finite subset which is not positive definite. Then a generic linear functional
f : E → R is injective when restricted to A, and B = f(A) ⊆ R is positive definite.

4. Magnitude in ℓnp

This section generalizes some results of Leinster [24] about the magnitude of subsets of ℓn1
and ℓn2 to the spaces

(
ℓnp
)α

for 0 < p ≤ 2 and 0 < α ≤ 1. Leinster’s proofs for Euclidean space

are based on the exact formula (4.4) for the Fourier transform of the function x 7→ e−‖x‖2

on Rn (for ℓn1 more elementary tools suffice). For 0 < p ≤ 2, 0 < α ≤ 1, and a positive
integer n, define

Fn
p,α : R

n → R, Fn
p,α(x) = exp

(
−‖x‖αmin{1,p}

p

)
.

The generalizations here require proving that the Fourier transforms F̂n
p,α share the prop-

erties of F̂n
2,1 which are essential in Leinster’s proofs.

Parts (1) and (2) of Theorem 3.6 imply that
(
ℓnp
)α

is of negative type, which by Theorem
3.3 is equivalent to the statement that Fn

p,α is a strictly positive definite function. Lemma
4.1 is a quantitative sharpening of this fact. In probabilistic terms, it gives polynomial
lower bounds on the densities of a particular class of stable random vectors. As such, it
may already be known in the probability literature, although we have been unable to find
a statement. The bounds given by the proof are nonoptimal, but are sufficient for the
purposes of the present paper.

Lemma 4.1. Given 0 < p ≤ 2, 0 < α ≤ 1, and a positive integer n there is a constant
cp,α,n > 0 such that

F̂n
p,α(ω) ≥ cp,α,n

(
1 + ‖ω‖2

)−(1+p)n

for every ω ∈ Rn.

Proof. Suppose first that 0 < p < 2. Define γp : R → R by γp(t) = e−|t|p . Then [19, Lemma
2.27] shows that γ̂p > 0 everywhere, and asymptotic expansions in Theorems 2.4.1, 2.4.2,
and 2.4.3 in [13] imply that

lim
|ω|→∞

γ̂p(ω) |ω|1+p

exists and is finite. It follows that there is a constant c(p) > 0 such that

(4.1) γ̂p(ω) ≥ c(p)(1 + |ω|)−(1+p)

for every ω ∈ R.
A theorem of Bernstein [8, Theorem XIII.4] implies that for every r ∈ (0, 1] there is a

probability measure µr on [0,∞) such that

(4.2) e−tr =

∫ ∞

0
e−ts dµr(s)
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for every t ≥ 0. In particular, for r = αmin{1/p, 1},

Fn
p,α(x) =

∫ ∞

0
e−s‖x‖pp dµr(s) =

∫ ∞

0




n∏

j=1

γp
(
s1/pxj

)

 dµr(s).

Now by Fubini’s theorem, a linear change of variables, and (4.1),

F̂n
p,α(ω) =

∫ ∞

0




n∏

j=1

s−1/pγ̂p
(
s−1/pωj

)

 dµr(s)(4.3)

≥ c(p)n
∫ ∞

0

(
s−1/p

(
1 + s−1/p ‖ω‖2

)−(1+p)
)n

dµr(s).

If 0 ≤ s ≤ 1, then

s−1/p
(
1 + s−1/p ‖ω‖2

)−(1+p)
= s
(
s1/p + ‖ω‖2

)−(1+p) ≥ s
(
1 + ‖ω‖2

)−(1+p)
.

If s > 1, then

s−1/p
(
1 + s−1/p ‖ω‖2

)−(1+p) ≥ s−1/p
(
1 + ‖ω‖2

)−(1+p)
.

Thus

F̂n
p,q(ω) ≥ c(p)n

(∫

[0,1]
sn dµr(s) +

∫

(1,∞)
s−n/p dµr(s)

)
(
1 + ‖ω‖2)−(1+p)d.

Now suppose p = 2. When also α = 1, there is the exact formula

(4.4) F̂n
2,1(ω) =

cn(
c′n + ‖ω‖22

)(n+1)/2
,

where cn, c
′
n > 0 are constants (which can be given explicitly) depending only on n (see [35,

Theorem I.1.4]). By (4.2), Fubini’s theorem, a linear change of variables, and (4.4),

(4.5) F̂n
2,α(ω) =

∫ ∞

0
s−n cn(

c′n + s−2 ‖ω‖22
)(n+1)/2

dµα(s).

The proof is completed as before. �

Lemma 4.2. Given 0 < p ≤ 2, 0 < α ≤ 1, and a positive integer n, for each ω ∈ Rn, the

function t 7→ F̂n
p,α(tω) is decreasing for t ≥ 0.

Proof. For p = 2 the lemma follows from (4.5) in the proof of Lemma 4.1.
For p < 2, [13, Theorem 2.5.3] implies that for any ω ∈ R, t 7→ γ̂p(tω) is decreasing on

[0,∞). The lemma in this case follows from this fact and the equality in (4.3). �

The main results of this section, Theorems 4.3 and 4.4, were proved by Leinster in the
cases that α = 1 and p = 1, 2 (see Theorem 3.4.8, Proposition 3.5.3, and Theorem 3.5.5
in [24]). The proofs below generalize Leinster’s proofs for ℓn2 , using Lemmas 4.1 and 4.2
in place of the exact formula (4.4). The results of Section 2 allow the exposition to be
simplified somewhat by working with measures instead of finite subsets.

Theorem 4.3. Let A be a compact subset of
(
ℓnp
)α

, where 0 < p ≤ 2 and 0 < α ≤ 1. Then
|A| <∞.
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Proof. Let ψ : Rn → R be an even, compactly supported, C∞ function such that ψ(x) = 1

for all x ∈ A − A = {y − z | y, z ∈ A}. Then ψ̂ is a real-valued Schwartz function. By
Lemma 4.1 there is some constant C(p, α, ψ) > 0 such that

ψ̂ ≤ C(p, α, ψ)F̂n
p,α

everywhere on Rn.
Since Fn

p,α is positive definite, integrable, and continuous at 0, [35, Corollary I.1.26]

implies that F̂n
p,α ∈ L1(R

n) and thus (since F̂n
p,α is also even) that Fn

p,α is the Fourier

transform of F̂n
p,α. Now for any µ ∈M(A), by Fubini’s theorem,

ZA(µ, µ) =

∫

A

∫

A
Fn
p,α(x− y) dµ(x) dµ(y)

=

∫

A

∫

A

∫

Rn

F̂n
p,α(ω)e

−i2π〈x−y,ω〉 dω dµ(x) dµ(y)

=

∫

Rn

|µ̂(ω)|2 F̂n
p,α(ω) dω

≥ 1

C(p, α, ψ)

∫

Rn

|µ̂(ω)|2 ψ̂(ω) dω

=
1

C(p, α, ψ)

∫

A

∫

A
ψ(x− y) dµ(x) dµ(y) =

1

C(p, α, ψ)
µ(A)2.

Thus by (2.1), |A| ≤ C(p, α, ψ). �

It is natural, especially in light of Theorem 3.6, to ask whether Theorem 4.3 applies to
(E)α for arbitrary finite dimensional subspaces E of Lp. To extend the present proof to
this setting would require generalizing a lower bound as in Lemma 4.1 to the densities of
much more general stable random vectors. Although such bounds have been the subject of
much study (see e.g. [38]) it appears that known results do not suffice for this purpose.

Theorem 4.4. Let A be a compact subset of
(
ℓnp
)α

, where 0 < p ≤ 2 and 0 < α ≤ 1. There
is a constant C > 0 such that |tA| ≤ Ctn for all t ≥ 1.

Proof. Let ψ be as in the proof of Theorem 4.3, and for t ≥ 1 define ψt(x) = ψ(xt ), so that
ψt is an even, compactly supported, nonnegative C∞ function such that ψt(x) = 1 for all
x ∈ {ty − tz | y, z ∈ A}. Lemma 4.2 and the proof of Theorem 4.3 imply that

|tA| ≤ sup
ω∈Rn

ψ̂t(ω)

F̂n
p,α(ω)

= sup
ω∈Rn

tnψ̂(tω)

F̂n
p,α(ω)

= tn sup
ω∈Rn

ψ̂(ω)

F̂n
p,α(ω/t)

≤ tn sup
ω∈Rn

ψ̂(ω)

F̂n
p,α(ω)

. �

The last theorem of this section is a generalization of another result of Leinster [24,
Theorem 3.5.6] which complements Theorem 4.4 for subsets with positive volume. Leinster
states the result for finite dimensional positive definite normed spaces, but the proof, which
will not be repeated here, generalizes immediately from norms to translation invariant,
homogeneous metrics on Rn. (Homogeneous is used here in the sense that for some β > 0,
d(tx, 0) = tβd(x, 0) for every x ∈ Rn and t > 0, and not in the sense of possessing a
transitive isometry group which follows in any case from translation invariance.) This
covers in particular

(
ℓnp
)α

in the entire range 0 < p ≤ 2 and 0 < α ≤ 1, for which the metric
is homogeneous of degree αmin{1, p}.
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Theorem 4.5. Let d be a positive definite, translation invariant metric on Rn which is
homogeneous of degree β ∈ (0, 1], and let B = {x ∈ Rn | d(x, 0) ≤ 1}. If A ⊆ (Rn, d) is
compact, then

|A| ≥ vol(A)

Γ
(
n
β + 1

)
vol(B)

.

In particular,

|tA| ≥ vol(A)

Γ
(
n
β + 1

)
vol(B)

tn

for every t > 0.

In the language of [24, Definition 3.4.5], Theorem 4.4 implies that any compact subset
A ⊆

(
ℓnp
)α

has magnitude dimension at most n, and Theorem 4.5 implies that if A also has
positive volume, then the magnitude dimension of A is precisely n.
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